to cross cancel to swap (the direction of the inequality symbol) to substitute to find to prove, to show, to verify to plot, to graph

Size: px
Start display at page:

Download "to cross cancel to swap (the direction of the inequality symbol) to substitute to find to prove, to show, to verify to plot, to graph"

Transcription

1 SHORT GLOSSARY OF MATHEMATICS Numbers natural, whole, integer rational, irrational fraction, numerator, denominator real imaginar comple positive, negative even, odd Operations sum, to add, plus difference, to subtract, minus product, to multipl, times quotient, to divide, over power, to raise to the power n, to the nth, base, eponent inverse square, to square cube, to cube Functions root, to take the nth root, radicand, inde square root, to take the square root cube root, to take the cube root absolute value eponential, logarithm sine, cosine, tangent, cotangent domain, codomain argument injective (one-to-one), surjective (onto), bijective increasing, decreasing Relations to equal, to be equal to to be (strictl) less than (or equal to) to be (strictl) greater than (or equal to) to be different from, to be distinct from to be equivalent to, to amount to Epressions formula (pl. formulae) (to open/close) parenthesis (pl. parentheses), bracket to calculate, to compute to simplif to factor, to factor into to factor out, to pull out to rearrange, to group, to isolate to rewrite, to transform to cancel out to multipl straight across (numerator to numerator, denominator to denominator) to cross cancel to swap (the direction of the inequalit smbol) to substitute to find to prove, to show, to verif to plot, to graph Algebra variable value, constant equation, inequalit left-hand side, right-hand side solution, to solve sstem (of equations, of inequalities) polnomial term, free term coefficient parameter degree linear, quadratic Geometr Cartesian plane quadrant intersection smmetr opposite, adjacent Measures distance length ratio perimeter, area Geometric shapes point (straight) line curve conic section, conic locus (pl. loci) ra, half-line (line) segment angle polgon Points coordinate -coordinate, -coordinate origin end point (of a line segment) midpoint Lines ais (pl. aes) slope intercept horizontal, vertical parallel, perpendicular tangent, secant Angles side verte acute, right, obtuse, straight, refle, full complementar, supplementar, eplementar adjacent, vertical central, inscribed degrees, radians Polgons triangle quadrilateral parallelogram trapezoid rectangle rhombus (pl. rhombi) square pentagon heagon inscribed, circumscribed Triangles side scalene, isosceles, equilateral right altitude, median, bisector leg, hpothenuse Pthagorean theorem Rectangles base height diagonal Conics circle, circumference ellipse parabola hperbola focus (pl. foci) directri (pl. directrices) eccentricit center verte (pl. vertices) radius (pl. radii) diameter chord arc (semi-)minor ais, (semi-)major ais principal ais, transverse ais, conjugate ais branch asmptote

2 REVIEW OF CONIC SECTIONS In this section we give geometric definitions of parabolas, ellipses, and hperbolas and derive their standard equations. The are called conic sections, or conics, because the result from intersecting a cone with a plane as shown in Figure. ellipse parabola hperbola FIGURE Conics PARABOLAS ais focus verte FIGURE F(, p) F parabola directri P(, ) A parabola is the set of points in a plane that are equidistant from a fied point F (called the focus) and a fied line (called the directri). This definition is illustrated b Figure. Notice that the point halfwa between the focus and the directri lies on the parabola; it is called the verte. The line through the focus perpendicular to the directri is called the ais of the parabola. In the 6th centur Galileo showed that the path of a projectile that is shot into the air at an angle to the ground is a parabola. Since then, parabolic shapes have been used in designing automobile headlights, reflecting telescopes, and suspension bridges. (See Challenge Problem.4 for the reflection propert of parabolas that makes them so useful.) We obtain a particularl simple equation for a parabola if we place its verte at the origin O and its directri parallel to the -ais as in Figure 3. If the focus is the point, p, then the directri has the equation p. If P, is an point on the parabola, then the distance from P to the focus is O =_p p PF s p p and the distance from P to the directri is. (Figure 3 illustrates the case where p.) The defining propert of a parabola is that these distances are equal: FIGURE 3 s p p We get an equivalent equation b squaring and simplifing: p p p p p p p 4p Thomson Brooks-Cole copright 7 An equation of the parabola with focus, p and directri p is 4p

3 REVIEW OF CONIC SECTIONS If we write a 4p, then the standard equation of a parabola () becomes a. It opens upward if p and downward if p [see Figure 4, parts (a) and (b)]. The graph is smmetric with respect to the -ais because () is unchanged when is replaced b. (, p) =_p (, p) =_p =_p ( p, ) (p, ) =_p (a) =4p, p> (b) =4p, p< (c) =4p, p> (d) =4p, p< FIGURE 4 If we interchange and in (), we obtain += 5 _, FIGURE 5 = 5 4p which is an equation of the parabola with focus p, and directri p. (Interchanging and amounts to reflecting about the diagonal line.) The parabola opens to the right if p and to the left if p [see Figure 4, parts (c) and (d)]. In both cases the graph is smmetric with respect to the -ais, which is the ais of the parabola. EXAMPLE Find the focus and directri of the parabola and sketch the graph. SOLUTION If we write the equation as and compare it with Equation, we see that 4p, so p 5. Thus the focus is p, ( 5, ) and the directri is 5. The sketch is shown in Figure 5. ELLIPSES F F FIGURE 6 FIGURE 7 P P(, ) F (_c, ) F (c, ) An ellipse is the set of points in a plane the sum of whose distances from two fied points F and F is a constant (see Figure 6). These two fied points are called the foci (plural of focus). One of Kepler s laws is that the orbits of the planets in the solar sstem are ellipses with the Sun at one focus. In order to obtain the simplest equation for an ellipse, we place the foci on the -ais at the points c, and c, as in Figure 7 so that the origin is halfwa between the foci. Let the sum of the distances from a point on the ellipse to the foci be a. Then P, is a point on the ellipse when a PF PF that is, s c s c a or s c a s c Squaring both sides, we have c c 4a 4as c c c Thomson Brooks-Cole copright 7 which simplifies to as c a c We square again: a c c a 4 a c c which becomes a c a a a c

4 REVIEW OF CONIC SECTIONS 3 (_a, ) (_c, ) FIGURE 8 + = a@ b@ (, b) b a (a, ) c (c, ) (, _b) From triangle F F P in Figure 7 we see that c a, so c a and, therefore, a c. For convenience, let b a c. Then the equation of the ellipse becomes b a a b or, if both sides are divided b a b, 3 a b Since b a c a, it follows that b a. The -intercepts are found b setting. Then a, or a, so a. The corresponding points a, and a, are called the vertices of the ellipse and the line segment joining the vertices is called the major ais. To find the -intercepts we set and obtain b, so b. Equation 3 is unchanged if is replaced b or is replaced b, so the ellipse is smmetric about both aes. Notice that if the foci coincide, then c, so a b and the ellipse becomes a circle with radius r a b. We summarize this discussion as follows (see also Figure 8). (, a) 4 The ellipse a b a b (_b, ) FIGURE 9 + =, a b b@ a@ (, 3) (, c) (, _c) (, _a) (b, ) has foci c,, where c a b, and vertices a,. If the foci of an ellipse are located on the -ais at, c, then we can find its equation b interchanging and in (4). (See Figure 9.) 5 The ellipse b a has foci, c, where c a b, and vertices, a. EXAMPLE Sketch the graph of and locate the foci. SOLUTION Divide both sides of the equation b 44: a b (_4, ) {_œ 7, } (4, ) {œ 7, } (, _3) 6 9 The equation is now in the standard form for an ellipse, so we have a 6, b 9, a 4, and b 3. The -intercepts are 4 and the -intercepts are 3. Also, c a b 7, so c s7 and the foci are (s7, ). The graph is sketched in Figure. FIGURE 9 +6 =44 EXAMPLE 3 Find an equation of the ellipse with foci, and vertices, 3. SOLUTION Using the notation of (5), we have c and a 3. Then we obtain b a c 9 4 5, so an equation of the ellipse is 5 9 Thomson Brooks-Cole copright 7 Another wa of writing the equation is Like parabolas, ellipses have an interesting reflection propert that has practical consequences. If a source of light or sound is placed at one focus of a surface with elliptical cross-sections, then all the light or sound is reflected off the surface to the other focus (see

