Concepts in Physics. Friday, September 11th 2009

Size: px
Start display at page:

Download "Concepts in Physics. Friday, September 11th 2009"

Transcription

1 Concepts in Physics Friday, September 11th 2009

2 Some notes Reminder: this coming Monday the tutorial (16:30-18:00) is mandatory for the LAB part of this course. Initial test solutions available on Monday Course notes and detailed syllabus available online on Monday (not sure where yet...) My (F511)

3 Chapter 1 Introduction What is physics? Concepts, models, and theories Units Power of ten notation and significant figures Reference frames and coordinate systems Chapter 2 Vectors Scalars and vectors Vector addition Components and unit vectors Scalar (dot) product

4 Ten notation, significant figures 10 0 = 1 one 10 1 =.1 tenth 10 1 = 10 ten 10 2 =.01 hundredth 10 2 = 100 hundred 10 3 =.001 thousandth 10 3 = 1000 thousand 10 6 = millionth 10 6 = million 10 9 = billion = trillion Your turn: 3min Express the following numbers in ten notation (no calculator): a) b) c) d) e) f) g) h) 1/2 i) 1/8

5 Express the following numbers in ten notation: a) b) c) d) e) f) g) h) 1/2 i) 1/8 a) *10 4 b) 5.67 *10-3 c) 2.856*10 9 d) 4*10 14 e) 3*10-3 f) *10 4 g) 4.3*10-11 h) 5*10-1 i) 1.25*10-1 Rules for using ten notation in calculations: 1.) = 10 5 To multiply powers of ten, add the exponents. 2.) 10 3 : 10 2 = 10 1 To divide powers of ten, subtract the exponents. 3.) (10 2 ) 3 = = 10 6 To raise a power of ten to a power, multiply the exponents.

6 Your turn: 3min Simplify the following expressions: a) 10 3 x 10 5 = b) 3*10 2 x 4*10 7 = c) 10 5 : 10 7 = d) 4*10 4 : 2*10 2 = e) (10 3 )4 = f) (10 2 ) 3 x 10 3 x (10 7 ) 2 g) 3.5*10 2 x 2*10 8

7 Your turn: 3min Simplify the following expressions: a) 10 3 x 10 5 = b) 3*10 2 x 4*10 7 = c) 10 5 : 10 7 = d) 4*10 4 : 2*10 2 = e) (10 3 )4 = f) (10 2 ) 3 x 10 3 x (10 7 ) 2 g) 3.5*10 2 x 2*10 8 Solutions: a) 10 3 x 10 5 = 10 8 b) 3*10 2 x 4*10 7 = 12*10 9 c) 10 5 : 10 7 = 10-2 d) (4*10 4 ) : (2*10 2 ) = 2*10 2 e) (10 3 ) 4 = 10 3 *10 3 *10 3 *10 3 = f) (10 2 ) 3 x 10 3 x (10 7 ) 2 = 10 6 x 10 3 x = g) 3.5*10 2 x 2*10 8 = 7*10 10

8 SIGNIFICANT DIGITS The number of significant digits in an answer to a calculation will depend on the number of significant digits in the given data, as discussed in the rules below. Approximate calculations (orderof-magnitude estimates) always result in answers with only one or two significant digits. When are Digits Significant? Non-zero digits are always significant. Thus, 22 has two significant digits, and 22.3 has three significant digits. With zeroes, the situation is more complicated: a.zeroes placed before other digits are not significant; has two significant digits. b.zeroes placed between other digits are always significant; 4009 kg has four significant digits. c.zeroes placed after other digits but behind a decimal point are significant; 7.90 has three significant digits. d.zeroes at the end of a number are significant only if they are behind a decimal point as in (c). Otherwise, it is impossible to tell if they are significant. For example, in the number 8200, it is not clear if the zeroes are significant or not. The number of significant digits in 8200 is at least two, but could be three or four. To avoid uncertainty, use scientific notation to place significant zeroes behind a decimal point: has four significant digits has three significant digits has two significant digits

9 Significant Digits in Multiplication, Division, Trig. functions, etc. In a calculation involving multiplication, division, trigonometric functions, etc., the number of significant digits in an answer should equal the least number of significant digits in any one of the numbers being multiplied, divided etc. Thus in evaluating sin(kx), where k = m -1 (two significant digits) and x = 4.73 m (three significant digits), the answer should have two significant digits. Note that whole numbers have essentially an unlimited number of significant digits. As an example, if a hair dryer uses 1.2 kw of power, then 2 identical hairdryers use 2.4 kw: 1.2 kw {2 sig. dig.} 2 {unlimited sig. dig.} = 2.4 kw {2 sig. dig.} Significant Digits in Addition and Subtraction When quantities are being added or subtracted, the number of decimal places (not significant digits) in the answer should be the same as the least number of decimal places in any of the numbers being added or subtracted. Example: 5.67 J (two decimal places) 1.1 J (one decimal place) J (four decimal place) 7.7 J (one decimal place)

10 When doing multi-step calculations, keep at least one more significant digit in intermediate results than needed in your final answer. For instance, if a final answer requires two significant digits, then carry at least three significant digits in calculations. If you round-off all your intermediate answers to only two digits, you are discarding the information contained in the third digit, and as a result the second digit in your final answer might be incorrect. (This phenomenon is known as "round-off error.") The Two Greatest Sins Regarding Significant Digits - What not to do 1.Writing more digits in an answer (intermediate or final) than justified by the number of digits in the data. 2.Rounding-off, say, to two digits in an intermediate answer, and then writing three digits in the final answer. YOUR TURN: Try these Exercises: 1. e kt =?, where k = yr -1, and t = 25 yr. 2. ab/c =?, where a = 483 J, b = J, and c = x + y + z =?, where x = 48.1, y = 77, and z = m - n - p =?, where m = 25.6, n = 21.1, and p = 2.43

11 Solutions: 1. e kt =?, where k = yr -1, and t = 25 yr. [Ans. 1.6] 2. ab/c =?, where a = 483 J, b = J, and c = [Ans. 2.27X10 3 J 2 ] 3. x + y + z =?, where x = 48.1, y = 77, and z = [Ans. 191] 4. m - n - p =?, where m = 25.6, n = 21.1, and p = 2.43 [Ans. 2.1] You will need these things for every single calculation you have to do - in this course or otherwise.

