Radiowave Detection at South Pole Radiowave detection of neutrinos

Size: px
Start display at page:

Download "Radiowave Detection at South Pole Radiowave detection of neutrinos"

Transcription

1 Radiowave Detection at South Pole Radiowave detection of neutrinos And other exotica (monopoles, e.g.) Quick summary of existing experiments: RICE+AURA= NARC And prototypes: IceRay The future: Askaryan Radio Array 100 km2+ areal coverage Possible acoustic component +surface antenna array for RF air shower. $6M pricetag, 5-year plan N.B. ALSO R&D programs at MinnaBluff (ARIANNA) and Vostok (RADICAL)

2 Detector Volume: The Challenge for UHE Neutrinos What detection volume is needed? Flux of GZK neutrinos < 1 neutrino / km2 / year / steradian Peak energies ~2 decades below GZK cutoff (photoproduction off CMB, etc...) Neutrino interaction length is ~500 km in ice (Eν 1019 ev), so an incident neutrino at Eν 1019 ev has ~0.002 chance of interacting in 1 km of ice. - Detector can see at most half the sky Earth blocks upcoming neutrino. Therefore, 2pi sr rates in detector are ~0.02 neutrinos / km3 / year Need to thoroughly monitor at least 50 km3 to see 1 event in a year! A detector > 1000 km3-str is required To obtain a detection volume this large, one must use: emission with large S/N natural materials in situ with long attenuation length

3 Gurgen Askaryan ( ) How to go beyond 10 km3 neutrino detector? Optical attenuation/scattering lengths of order 100 m BUT VHF/UHF radio attenuation lengths of order 1000 m Acoustic (10 s khz) attenuation lengths may be as long ν-induced showers will produce short (< 1nsec for RF) intense burst of radiation for good SNR above ~100 PeV.

4 Beyond 10 km3? Two Good Ideas by Askaryan #1. UHE event will induce an e/γ shower: In electron-gamma shower in matter, there will be 20% more electrons than positrons. Compton scattering: γ + e-(at rest) γ + epositron annihilation: e+ + e-(at rest) γ + γ

5 Two Good Ideas by Askaryan Halzen, Zas, Stanev, Alvarez #2. Excess charge moving faster than c/n in matter emit Cherenkov Radiation dpcr dν νdν Each charge emits field E eik r and Power Etot 2 In dense material RMoliere~ 10cm λ<<rmoliere (optical case), random phases P N λ>>rmoliere (microwaves), coherent P N2 Modern simulations + Maxwell s equations

6 Experimental Realizations RICE: 1996-present 16 in-ice antennas at South Pole, co-deployed in AMANDA holes to depths of m. + above-surface Rx Coaxial cable signal transmission to surface digitization ANITA: 2003-present NARC: 2006-present 32 dual-polarization horns mounted on balloon, synoptic viewing of Antarctica during ~30-day circumpolar flight. 2nd flight completed Jan Adaptation of IceCube DOM for radiowave frequencies ( DRM ). LABRADOR digitizer in-ice; m depths. Possible 100 km3 volume prototype IceRay: 2007-present Also large scale prototype shallow deployment (50 m)

7 Why South Pole? Cold ice is radio-transparent! (bottom reflection data from 1/09) And NOT birefringent! (all polarizations arrive in synch) Signal propagation transverse to local ice flow direction Signal propag ation parallel to local ice flow

8 Not birefringent? Conflicts with measurements at Taylor Dome (not so surprising) And measurements at Dome Fuji (somewhat surprising) And initial measurements of ice flow (v vs. depth) by AMANDA Signal propagation transverse to local ice flow direction Signal propag ation parallel to local ice flow

9 Radio neutrino detection rate as a function of position across continent Model ingredients: a) surface temperature measurements across Antarctica b) Barwick, Besson, Gorham 2004 measurements of RF attenuation length at Pole c) Lab Measurements of Latten(Temp) d) AMANDA measured temperature profile at South Pole e) Universal temperature gradient curve based on measurements at 5 locations across Antarctica

10

11 RICE/NARC (nee' AURA) RICE currently going through full data re-analysis. Enhanced Monte Carlo simulations Enhanced neutrino reconstruction efficiency Re-analyze data in search for air shower cores impacting surface=>down-coming shower. NARC: Two sets of deployments: : two receiver clusters + 3 transmitters : three receiver clusters + 3 transmitters

12

13

14

15 Front-end antennas and digitizing/trigger hardware

16 ESS GZK

17 Plan for the future: Measure GZK flux in PeV energy interval ARA

18 ARA

19

20

21 Summary Radiowave detection promising, but needs a) good sensitivity in 10 PeV-1000 PeV energy interval, b) high-quality target ice + Large areal coverage (simulations underway) Current experiments can't quite get there Hope to initiate next-generation experiment within the next 1-2 years. Co-deploy hardware during last 2 IceCube drilling seasons Supplemented by acoustic + radiowave air shower detection

22 Laboratory Observations of RF Askaryan Effect Silica sand (SLAC 2000, photon initiated, PRL 86, 2802 (2001)) Salt bricks (SLAC 2002, photon initiated, PRD 72, (2005)) Ice (SLAC 2006, electron initiated, analysis in progress) NEW ANITA views showers in Ice Target, July SLAC

23 Signal Coherence Prf / Nexcess (1 + f(λ) Nexcess), where Nexcess / Eshower coherence regime: E-field proportional to Esh Prf proportional to Esh2 SLAC T444 (2000) in sand SLAC T460 (2002) Askaryan in salt

24 Intensity matches Shower Profile Sand Salt

25 Cherenkov Radiation is 100% Polarized E S U

26 Sampling, buffer depth, timing, etc. 2 GSa/sec->1 Gsa/s Try to circumvent RCO correction 256 ns->10 microseconds RAPCAL, but only if it works Full suite of trigger diagnostic information available Test at temperature & pressure ahead of time and verify coincident reconstruction of a transmitter in the lab prior to deployment.