5 4 REVIEW OF CONIC SECTIONS Eercise 59). This principle is used in lithotrips, a treatment for kidne stones. A reflector with elliptical cross-section is placed in such a wa that the kidne stone is at one focus. High-intensit sound waves generated at the other focus are reflected to the stone and destro it without damaging surrounding tissue. The patient is spared the trauma of surger and recovers within a few das. HYPERBOLAS FIGURE P is on the hperbola when PF - PF =a P(, ) F (_c, ) F (c, ) A hperbola is the set of all points in a plane the difference of whose distances from two fied points F and F (the foci) is a constant. This definition is illustrated in Figure. Hperbolas occur frequentl as graphs of equations in chemistr, phsics, biolog, and economics (Bole s Law, Ohm s Law, suppl and demand curves). A particularl significant application of hperbolas is found in the navigation sstems developed in World Wars I and II (see Eercise 5). Notice that the definition of a hperbola is similar to that of an ellipse; the onl change is that the sum of distances has become a difference of distances. In fact, the derivation of the equation of a hperbola is also similar to the one given earlier for an ellipse. It is left as Eercise 5 to show that when the foci are on the -ais at c, and the difference of distances is, then the equation of the hperbola is 6 PF PF a a b (_a, ) b =_ a (_c, ) FIGURE - = a@ b@ b = a (a, ) (c, ) where c a b. Notice that the -intercepts are again a and the points a, and a, are the vertices of the hperbola. But if we put in Equation 6 we get b, which is impossible, so there is no -intercept. The hperbola is smmetric with respect to both aes. To analze the hperbola further, we look at Equation 6 and obtain a b s a This shows that a, so. Therefore, we have a or a. This means that the hperbola consists of two parts, called its branches. When we draw a hperbola it is useful to first draw its asmptotes,which are the dashed lines ba and ba shown in Figure. Both branches of the hperbola approach the asmptotes; that is, the come arbitraril close to the asmptotes. a =_ b (, c) a = b 7 The hperbola a b has foci c,, where c a b, vertices a,, and asmptotes ba. (, a) (, _a) If the foci of a hperbola are on the -ais, then b reversing the roles of and we obtain the following information, which is illustrated in Figure 3. Thomson Brooks-Cole copright 7 FIGURE 3 - = a@ b@ (, _c) 8 The hperbola a b has foci, c, where c a b, vertices, a, and asmptotes ab.

6 REVIEW OF CONIC SECTIONS 5 (_5, ) 3 =_ 4 (_4, ) (4, ) 3 = 4 (5, ) EXAMPLE 4 Find the foci and asmptotes of the hperbola and sketch its graph. SOLUTION If we divide both sides of the equation b 44, it becomes 6 9 FIGURE =44 which is of the form given in (7) with a 4 and b 3. Since c 6 9 5, the foci are 5,. The asmptotes are the lines 3 and The graph is shown in Figure 4. EXAMPLE 5 Find the foci and equation of the hperbola with vertices, and asmptote. SOLUTION From (8) and the given information, we see that a and ab. Thus, b a and c a b 5 4. The foci are (, s5) and the equation of the hperbola is 4 SHIFTED CONICS We shift conics b taking the standard equations (), (), (4), (5), (7), and (8) and replacing and b h and k. EXAMPLE 6 Find an equation of the ellipse with foci,, 4, and vertices,, 5,. SOLUTION The major ais is the line segment that joins the vertices,, 5, and has length 4, so a. The distance between the foci is, so c. Thus, b a c 3. Since the center of the ellipse is 3,, we replace and in (4) b 3 and to obtain as the equation of the ellipse. EXAMPLE 7 Sketch the conic 3 -=_ (-4) and find its foci SOLUTION We complete the squares as follows: Thomson Brooks-Cole copright 7 (4, 4) (4, ) (4, _) 3 -= (-4) FIGURE = This is in the form (8) ecept that and are replaced b 4 and. Thus, a 9, b 4, and c 3. The hperbola is shifted four units to the right and one unit upward. The foci are (4, s3) and (4, s3) and the vertices are 4, 4 and 4,. The asmptotes are 3 4. The hperbola is sketched in Figure 5.

7 6 REVIEW OF CONIC SECTIONS EXERCISES 8 Find the verte, focus, and directri of the parabola and sketch its graph Find an equation of the parabola. Then find the focus and directri Find the vertices and foci of the ellipse and sketch its graph A 5 6 Click here for answers. _ Find an equation of the ellipse. Then find its foci. S Click here for solutions Identif the tpe of conic section whose equation is given and find the vertices and foci Find an equation for the conic that satisfies the given conditions. 3. Parabola, verte,, focus, 3. Parabola, verte,, directri Parabola, focus 4,, directri 34. Parabola, focus 3, 6, verte 3, 35. Parabola, verte,, ais the -ais, passing through (, 4) 36. Parabola, vertical ais, passing through, 3,, 3, and, Ellipse, foci,, vertices 5, 38. Ellipse, foci, 5, vertices, Ellipse, foci,,, 6 vertices,,, 8 4. Ellipse, foci,, 8,, verte 9, 4. Ellipse, center,, focus,, verte 5, 4. Ellipse, foci,, passing through, 43. Hperbola, foci, 3, vertices, 44. Hperbola, foci 6,, vertices 4, Hperbola, foci, 3 and 7, 3, vertices, 3 and 6, Hperbola, foci, and, 8, vertices, and, Hperbola, vertices 3,, asmptotes 48. Hperbola, foci, and 6,, asmptotes and 6 Thomson Brooks-Cole copright 7 9 Find the vertices, foci, and asmptotes of the hperbola and sketch its graph The point in a lunar orbit nearest the surface of the moon is called perilune and the point farthest from the surface is called apolune. The Apollo spacecraft was placed in an elliptical lunar orbit with perilune altitude km and apolune altitude 34 km (above the moon). Find an equation of this ellipse if the radius of the moon is 78 km and the center of the moon is at one focus.

8 REVIEW OF CONIC SECTIONS 7 5. A cross-section of a parabolic reflector is shown in the figure. The bulb is located at the focus and the opening at the focus is cm. (a) Find an equation of the parabola. (b) Find the diameter of the opening CD, cm from the verte. V A B 5 cm cm F 5 cm 5. In the LORAN (LOng RAnge Navigation) radio navigation sstem, two radio stations located at A and B transmit simultaneous signals to a ship or an aircraft located at P. The onboard computer converts the time difference in receiving these signals into a distance difference PA PB, and this, according to the definition of a hperbola, locates the ship or aircraft on one branch of a hperbola (see the figure). Suppose that station B is located 4 mi due east of station A on a coastline. A ship received the signal from B microseconds (s) before it received the signal from A. (a) Assuming that radio signals travel at a speed of 98 fts, find an equation of the hperbola on which the ship lies. (b) If the ship is due north of B, how far off the coastline is the ship? C D 56. (a) Show that the equation of the tangent line to the parabola 4p at the point, can be written as p. (b) What is the -intercept of this tangent line? Use this fact to draw the tangent line. 57. Use Simpson s Rule with n to estimate the length of the ellipse The planet Pluto travels in an elliptical orbit around the Sun (at one focus). The length of the major ais is.8 km and the length of the minor ais is.4 km. Use Simpson s Rule with n to estimate the distance traveled b the planet during one complete orbit around the Sun. 59. Let P, be a point on the ellipse a b with foci F and F and let and be the angles between the lines PF, PF and the ellipse as in the figure. Prove that. This eplains how whispering galleries and lithotrips work. Sound coming from one focus is reflected and passes through the other focus. [Hint: Use the formula to show that tan tan. See Challenge Problem.3.] å P(, ) F F + = a@ b@ m m tan m m A coastline 4 mi sending stations P B 6. Let P, be a point on the hperbola a b with foci F and F and let and be the angles between the lines PF, PF and the hperbola as shown in the figure. Prove that. (This is the reflection propert of the hperbola. It shows that light aimed at a focus F of a hperbolic mirror is reflected toward the other focus F.) 5. Use the definition of a hperbola to derive Equation 6 for a hperbola with foci c, and vertices a,. å P 53. Show that the function defined b the upper branch of the hperbola a b is concave upward. F F 54. Find an equation for the ellipse with foci, and, and major ais of length Determine the tpe of curve represented b the equation k k 6 P Thomson Brooks-Cole copright 7 in each of the following cases: (a) k 6, (b) k 6, and (c) k. (d) Show that all the curves in parts (a) and (b) have the same foci, no matter what the value of k is. F F

9 8 REVIEW OF CONIC SECTIONS ANSWERS S.,,, 8.,,,, Click here for solutions. ( 8, ), 8 3., 4, (, s3) 4. ( 5, ), 4 _ ( s, ) =_ 8 3.,, (, 6), 6 4.,, 3,, 3 = 6, _ 6 _4 5., 3, (, s5) 6., and 5,, (3s, ) (, 3) 3 (,_3) 5., 3,, 5, 6., 5, ( 5 4, 5), 3 4 (_, 5) = 7.,foci (, s5) ,foci ( s5, ) ,, 3,,., 4, (, s3), = 7.,, 5,, 8. 3,, (3, 5 8 ), 7 8 (_5, _) (_, _).,, (, s),.,, (s3, ), 3 = = Thomson Brooks-Cole copright 7 9.,focus ( 4, ), directri 4.,focus (, 3, directri 5 ). 3,,,.,,, 6 _3 œ 5 3 _œ 5 _ 3. ( s6, ), ( s5, ), (s6) (, ) {+œ 5, }