12 Reference Frames and Coordinate Systems A set of coordinate axes in terms of which position or movement may be specified or with reference to which physical laws may be mathematically stated. Also called reference frame. The concept of reference frame is applied to the sciences. People use frame of reference every day indeed, virtually every moment of their lives, without thinking about it. Rare indeed is the person who "walks a mile in another person's shoes" that is, someone who tries to see events from the viewpoint of another. (Which country, city, context of conversations,...) Physicists, on the other hand, have to be acutely aware of their frame of reference. Moreover, they must "rise above" their frame of reference in the sense that they have to take it into account in making calculations. For physicists in particular, and scientists in general, frame of reference has abundant "real-life applications."

13 There is no such thing as an absolute frame of reference that is, a frame of reference that is fixed, and not dependent on anything else. If the entire universe consisted of just two points, it would be impossible (and indeed irrelevant) to say which was to the right of the other. There would be no right and left: in order to have such a distinction, it is necessary to have a third point from which to evaluate the other two points. As long as there are just two points, there is only one dimension. The addition of a third point as long as it does not lie along a straight line drawn through the first two points creates two dimensions, length and width. From the frame of reference of any one point, then, it is possible to say which of the other two points is to the right. Of course, when someone is upside-down, the correct orientation of left and right is still fairly obvious. In certain situations observed by physicists and other scientists, however, orientation is not so simple. It then becomes necessary to assign values to various points, and for this, scientists use tools such as the Cartesian coordinate system.

14 Coordinate sytstem - cartesian A coordinate system in which the coordinates of a point are its distances from a set of perpendicular lines that intersect at an origin, such as two lines in a plane or three in space. Though it is named after the French mathematician and philosopher René Descartes ( ), who first described its principles, the Cartesian system owes at least as much to Pierre de Fermat ( ). Fermat, a brilliant French amateur mathematician amateur in the sense that he was not trained in mathematics, nor did he earn a living from that discipline greatly developed the Cartesian system. A coordinate is a number or set of numbers used to specify the location of a point on a line, on a surface such as a plane, or in space. In the Cartesian system, the x-axis is the horizontal line of reference, and the y-axis the vertical line of reference. Hence, the coordinate (0, 0) designates the point where the x-and y-axes meet. All numbers to the right of 0 on the x-axis, and above 0 on the y-axis, have a positive value, while those to the left of 0 on the x-axis, or below 0 on the y-axis have a negative value.

15 From Astronomy to Physics The human body is in an inertial frame of reference with regard to Earth, and hence experiences no relative motion when Earth rotates or moves through space. In the same way, if one were traveling in a train alongside another train at constant velocity, it would be impossible to perceive that either train was actually moving unless one referred to some fixed point, such as the trees or mountains in the background. Likewise, if two trains were sitting side by side, and one of them started to move, the relative motion might cause a person in the stationary train to believe that his or her train was the one moving. For any measurement of velocity, and hence, of acceleration (a change in velocity), it is essential to establish a frame of reference. Velocity and acceleration, as well as inertia and mass, figured heavily in the work of Galileo Galilei ( ) and Sir Isaac Newton ( ), both of whom may be regarded as "founding fathers" of modern physics. Before Galileo, however, had come Nicholas Copernicus ( ), the first modern astronomer to show that the Sun, and not Earth, is at the center of "the universe" by which people of that time meant the Solar System. In effect, Copernicus was saying that the frame of reference used by astronomers for millennia was incorrect: as long as they believed Earth to be the center, their calculations were bound to be wrong. Galileo and later Newton, through their studies in gravitation, were able to prove Copernicus's claim in terms of physics. At the same time, without the understanding of a heliocentric (Sun-centered) universe that he inherited from Copernicus, it is doubtful that Newton could have developed his universal law of gravitation. If he had used Earth as the center-point for his calculations, the results would have been highly erratic, and no universal law would have emerged.

16 Relativity For centuries, the model of the universe developed by Newton stood unchallenged, and even today it identifies the basic forces at work when speeds are well below that of the speed of light. However, with regard to the behavior of light itself which travels at 186,000 mi (299,339 km) a second Albert Einstein ( ) began to observe phenomena that did not fit with Newtonian mechanics. The result of his studies was the Special Theory of Relativity, published in 1905, and the General Theory of Relativity, published a decade later. Together these altered humanity's view of the universe, and ultimately, of reality itself. Einstein himself once offered this charming explanation of his epochal theory: "Put your hand on a hot stove for a minute, and it seems like an hour. Sit with a pretty girl for an hour, and it seems like a minute. That's relativity." Of course, relativity is not quite as simple as that though the mathematics involved is no more challenging than that of a high-school algebra class. The difficulty lies in comprehending how things that seem impossible in the Newtonian universe become realities near the speed of light.

17 Some more Math... In preparation for the basics of mechanics, we have to understand the difference between Scalars and Vectors. We will come to the Physics on Monday, for the rest of today s lecture we will do some exercises.