27 Frequency + Phase Reconstruct time domain pulse Reconstructed signal is a brief, unresolved, bipolar pulse of radiation Details of analysis in PRD 74, (2006)

28

29

30

31

32

33 Frequency Content log (intensity) (Analysis cutoff at 7.5 GHz) Users of Askaryan radiation do not go above ~1.2 GHz

34 GRID Reconstruction of RICE Tx X vs. Y for surface RICE Tx (true~(350,120))

35 Features of a real prototype MHz bandwidth vs ~200 MHz bandwidth (3 db points)

Radiowave detection of UltraHighEnergy Particles (esp. cosmic rays [protons, and other things that fall from the sky

Radiowave detection of UltraHighEnergy Particles (esp. cosmic rays [protons, and other things that fall from the sky Radiowave detection of UltraHighEnergy Particles (esp. cosmic rays [protons, and other things that fall from the sky Dave Z. Besson, KU, Lawrence, KS N.B. The Radio Waves being detected are secondary,

More information

The ExaVolt Antenna (EVA)

The ExaVolt Antenna (EVA) The ExaVolt Antenna (EVA) Amy Connolly (Ohio State University) for the EVA collaboration University of Hawaii, OSU, George Washington University, NASA: JPL and Balloon Program Office Aspen Institute Feb.

More information

SalSA. The Saltdome Shower Array: A Teraton UHE Neutrino Detector. Kevin Reil Stanford Linear Accelerator Center.

SalSA. The Saltdome Shower Array: A Teraton UHE Neutrino Detector. Kevin Reil Stanford Linear Accelerator Center. SalSA The Saltdome Shower Array: A Teraton UHE Neutrino Detector Kevin Reil Stanford Linear Accelerator Center UHE Neutrinos: A Quick Review GZK mechanism (p + + γ + π) guarantees UHE neutrinos (standard

More information

ASKARYAN RADIO ARRAY: INSTRUMENTATION FOR RADIO PULSE MEASUREMENTS OF ULTRA- HIGH ENERGY NEUTRINOS

ASKARYAN RADIO ARRAY: INSTRUMENTATION FOR RADIO PULSE MEASUREMENTS OF ULTRA- HIGH ENERGY NEUTRINOS ASKARYAN RADIO ARRAY: INSTRUMENTATION FOR RADIO PULSE MEASUREMENTS OF ULTRA- HIGH ENERGY NEUTRINOS M. A. DuVernois, University of Wisconsin, Madison for the ARA Collaboration OUTLINE Want to talk hardware,

More information

ANITA: Searching for Neutrinos at the Energy Frontier

ANITA: Searching for Neutrinos at the Energy Frontier ANITA: Searching for Neutrinos at the Energy Frontier Steve Barwick, UC Irvine APS Meeting, Philadelphia, April 2003 The energy frontier has traditionally led to tremendous breakthroughs in our understanding

More information

Energy Resolution & Calibration of the ANITA Detector

Energy Resolution & Calibration of the ANITA Detector Energy Resolution & Calibration of the ANITA Detector TeV Particle Astrophysics II 28 31 August 2006 D. Goldstein, UC Irvine for the ANITA Collaboration Why ANITA? ν ~1.1 M km2 Enormous detector volume

More information

Searching for Ultra-High Energy νs with ANITA

Searching for Ultra-High Energy νs with ANITA Searching for Ultra-High Energy νs with ANITA Ben Strutt on behalf of the ANITA collaboration Department of Physics and Astronomy University of California, Los Angeles August 28, 2018 Ben Strutt (UCLA)

More information

Results of the Search for Ultra High-Energy Neutrinos with ANITA-II

Results of the Search for Ultra High-Energy Neutrinos with ANITA-II Results of the Search for Ultra High-Energy Neutrinos with ANITA-II Abby Goodhue Vieregg for the ANITA Collaboration University of California, Los Angeles 25 March 2010 (ANITA-II Launch Day in Antarctica)

More information

Neutrinos with a cosmic ray detector. Cosmic rays with a neutrino detector

Neutrinos with a cosmic ray detector. Cosmic rays with a neutrino detector Instead of Neutrinos with a cosmic ray detector Cosmic rays with a neutrino detector Anna Nelles University of California Radio emission of showers High energy particles interacting in dense medium (or

More information

Neutrino Telescopes in Antarctica

Neutrino Telescopes in Antarctica Publ. Astron. Soc. Aust., 2000, 17, 13 17. Neutrino Telescopes in Antarctica Jenni Adams Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch, New Zealand j.adams@phys.canterbury.ac.nz

More information

ANITA and ARIANNA - Exploring the Energy Frontier with the Cosmogenic Neutrino Beam

ANITA and ARIANNA - Exploring the Energy Frontier with the Cosmogenic Neutrino Beam ANITA and ARIANNA - Exploring the Energy Frontier with the Cosmogenic Neutrino Beam ARIANNA Institutions: UCI, UCLA, UH, OSU,UCollege-London Steve Barwick, UC Irvine INPAC, 2007 PHOTONS: not deflected,

More information

Detecting High Energy Cosmic Rays with LOFAR

Detecting High Energy Cosmic Rays with LOFAR Detecting High Energy Cosmic Rays with LOFAR Andreas Horneffer for the LOFAR-CR Team LOFAR CR-KSP: Main Motivation Exploring the sub-second transient radio sky: Extensive Air showers as guaranteed signal