10 REVIEW OF CONIC SECTIONS , 5 and, 5, , 5 and 3, 5, Parabola,,, (, 3 4) 6. Hperbola,,, (s, ) 7. Ellipse, (s, ),, 8. Parabola,, 4, ( 3, 4) 9. Hperbola,,,, 3; (, s5) 3. Ellipse, (, ), (, s3 ) s7 s ,763,6 3,753,96 5. (a) p 5, (b) s 5. (a) (b) 48 mi,5,65 3,339, (a) Ellipse (b) Hperbola (c) No curve 56. (b) km Thomson Brooks-Cole copright 7

11 REVIEW OF CONIC SECTIONS SOLUTIONS. = =. 4p =,sop = 8.The verte is (, ),thefocusis 8,,andthe directri is = = = 4. 4p = 4,so p =. Theverteis(, ),thefocusis(, ), and the directri is = = = 4. 4p = 4,so p =.Theverteis(, ),thefocusis 6, 6, and the directri is = =. 4p =,sop =3.Theverteis(, ), the focus is (3, ), and the directri is = ( +) =8( 3). 4p =8,sop =.The verte is (, 3),thefocusis(, 5),andthe directri is =. 6. =( +5). 4p =,sop = 4.Theverteis (, 5),thefocusis 5 4, 5, and the directri is = 3 4. Thomson Brooks-Cole copright 7

12 REVIEW OF CONIC SECTIONS = + += 4 ( +) = ( +). 4p =,sop = 3. The verte is (, ),thefocusis( 5, ),and the directri is = =6 = 6 ( 6 +9)= ( 3) = + ( 3) = ( +). 4p =,sop =.Theverteis(3, ),thefocus 8 is 3, 5 8, and the directri is = The equation has the form =4p, wherep<. Since the parabola passes through (, ), wehave =4p( ),so4p = andanequationis = or =. 4p =,sop = 4 and the focus is 4, while the directri is = 4.. The verte is (, ), so the equation is of the form ( ) =4p( +),wherep>. The point (, ) is on the parabola, so 4=4p() and 4p =. Thus, an equation is ( ) =( +). 4p =,sop = and the focus is, 3 while the directri is = = a = 9=3, b = 5, c = a b = 9 5=. The ellipse is centered at (, ), with vertices at (±3, ). The foci are (±, ) = a = =, b = 64 = 8, c = a b = 64 = 6. The ellipse is centered at (, ), with vertices at (, ±). The foci are (, ±6). Thomson Brooks-Cole copright 7

13 REVIEW OF CONIC SECTIONS = = a = 6 = 4, b = 4=, c = a b = 6 4= 3.Theellipseis centered at (, ), with vertices at (, ±4). The foci are, ± =5 5/4 + = 5 a = = 5, b = =, 4 c = a b 5 = = =.The 4 4 ellipse is centered at (, ), with vertices at ± 5,. The foci are ±., =7 9( +)+4 =7+9 9( ) +4 ( ) =36 + = a =3, b =, 4 9 c = 5 center (, ), vertices (, ±3),foci, ± = ( + +)= 7+9+ ( 3) +( +) =4 ( 3) ( +) + = a =, b = =c center 4 (3, ), vertices (, ) and (5, ),foci 3 ±, 7. The center is (, ), a =3,andb =, so an equation is =. c = a b = 5, so the foci are, ± The ellipse is centered at (, ), witha =3and b =.Anequationis c = a b = 5,sothefociare ± 5,. ( ) 9 + ( ) 4 =. Thomson Brooks-Cole copright = a =, b =5, c = = 3 center (, ), vertices (±, ),foci(±3, ), asmptotes = ± 5. Note: It is helpful to draw a a-b-b rectangle whose center is the center of the hperbola. The asmptotes are the etended diagonals of the rectangle.

14 REVIEW OF CONIC SECTIONS 3. 6 = a =4, b =6, 36 c = a + b = = 5 = 3. The center is (, ), the vertices are (, ±4),thefociare, ± 3,andthe asmptotes are the lines = ± a b = ± 3.. =4 4 4 = a = 4==b, c = 4+4= center (, ), vertices (, ±), foci, ±, asmptotes = ±. 9 4 = = a = 4=, b = 9=3, c = 4+9= 3 center (, ), vertices (±, ),foci ± 3,,asmptotes = ± = 8 ( +) 3( 4 +4)= 8+ ( ) 3( ) = 8 ( ) 6 ( ) 9 = a = 6, b =3, c = 5 center (, ), vertices ± 6,,foci ± 5,,asmptotes =± 6 3 ( ) 6 or =± ( ) = 35 6( +4 +4) 9( + +5)= ( +) 9( +5) ( +) ( +5) =44 = 9 6 a =3, b =4, c =5 center (, 5), vertices ( 5, 5) and (, 5),foci( 7, 5) and (3, 5), asmptotes +5=± 4 ( +) 3 Thomson Brooks-Cole copright 7 5. = + =( +).Thisisanequationofaparabola with 4p =,sop = 4.Theverteis(, ) and the focus is, 3 4.

15 4 REVIEW OF CONIC SECTIONS 6. = + =.Thisisanequationofahperbola with vertices (±, ). The foci are at ± +, = ±,. 7. =4 + 4 = +( +)= +( ) = ( ) + =. This is an equation of an ellipse with vertices at ±,. The foci are at ±, =(±, ) = =6 ( 4) =6.Thisisanequationofaparabola with 4p =6,sop = 3.Theverteis(, 4) and the focus is 3, = =4 +4 ( +) 4 =4 an equation of a hperbola with vertices (, ± ) = (, ) and (, 3). The foci are at, ± 4+ =, ± 5. ( +) 4 =.Thisis = = = + + =.This /4 is an equation of an ellipse with vertices, ± =, ±.Thefociareat, ± =, ± 4 3/. 3. Theparabolawithverte(, ) and focus (, ) opens downward and has p =, so its equation is =4p = The parabola with verte (, ) and directri = 5 opens to the right and has p =6, so its equation is =4p( ) = 4( ). 33. The distance from the focus ( 4, ) to the directri =is ( 4) = 6, so the distance from the focus to the verte is (6) = 3 and the verte is (, ). Since the focus is to the left of the verte, p = 3. An equation is =4p( +) = ( +). 34. The distance from the focus (3, 6) to the verte (3, ) is 6 =4. Since the focus is above the verte, p =4.An equation is ( 3) =4p( ) ( 3) = 6( ). 35. The parabola must have equation =4p,so( 4) =4p() p =4 = Vertical ais ( h) =4p( k). Substituting (, 3) and (, 3) gives ( h) =4p(3 k) and ( h) =4p(3 k) ( h) =( h) 4+4h + h = h h = =4p(3 k). Substituting (, 9) gives [ ( )] =4p(9 k) 4=4p(9 k). Solving for p from these equations gives p = 4(3 k) = 9 k +4 +3=. 4(3 k) =9 k k = p = ( +) = ( ) 8 Thomson Brooks-Cole copright The ellipse with foci (±, ) and vertices (±5, ) has center (, ) and a horizontal major ais, with a =5and c =,sob = a c =.Anequationis 5 + =.

16 REVIEW OF CONIC SECTIONS The ellipse with foci (, ±5) and vertices (, ±3) has center (, ) and a vertical major ais, with c =5and a =3,sob = a c =.Anequationis =. 39. Since the vertices are (, ) and (, 8), the ellipse has center (, 4) with a vertical ais and a =4. The foci at (, ) and (, 6) are units from the center, so c =and b = a c = 4 =. An equation is ( ) ( 4) + = ( 4) + =. b a 6 4. Since the foci are (, ) and (8, ), the ellipse has center (4, ) with a horizontal ais and c =4.Theverte (9, ) is 5 units from the center, so a =5and b = a c = 5 4 = 9.Anequationis ( 4) ( +) + = a b ( 4) 5 + ( +) 9 =. 4. Center (, ), c =, a =3 b = 5 9 ( ) + 5 ( ) = 4. Center (, ), c =, major ais horizontal a + b =and b = a c = a 4. Since the ellipse passes through (, ),wehavea = PF + PF = 7 + a = 9+ 7 and b = + 7,sothe ellipse has equation =. 43. Center (, ), vertical ais, c =3, a = b = 8= 8 = 44. Center (, ), horizontal ais, c =6, a =4 b = 5 6 = 45. Center (4, 3), horizontal ais, c =3, a = b = 5 4 ( 4) 5 ( 3) = 46. Center (, 3), vertical ais, c =5, a =3 b =4 9 ( 3) 6 ( ) = 47. Center (, ), horizontal ais, a =3, b a = b = = 48. Center (4, ), horizontal ais, asmptotes = ±( 4) c =, b/a = a = b c =4=a + b =a a = ( 4) ( ) = 49. In Figure 8, we see that the point on the ellipse closest to a focus is the closer verte (which is a distance a c from it) while the farthest point is the other verte (at a distance of a + c). So for this lunar orbit, (a c)+(a + c) =a = (78 + ) + ( ),ora = 94;and(a + c) (a c) =c = 34, or c =. Thus, b = a c =3,753,96,andtheequationis 3,763,6 + 3,753,96 =. 5. (a) Choose V to be the origin, with -ais through V and F. Then F is (p,), A is (p, 5), so substituting A into the equation =4p gives 5 = 4p so p = 5 and =. (b) = = CD = Thomson Brooks-Cole copright 7 5. (a) Set up the coordinate sstem so that A is (, ) and B is (, ). PA PB = ()(98) =,76, ft = 45 b = c a = 3,339,375,5,65 3,339,375 =. 5 mi =a a =,andc = so (b) Due north of B = ()(),5,65 33,575 = = 48 mi 3,339,