18 Scalar and Vector Physics is a mathematical science. The underlying concepts and principles have a mathematical basis. While our emphasis will often be upon the conceptual nature of physics, we will give considerable and persistent attention to its mathematical aspect. The motion of objects can be described by words. Even a person without a background in physics has a collection of words which can be used to describe moving objects. Words and phrases such as going fast, stopped, slowing down, speeding up, and turning provide a sufficient vocabulary for describing the motion of objects. In physics, we use these words and many more. We will be expanding upon this vocabulary list with words such as distance, displacement, speed, velocity, and acceleration. As we will soon see, these words are associated with mathematical quantities which have strict definitions. The mathematical quantities which are used to describe the motion of objects can be divided into two categories. The quantity is either a vector or a scalar. These two categories can be distinguished from one another by their distinct definitions: Scalars are quantities which are fully described by a magnitude (or numerical value) alone. Vectors are quantities which are fully described by both a magnitude and a direction.

19 1. To test your understanding of this distinction, consider the following quantities listed below. Categorize each quantity as being either a vector or a scalar. Quantity a. 5 m b. 30 m/sec, East c. 5 mi., North d. 20 degrees Celsius e. 256 bytes f Calories

20 Vector Graphically, a vector is represented by an arrow, defining the direction, and the length of the arrow defines the vector's magnitude. This is shown in Panel 1.. If we denote one end of the arrow by the origin O and the tip of the arrow by Q. Then the vector may be represented algebraically by OQ. This is often simplified to just. The line and arrow above the Q are there to indicate that the symbol represents a vector. Note, that since a direction is implied,. Even though their lengths are identical, their directions are exactly opposite, in fact OQ = -QO. The magnitude of a vector is denoted by absolute value signs around the vector symbol: magnitude of Q = Q.

21 The operation of addition, subtraction and multiplication of ordinary algebra can be extended to vectors with some new definitions and a few new rules. There are two fundamental definitions. #1 Two vectors, A and B are equal if they have the same magnitude and direction, regardless of whether they have the same initial points. #2 A vector having the same magnitude as A but in the opposite direction to A is denoted by -A, as shown in Panel 3.

22 We can now define vector addition. The sum of two vectors, A and B, is a vector C, which is obtained by placing the initial point of B on the final point of A, and then drawing a line from the initial point of A to the final point of B, as illustrated in Panel 4. This is sometines referred to as the "Tip-to-Tail" method. The operation of vector addition as described here can be written as C = A + B Vector subtraction is defined in the following way. The difference of two vectors, A - B, is a vector C that is, C = A - B or C = A + (-B).Thus vector subtraction can be represented as a vector addition. The graphical representation is shown in Panel 5. Inspection of the graphical representation shows that we place the initial point of the vector -B on the final point the vector A, and then draw a line from the initial point of A to the final point of -B to give the difference C.

23 Your turn... vectors "A" and "B" are added; vectors "C" and "B" are added; vectors "A" and "D" are added vectors "E" and "D" are added; vectors "E" and "F" are added; vectors "F" and "C" are added.

Introduction to Kinematics. Motion, Forces and Energy

Introduction to Kinematics. Motion, Forces and Energy Introduction to Kinematics Motion, Forces and Energy Mechanics: The study of motion Kinematics The description of how things move 1-D and 2-D motion Dynamics The study of the forces that cause motion Newton

More information

Ratios and Rates - Vocabulary

Ratios and Rates - Vocabulary 1/19/18 Unit 5 Ratios and Rates - Vocabulary Begin on a new page Write the date and unit in the top corners of the page Write the title across the top line Ratio A comparison of two numbers. Terms of a

More information

Section 4.7 Scientific Notation

Section 4.7 Scientific Notation Section 4.7 Scientific Notation INTRODUCTION Scientific notation means what it says: it is the notation used in many areas of science. It is used so that scientist and mathematicians can work relatively

More information

Kinematics Unit. Measurement

Kinematics Unit. Measurement Kinematics Unit Measurement The Nature of Science Observation: important first step toward scientific theory; requires imagination to tell what is important. Theories: created to explain observations;

More information

Natural Questions. About 2000 years ago Greek scientists were confused about motion. and developed a theory of motion

Natural Questions. About 2000 years ago Greek scientists were confused about motion. and developed a theory of motion Natural Questions First natural question: Next question: What these things made of? Why and how things move? About 2000 years ago Greek scientists were confused about motion. Aristotle --- First to study

More information

AP Physics C Mechanics Summer Assignment

AP Physics C Mechanics Summer Assignment AP Physics C Mechanics Summer Assignment 2018 2019 School Year Welcome to AP Physics C, an exciting and intensive introductory college physics course for students majoring in the physical sciences or engineering.

More information

Chapter 3 Vectors Prof. Raymond Lee, revised

Chapter 3 Vectors Prof. Raymond Lee, revised Chapter 3 Vectors Prof. Raymond Lee, revised 9-2-2010 1 Coordinate systems Used to describe a point s position in space Coordinate system consists of fixed reference point called origin specific axes with

More information

Vector Addition and Subtraction: Graphical Methods

Vector Addition and Subtraction: Graphical Methods Vector Addition and Subtraction: Graphical Methods Bởi: OpenStaxCollege Displacement can be determined graphically using a scale map, such as this one of the Hawaiian Islands. A journey from Hawai i to

More information

Chapter 2 Measurements & Calculations. Quantity: A thing that can be measured. ex. Length (6.3 ft), mass (35 kg), and time (7.2 s)

Chapter 2 Measurements & Calculations. Quantity: A thing that can be measured. ex. Length (6.3 ft), mass (35 kg), and time (7.2 s) Chapter 2 Measurements & Calculations Quantity: A thing that can be measured. ex. Length (6.3 ft), mass (35 kg), and time (7.2 s) Measurements can be expressed in a variety of units: Example: length(cm,

More information

Introduction to Kinematics. Motion, Forces and Energy

Introduction to Kinematics. Motion, Forces and Energy Introduction to Kinematics Motion, Forces and Energy Mechanics: The study of motion Kinematics The description of how things move 1-D and 2-D motion Dynamics The study of the forces that cause motion Newton

More information

Coordinate Systems. Chapter 3. Cartesian Coordinate System. Polar Coordinate System

Coordinate Systems. Chapter 3. Cartesian Coordinate System. Polar Coordinate System Chapter 3 Vectors Coordinate Systems Used to describe the position of a point in space Coordinate system consists of a fixed reference point called the origin specific axes with scales and labels instructions

More information

Correct Resolution of the Twin Paradox

Correct Resolution of the Twin Paradox Correct Resolution of the Twin Paradox Michael Huemer In the following, I explain the Twin Paradox, which is supposed to be a paradoxical consequence of the Special Theory of Relativity (STR). I give the

More information

Fundamentals of Mathematics I

Fundamentals of Mathematics I Fundamentals of Mathematics I Kent State Department of Mathematical Sciences Fall 2008 Available at: http://www.math.kent.edu/ebooks/10031/book.pdf August 4, 2008 Contents 1 Arithmetic 2 1.1 Real Numbers......................................................