More information

arxiv:astro-ph/ v1 14 Mar 2005

arxiv:astro-ph/ v1 14 Mar 2005 22 nd Texas Symposium on Relativistic Astrophysics at Stanford University, 13-17 December 24 1 arxiv:astro-ph/5334v1 14 Mar 25 Tuning into UHE Neutrinos in Antarctica - The ANITA Experiment P. Miočinović,

More information

Feasibility of antenna array experiment for Earth skimming tau-neutrino detection in Antarctica

Feasibility of antenna array experiment for Earth skimming tau-neutrino detection in Antarctica Feasibility of antenna array experiment for Earth skimming tau-neutrino detection in Antarctica Jiwoo Nam 1 LeCosPA and Department of Physics, National Taiwan University 1 Roosevelt Road, Taipei, Taiwan

More information

arxiv:astro-ph/ v2 5 Nov 2004

arxiv:astro-ph/ v2 5 Nov 2004 arxiv:astro-ph/0411007 v2 5 Nov 2004 STATUS OF ANITA AND ANITA-LITE Andrea Silvestri for the ANITA Collaboration Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA silvestri@hep.ps.uci.edu

More information

Detection of Cosmic Rays at Ultra-High Energies with Phase I of the Square Kilometre Array (SKADS) Olaf Scholten and Heino Falcke

Detection of Cosmic Rays at Ultra-High Energies with Phase I of the Square Kilometre Array (SKADS) Olaf Scholten and Heino Falcke Detection of Cosmic Rays at Ultra-High Energies with Phase I of the Square Kilometre Array (SKADS) Olaf Scholten and Heino Falcke April 13, 2007 1 abstract Currently under development by an international

More information

Short review and prospects of radio detection of high-energy cosmic rays. Andreas Haungs

Short review and prospects of radio detection of high-energy cosmic rays. Andreas Haungs Short review and prospects of radio detection of high-energy cosmic rays 1 To understand the sources of cosmic rays we need to know their arrival direction energy and mass we need large statistics large

More information

The current status of the neutrino telescope experiments

The current status of the neutrino telescope experiments The current status of the neutrino telescope experiments K. Mase, Chiba Univ. The neutrino astronomy Want to open the neutrino astronomy QuickTimeý Dz TIFFÅià èkç»çµåj êlí ÉvÉçÉOÉâÉÄ Ç Ç±ÇÃÉsÉNÉ`ÉÉǾå

More information

New initiatives & Results in Radio Detection of High Energy Particles

New initiatives & Results in Radio Detection of High Energy Particles New initiatives & Results in Radio Detection of High Energy Particles Peter Gorham University of Hawaii & Jet Propulsion Lab Aspen Workshop on Ultra-High Energy Particles from Space Feb. 2002 Scientific

More information

ANITA. The Search for Astrophysical Ultra High Energy Neutrinos. Kimberly J. Palladino. for the ANITA Collaboration

ANITA. The Search for Astrophysical Ultra High Energy Neutrinos. Kimberly J. Palladino. for the ANITA Collaboration ANITA The Search for Astrophysical Ultra High Energy Neutrinos Kimberly J. Palladino for the ANITA Collaboration ANITA(1&2) Collaboration University of Hawaii P.W. Gorham: P.I. G.S.Varner J.G. Learned

More information

Detection of Ultra High Energy Neutrinos via Coherent Radio Emission. Gary S. Varner University of Hawai i

Detection of Ultra High Energy Neutrinos via Coherent Radio Emission. Gary S. Varner University of Hawai i Detection of Ultra High Energy Neutrinos via Coherent Radio Emission 1. Background Radio Detection 2. ANtarctic Impulsive Transient Antenna (ANITA) 3. Enabling Technology (LABRADOR) 4. Particle Identification

More information

neutrino astronomy francis halzen university of wisconsin

neutrino astronomy francis halzen university of wisconsin neutrino astronomy francis halzen university of wisconsin http://icecube.wisc.edu 50,000 year old sterile ice instead of water we built a km 3 neutrino detector 3 challenges: drilling optics of ice atmospheric

More information

SEARCHES OF VERY HIGH ENERGY NEUTRINOS. Esteban Roulet CONICET, Centro Atómico Bariloche

SEARCHES OF VERY HIGH ENERGY NEUTRINOS. Esteban Roulet CONICET, Centro Atómico Bariloche SEARCHES OF VERY HIGH ENERGY NEUTRINOS Esteban Roulet CONICET, Centro Atómico Bariloche THE NEUTRINO SKY THE ENERGETIC UNIVERSE multimessenger astronomy γ ν p γ rays (Fermi) ν (Amanda) UHE Cosmic rays

More information

Neutrino Astronomy. Ph 135 Scott Wilbur

Neutrino Astronomy. Ph 135 Scott Wilbur Neutrino Astronomy Ph 135 Scott Wilbur Why do Astronomy with Neutrinos? Stars, active galactic nuclei, etc. are opaque to photons High energy photons are absorbed by the CMB beyond ~100 Mpc 10 20 ev protons,

More information

A Calibration Study of the ANITA Instrument. A Senior Honors Thesis

A Calibration Study of the ANITA Instrument. A Senior Honors Thesis A Calibration Study of the ANITA Instrument A Senior Honors Thesis Presented in Partial Fulfillment of the Requirements for Graduation with research distinction in Physics in the undergraduate colleges

More information

Particle Physics Opportunities. with the Next Generation Ultra High Energy Neutrino Telescopes

Particle Physics Opportunities. with the Next Generation Ultra High Energy Neutrino Telescopes Particle Physics Opportunities with the Next Generation Ultra High Energy Neutrino Telescopes David Saltzberg University of California, Los Angeles Aspen Winter Conference The Highest Energy Physics February

More information

Introduction to the SALSA experiment (SALt-dome Shower Array)