17 6 REVIEW OF CONIC SECTIONS 5. PF PF = ±a ( + c) + ( c) + = ±a ( + c) + = ( c) + ± a ( + c) + =( c) + +4a ± 4a ( c) + 4c 4a = ±4a ( c) + c a c + a 4 = a c + c + c a a = a c a b a = a b (where b = c a ) a b = 53. The function whose graph is the upper branch of this hperbola is concave upward. The function is = f() =a + b = a b + b,so = a b b + / and = a b b + / b + 3/ = ab b + 3/ > for all,andsof is concave upward. 54. We can follow eactl the same sequence of steps as in the derivation of Formula 4, ecept we use the points (, ) and (, ) in the distance formula (first equation of that derivation) so ( ) +( ) + ( +) +( +) =4will lead (after moving the second term to the right, squaring, and simplifing) to ( +) +( +) = + +4, which, after squaring and simplifing again, leads to 3 +3 = (a) If k>6, thenk 6 >, and k + =is an ellipse since it is the sum of two squares on the k 6 left side. (b) If <k<6,thenk 6 <,and k + =is a hperbola since it is the difference of two squares k 6 on the left side. (c) If k<,thenk 6 <, andthereisno curve since the left side is the sum of two negative terms, which cannot equal. (d) In case (a), a = k, b = k 6,andc = a b =6, so the foci are at (±4, ). Incase(b),k 6 <,so a = k, b =6 k,andc = a + b =6, and so again the foci are at (±4, ). 56. (a) =4p =4p = p, so the tangent line is = p ( ) =p( ) 4p =p p =p( + ). (b) The -intercept is. 57. Use the parametrization = cos t, = sin t, t π to get L =4 π/ (d/dt) +(d/dt) dt =4 π/ 4sin t +cos tdt=4 π/ 3sin t +dt Thomson Brooks-Cole copright 7 Using Simpson s Rule with n =, t = π/ = π,andf(t) = 3sin t +,weget L 4 3 π f() + 4f π +f π + +f 8π +4f 9π + f π 9.69

18 REVIEW OF CONIC SECTIONS The length of the major ais is a, soa = (.8 )= The length of the minor ais is b,so b = (.4 )= An equation of the ellipse is a + b =,orconvertingintoparametric equations, = a cos θ and = b sin θ. So L =4 π/ (d/dθ) +(d/dθ) dθ =4 π/ a sin θ + b cos θdθ Using Simpson s Rule with n =, θ = π/ = π,andf(θ) = a sin θ + b cos θ,weget L 4 S =4 π km f() + 4f π +f π + +f 8π +4f 9π + f π 59. a + = b a + = = b b a ( 6= ). Thus, the slope of the tangent line at P is b. TheslopeofF P is a + c and of FP is. B the formula from Problems Plus, we have c tan α = + c + b a b a ( + c) = a + b ( + c) a ( + c) b = a b + b c c + a c using b + a = a b and a b = c = b (c + a ) c (c + a ) = b c and tan β = c b a b a ( c) So α = β. 6. The slopes of the line segments F P and F P are implicitl, a = = b b a Problems Plus, and tan α = + = a b ( c) a ( c) b = a b + b c c a c = b (c a ) c (c a ) = b c b a + c b a ( + c) = b (c + a ) c (c + a ) + c and c,wherep is (, ). Differentiating the slope of the tangent at P is b a, so b the formula from = b ( + c) a a ( + c)+b using /a /b = and a + b = c = b c Thomson Brooks-Cole copright 7 So α = β. tan β = + b a + c b a ( c) = b ( c)+a a ( c)+b = b (c a ) c (c a ) = b c

19 How LORAN works This is a shortened version of the 947 LORAN for Ocean Navigation filmstrip produced b the Coast Guard as a sales pitch to commercial shipping lines to adopt LORAN (as a both a navigational aid and to assist in distress situations). Updated with a new narration track in place of the distorted period track, the film provides a brief overview of the operational theor behind LORAN. Transcript: Operating 4 hours a da, numerous nations maintain a network of LORAN transmitting stations to service the major shipping lanes. There are a pair here, for eample, Siasconset and Bodie Island. One is known as the master station, the other is the slave. For a moment, consider these two stations operating as a snchronous pair, simultaneousl emitting short pulses of radio energ. Leaving both shore stations simultaneousl, a pair of pulses travel out into space, in all directions, at a constant speed, roughl 86, miles per second or the speed of light. Plus, the pulse from the closer station will reach the ship an instant before the pulse from the other station. The LORAN ship-board gear measures this difference in time of arrival in millionths of a second, or microseconds. It simpl determines how much longer one pulse takes to reach the ship than the other pulse. Now, this same time interval will be observed at man points within the range of the two shore stations. And when connected these points form a hperbola known as the LORAN line of position. To aid the navigator in obtaining a fi, speciall prepared LORAN tables and charts contain accuratel plotted lines of position on the various time differences encountered in a particular area. Having one line of position we then obtain readings from another pair of stations. An accurate fi is established at the intersection of the two lines of position. A famil of hperbolic lines generated b LORAN signals.

20 Conic sections Theor. Fill in the gaps in the following sentences b choosing the most appropriate words from the bo below. There are 7 etra words that ou do not need to use. a) A conic is a curve obtained as the intersection between a cone and a plane. Ever conic can also be defined as a particular geometric locus. b) There are three tpes of conic. If the curve is closed, it is an ellipse. If it consists of two separate parts, called branches, it is a hperbola. Otherwise it is a parabola. c) The circle is a special kind of ellipse, in which the two foci coincide with the center, and the aes have the same length, equal to the diameter. d) A parabola can also be seen as the graph of a function = a + b + c, with a. Its ais of smmetr is the line passing through the focus and perpendicular to the directri. The ais intersects the parabola in a point, called the verte. e) For an point on an ellipse, the sum between the distances from the two foci is constant, and is also equal to the major ais. f) The eccentricit of a hperbola is the number defined as the ratio between the focal distance and the transverse ais. It is alwas greater than one. asmptotes branches center circle diameter difference distance ellipse focus graph greater hperbola intersection length less locus major minor parabola parallel perpendicular plane radius ratio sum smmetr transverse verte

21 Conic sections Eercises. Consider the ellipse with foci F (, 4) and F (, 4), and major ais of length. a) Determine the canonical equation of the ellipse. b) Sketch the graph. c) Find the eccentricit. 3. Consider the hperbola of equation 4 =. a) Find the coordinates of the foci. b) Determine the equations of the asmptotes. c) Let r be the line of equation =. Determine the position of r relative to the hperbola. If there are an intersection points, find their coordinates.

Not for reproduction

Not for reproduction REVIEW OF CONIC SECTIONS In this section we give geometric definitions of parabolas, ellipses, and hperbolas and derive their standard equations. The are called conic sections, or conics, because the result

More information

REVIEW OF CONIC SECTIONS

REVIEW OF CONIC SECTIONS REVIEW OF CONIC SECTIONS In this section we give geometric definitions of parabolas, ellipses, and hperbolas and derive their standard equations. The are called conic sections, or conics, because the result

More information

PARAMETRIC EQUATIONS AND POLAR COORDINATES

PARAMETRIC EQUATIONS AND POLAR COORDINATES 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES PARAMETRIC EQUATIONS & POLAR COORDINATES 10.5 Conic Sections In this section, we will learn: How to derive standard equations for conic sections. CONIC SECTIONS

More information

absolute value The distance of a number from zero on a real number line.

absolute value The distance of a number from zero on a real number line. G L O S S A R Y A absolute value The distance of a number from zero on a real number line. acute angle An angle whose measure is less than 90. acute triangle A triangle in which each of the three interior

More information

The telescopes at the W.M. Keck Observatory in Hawaii use hyperbolic mirrors.

