Definition of an Ellipse Drawing an Ellipse Standard Equations and Their Graphs Applications

Size: px
Start display at page:

Download "Definition of an Ellipse Drawing an Ellipse Standard Equations and Their Graphs Applications"

Transcription

1 616 9 Additional Topics in Analtic Geometr 53. Space Science. A designer of a 00-foot-diameter parabolic electromagnetic antenna for tracking space probes wants to place the focus 100 feet above the verte (see the figure). (A) ind the equation of the parabola using the ais of the parabola as the ais (up positive) and verte at the origin. (B) Determine the depth of the parabolic reflector. 54. Signal Light. A signal light on a ship is a spotlight with parallel reflected light ras (see the figure). Suppose the parabolic reflector is 1 inches in diameter and the light source is located at the focus, which is 1.5 inches from the verte. 00 ft Signal light ocus ocus Radiotelescope 100 ft (A) ind the equation of the parabola using the ais of the parabola as the ais (right positive) and verte at the origin. (B) Determine the depth of the parabolic reflector. SECTION 9- Ellipse Definition of an Ellipse Drawing an Ellipse Standard Equations and Their Graphs Applications We start our discussion of the ellipse with a coordinate-free definition. Using this definition, we show how an ellipse can be drawn and we derive standard equations for ellipses speciall located in a rectangular coordinate sstem. Definition of an Ellipse The following is a coordinate-free definition of an ellipse: DEINITION 1 Ellipse An ellipse is the set of all points P in a plane such that the sum of the distances of P from two fied points in the plane is constant. Each of the fied points, and, is called a focus, and together the are called foci. Referring to the figure, the line segment VV through the foci is the major ais. The perpendicular bisector BB of the major ais is the minor ais. Each end of the major ais,

2 9- Ellipse 617 V and V, is called a verte. The midpoint of the line segment is called the center of the ellipse. V d 1 d Constant B d 1 P d B V Drawing an Ellipse An ellipse is eas to draw. All ou need is a piece of string, two thumbtacks, and a pencil or pen (see ig. 1). Place the two thumbtacks in a piece of cardboard. These form the foci of the ellipse. Take a piece of string longer than the distance between the two thumbtacks this represents the constant in the definition and tie each end to a thumbtack. inall, catch the tip of a pencil under the string and move it while keeping the string taut. The resulting figure is b definition an ellipse. Ellipses of different shapes result, depending on the placement of thumbtacks and the length of the string joining them. IGURE 1 Drawing an ellipse. Note that d 1 d alwas adds up to the length of the string, which does not change. P d 1 d ocus String ocus Standard Equations and Their Graphs Using the definition of an ellipse and the distance-between-two-points formula, we can derive standard equations for an ellipse located in a rectangular coordinate sstem. We start b placing an ellipse in the coordinate sstem with the foci on the ais equidistant from the origin at (c, 0) and (c, 0), as in igure. IGURE Ellipse with foci on ais. P(, ) d 1 d (c, 0) 0 (c, 0) d 1 d Constant c 0

3 618 9 Additional Topics in Analtic Geometr or reasons that will become clear soon, it is convenient to represent the constant sum d 1 d b a, a 0. Also, the geometric fact that the sum of the lengths of an two sides of a triangle must be greater than the third side can be applied to igure to derive the following useful result: d(, P) d(p, ) d(, ) d 1 d c a c a c (1) We will use this result in the derivation of the equation of an ellipse, which we now begin. Referring to igure, the point P(, ) is on the ellipse if and onl if d 1 d a d(p, ) d(p, ) a ( c) ( 0) ( c) ( 0) a After eliminating radicals and simplifing, a good eercise for ou, we obtain (a c ) a a (a c ) a a c 1 () (3) Dividing both sides of equation () b a (a c ) is permitted, since neither a nor a c is 0. rom equation (1), a c; thus a c and a c 0. The constant a was chosen positive at the beginning. To simplif equation (3) further, we let to obtain b a c b 0 (4) a b 1 (5) rom equation (5) we see that the intercepts are a and the intercepts are b. The intercepts are also the vertices. Thus, Major ais length a Minor ais length b To see that the major ais is longer than the minor ais, we show that a b. Returning to equation (4), b a c a, b, c 0 b c a