More information

Chapter 2 Describing Motion: Kinematics in One Dimension

Chapter 2 Describing Motion: Kinematics in One Dimension Chapter 2 Describing Motion: Kinematics in One Dimension Units of Chapter 2 Reference Frames and Displacement Average Velocity Instantaneous Velocity Acceleration Motion at Constant Acceleration Solving

More information

PHYSICS - CLUTCH CH 01: UNITS & VECTORS.

PHYSICS - CLUTCH CH 01: UNITS & VECTORS. !! www.clutchprep.com Physics is the study of natural phenomena, including LOTS of measurements and equations. Physics = math + rules. UNITS IN PHYSICS We measure in nature. Measurements must have. - For

More information

PHYSICS. Chapter 1 Review. Rounding Scientific Notation Factor Label Conversions

PHYSICS. Chapter 1 Review. Rounding Scientific Notation Factor Label Conversions PHYSICS Chapter 1 Review Rounding Scientific Notation Factor Label Conversions The Tools Of PHYSICS Metric Prefixes Prefix Symbol Meaning Kilo K 1000 Deci d tenth Centi c hundreth Milli m thousandth Prefix

More information

Distance in the Plane

Distance in the Plane Distance in the Plane The absolute value function is defined as { x if x 0; and x = x if x < 0. If the number a is positive or zero, then a = a. If a is negative, then a is the number you d get by erasing

More information

Vectors and 2D Kinematics. AIT AP Physics C

Vectors and 2D Kinematics. AIT AP Physics C Vectors and 2D Kinematics Coordinate Systems Used to describe the position of a point in space Coordinate system consists of a fixed reference point called the origin specific axes with scales and labels

More information

IBGBECDE. The nature of motion appears to be the question with which we begin. -- Socrates. Motion is the most common physical event around us.

IBGBECDE. The nature of motion appears to be the question with which we begin. -- Socrates. Motion is the most common physical event around us. Modeling Motion The nature of motion appears to be the question with which we begin. -- Socrates Our universe is in a constant state of motion. Motion is the most common physical event around us. Motion

More information

Notes: Unit 1: Math and Measurement

Notes: Unit 1: Math and Measurement Name: Regents Chemistry: Notes: Unit 1: Math and Measurement www.chempride.weebly.com Key Ideas Major Understandings: o Chemistry is the study of matter: Matter takes up space and has mass. (K- 4, 3.1a)

More information

THE LANGUAGE OF PHYSICS:

THE LANGUAGE OF PHYSICS: HSC PHYSICS ONLINE THE LANGUAGE OF PHYSICS: KINEMATICS The objects that make up space are in motion, we move, soccer balls move, the Earth moves, electrons move,.... Motion implies change. The study of

More information

Notes: Unit 1: Math and Measurement

Notes: Unit 1: Math and Measurement Name: Regents Chemistry: Notes: Unit 1: Math and Measurement www.chempride.weebly.com Key Ideas Major Understandings: o Chemistry is the study of matter: Matter takes up space and has mass. (K- 4, 3.1a)

More information

We saw last time how the development of accurate clocks in the 18 th and 19 th centuries transformed human cultures over the world.

We saw last time how the development of accurate clocks in the 18 th and 19 th centuries transformed human cultures over the world. We saw last time how the development of accurate clocks in the 18 th and 19 th centuries transformed human cultures over the world. They also allowed for the precise physical measurements of time needed

More information

Limitations of Newtonian Physics

Limitations of Newtonian Physics Limitations of Newtonian Physics 18 th and 19 th Centuries Newtonian Physics was accepted as an ultimate truth Science is never absolute Hundreds of experiments can t prove my theory right but only one

More information

PHYS133 Lab 1 Math Review

PHYS133 Lab 1 Math Review PHYS133 Lab 1 Goal: To review mathematical concepts that will be used in this course. What You Turn In: The worksheet in this manual. Background: This course requires the use of several concepts from high

More information

LIGHT and SPECIAL RELATIVITY FRAMES OF REFERENCE

LIGHT and SPECIAL RELATIVITY FRAMES OF REFERENCE VISUAL PHYSICS ONLINE MODULE 7 NATURE OF LIGHT LIGHT and SPECIAL RELATIVITY FRAMES OF REFERENCE The location of an object and its velocity depends upon the frame of reference of an observer. Inertial frame

More information

Inertia and. Newton s First Law

Inertia and. Newton s First Law 5.1 Inertia and Newton s First Law SECTION Apply Newton s laws of motion to explain inertia. Evaluate appropriate processes for problem solving and decision making. KEY TERMS OUTCOMES classical/newtonian

More information

Today s lecture. WEST VIRGINIA UNIVERSITY Physics

Today s lecture. WEST VIRGINIA UNIVERSITY Physics Today s lecture Units, Estimations, Graphs, Trigonometry: Units - Standards of Length, Mass, and Time Dimensional Analysis Uncertainty and significant digits Order of magnitude estimations Coordinate Systems