Introduction to the SALSA experiment (SALt-dome Shower Array) Introduction to the SALSA experiment (SALt-dome Shower Array) Probing astrophyics and elementary particles using a teraton (500 km 3 -sr) UHE cosmic neutrino detector David Saltzberg (UCLA) for the SALSA

More information

NEUTRINO ASTRONOMY AT THE SOUTH POLE

NEUTRINO ASTRONOMY AT THE SOUTH POLE NEUTRINO ASTRONOMY AT THE SOUTH POLE D.J. BOERSMA The IceCube Project, 222 West Washington Avenue, Madison, Wisconsin, USA E-mail: boersma@icecube.wisc.edu A brief overview of AMANDA and IceCube is presented,

More information

Heino Falcke 5/17/2001. LOFAR & Air Showers. Heino Falcke. Planck-Institut für Radioastronomie & Peter W. Gorham. JPL/NASA/Caltech

Heino Falcke 5/17/2001. LOFAR & Air Showers. Heino Falcke. Planck-Institut für Radioastronomie & Peter W. Gorham. JPL/NASA/Caltech LOFAR & Air Showers Heino Falcke Max-Planck Planck-Institut für Radioastronomie & Peter W. Gorham JPL/NASA/Caltech A (very) Brief History of Cosmic Rays Victor Hess, 191: - discovered cosmic rays in balloon

More information

IceCube. francis halzen. why would you want to build a a kilometer scale neutrino detector? IceCube: a cubic kilometer detector

IceCube. francis halzen. why would you want to build a a kilometer scale neutrino detector? IceCube: a cubic kilometer detector IceCube francis halzen why would you want to build a a kilometer scale neutrino detector? IceCube: a cubic kilometer detector the discovery (and confirmation) of cosmic neutrinos from discovery to astronomy

More information

Signal Characteristics from Electromagnetic Cascades in Ice

Signal Characteristics from Electromagnetic Cascades in Ice Signal Characteristics from Electromagnetic Cascades in Ice Soebur Razzaque, Surujhdeo Seunarine, David Z. Besson, and Douglas W. McKay arxiv:astro-ph/0101315v2 26 Feb 2002 Department of Physics and Astronomy

More information

Neutrino & γ-ray astronomy

Neutrino & γ-ray astronomy Neutrino & γ-ray astronomy Looking for signals directly from cosmic-ray sources Q: why is this needed? Berlin, 2 Oct 2009 Tom Gaisser 1 Werner Hofmann, TeV PA 2009 R. Chaves ICRC 2009 The Galactic Plane

More information

Dr. John Kelley Radboud Universiteit, Nijmegen

Dr. John Kelley Radboud Universiteit, Nijmegen arly impressive. An ultrahighoton triggers a cascade of particles mulation of the Auger array. The Many Mysteries of Cosmic Rays Dr. John Kelley Radboud Universiteit, Nijmegen Questions What are cosmic

More information

What we (don t) know about UHECRs

What we (don t) know about UHECRs What we (don t) know about UHECRs We know: their energies (up to 10 20 ev). their overall energy spectrum We don t know: where they are produced how they are produced what they are made off exact shape

More information

Implications for the Radio Detection of Cosmic Rays

Implications for the Radio Detection of Cosmic Rays Implications for the Radio Detection of Cosmic Rays from Accelerator Measurements of Particle Showers in a Magnetic Field Stephanie Wissel 1 March 2016 T-510 Collaboration, PRL, in press, 2016, arxiv:1507.07296

More information

IceCube: Dawn of Multi-Messenger Astronomy

IceCube: Dawn of Multi-Messenger Astronomy IceCube: Dawn of Multi-Messenger Astronomy Introduction Detector Description Multi-Messenger look at the Cosmos Updated Diffuse Astrophysical Neutrino Data Future Plans Conclusions Ali R. Fazely, Southern

More information

A Search for Point Sources of High Energy Neutrinos with AMANDA-B10

A Search for Point Sources of High Energy Neutrinos with AMANDA-B10 A Search for Point Sources of High Energy Neutrinos with AMANDA-B10 Scott Young, for the AMANDA collaboration UC-Irvine PhD Thesis: http://area51.berkeley.edu/manuscripts Goals! Perform an all-sky search

More information

High Energy Neutrino Astrophysics with IceCube

High Energy Neutrino Astrophysics with IceCube High Energy Neutrino Astrophysics with IceCube Konstancja Satalecka, DESY Zeuthen UCM, 25th February 2011 OUTLINE Neutrino properties Cosmic Neutrinos Neutrino detection Ice/Water Cerenkov Detectors Neutrino

More information

Future Prospects of UHE neutrino detection with Electromagnetic VHEPA Fields / 46

Future Prospects of UHE neutrino detection with Electromagnetic VHEPA Fields / 46 Future Prospects of UHE neutrino detection with Electromagnetic Fields Dr. Jordan Hanson 1 1 Department of Physics and Astronomy University of Kansas, Lawrence, KS, USA VHEPA 2014 Future Prospects of UHE

More information

EeV Neutrinos in UHECR Surface Detector Arrays:

EeV Neutrinos in UHECR Surface Detector Arrays: EeV Neutrinos in UHECR Surface Detector Arrays: OBSERVATORY Challenges & Opportunities Karl-Heinz Kampert Bergische Universität Wuppertal High-Energy neutrino and cosmic ray astrophysics - The way forward

More information

arxiv:astro-ph/ v2 9 Sep 2005

arxiv:astro-ph/ v2 9 Sep 2005 Lunar Satellite Detection of Ultra-High Energy Neutrinos with the Use of Radio Methods arxiv:astro-ph/0509210v2 9 Sep 2005 O. Stål 1, J. Bergman 1, B. Thidé 1,2, L. Åhlén 1 and G. Ingelman 3 1 Swedish