The telescopes at the W.M. Keck Observatory in Hawaii use hyperbolic mirrors. UNIT 15 Conic Sections The telescopes at the W.M. Keck Observator in Hawaii use hperbolic mirrors. Copright 009, K1 Inc. All rights reserved. This material ma not be reproduced in whole or in part, including

More information

Ready To Go On? Skills Intervention 10-1 Introduction to Conic Sections

Ready To Go On? Skills Intervention 10-1 Introduction to Conic Sections Find this vocabular word in Lesson 10-1 and the Multilingual Glossar. Graphing Parabolas and Hperbolas on a Calculator A is a single curve, whereas a has two congruent branches. Identif and describe each

More information

Lesson 9.1 Using the Distance Formula

Lesson 9.1 Using the Distance Formula Lesson. Using the Distance Formula. Find the eact distance between each pair of points. a. (0, 0) and (, ) b. (0, 0) and (7, ) c. (, 8) and (, ) d. (, ) and (, 7) e. (, 7) and (8, ) f. (8, ) and (, 0)

More information

The details of the derivation of the equations of conics are com-

The details of the derivation of the equations of conics are com- Part 6 Conic sections Introduction Consider the double cone shown in the diagram, joined at the verte. These cones are right circular cones in the sense that slicing the double cones with planes at right-angles

More information

-,- 2..J. EXAMPLE 9 Discussing the Equation of a Parabola. Solution

-,- 2..J. EXAMPLE 9 Discussing the Equation of a Parabola. Solution 670 CHAPTER 9 Analtic Geometr Polnomial equations define parabolas whenever the involve two variables that are quadratic in one variable and linear in the other. To discuss this tpe of equation, we first

More information

APPENDIXES. B Coordinate Geometry and Lines C. D Trigonometry E F. G The Logarithm Defined as an Integral H Complex Numbers I

APPENDIXES. B Coordinate Geometry and Lines C. D Trigonometry E F. G The Logarithm Defined as an Integral H Complex Numbers I APPENDIXES A Numbers, Inequalities, and Absolute Values B Coordinate Geometr and Lines C Graphs of Second-Degree Equations D Trigonometr E F Sigma Notation Proofs of Theorems G The Logarithm Defined as

More information

Summary, Review, and Test

Summary, Review, and Test 944 Chapter 9 Conic Sections and Analtic Geometr 45. Use the polar equation for planetar orbits, to find the polar equation of the orbit for Mercur and Earth. Mercur: e = 0.056 and a = 36.0 * 10 6 miles

More information

C H A P T E R 9 Topics in Analytic Geometry

C H A P T E R 9 Topics in Analytic Geometry C H A P T E R Topics in Analtic Geometr Section. Circles and Parabolas.................... 77 Section. Ellipses........................... 7 Section. Hperbolas......................... 7 Section. Rotation

More information

Not for reproduction

Not for reproduction ROTATION OF AES For a discussion of conic sections, see Review of Conic Sections In precalculus or calculus ou ma have studied conic sections with equations of the form A C D E F Here we show that the

More information

Math Review Packet #5 Algebra II (Part 2) Notes

Math Review Packet #5 Algebra II (Part 2) Notes SCIE 0, Spring 0 Miller Math Review Packet #5 Algebra II (Part ) Notes Quadratic Functions (cont.) So far, we have onl looked at quadratic functions in which the term is squared. A more general form of

More information

Module 3, Section 4 Analytic Geometry II

Module 3, Section 4 Analytic Geometry II Principles of Mathematics 11 Section, Introduction 01 Introduction, Section Analtic Geometr II As the lesson titles show, this section etends what ou have learned about Analtic Geometr to several related

More information

Review of Essential Skills and Knowledge

Review of Essential Skills and Knowledge Review of Essential Skills and Knowledge R Eponent Laws...50 R Epanding and Simplifing Polnomial Epressions...5 R 3 Factoring Polnomial Epressions...5 R Working with Rational Epressions...55 R 5 Slope

More information

Coordinate geometry. + bx + c. Vertical asymptote. Sketch graphs of hyperbolas (including asymptotic behaviour) from the general

Coordinate geometry. + bx + c. Vertical asymptote. Sketch graphs of hyperbolas (including asymptotic behaviour) from the general A Sketch graphs of = a m b n c where m = or and n = or B Reciprocal graphs C Graphs of circles and ellipses D Graphs of hperbolas E Partial fractions F Sketch graphs using partial fractions Coordinate

More information

Conic Sections CHAPTER OUTLINE. The Circle Ellipses and Hyperbolas Second-Degree Inequalities and Nonlinear Systems FIGURE 1

Conic Sections CHAPTER OUTLINE. The Circle Ellipses and Hyperbolas Second-Degree Inequalities and Nonlinear Systems FIGURE 1 088_0_p676-7 /7/0 :5 PM Page 676 (FPG International / Telegraph Colour Librar) Conic Sections CHAPTER OUTLINE. The Circle. Ellipses and Hperbolas.3 Second-Degree Inequalities and Nonlinear Sstems O ne

More information

Section 9.1 Video Guide Distance and Midpoint Formulas

Section 9.1 Video Guide Distance and Midpoint Formulas Objectives: 1. Use the Distance Formula 2. Use the Midpoint Formula Section 9.1 Video Guide Distance and Midpoint Formulas Section 9.1 Objective 1: Use the Distance Formula Video Length 8:27 1. Eample:

More information

10.2 INTRODUCTION TO CONICS: PARABOLAS

10.2 INTRODUCTION TO CONICS: PARABOLAS Section 0.2 Introduction to Conics: Parabolas 733 0.2 INTRODUCTION TO CONICS: PARABOLAS What ou should learn Recognize a conic as the intersection of a plane a double-napped cone. Write equations of parabolas

More information

Name Please print your name as it appears on the class roster.

Name Please print your name as it appears on the class roster. Berkele Cit College Practice Problems Math 1 Precalculus - Final Eam Preparation Name Please print our name as it appears on the class roster. SHORT ANSWER. Write the word or phrase that best completes

More information

Glossary. Also available at BigIdeasMath.com: multi-language glossary vocabulary flash cards. An equation that contains an absolute value expression

Glossary. Also available at BigIdeasMath.com: multi-language glossary vocabulary flash cards. An equation that contains an absolute value expression Glossar This student friendl glossar is designed to be a reference for ke vocabular, properties, and mathematical terms. Several of the entries include a short eample to aid our understanding of important

More information

The Coordinate Plane. Circles and Polygons on the Coordinate Plane. LESSON 13.1 Skills Practice. Problem Set

The Coordinate Plane. Circles and Polygons on the Coordinate Plane. LESSON 13.1 Skills Practice. Problem Set LESSON.1 Skills Practice Name Date The Coordinate Plane Circles and Polgons on the Coordinate Plane Problem Set Use the given information to show that each statement is true. Justif our answers b using

More information

Chapter Summary. How does Chapter 10 fit into the BIGGER PICTURE of algebra?

Chapter Summary. How does Chapter 10 fit into the BIGGER PICTURE of algebra? Page of 5 0 Chapter Summar WHAT did ou learn? Find the distance between two points. (0.) Find the midpoint of the line segment connecting two points. (0.) Use distance and midpoint formulas in real-life

More information

Definition of an Ellipse Drawing an Ellipse Standard Equations and Their Graphs Applications

Definition of an Ellipse Drawing an Ellipse Standard Equations and Their Graphs Applications 616 9 Additional Topics in Analtic Geometr 53. Space Science. A designer of a 00-foot-diameter parabolic electromagnetic antenna for tracking space probes wants to place the focus 100 feet above the verte

More information

Learning Goals. College of Charleston Department of Mathematics Math 101: College Algebra Final Exam Review Problems 1

Learning Goals. College of Charleston Department of Mathematics Math 101: College Algebra Final Exam Review Problems 1 College of Charleston Department of Mathematics Math 0: College Algebra Final Eam Review Problems Learning Goals (AL-) Arithmetic of Real and Comple Numbers: I can classif numbers as natural, integer,

More information

STUDY KNOWHOW PROGRAM STUDY AND LEARNING CENTRE. Functions & Graphs

STUDY KNOWHOW PROGRAM STUDY AND LEARNING CENTRE. Functions & Graphs STUDY KNOWHOW PROGRAM STUDY AND LEARNING CENTRE Functions & Graphs Contents Functions and Relations... 1 Interval Notation... 3 Graphs: Linear Functions... 5 Lines and Gradients... 7 Graphs: Quadratic

More information

Analytic Geometry in Two and Three Dimensions

Analytic Geometry in Two and Three Dimensions CHAPTER 8 Analtic Geometr in Two and Three Dimensions 8.1 Conic Sections and Parabolas 8.2 Ellipses 8.3 Hperbolas 8.4 Translation and Rotation of Aes 8.5 Polar Equations of Conics 8.6 Three-Dimensional

More information

Solutions to the Exercises of Chapter 4

Solutions to the Exercises of Chapter 4 Solutions to the Eercises of Chapter 4 4A. Basic Analtic Geometr. The distance between (, ) and (4, 5) is ( 4) +( 5) = 9+6 = 5 and that from (, 6) to (, ) is ( ( )) +( 6 ( )) = ( + )=.. i. AB = (6 ) +(

More information

UNCORRECTED SAMPLE PAGES. 3Quadratics. Chapter 3. Objectives

UNCORRECTED SAMPLE PAGES. 3Quadratics. Chapter 3. Objectives Chapter 3 3Quadratics Objectives To recognise and sketch the graphs of quadratic polnomials. To find the ke features of the graph of a quadratic polnomial: ais intercepts, turning point and ais of smmetr.