More information

Statics. Introductions Review Course Outline and Class Schedule Course Expectations Chapter 1

Statics. Introductions Review Course Outline and Class Schedule Course Expectations Chapter 1 Statics ENGR 1205 Kaitlin Ford kford@mtroyal.ca B175 Today Introductions Review Course Outline and Class Schedule Course Expectations Chapter 1 1 Review the Course Outline and Class Schedule Go through

More information

Significant Figures & Vectors

Significant Figures & Vectors You have to complete this reading Booklet before you attempt the Substantive Assignment. Significant Figures Significant Figures & Vectors There are two kinds of numbers in the world Exact: o Example:

More information

Newton s First Law of Motion

Newton s First Law of Motion MATHEMATICS 7302 (Analytical Dynamics) YEAR 2017 2018, TERM 2 HANDOUT #1: NEWTON S FIRST LAW AND THE PRINCIPLE OF RELATIVITY Newton s First Law of Motion Our experience seems to teach us that the natural

More information

Chapter 2. Motion in One Dimension. Professor Wa el Salah

Chapter 2. Motion in One Dimension. Professor Wa el Salah Chapter 2 Motion in One Dimension Kinematics Describes motion while ignoring the external agents that might have caused or modified the motion For now, will consider motion in one dimension Along a straight

More information

Decimal Addition: Remember to line up the decimals before adding. Bring the decimal straight down in your answer.

Decimal Addition: Remember to line up the decimals before adding. Bring the decimal straight down in your answer. Summer Packet th into 6 th grade Name Addition Find the sum of the two numbers in each problem. Show all work.. 62 2. 20. 726 + + 2 + 26 + 6 6 Decimal Addition: Remember to line up the decimals before

More information

Appendix B: Skills Handbook

Appendix B: Skills Handbook Appendix B: Skills Handbook Effective communication is an important part of science. To avoid confusion when measuring and doing mathematical calculations, there are accepted conventions and practices

More information

Welcome to Chemistry! Sept 11, 2015 Friday

Welcome to Chemistry! Sept 11, 2015 Friday Welcome to Chemistry! Sept 11, 2015 Friday DO NOW: How many sig figs in this number? 2001.1109 Round this number to 3 sig figs...... Objectives: 1. Quantitative Tools for Chemistry: complete calculations

More information

PHYSICS 149: Lecture 2

PHYSICS 149: Lecture 2 PHYSICS 149: Lecture 2 Chapter 1 1.1 Why study physics? 1.2 Talking physics 1.3 The Use of Mathematics 1.4 Scientific Notation and Significant Figures 15Units 1.5 1.6 Dimensional Analysis 1.7 Problem-Solving

More information

Math Review -- Conceptual Solutions

Math Review -- Conceptual Solutions Math Review Math Review -- Conceptual Solutions 1.) Is three plus four always equal to seven? Explain. Solution: If the numbers are scalars written in base 10, the answer is yes (if the numbers are in

More information

CHAPTER TWO: MEASUREMENTS AND PROBLEM SOLVING

CHAPTER TWO: MEASUREMENTS AND PROBLEM SOLVING CHAPTER TWO: MEASUREMENTS AND PROBLEM SOLVING Measurements: Our Starting Point! Why should we begin our study of chemistry with the topic of measurement?! Much of the laboratory work in this course is

More information

UNIT 1 MECHANICS PHYS:1200 LECTURE 2 MECHANICS (1)

UNIT 1 MECHANICS PHYS:1200 LECTURE 2 MECHANICS (1) 1 UNIT 1 MECHANICS PHYS:1200 LECTURE 2 MECHANICS (1) The topic of lecture 2 is the subject of mechanics the science of how and why objects move. The subject of mechanics encompasses two topics: kinematics:

More information

1). To introduce and define the subject of mechanics. 2). To introduce Newton's Laws, and to understand the significance of these laws.

1). To introduce and define the subject of mechanics. 2). To introduce Newton's Laws, and to understand the significance of these laws. 2 INTRODUCTION Learning Objectives 1). To introduce and define the subject of mechanics. 2). To introduce Newton's Laws, and to understand the significance of these laws. 3). The review modeling, dimensional

More information

Grade 8 Chapter 7: Rational and Irrational Numbers

Grade 8 Chapter 7: Rational and Irrational Numbers Grade 8 Chapter 7: Rational and Irrational Numbers In this chapter we first review the real line model for numbers, as discussed in Chapter 2 of seventh grade, by recalling how the integers and then the

More information

INTRODUCTION AND KINEMATICS. Physics Unit 1 Chapters 1-3

INTRODUCTION AND KINEMATICS. Physics Unit 1 Chapters 1-3 INTRODUCTION AND KINEMATICS Physics Unit 1 Chapters 1-3 This Slideshow was developed to accompany the textbook OpenStax Physics Available for free at https://openstaxcollege.org/textbooks/college-physics

More information

Teacher Content Brief

Teacher Content Brief Teacher Content Brief Vectors Introduction Your students will need to be able to maneuver their Sea Perch during the competition, so it will be important for them to understand how forces combine to create

More information

Physics 1110: Mechanics

Physics 1110: Mechanics Physics 1110: Mechanics Announcements: Tutorials Thursday and Friday in G2B60, G2B75, & G2B77 Students on wait list should attend lectures and tutorials. CAPA assignments are in bins in G2B hallway. No

More information

2018 Arizona State University Page 1 of 16

2018 Arizona State University Page 1 of 16 NAME: MATH REFRESHER ANSWER SHEET (Note: Write all answers on this sheet and the following graph page.) 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27.