More information

Neutrino Oscillations and Astroparticle Physics (5) John Carr Centre de Physique des Particules de Marseille (IN2P3/CNRS) Pisa, 10 May 2002

Neutrino Oscillations and Astroparticle Physics (5) John Carr Centre de Physique des Particules de Marseille (IN2P3/CNRS) Pisa, 10 May 2002 Neutrino Oscillations and Astroparticle Physics (5) John Carr Centre de Physique des Particules de Marseille (IN2P3/CNRS) Pisa, 10 May 2002 n High Energy Astronomy Multi-Messanger Astronomy Cosmic Rays

More information

Neutrino Astronomy at the South Pole AMANDA and IceCube

Neutrino Astronomy at the South Pole AMANDA and IceCube 1 Neutrino Astronomy at the South Pole AMANDA and IceCube Ignacio Taboada University of California - Berkeley Topics in Astroparticle and Underground Physics Zaragoza. Sept 10-14, 2005 2 The IceCube Collaboration

More information

arxiv:hep-ex/ v1 1 Nov 2000

arxiv:hep-ex/ v1 1 Nov 2000 Observation of the Askaryan Effect: Coherent Microwave Cherenkov Emission from Charge Asymmetry in High Energy Particle Cascades arxiv:hep-ex/0011001v1 1 Nov 2000 David Saltzberg 1, Peter Gorham 2, Dieter

More information

UHE Cosmic Rays and Neutrinos with the Pierre Auger Observatory

UHE Cosmic Rays and Neutrinos with the Pierre Auger Observatory UHE Cosmic Rays and Neutrinos with the Pierre Auger Observatory Gonzalo Parente Bermúdez Universidade de Santiago de Compostela & IGFAE for the Pierre Auger Collaboration Particle Physics and Cosmology

More information

Lake Baikal: from Megaton to Gigaton. Bair Shaybonov, JINR, Dubna on behalf of the Baikal Collaboration

Lake Baikal: from Megaton to Gigaton. Bair Shaybonov, JINR, Dubna on behalf of the Baikal Collaboration Lake Baikal: from Megaton to Gigaton Bair Shaybonov, JINR, Dubna on behalf of the Baikal Collaboration TAUP09, Rome, July 2009 Outline Status of the Baikal Detector Selected Results obtained from NT200

More information

Review of future neutrino telescopes-draft

Review of future neutrino telescopes-draft Nuclear Physics B Proceedings Supplement 00 (01) 1 7 Nuclear Physics B Proceedings Supplement Review of future neutrino telescopes-draft A. Karle Department of Physics and Wisconsin IceCube Particle Astrophysics

More information

Ultra-short Radio Pulses from High Energy Cosmic Rays

Ultra-short Radio Pulses from High Energy Cosmic Rays Ultra-short Radio Pulses from High Energy Cosmic Rays Andreas Horneffer for the LOFAR CR-KSP High Energy Cosmic Rays high energy particles dominated by atomic nuclei similar in composition to solar system

More information

David Saltzberg (UCLA), SLAC SUMMER INSTITUTE LECTURE, AUGUST 2008

David Saltzberg (UCLA), SLAC SUMMER INSTITUTE LECTURE, AUGUST 2008 UHE Neutrino Astronomy An Invitation to Nature s Laboratories David Saltzberg (UCLA), SLAC SUMMER INSTITUTE LECTURE, AUGUST 2008 What are the ways we get all our information about the universe beyond the

More information

Tim Huege for the LOPES collaboration

Tim Huege for the LOPES collaboration Geosynchrotron radio emission from extensive air showers Tim Huege for the LOPES collaboration AG-Tagung Köln, 29.09.2005 Radio emission from EAS historical works were not detailed enough for application

More information

AugerPrime. Primary cosmic ray identification for the next 10 years. Radomír Šmída.

AugerPrime. Primary cosmic ray identification for the next 10 years. Radomír Šmída. AugerPrime Primary cosmic ray identification for the next 10 years Radomír Šmída radomir.smida@kit.edu The Pierre Auger Observatory The primary goal is to study the most energetic cosmic rays Southern

More information

THE EHE EVENT AND PROSPECTS FROM THE ICECUBE NEUTRINO OBSERVATORY. Lu Lu 千葉大

THE EHE EVENT AND PROSPECTS FROM THE ICECUBE NEUTRINO OBSERVATORY. Lu Lu 千葉大 THE EHE EVENT 170922 AND PROSPECTS FROM THE ICECUBE NEUTRINO OBSERVATORY Lu Lu 千葉大 2 3 On-source n p TeV - PeV pp p n The Cosmic Neutrinos TeV->EeV p gp p n photopion production n GZK cosmogenic n EeV

More information

Ultra- high energy cosmic rays

Ultra- high energy cosmic rays Ultra- high energy cosmic rays Tiina Suomijärvi Institut de Physique Nucléaire Université Paris Sud, Orsay, IN2P3/CNRS, France Atélier CTA, IAP, Paris, 30-31 June 2014 Outline Pierre Auger Observatory:

More information

High Energy Neutrino Astronomy

High Energy Neutrino Astronomy High Energy Neutrino Astronomy VII International Pontecorvo School Prague, August 2017 Christian Spiering, DESY Zeuthen Content Lecture 1 Scientific context Operation principles The detectors Atmospheric

More information

neutrino astronomy francis halzen University of Wisconsin

neutrino astronomy francis halzen University of Wisconsin neutrino astronomy francis halzen University of Wisconsin http://icecube.wisc.edu menu neutrino astronomy cosmic ray accelerators and neutrinos: km 3 neutrino detectors Amanda and Antares: first generation

More information

Extreme high-energy variability of Markarian 421

Extreme high-energy variability of Markarian 421 Extreme high-energy variability of Markarian 421 Mrk 421 an extreme blazar Previous observations outstanding science issues 2001 Observations by VERITAS/Whipple 10 m 2001 Light Curve Energy spectrum is