More information

Complete Solutions Manual. Technical Calculus with Analytic Geometry FIFTH EDITION. Peter Kuhfittig Milwaukee School of Engineering.

Complete Solutions Manual. Technical Calculus with Analytic Geometry FIFTH EDITION. Peter Kuhfittig Milwaukee School of Engineering. Complete Solutions Manual Technical Calculus with Analtic Geometr FIFTH EDITION Peter Kuhfittig Milwaukee School of Engineering Australia Brazil Meico Singapore United Kingdom United States 213 Cengage

More information

Contents. About the Author. Preface to the Instructor. xxi. Acknowledgments. xxiii. Preface to the Student

Contents. About the Author. Preface to the Instructor. xxi. Acknowledgments. xxiii. Preface to the Student About the Author v Preface to the Instructor v Acknowledgments i Preface to the Student iii Chapter 0 The Real Numbers 1 0.1 The Real Line 2 Construction of the Real Line 2 Is Ever Real Number Rational?

More information

SECOND-DEGREE INEQUALITIES

SECOND-DEGREE INEQUALITIES 60 (-40) Chapter Nonlinear Sstems and the Conic Sections 0 0 4 FIGURE FOR EXERCISE GETTING MORE INVOLVED. Cooperative learning. Let (, ) be an arbitrar point on an ellipse with foci (c, 0) and ( c, 0)

More information

MATH 115: Final Exam Review. Can you find the distance between two points and the midpoint of a line segment? (1.1)

MATH 115: Final Exam Review. Can you find the distance between two points and the midpoint of a line segment? (1.1) MATH : Final Eam Review Can ou find the distance between two points and the midpoint of a line segment? (.) () Consider the points A (,) and ( 6, ) B. (a) Find the distance between A and B. (b) Find the

More information

Math 101 chapter six practice exam MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Math 101 chapter six practice exam MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Math 1 chapter si practice eam MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Which equation matches the given calculator-generated graph and description?

More information

CALCULUS BASIC SUMMER REVIEW

CALCULUS BASIC SUMMER REVIEW NAME CALCULUS BASIC SUMMER REVIEW Slope of a non vertical line: rise y y y m run Point Slope Equation: y y m( ) The slope is m and a point on your line is, ). ( y Slope-Intercept Equation: y m b slope=

More information

Introduction to Computer Graphics (Lecture No 07) Ellipse and Other Curves

Introduction to Computer Graphics (Lecture No 07) Ellipse and Other Curves Introduction to Computer Graphics (Lecture No 07) Ellipse and Other Curves 7.1 Ellipse An ellipse is a curve that is the locus of all points in the plane the sum of whose distances r1 and r from two fixed

More information

6 Linear and Quadratic Functions

6 Linear and Quadratic Functions 6 Linear and Quadratic Functions 6. Prologue Definition 4 in Book I of Euclid s Elements (3rd centur BC) reads: A straight line is a line that lies evenl with the points on itself. No one knows for sure

More information

Chapter 7 Page 1 of 16. Lecture Guide. Math College Algebra Chapter 7. to accompany. College Algebra by Julie Miller

Chapter 7 Page 1 of 16. Lecture Guide. Math College Algebra Chapter 7. to accompany. College Algebra by Julie Miller Chapter 7 Page 1 of 16 Lecture Guide Math 105 - College Algebra Chapter 7 to accompan College Algebra b Julie Miller Corresponding Lecture Videos can be found at Prepared b Stephen Toner & Nichole DuBal

More information

Answers for the problems can be found at the end of this packet starting on Page 12.

Answers for the problems can be found at the end of this packet starting on Page 12. MAC 0 Review for Final Eam The eam will consists of problems similar to the ones below. When preparing, focus on understanding and general procedures (when available) rather than specific question. Answers

More information

1 is equal to. 1 (B) a. (C) a (B) (D) 4. (C) P lies inside both C & E (D) P lies inside C but outside E. (B) 1 (D) 1

1 is equal to. 1 (B) a. (C) a (B) (D) 4. (C) P lies inside both C & E (D) P lies inside C but outside E. (B) 1 (D) 1 Single Correct Q. Two mutuall perpendicular tangents of the parabola = a meet the ais in P and P. If S is the focus of the parabola then l a (SP ) is equal to (SP ) l (B) a (C) a Q. ABCD and EFGC are squares

More information

Answer Explanations. The SAT Subject Tests. Mathematics Level 1 & 2 TO PRACTICE QUESTIONS FROM THE SAT SUBJECT TESTS STUDENT GUIDE

Answer Explanations. The SAT Subject Tests. Mathematics Level 1 & 2 TO PRACTICE QUESTIONS FROM THE SAT SUBJECT TESTS STUDENT GUIDE The SAT Subject Tests Answer Eplanations TO PRACTICE QUESTIONS FROM THE SAT SUBJECT TESTS STUDENT GUIDE Mathematics Level & Visit sat.org/stpractice to get more practice and stud tips for the Subject Test

More information

Equations for Some Hyperbolas

Equations for Some Hyperbolas Lesson 1-6 Lesson 1-6 BIG IDEA From the geometric defi nition of a hperbola, an equation for an hperbola smmetric to the - and -aes can be found. The edges of the silhouettes of each of the towers pictured

More information

Mathematics 309 Conic sections and their applicationsn. Chapter 2. Quadric figures. ai,j x i x j + b i x i + c =0. 1. Coordinate changes

Mathematics 309 Conic sections and their applicationsn. Chapter 2. Quadric figures. ai,j x i x j + b i x i + c =0. 1. Coordinate changes Mathematics 309 Conic sections and their applicationsn Chapter 2. Quadric figures In this chapter want to outline quickl how to decide what figure associated in 2D and 3D to quadratic equations look like.

More information

Mathematics. Mathematics 2. hsn.uk.net. Higher HSN22000

Mathematics. Mathematics 2. hsn.uk.net. Higher HSN22000 hsn.uk.net Higher Mathematics UNIT Mathematics HSN000 This document was produced speciall for the HSN.uk.net website, and we require that an copies or derivative works attribute the work to Higher Still

More information

Edexcel GCE A Level Maths. Further Maths 3 Coordinate Systems

Edexcel GCE A Level Maths. Further Maths 3 Coordinate Systems Edecel GCE A Level Maths Further Maths 3 Coordinate Sstems Edited b: K V Kumaran kumarmaths.weebl.com 1 kumarmaths.weebl.com kumarmaths.weebl.com 3 kumarmaths.weebl.com 4 kumarmaths.weebl.com 5 1. An ellipse

More information

Polynomial and Rational Functions

Polynomial and Rational Functions Name Date Chapter Polnomial and Rational Functions Section.1 Quadratic Functions Objective: In this lesson ou learned how to sketch and analze graphs of quadratic functions. Important Vocabular Define

More information

+ 4 Ex: y = v = (1, 4) x = 1 Focus: (h, k + ) = (1, 6) L.R. = 8 units We can have parabolas that open sideways too (inverses) x = a (y k) 2 + h

+ 4 Ex: y = v = (1, 4) x = 1 Focus: (h, k + ) = (1, 6) L.R. = 8 units We can have parabolas that open sideways too (inverses) x = a (y k) 2 + h Unit 7 Notes Parabolas: E: reflectors, microphones, (football game), (Davinci) satellites. Light placed where ras will reflect parallel. This point is the focus. Parabola set of all points in a plane that

More information

IAS 3.1 Conic Sections

IAS 3.1 Conic Sections Year 13 Mathematics IAS 3.1 Conic Sections Robert Lakeland & Carl Nugent Contents Achievement Standard.................................................. The Straight Line.......................................................

More information

LESSON #42 - INVERSES OF FUNCTIONS AND FUNCTION NOTATION PART 2 COMMON CORE ALGEBRA II

LESSON #42 - INVERSES OF FUNCTIONS AND FUNCTION NOTATION PART 2 COMMON CORE ALGEBRA II LESSON #4 - INVERSES OF FUNCTIONS AND FUNCTION NOTATION PART COMMON CORE ALGEBRA II You will recall from unit 1 that in order to find the inverse of a function, ou must switch and and solve for. Also,

More information

SECTION 8-7 De Moivre s Theorem. De Moivre s Theorem, n a Natural Number nth-roots of z

SECTION 8-7 De Moivre s Theorem. De Moivre s Theorem, n a Natural Number nth-roots of z 8-7 De Moivre s Theorem 635 B eactl; compute the modulus and argument for part C to two decimal places. 9. (A) 3 i (B) 1 i (C) 5 6i 10. (A) 1 i 3 (B) 3i (C) 7 4i 11. (A) i 3 (B) 3 i (C) 8 5i 12. (A) 3

More information

Lines, Conics, Tangents, Limits and the Derivative

Lines, Conics, Tangents, Limits and the Derivative Lines, Conics, Tangents, Limits and te Derivative Te Straigt Line An two points on te (,) plane wen joined form a line segment. If te line segment is etended beond te two points ten it is called a straigt

More information

4 The Cartesian Coordinate System- Pictures of Equations

4 The Cartesian Coordinate System- Pictures of Equations The Cartesian Coordinate Sstem- Pictures of Equations Concepts: The Cartesian Coordinate Sstem Graphs of Equations in Two Variables -intercepts and -intercepts Distance in Two Dimensions and the Pthagorean

More information

January 21, 2018 Math 9. Geometry. The method of coordinates (continued). Ellipse. Hyperbola. Parabola.