More information

Physics 12 Unit 2: Vector Dynamics

Physics 12 Unit 2: Vector Dynamics 1 Physics 12 Unit 2: Vector Dynamics In this unit you will extend your study of forces. In particular, we will examine force as a vector quantity; this will involve solving problems where forces must be

More information

CHM101 Lab Math Review and Significant Figures Grading Rubric

CHM101 Lab Math Review and Significant Figures Grading Rubric Name CHM101 Lab Math Review and Significant Figures Grading Rubric Criteria Points possible Points earned Part A (0.25 each) 3.5 Part B (0.25 each) 2.5 Part C (0.25 each) 1.5 Part D (Q5 0.25 each, Q6 &

More information

UC Irvine FOCUS! 5 E Lesson Plan

UC Irvine FOCUS! 5 E Lesson Plan UC Irvine FOCUS! 5 E Lesson Plan Title: Stomp Rockets Grade Level and Course: Pre-Algebra, Geometry, Grade 8 Physical Science, Grades 9-12 Physics (extension) - Trigonometry Materials: 1 stomp rocket per

More information

The Essentials to the Mathematical world

The Essentials to the Mathematical world The Essentials to the Mathematical world There is nothing that is unachievable, any person can start the journey to you are starting, never give into hopelessness and always push on because nothing is

More information

Unit 3 Force and Motion Student understandings for 8.6A

Unit 3 Force and Motion Student understandings for 8.6A Motion and Forces Unit 3 Force and Motion Student understandings for 8.6A Learning Goals (TEKS): Force, motion, and energy. The student knows that there is a relationship between force, motion, and energy.

More information

Measurements and Calculations. Chapter 2

Measurements and Calculations. Chapter 2 Measurements and Calculations Chapter 2 Qualitative Observations: General types of observations. Easy to determine. Not necessarily precise. I have many fingers, the speed limit is fast, class is long,

More information

UNIT 1 - STANDARDS AND THEIR MEASUREMENT: Units of Measurement: Base and derived units: Multiple and submultiples of the units: 1

UNIT 1 - STANDARDS AND THEIR MEASUREMENT: Units of Measurement: Base and derived units: Multiple and submultiples of the units: 1 AS Physics 9702 unit 1: Standards and their Measurements 1 UNIT 1 - STANDARDS AND THEIR MEASUREMENT: This unit includes topic 1 and 2 from the CIE syllabus for AS course. Units of Measurement: Measuring

More information

Today in Astronomy 102: relativity

Today in Astronomy 102: relativity Today in Astronomy 102: relativity Measurement of physical quantities, reference frames, and space-time diagrams. Relative and absolute physical quantities. Classical physics and Galileo s theory of relativity.

More information

LECSS Physics 11 Introduction to Physics and Math Methods 1 Revised 8 September 2013 Don Bloomfield

LECSS Physics 11 Introduction to Physics and Math Methods 1 Revised 8 September 2013 Don Bloomfield LECSS Physics 11 Introduction to Physics and Math Methods 1 Physics 11 Introduction to Physics and Math Methods In this introduction, you will get a more in-depth overview of what Physics is, as well as

More information

MATH HISTORY ACTIVITY

MATH HISTORY ACTIVITY A. Fisher Acf 92 workbook TABLE OF CONTENTS: Math History Activity. p. 2 3 Simplify Expressions with Integers p. 4 Simplify Expressions with Fractions.. p. 5 Simplify Expressions with Decimals.. p. 6 Laws

More information

The History of Motion. Ms. Thibodeau

The History of Motion. Ms. Thibodeau The History of Motion Ms. Thibodeau Aristotle Aristotle aka the Philosopher was a Greek philosopher more than 2500 years ago. He wrote on many subjects including physics, poetry, music, theater, logic,

More information

ABE Math Review Package

ABE Math Review Package P a g e ABE Math Review Package This material is intended as a review of skills you once learned and wish to review before your assessment. Before studying Algebra, you should be familiar with all of the

More information

Physics 20. Introduction & Review. Real tough physics equations. Real smart physics guy

Physics 20. Introduction & Review. Real tough physics equations. Real smart physics guy Physics 20 Introduction & Review Real tough physics equations Real smart physics guy Is Physics Hard? People find physics difficult because it requires a detail-oriented, organized thought process. Success,

More information

Welcome to IB Math - Standard Level Year 2

Welcome to IB Math - Standard Level Year 2 Welcome to IB Math - Standard Level Year 2 Why math? Not So Some things to know: Good HW Good HW Good HW www.aleimath.blogspot.com Example 1. Lots of info at Example Example 2. HW yup. You know you love

More information

CHM111 Lab Math Review Grading Rubric

CHM111 Lab Math Review Grading Rubric Name CHM111 Lab Math Review Grading Rubric Part 1. Basic Algebra and Percentages Criteria Points possible Points earned Question 1 (0.25 points each question) 2 Question 2 (0.25 points each question) 1

More information

Vectors. Introduction. Prof Dr Ahmet ATAÇ

Vectors. Introduction. Prof Dr Ahmet ATAÇ Chapter 3 Vectors Vectors Vector quantities Physical quantities that have both n u m e r i c a l a n d d i r e c t i o n a l properties Mathematical operations of vectors in this chapter A d d i t i o

More information

Module 3: Cartesian Coordinates and Vectors

Module 3: Cartesian Coordinates and Vectors Module 3: Cartesian Coordinates and Vectors Philosophy is written in this grand book, the universe which stands continually open to our gaze. But the book cannot be understood unless one first learns to

More information

Kinematics in One Dimension

Kinematics in One Dimension Honors Physics Kinematics in One Dimension Life is in infinite motion; at the same time it is motionless. Debasish Mridha Mechanics The study of motion Kinematics Description of how things move Dynamics

More information

AP Physics 1 Kinematics 1D

AP Physics 1 Kinematics 1D AP Physics 1 Kinematics 1D 1 Algebra Based Physics Kinematics in One Dimension 2015 08 25 www.njctl.org 2 Table of Contents: Kinematics Motion in One Dimension Position and Reference Frame Displacement

More information

FORCE TABLE INTRODUCTION

FORCE TABLE INTRODUCTION FORCE TABLE INTRODUCTION All measurable quantities can be classified as either a scalar 1 or a vector 2. A scalar has only magnitude while a vector has both magnitude and direction. Examples of scalar

More information

Summer Math Packet for Students Entering 6th Grade. Please have your student complete this packet and return it to school on Tuesday, September 4.