More information

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Title Neutrino Physics with the IceCube Detector Permalink https://escholarship.org/uc/item/6rq7897p Authors Kiryluk, Joanna

More information

C. Spiering, CERN School Zeuthen, Sept.2003

C. Spiering, CERN School Zeuthen, Sept.2003 C. Spiering, CERN School Zeuthen, Sept.2003 Neutrinos Cosmic Neutrinos - solar neutrinos (kev MeV) - neutrinos from a Supernova (MeV) - atmospheric Neutrinos (GeV) - extraterrestrial neutrinos (GeV-TeV-PeV)

More information

Kurt Woschnagg UC Berkeley

Kurt Woschnagg UC Berkeley Neutrino Astronomy at the South Pole Latest results from IceCube Kurt Woschnagg UC Berkeley SLAC Summer Institute August 3, 2011 Neutrinos as Cosmic Messengers Neutrinos and the Origin of Cosmic Rays Cosmic

More information

Measuring the neutrino mass hierarchy with atmospheric neutrinos in IceCube(-Gen2)

Measuring the neutrino mass hierarchy with atmospheric neutrinos in IceCube(-Gen2) Measuring the neutrino mass hierarchy with atmospheric neutrinos in IceCube(-Gen2) Beyond the Standard Model with Neutrinos and Nuclear Physics Solvay Workshop November 30, 2017 Darren R Grant The atmospheric

More information

TeV to PeV Gamma-ray Astronomy with TAIGA

TeV to PeV Gamma-ray Astronomy with TAIGA TeV to PeV Gamma-ray Astronomy with TAIGA http://taiga-experiment.info/ M. Tluczykont for the TAIGA Collaboration Marcel-Grossmann-Meeting 2018, Roma TAIGA collaboration Skobeltsyn Institute of Nuclear

More information

Review of future neutrino telescopes

Review of future neutrino telescopes Nuclear Physics B Proceedings Supplement 00 (01) 1 7 Nuclear Physics B Proceedings Supplement Review of future neutrino telescopes Albrecht Karle Department of Physics and Wisconsin IceCube Particle Astrophysics

More information

The Pierre Auger Observatory Status - First Results - Plans

The Pierre Auger Observatory Status - First Results - Plans The Pierre Auger Observatory Status - First Results - Plans Andreas Haungs for the Pierre Auger Collaboration Forschungszentrum Karlsruhe Germany haungs@ik.fzk.de Andreas Haungs Pierre Auger Observatory

More information

The IceCube Experiment. K. Mase, Chiba univ.

The IceCube Experiment. K. Mase, Chiba univ. The IceCube Experiment K. Mase, Chiba univ. The IceCube Collaboration 30 institutes and 200 physisits Bartol Bartol Research Research Inst, Inst, Univ Univ Delaware, Delaware, Univ. Univ. Alabama, Alabama,

More information

The new Siderius Nuncius: Astronomy without light

The new Siderius Nuncius: Astronomy without light The new Siderius Nuncius: Astronomy without light K. Ragan McGill University STARS 09-Feb-2010 1609-2009 four centuries of telescopes McGill STARS Feb. '10 1 Conclusions Optical astronomy has made dramatic

More information

Search for Neutrino Emission from Fast Radio Bursts with IceCube

Search for Neutrino Emission from Fast Radio Bursts with IceCube Search for Neutrino Emission from Fast Radio Bursts with IceCube Donglian Xu Samuel Fahey, Justin Vandenbroucke and Ali Kheirandish for the IceCube Collaboration TeV Particle Astrophysics (TeVPA) 2017

More information

Radio Detection of Ultra High Energy Neutrinos: ANITA and SalSA for both Astrophysics and Particle Physics. Gary S. Varner University of Hawai i

Radio Detection of Ultra High Energy Neutrinos: ANITA and SalSA for both Astrophysics and Particle Physics. Gary S. Varner University of Hawai i Radio Detection of Ultra High Energy Neutrinos: ANITA and SalSA for both Astrophysics and Particle Physics 1. Background Radio Detection 2. ANtarctic Impulsive Transient Antenna (ANITA) 3. Saltdome Shower

More information

Implementation of the IEEE 1588 Precision Time Protocol for Clock Synchronization in the Radio Detection of Ultra-High Energy Neutrinos

Implementation of the IEEE 1588 Precision Time Protocol for Clock Synchronization in the Radio Detection of Ultra-High Energy Neutrinos i Implementation of the IEEE 1588 Precision Time Protocol for Clock Synchronization in the Radio Detection of Ultra-High Energy Neutrinos Undergraduate Research Thesis Presented in partial fulfillment

More information

PoS(ICRC2017)945. In-ice self-veto techniques for IceCube-Gen2. The IceCube-Gen2 Collaboration

PoS(ICRC2017)945. In-ice self-veto techniques for IceCube-Gen2. The IceCube-Gen2 Collaboration 1 In-ice self-veto techniques for IceCube-Gen2 The IceCube-Gen2 Collaboration http://icecube.wisc.edu/collaboration/authors/icrc17_gen2 E-mail: jan.lunemann@vub.ac.be The discovery of astrophysical high-energy

More information

Multi-messenger studies of point sources using AMANDA/IceCube data and strategies

Multi-messenger studies of point sources using AMANDA/IceCube data and strategies Multi-messenger studies of point sources using AMANDA/IceCube data and strategies Cherenkov 2005 27-29 April 2005 Palaiseau, France Contents: The AMANDA/IceCube detection principles Search for High Energy

More information

High-energy neutrino detection with the ANTARES underwater erenkov telescope. Manuela Vecchi Supervisor: Prof. Antonio Capone