January 21, 2018 Math 9. Geometry. The method of coordinates (continued). Ellipse. Hyperbola. Parabola. January 21, 2018 Math 9 Ellipse Geometry The method of coordinates (continued) Ellipse Hyperbola Parabola Definition An ellipse is a locus of points, such that the sum of the distances from point on the

More information

Glossary. Also available at BigIdeasMath.com: multi-language glossary vocabulary flash cards

Glossary. Also available at BigIdeasMath.com: multi-language glossary vocabulary flash cards Glossar This student friendl glossar is designed to be a reference for ke vocabular, properties, and mathematical terms. Several of the entries include a short eample to aid our understanding of important

More information

Q.2 A, B and C are points in the xy plane such that A(1, 2) ; B (5, 6) and AC = 3BC. Then. (C) 1 1 or

Q.2 A, B and C are points in the xy plane such that A(1, 2) ; B (5, 6) and AC = 3BC. Then. (C) 1 1 or STRAIGHT LINE [STRAIGHT OBJECTIVE TYPE] Q. A variable rectangle PQRS has its sides parallel to fied directions. Q and S lie respectivel on the lines = a, = a and P lies on the ais. Then the locus of R

More information

Diagnostic Assessment Number and Quantitative Reasoning

Diagnostic Assessment Number and Quantitative Reasoning Number and Quantitative Reasoning Select the best answer.. Which list contains the first four multiples of 3? A 3, 30, 300, 3000 B 3, 6, 9, 22 C 3, 4, 5, 6 D 3, 26, 39, 52 2. Which pair of numbers has

More information

Mathematics. Mathematics 2. hsn.uk.net. Higher HSN22000

Mathematics. Mathematics 2. hsn.uk.net. Higher HSN22000 Higher Mathematics UNIT Mathematics HSN000 This document was produced speciall for the HSN.uk.net website, and we require that an copies or derivative works attribute the work to Higher Still Notes. For

More information

5-4. Focus and Directrix of a Parabola. Key Concept Parabola VOCABULARY TEKS FOCUS ESSENTIAL UNDERSTANDING

5-4. Focus and Directrix of a Parabola. Key Concept Parabola VOCABULARY TEKS FOCUS ESSENTIAL UNDERSTANDING 5- Focus and Directri of a Parabola TEKS FOCUS VOCABULARY TEKS ()(B) Write the equation of a parabola using given attributes, including verte, focus, directri, ais of smmetr, and direction of opening.

More information

11 PARAMETRIC EQUATIONS, POLAR COORDINATES, AND CONIC SECTIONS

11 PARAMETRIC EQUATIONS, POLAR COORDINATES, AND CONIC SECTIONS PARAMETRIC EQUATIONS, POLAR COORDINATES, AND CONIC SECTIONS. Parametric Equations Preliminar Questions. Describe the shape of the curve = cos t, = sin t. For all t, + = cos t + sin t = 9cos t + sin t =

More information

10.4 Nonlinear Inequalities and Systems of Inequalities. OBJECTIVES 1 Graph a Nonlinear Inequality. 2 Graph a System of Nonlinear Inequalities.

10.4 Nonlinear Inequalities and Systems of Inequalities. OBJECTIVES 1 Graph a Nonlinear Inequality. 2 Graph a System of Nonlinear Inequalities. Section 0. Nonlinear Inequalities and Sstems of Inequalities 6 CONCEPT EXTENSIONS For the eercises below, see the Concept Check in this section.. Without graphing, how can ou tell that the graph of + =

More information

ZETA MATHS. Higher Mathematics Revision Checklist

ZETA MATHS. Higher Mathematics Revision Checklist ZETA MATHS Higher Mathematics Revision Checklist Contents: Epressions & Functions Page Logarithmic & Eponential Functions Addition Formulae. 3 Wave Function.... 4 Graphs of Functions. 5 Sets of Functions

More information

International Examinations. Advanced Level Mathematics Pure Mathematics 1 Hugh Neill and Douglas Quadling

International Examinations. Advanced Level Mathematics Pure Mathematics 1 Hugh Neill and Douglas Quadling International Eaminations Advanced Level Mathematics Pure Mathematics Hugh Neill and Douglas Quadling PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street,

More information

Graph and Write Equations of Ellipses. You graphed and wrote equations of parabolas and circles. You will graph and write equations of ellipses.

Graph and Write Equations of Ellipses. You graphed and wrote equations of parabolas and circles. You will graph and write equations of ellipses. TEKS 9.4 a.5, A.5.B, A.5.C Before Now Graph and Write Equations of Ellipses You graphed and wrote equations of parabolas and circles. You will graph and write equations of ellipses. Wh? So ou can model

More information

Algebra II Notes Unit Five: Quadratic Functions. Syllabus Objectives: 5.1 The student will graph quadratic functions with and without technology.

Algebra II Notes Unit Five: Quadratic Functions. Syllabus Objectives: 5.1 The student will graph quadratic functions with and without technology. Sllabus Objectives:.1 The student will graph quadratic functions with and without technolog. Quadratic Function: a function that can be written in the form are real numbers Parabola: the U-shaped graph

More information

CHAPTER 3 Applications of Differentiation

CHAPTER 3 Applications of Differentiation CHAPTER Applications of Differentiation Section. Etrema on an Interval.............. 78 Section. Rolle s Theorem and the Mean Value Theorem. 8 Section. Increasing and Decreasing Functions and the First

More information

Analytic Geometry in Three Dimensions

Analytic Geometry in Three Dimensions Analtic Geometr in Three Dimensions. The Three-Dimensional Coordinate Sstem. Vectors in Space. The Cross Product of Two Vectors. Lines and Planes in Space The three-dimensional coordinate sstem is used

More information

McKinney High School AP Calculus Summer Packet

McKinney High School AP Calculus Summer Packet McKinne High School AP Calculus Summer Packet (for students entering AP Calculus AB or AP Calculus BC) Name:. This packet is to be handed in to our Calculus teacher the first week of school.. ALL work

More information

Hooked on Conics. Chapter Introduction to Conics

Hooked on Conics. Chapter Introduction to Conics Chapter 7 Hooked on Conics 7. Introduction to Conics In this chapter, we stud the Conic Sections - literall sections of a cone. Imagine a doublenapped cone as seen below being sliced b a plane. If we slice

More information

8.1 Exponents and Roots

8.1 Exponents and Roots Section 8. Eponents and Roots 75 8. Eponents and Roots Before defining the net famil of functions, the eponential functions, we will need to discuss eponent notation in detail. As we shall see, eponents

More information

1.1 Laws of exponents Conversion between exponents and logarithms Logarithm laws Exponential and logarithmic equations 10

1.1 Laws of exponents Conversion between exponents and logarithms Logarithm laws Exponential and logarithmic equations 10 CNTENTS Algebra Chapter Chapter Chapter Eponents and logarithms. Laws of eponents. Conversion between eponents and logarithms 6. Logarithm laws 8. Eponential and logarithmic equations 0 Sequences and series.

More information

Reteaching (continued)

Reteaching (continued) Quadratic Functions and Transformations If a, the graph is a stretch or compression of the parent function b a factor of 0 a 0. 0 0 0 0 0 a a 7 The graph is a vertical The graph is a vertical compression

More information

3.1 Graphing Quadratic Functions. Quadratic functions are of the form.

3.1 Graphing Quadratic Functions. Quadratic functions are of the form. 3.1 Graphing Quadratic Functions A. Quadratic Functions Completing the Square Quadratic functions are of the form. 3. It is easiest to graph quadratic functions when the are in the form using transformations.