Summer Math Packet for Students Entering 6th Grade. Please have your student complete this packet and return it to school on Tuesday, September 4. Summer Math Packet for Students Entering 6th Grade Please have your student complete this packet and return it to school on Tuesday, September. Work on your packet gradually. Complete one to two pages

More information

The Scientific Revolution & The Age of Enlightenment. Unit 8

The Scientific Revolution & The Age of Enlightenment. Unit 8 The Scientific Revolution & The Age of Enlightenment Unit 8 Unit 8 Standards 7.59 Describe the roots of the Scientific Revolution based upon Christian and Muslim influences. 7.60 Gather relevant information

More information

Kinematics in Two Dimensions; 2D- Vectors

Kinematics in Two Dimensions; 2D- Vectors Kinematics in Two Dimensions; 2D- Vectors Addition of Vectors Graphical Methods Below are two example vector additions of 1-D displacement vectors. For vectors in one dimension, simple addition and subtraction

More information

Preliminary Physics. Moving About. DUXCollege. Week 2. Student name:. Class code:.. Teacher name:.

Preliminary Physics. Moving About. DUXCollege. Week 2. Student name:. Class code:.. Teacher name:. Week 2 Student name:. Class code:.. Teacher name:. DUXCollege Week 2 Theory 1 Present information graphically of: o Displacement vs time o Velocity vs time for objects with uniform and non-uniform linear

More information

Relativity. Transcript.

Relativity. Transcript. Relativity Transcript http://quantumspotacademy.org/videos/relativity/ Time, light, mass, energy. These are some of the most fundamental properties in the universe and these are the properties that are

More information

Contents Decimals Averages Percentages Metric Units Scientific Notation Dimensional Analysis

Contents Decimals Averages Percentages Metric Units Scientific Notation Dimensional Analysis This year in APES you will hear the two words most dreaded by high school students NO CALCULATORS! That s right, you cannot use a calculator on the AP Environmental Science exam. Since the regular tests

More information

Revolution and Enlightenment. The scientific revolution

Revolution and Enlightenment. The scientific revolution Revolution and Enlightenment The scientific revolution Background in Revolution In the middle ages, educated europeans relied on ancient authorities like Aristotle for scientific knowledge. By the 15th

More information

Venus Project Book, the Galileo Project, GEAR

Venus Project Book, the Galileo Project, GEAR 1 Venus Project Book, the Galileo Project, GEAR Jeffrey La Favre November, 2013 Updated March 31, 2016 You have already learned about Galileo and his telescope. Recall that he built his first telescopes

More information

New concepts: scalars, vectors, unit vectors, vector components, vector equations, scalar product. reading assignment read chap 3

New concepts: scalars, vectors, unit vectors, vector components, vector equations, scalar product. reading assignment read chap 3 New concepts: scalars, vectors, unit vectors, vector components, vector equations, scalar product reading assignment read chap 3 Most physical quantities are described by a single number or variable examples:

More information

SCIENCE 1206 Unit 4. Physical Science Motion

SCIENCE 1206 Unit 4. Physical Science Motion SCIENCE 1206 Unit 4 Physical Science Motion What is Physics? Physics is the study of motion, matter, energy, and force. Called the Fundamental Science Famous Physicists Galileo Galilei Albert Einstein

More information

10.2 Introduction to Vectors

10.2 Introduction to Vectors Arkansas Tech University MATH 2934: Calculus III Dr. Marcel B Finan 10.2 Introduction to Vectors In the previous calculus classes we have seen that the study of motion involved the introduction of a variety

More information

Sir Isaac Newton ( )

Sir Isaac Newton ( ) Motion and Forces Sir Isaac Newton (1643 1727) One of the world s greatest scientists Developed the 3 Laws of Motion His ideas are still correct and very much in use today! What is Motion? Motion is a

More information

Grade 7/8 Math Circles March 8 & Physics

Grade 7/8 Math Circles March 8 & Physics Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing Grade 7/8 Math Circles March 8 & 9 2016 Physics Physics is the study of how the universe behaves. This

More information

Lecture PowerPoints. Chapter 2 Physics for Scientists and Engineers, with Modern Physics, 4 th Edition Giancoli

Lecture PowerPoints. Chapter 2 Physics for Scientists and Engineers, with Modern Physics, 4 th Edition Giancoli Lecture PowerPoints Chapter 2 Physics for Scientists and Engineers, with Modern Physics, 4 th Edition Giancoli 2009 Pearson Education, Inc. This work is protected by United States copyright laws and is

More information

EQ: How do I convert between standard form and scientific notation?

EQ: How do I convert between standard form and scientific notation? EQ: How do I convert between standard form and scientific notation? HW: Practice Sheet Bellwork: Simplify each expression 1. (5x 3 ) 4 2. 5(x 3 ) 4 3. 5(x 3 ) 4 20x 8 Simplify and leave in standard form

More information

PreClass Notes: Chapter 4, Sections

PreClass Notes: Chapter 4, Sections PreClass Notes: Chapter 4, Sections 4.1-4.4 From Essential University Physics 3 rd Edition by Richard Wolfson, Middlebury College 2016 by Pearson Education, Inc. Narration and extra little notes by Jason

More information

Vectors A Guideline For Motion

Vectors A Guideline For Motion AP Physics-1 Vectors A Guideline For Motion Introduction: You deal with scalar quantities in many aspects of your everyday activities. For example, you know that 2 liters plus 2 liters is 4 liters. The