High-energy neutrino detection with the ANTARES underwater erenkov telescope. Manuela Vecchi Supervisor: Prof. Antonio Capone High-energy neutrino detection with the ANTARES underwater erenkov telescope Supervisor: Prof. Antonio Capone 1 Outline Neutrinos: a short introduction Multimessenger astronomy: the new frontier Neutrino

More information

Particle Physics Beyond Laboratory Energies

Particle Physics Beyond Laboratory Energies Particle Physics Beyond Laboratory Energies Francis Halzen Wisconsin IceCube Particle Astrophysics Center Nature s accelerators have delivered the highest energy protons, photons and neutrinos closing

More information

Multi-PMT Optical Module Designs for IceCube-Gen2

Multi-PMT Optical Module Designs for IceCube-Gen2 EPJ Web of Conferences 116, 01001 (2016) DOI: 10.1051/epjconf/201611601001 C Owned by the authors, published by EDP Sciences, 2016 Multi-PMT Optical Module Designs for IceCube-Gen2 Alexander Kappes a Erlangen

More information

Overview of accelerator science opportunities with FACET ASF

Overview of accelerator science opportunities with FACET ASF Overview of accelerator science opportunities with FACET ASF Bob Siemann DOE FACET Review, February 19-20, 2008 OUTLINE I. Plasma Wakefield Acceleration II. Plasma Wakefield Based Linear Colliders III.

More information

ARIANNA: A New Concept for UHE Neutrino Detection

ARIANNA: A New Concept for UHE Neutrino Detection ARIANNA: A New Concept for UHE Neutrino Detection Steven W. Barwick Department of Physics and Astronomy, University of California, Irvine, CA 92697 E-mail: barwick@cosmic.ps.uci.edu Abstract. The ARIANNA

More information

Neutrino Astronomy fast-forward

Neutrino Astronomy fast-forward Neutrino Astronomy fast-forward Marek Kowalski (DESY & Humboldt University Berlin) TeVPA 2017, Columbus, Ohio Credit: M. Wolf/NSF The promised land The Universe is opaque to EM radiation for ¼ of the spectrum,

More information

IceCube: Ultra-high Energy Neutrinos

IceCube: Ultra-high Energy Neutrinos IceCube: Ultra-high Energy Neutrinos Aya Ishihara JSPS Research Fellow at Chiba University for the IceCube collaboration Neutrino2012 at Kyoto June 8 th 2012 1 Ultra-high Energy Neutrinos: PeV and above

More information

Muon Reconstruction in IceCube

Muon Reconstruction in IceCube Muon Reconstruction in IceCube K.Hoshina for the IceCube collaboration June 26 2008 International workshop on High Energy Earth Science in Tokyo Introduction 2 IceCube is... A cubic-kilometer neutrino

More information

NuMoon: Status of Ultra-High-Energy Cosmic-Ray detection with LOFAR and improved limits with the WSRT

NuMoon: Status of Ultra-High-Energy Cosmic-Ray detection with LOFAR and improved limits with the WSRT NuMoon: Status of Ultra-High-Energy Cosmic-Ray detection with LOFAR and improved limits with the WSRT Sander ter Veen for the LOFAR Cosmic Ray Key Science Project Supervisor: Prof. Heino Falcke Radboud

More information

Particle Acceleration in the Universe

Particle Acceleration in the Universe Particle Acceleration in the Universe Hiroyasu Tajima Stanford Linear Accelerator Center Kavli Institute for Particle Astrophysics and Cosmology on behalf of SLAC GLAST team June 7, 2006 SLAC DOE HEP Program

More information

Mass Composition Study at the Pierre Auger Observatory

Mass Composition Study at the Pierre Auger Observatory OBSERVATORY Mass Composition Study at the Pierre Auger Observatory Laura Collica for the Auger Milano Group 4.04.2013, Astrosiesta INAF Milano 1 Outline The physics: The UHECR spectrum Extensive Air Showers

More information

What the radio signal tells about the cosmic-ray air shower

What the radio signal tells about the cosmic-ray air shower EPJ Web of Conferences 3, 0800 (03) DOI:./epjconf/0330800 C Owned by the authors, published by EDP Sciences, 03 What the radio signal tells about the cosmic-ray air shower Olaf Scholten,a, Krijn D. de

More information

Status and Recent Results of the Acoustic Neutrino Detection Test System AMADEUS

Status and Recent Results of the Acoustic Neutrino Detection Test System AMADEUS Status and Recent Results of the Acoustic Neutrino Detection Test System AMADEUS Robert Lahmann for the ANTARES Collaboration ICRC 2011, Beijing, 15-Aug-2011 Acoustic Detection of Neutrinos Thermo-acoustic

More information

arxiv: v1 [astro-ph.he] 8 Jul 2012

arxiv: v1 [astro-ph.he] 8 Jul 2012 What the radio signal tells about the cosmic-ray air shower. Olaf Scholten,a, Krijn D. de Vries, and Klaus Werner KVI, University of Groningen, Groningen, The Netherlands SUBATECH, Nantes, France arxiv:07.874v

More information

arxiv: v1 [astro-ph.he] 28 Jan 2013

arxiv: v1 [astro-ph.he] 28 Jan 2013 Measurements of the cosmic ray spectrum and average mass with IceCube Shahid Hussain arxiv:1301.6619v1 [astro-ph.he] 28 Jan 2013 Abstract Department of Physics and Astronomy, University of Delaware for

More information

ASTROPHYSICS & SLAC. Rene A. Ong (UCLA)SLUO Meeting, 04 Feb / 24

ASTROPHYSICS & SLAC. Rene A. Ong (UCLA)SLUO Meeting, 04 Feb / 24 VHE PARTICLE ASTROPHYSICS Science, Projects, Roadmap, & SLAC Rene A. Ong (UCLA)SLUO Meeting, 04 Feb 2008 0 / 24 Outline 1. SCIENCE Astrophysics motivations New astronomy with γ-rays, ν s, cosmic rays.