More information

P.4 Lines in the Plane

P.4 Lines in the Plane 28 CHAPTER P Prerequisites P.4 Lines in the Plane What ou ll learn about Slope of a Line Point-Slope Form Equation of a Line Slope-Intercept Form Equation of a Line Graphing Linear Equations in Two Variables

More information

MATH II CCR MATH STANDARDS

MATH II CCR MATH STANDARDS RELATIONSHIPS BETWEEN QUANTITIES M.2HS.1 M.2HS.2 M.2HS.3 M.2HS.4 M.2HS.5 M.2HS.6 Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents

More information

Number Plane Graphs and Coordinate Geometry

Number Plane Graphs and Coordinate Geometry Numer Plane Graphs and Coordinate Geometr Now this is m kind of paraola! Chapter Contents :0 The paraola PS, PS, PS Investigation: The graphs of paraolas :0 Paraolas of the form = a + + c PS Fun Spot:

More information

MAT 1275: Introduction to Mathematical Analysis. Graphs and Simplest Equations for Basic Trigonometric Functions. y=sin( x) Function

MAT 1275: Introduction to Mathematical Analysis. Graphs and Simplest Equations for Basic Trigonometric Functions. y=sin( x) Function MAT 275: Introduction to Mathematical Analsis Dr. A. Rozenblum Graphs and Simplest Equations for Basic Trigonometric Functions We consider here three basic functions: sine, cosine and tangent. For them,

More information

Are You Ready? Find Area in the Coordinate Plane

Are You Ready? Find Area in the Coordinate Plane SKILL 38 Are You Read? Find Area in the Coordinate Plane Teaching Skill 38 Objective Find the areas of figures in the coordinate plane. Review with students the definition of area. Ask: Is the definition

More information

APPENDIX D Rotation and the General Second-Degree Equation

APPENDIX D Rotation and the General Second-Degree Equation APPENDIX D Rotation and the General Second-Degree Equation Rotation of Aes Invariants Under Rotation After rotation of the - and -aes counterclockwise through an angle, the rotated aes are denoted as the

More information

Mathematics Extension 2

Mathematics Extension 2 Student Number ABBOTSLEIGH AUGUST 007 YEAR ASSESSMENT 4 HIGHER SCHOOL CERTIFICATE TRIAL EXAMINATION Mathematics Etension General Instructions Reading time 5 minutes. Working time 3 hours. Write using blue

More information

3 Polynomial and Rational Functions

3 Polynomial and Rational Functions 3 Polnomial and Rational Functions 3.1 Quadratic Functions and Models 3.2 Polnomial Functions and Their Graphs 3.3 Dividing Polnomials 3.4 Real Zeros of Polnomials 3.5 Comple Zeros and the Fundamental

More information

C) x m A) 260 sq. m B) 26 sq. m C) 40 sq. m D) 364 sq. m. 7) x x - (6x + 24) = -4 A) 0 B) all real numbers C) 4 D) no solution

C) x m A) 260 sq. m B) 26 sq. m C) 40 sq. m D) 364 sq. m. 7) x x - (6x + 24) = -4 A) 0 B) all real numbers C) 4 D) no solution Sample Departmental Final - Math 46 Perform the indicated operation. Simplif if possible. 1) 7 - - 2-2 + 3 2 - A) + - 2 B) - + 4-2 C) + 4-2 D) - + - 2 Solve the problem. 2) The sum of a number and its

More information

Summer Review Packet for Students Entering AP Calculus BC. Complex Fractions

Summer Review Packet for Students Entering AP Calculus BC. Complex Fractions Summer Review Packet for Students Entering AP Calculus BC Comple Fractions When simplifying comple fractions, multiply by a fraction equal to 1 which has a numerator and denominator composed of the common

More information

DIRECTIONS. Pre-Test 1. Evaluate 3(x 2y), if x 5 and y 4. A. 9 B. 7 C. 39 D. 18

DIRECTIONS. Pre-Test 1. Evaluate 3(x 2y), if x 5 and y 4. A. 9 B. 7 C. 39 D. 18 DIRECTIONS Read each of the questions below, and then decide on the BEST answer. There are man different kinds of questions, so read each question carefull before marking an answer on our answer sheet.

More information

Math 180 Chapter 10 Lecture Notes. Professor Miguel Ornelas

Math 180 Chapter 10 Lecture Notes. Professor Miguel Ornelas Math 180 Chapter 10 Lecture Notes Professor Miguel Ornelas 1 M. Ornelas Math 180 Lecture Notes Section 10.1 Section 10.1 Parabolas Definition of a Parabola A parabola is the set of all points in a plane

More information

Integrated Mathematics II

Integrated Mathematics II Integrated Mathematics II This course covers the topics shown below. Students navigate learning paths based on their level of readiness. Institutional users may customize the scope and sequence to meet

More information

Inclination of a Line. Definition of Inclination

Inclination of a Line. Definition of Inclination 76 Chapter 0 Topics in Analtic Geometr 0. LINES What ou should learn Find the inclination of a line. Find the angle between two lines. Find the distance between a point and a line. Wh ou should learn it

More information

Special Mathematics Notes

Special Mathematics Notes Special Mathematics Notes Tetbook: Classroom Mathematics Stds 9 & 10 CHAPTER 6 Trigonometr Trigonometr is a stud of measurements of sides of triangles as related to the angles, and the application of this

More information

PreCalculus. Curriculum (637 topics additional topics)

PreCalculus. Curriculum (637 topics additional topics) PreCalculus This course covers the topics shown below. Students navigate learning paths based on their level of readiness. Institutional users may customize the scope and sequence to meet curricular needs.

More information

13.1. For further details concerning the physics involved and animations of the trajectories of the particles, see the following websites:

13.1. For further details concerning the physics involved and animations of the trajectories of the particles, see the following websites: 8 CHAPTER VECTOR FUNCTIONS N Some computer algebra sstems provide us with a clearer picture of a space curve b enclosing it in a tube. Such a plot enables us to see whether one part of a curve passes in

More information

College Algebra with Trigonometry

College Algebra with Trigonometry College Algebra with Trigonometry This course covers the topics outlined below. You can customize the scope and sequence of this course to meet your curricular needs. Curriculum (556 topics + 614 additional

More information

Algebra/Pre-calc Review

Algebra/Pre-calc Review Algebra/Pre-calc Review The following pages contain various algebra and pre-calculus topics that are used in the stud of calculus. These pages were designed so that students can refresh their knowledge

More information

Ready To Go On? Skills Intervention 5-1 Using Transformations to Graph Quadratic Functions

Ready To Go On? Skills Intervention 5-1 Using Transformations to Graph Quadratic Functions Read To Go On? Skills Intervention 5-1 Using Transformations to Graph Quadratic Functions Find these vocabular words in Lesson 5-1 and the Multilingual Glossar. Vocabular quadratic function parabola verte

More information

PREPARED BY: ER. VINEET LOOMBA (B.TECH. IIT ROORKEE) 60 Best JEE Main and Advanced Level Problems (IIT-JEE). Prepared by IITians.

PREPARED BY: ER. VINEET LOOMBA (B.TECH. IIT ROORKEE) 60 Best JEE Main and Advanced Level Problems (IIT-JEE). Prepared by IITians. www. Class XI TARGET : JEE Main/Adv PREPARED BY: ER. VINEET LOOMBA (B.TECH. IIT ROORKEE) ALP ADVANCED LEVEL PROBLEMS Straight Lines 60 Best JEE Main and Advanced Level Problems (IIT-JEE). Prepared b IITians.

More information

CHAPTER 3 Applications of Differentiation

CHAPTER 3 Applications of Differentiation CHAPTER Applications of Differentiation Section. Etrema on an Interval................... 0 Section. Rolle s Theorem and the Mean Value Theorem...... 0 Section. Increasing and Decreasing Functions and

More information

Find the distance between the pair of points. 2) (7, -7) and (3, -5) A) 12 3 units B) 2 5 units C) 6 units D) 12 units B) 8 C) 63 2

Find the distance between the pair of points. 2) (7, -7) and (3, -5) A) 12 3 units B) 2 5 units C) 6 units D) 12 units B) 8 C) 63 2 Sample Departmental Final - Math 9 Write the first five terms of the sequence whose general term is given. 1) a n = n 2 - n 0, 2,, 12, 20 B) 2,, 12, 20, 30 C) 0, 3, 8, 1, 2 D) 1,, 9, 1, 2 Find the distance

More information

UNCORRECTED. To recognise the rules of a number of common algebraic relations: y = x 1 y 2 = x

UNCORRECTED. To recognise the rules of a number of common algebraic relations: y = x 1 y 2 = x 5A galler of graphs Objectives To recognise the rules of a number of common algebraic relations: = = = (rectangular hperbola) + = (circle). To be able to sketch the graphs of these relations. To be able

More information

KEY IDEAS. Chapter 1 Function Transformations. 1.1 Horizontal and Vertical Translations Pre-Calculus 12 Student Workbook MHR 1

KEY IDEAS. Chapter 1 Function Transformations. 1.1 Horizontal and Vertical Translations Pre-Calculus 12 Student Workbook MHR 1 Chapter Function Transformations. Horizontal and Vertical Translations A translation can move the graph of a function up or down (vertical translation) and right or left (horizontal translation). A translation

More information

Math 121. Practice Questions Chapters 2 and 3 Fall Find the other endpoint of the line segment that has the given endpoint and midpoint.

Math 121. Practice Questions Chapters 2 and 3 Fall Find the other endpoint of the line segment that has the given endpoint and midpoint. Math 11. Practice Questions Chapters and 3 Fall 01 1. Find the other endpoint of the line segment that has the given endpoint and midpoint. Endpoint ( 7, ), Midpoint (, ). Solution: Let (, ) denote the

More information

Graph and Write Equations of Circles

Graph and Write Equations of Circles TEKS 9.3 a.5, A.5.B Graph and Write Equations of Circles Before You graphed and wrote equations of parabolas. Now You will graph and write equations of circles. Wh? So ou can model transmission ranges,

More information