More information

12/06/2010. Chapter 2 Describing Motion: Kinematics in One Dimension. 2-1 Reference Frames and Displacement. 2-1 Reference Frames and Displacement

12/06/2010. Chapter 2 Describing Motion: Kinematics in One Dimension. 2-1 Reference Frames and Displacement. 2-1 Reference Frames and Displacement Chapter 2 Describing Motion: Kinematics in One Dimension 2-1 Reference Frames and Displacement Any measurement of position, distance, or speed must be made with respect to a reference frame. For example,

More information

The Celsius temperature scale is based on the freezing point and the boiling point of water. 12 degrees Celsius below zero would be written as

The Celsius temperature scale is based on the freezing point and the boiling point of water. 12 degrees Celsius below zero would be written as Prealgebra, Chapter 2 - Integers, Introductory Algebra 2.1 Integers In the real world, numbers are used to represent real things, such as the height of a building, the cost of a car, the temperature of

More information

Lesson 8: Velocity. Displacement & Time

Lesson 8: Velocity. Displacement & Time Lesson 8: Velocity Two branches in physics examine the motion of objects: Kinematics: describes the motion of objects, without looking at the cause of the motion (kinematics is the first unit of Physics

More information

Prepared by Sa diyya Hendrickson. Package Summary

Prepared by Sa diyya Hendrickson. Package Summary Introduction Prepared by Sa diyya Hendrickson Name: Date: Package Summary Defining Decimal Numbers Things to Remember Adding and Subtracting Decimals Multiplying Decimals Expressing Fractions as Decimals

More information

2- Scalars and Vectors

2- Scalars and Vectors 2- Scalars and Vectors Scalars : have magnitude only : Length, time, mass, speed and volume is example of scalar. v Vectors : have magnitude and direction. v The magnitude of is written v v Position, displacement,

More information

AP PHYSICS 1 SUMMER PREVIEW

AP PHYSICS 1 SUMMER PREVIEW AP PHYSICS 1 SUMMER PREVIEW Name: Your summer homework assignment is to read through this summer preview, completing the practice problems, and completing TASK 1 and Task 2. It is important that you read

More information

Math Refresher Answer Sheet (NOTE: Only this answer sheet and the following graph will be evaluated)

Math Refresher Answer Sheet (NOTE: Only this answer sheet and the following graph will be evaluated) Name: Score: / 50 Math Refresher Answer Sheet (NOTE: Only this answer sheet and the following graph will be evaluated) 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. MAKE SURE CALCULATOR

More information

Different Forces Act on Objects

Different Forces Act on Objects Have you heard the story about Isaac Newton sitting under an apple tree? According to the story, an apple fell from a tree and hit him on the head. From that event, it is said that Newton discovered the

More information

Chapter 1 Science Skills

Chapter 1 Science Skills Chapter 1 Science Skills 1.1 What is Science? How does the process of science start and end? Curiosity provides questions, but scientific results rely on finding answers. In some experiments, observations

More information

AP Environmental Science Math Prep

AP Environmental Science Math Prep AP Environmental Science Math Prep Courtesy of Kara House, Franklin Central High School, Indiana This year in APES you will hear the two words most dreaded by high school students NO CALCULATORS! That

More information

THE RISE OF MODERN SCIENCE CHAPTER 20, SECTION 2

THE RISE OF MODERN SCIENCE CHAPTER 20, SECTION 2 THE RISE OF MODERN SCIENCE CHAPTER 20, SECTION 2 ORIGINS OF THE SCIENTIFIC REVOLUTION 335 BCE-1687 CE A New View of the Universe Scientists of the 1500s asked same questions as Greeks: What is the universe

More information

SCIENCE 1206 Unit 3. Physical Science Motion

SCIENCE 1206 Unit 3. Physical Science Motion SCIENCE 1206 Unit 3 Physical Science Motion Section 1: Units, Measurements and Error What is Physics? Physics is the study of motion, matter, energy, and force. Qualitative and Quantitative Descriptions

More information

MATH EVALUATION. What will you learn in this Lab?

MATH EVALUATION. What will you learn in this Lab? MATH EVALUATION What will you learn in this Lab? This exercise is designed to assess whether you have been exposed to the mathematical methods and skills necessary to complete the lab exercises you will

More information

PHY 101L - Experiments in Mechanics

PHY 101L - Experiments in Mechanics PHY 101L - Experiments in Mechanics introduction to error analysis What is Error? In everyday usage, the word error usually refers to a mistake of some kind. However, within the laboratory, error takes

More information

CHAPTER 2: VECTORS IN 3D

CHAPTER 2: VECTORS IN 3D CHAPTER 2: VECTORS IN 3D 2.1 DEFINITION AND REPRESENTATION OF VECTORS A vector in three dimensions is a quantity that is determined by its magnitude and direction. Vectors are added and multiplied by numbers

More information

Math 016 Lessons Wimayra LUY

Math 016 Lessons Wimayra LUY Math 016 Lessons Wimayra LUY wluy@ccp.edu MATH 016 Lessons LESSON 1 Natural Numbers The set of natural numbers is given by N = {0, 1, 2, 3, 4...}. Natural numbers are used for two main reasons: 1. counting,

More information

Newton s first law. Objectives. Assessment. Assessment. Assessment. Assessment 5/20/14. State Newton s first law and explain its meaning.

Newton s first law. Objectives. Assessment. Assessment. Assessment. Assessment 5/20/14. State Newton s first law and explain its meaning. Newton s first law Objectives State Newton s first law and explain its meaning. Calculate the effect of forces on objects using the law of inertia. Explain conceptually why moving objects do not always

More information

Physics 141 Energy 1 Page 1. Energy 1

Physics 141 Energy 1 Page 1. Energy 1 Physics 4 Energy Page Energy What I tell you three times is true. Lewis Carroll The interplay of mathematics and physics The mathematization of physics in ancient times is attributed to the Pythagoreans,

More information