More information

Radiowave Detection of Ultra-High Energy Neutrinos and Cosmic Rays

Radiowave Detection of Ultra-High Energy Neutrinos and Cosmic Rays Prog. Theor. Exp. Phys. 2017, 00000 (53 pages) DOI:.93/ptep/0000000000 Radiowave Detection of Ultra-High Energy Neutrinos and Cosmic Rays Tim Huege and Dave Besson Karlsruhe Institute of Technology, Karlsruhe

More information

Ultra High Energy Cosmic Rays I

Ultra High Energy Cosmic Rays I Ultra High Energy Cosmic Rays I John Linsley (PRL 10 (1963) 146) reports on the detection in Vulcano Ranch of an air shower of energy above 1020 ev. Problem: the microwave background radiation is discovered

More information

Radio Detection of Ultra-high Energy Cosmic Rays and Neutrinos

Radio Detection of Ultra-high Energy Cosmic Rays and Neutrinos Radio Detection of Ultra-high Energy Cosmic Rays and Neutrinos Peter W. Gorham Department of Physics and Astronomy, University of Hawaii at Manoa 2505 Correa Road, Honolulu, HI, 96822, gorham@phys.hawaii.edu

More information

PoS(ICRC2015)568. An Estimate of the Live Time of Optical Measurements of Air Showers at the South Pole

PoS(ICRC2015)568. An Estimate of the Live Time of Optical Measurements of Air Showers at the South Pole An Estimate of the Live Time of Optical Measurements of Air Showers at the South Pole a and Stephen Drury a a Department of Physics and Astronomy, University of Rochester, Rochester, NY, USA Email: sybenzvi@pas.rochester.edu

More information

Neutrino Astronomy at the South Pole

Neutrino Astronomy at the South Pole Neutrino Astronomy at the South Pole David Boersma UW Madison New Views of the Universe Chicago, 10 December 2005 Cosmic Ray Spectrum 10 December 2005 David Boersma @ New Views of the Universe 2 High Energy

More information

Structure of Biological Materials

Structure of Biological Materials ELEC ENG 3BA3: Structure of Biological Materials Notes for Lecture #19 Monday, November 22, 2010 6.5 Nuclear medicine imaging Nuclear imaging produces images of the distribution of radiopharmaceuticals

More information

Studies of Ultra High Energy Cosmic Rays with the Pierre Auger Observatory

Studies of Ultra High Energy Cosmic Rays with the Pierre Auger Observatory Studies of Ultra High Energy Cosmic Rays with the Pierre Auger Observatory Universidade Federal do Rio de Janeiro, Brazil E-mail: haris@if.ufrj.br Aquiring data continuously from 004, the Pierre Auger

More information

Secondary particles generated in propagation neutrinos gamma rays

Secondary particles generated in propagation neutrinos gamma rays th INT, Seattle, 20 Feb 2008 Ultra High Energy Extragalactic Cosmic Rays: Propagation Todor Stanev Bartol Research Institute Dept Physics and Astronomy University of Delaware Energy loss processes protons

More information

Quoi de neuf en astroparticules? Damien Dornic 22/10/07

Quoi de neuf en astroparticules? Damien Dornic 22/10/07 Quoi de neuf en astroparticules? Damien Dornic 22/10/07 ICRC program: ~1100 contributions SH: Solar and Heliospheric Phenomena (~250 papers) SH 1: Sun and Corona SH 2: Transient Phenomena in the Heliosphere

More information

Muon track reconstruction and veto performance with D-Egg sensor for IceCube-Gen2

Muon track reconstruction and veto performance with D-Egg sensor for IceCube-Gen2 1 2 Muon track reconstruction and veto performance with D-Egg sensor for IceCube-Gen2 The IceCube Gen2 Collaboration http://icecube.wisc.edu/collaboration/authors/icrc17_gen2 E-mail: achim.stoessl@icecube.wisc.edu

More information

Mediterranean Neutrino Telescopes

Mediterranean Neutrino Telescopes Mediterranean Neutrino Telescopes New Views of the Universe Chicago, December 2005 Juande D. Zornoza (IFIC UW-Madison) Advantages: Neutrino Astronomy Neutrino Astronomy is a quite recent and very promising

More information

THE KM3NET NEUTRINO TELESCOPE IN THE MEDITERRANEAN SEA

THE KM3NET NEUTRINO TELESCOPE IN THE MEDITERRANEAN SEA THE KM3NET NEUTRINO TELESCOPE IN THE MEDITERRANEAN SEA PIERA SAPIENZA ON BEHALF OF THE KM3NET COLLABORATION FRONTIERS OF RESEARCH ON COSMIC RAY GAMMA - LA PALMA 26-29 AUGUST 2015 OUTLINE MOTIVATION DETECTOR

More information

arxiv: v1 [astro-ph.im] 30 Oct 2012

arxiv: v1 [astro-ph.im] 30 Oct 2012 Acoustic Neutrino Detection in Ice: Past, Present, and Future Timo Karg DESY, Platanenallee 6, 15738 Zeuthen, Germany arxiv:12.7974v1 [astro-ph.im] 30 Oct 2012 Abstract. Acoustic neutrino detection is

More information

Gamma-ray Astrophysics

Gamma-ray Astrophysics Gamma-ray Astrophysics AGN Pulsar SNR GRB Radio Galaxy The very high energy -ray sky NEPPSR 25 Aug. 2004 Many thanks to Rene Ong at UCLA Guy Blaylock U. of Massachusetts Why gamma rays? Extragalactic Background

More information