4 9- Ellipse 619 b a Definition of b a 0 (b a)(b a) 0 b a 0 Since b a is positive, b a must be negative. b a b a a b Length of major ais Length of minor ais If we start with the foci on the ais at (0, c) and (0, c) as in igure 3, instead of on the ais as in igure, then, following arguments similar to those used for the first derivation, we obtain b a 1 a b (6) where the relationship among a, b, and c remains the same as before: b a c (7) The center is still at the origin, but the major ais is now along the ais and the minor ais is along the ais. IGURE 3 Ellipse with foci on ais. (0, c) d 1 P(, ) 0 d (0, c) d 1 d Constant c 0 To sketch graphs of equations of the form (5) or (6) is an eas matter. We find the and intercepts and sketch in an appropriate ellipse. Since replacing with, or with produces an equivalent equation, we conclude that the graphs are smmetric with respect to the ais, ais, and origin. If further accurac is required, additional points can be found with the aid of a calculator and the use of smmetr properties. Given an equation of the form (5) or (6), how can we find the coordinates of the foci without memorizing or looking up the relation b a c? There is a simple geometric relationship in an ellipse that enables us to get the same result using the Pthagorean theorem. To see this relationship, refer to igure 4(a). Then, using the

5 60 9 Additional Topics in Analtic Geometr definition of an ellipse and a for the constant sum, as we did in deriving the standard equations, we see that Thus: d d a d a d a The length of the line segment from the end of a minor ais to a focus is the same as half the length of a major ais. This geometric relationship is illustrated in igure 4(b). Using the Pthagorean theorem for the triangle in igure 4(b), we have or b c a b a c Equations (4) and (7) or c a b Useful for finding the foci, given a and b Thus, we can find the foci of an ellipse given the intercepts a and b simpl b using the triangle in igure 4(b) and the Pthagorean theorem. IGURE 4 Geometric relationships. b a b 1 a b 0 b a b c a d c 0 c a d a c 0 c a a b b (a) (b) We summarize all of these results for convenient reference in Theorem 1. Theorem 1 Standard Equations of an Ellipse with Center at (0, 0) 1. a 1 a b 0 b

6 9- Ellipse 61 intercepts: a (vertices) intercepts: b oci: (c, 0), (c, 0) c a b Major ais length a Minor ais length b a b a c 0 c a b. b 1 a b 0 a intercepts: b intercepts: a (vertices) oci: (0, c), (0, c) a c a c a b Major ais length a Minor ais length b b 0 b [Note: Both graphs are smmetric with respect to the ais, ais, and origin. Also, the major ais is alwas longer than the minor ais.] c a EXPLORE-DISCUSS 1 The line through a focus of an ellipse that is perpendicular to the major ais intersects the ellipse in two points G and H. or each of the two standard equations of an ellipse with center (0, 0), find an epression in terms of a and b for the distance from G to H. EXAMPLE 1 Graphing Ellipses Sketch the graph of each equation, find the coordinates of the foci, and find the lengths of the major and minor aes. (A) (B) 10 Solutions (A) irst, write the equation in standard form b dividing both sides b 144: 9 @@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@ a 16 and b 9

7 6 9 Additional Topics in Analtic Geometr Locate the intercepts: intercepts: intercepts: c 0 c 4 3 IGURE and sketch in the ellipse, as shown in igure 5. oci: c a b c 7 c is positive Thus, the foci are ( 7, 0) and ( 7, 0). Major ais length (4) 8 Minor ais length (3) 6 (B) Write the equation in standard form b dividing both sides b @@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@ a 10 and b 5 Locate the intercepts: intercepts: intercepts: and sketch in the ellipse, as shown in igure c 10 oci: c a b c c 5 10 IGURE Thus, the foci are (0, 5) and (0, 5). Major ais length Minor ais length Remark. To graph the equation of Eample 1A on a graphing 9 utilit we first solve the equation for, obtaining. We then graph 14416

8 9- Ellipse 63 each of the two functions. The graph of ellipse, and the graph of is the lower half. is the upper half of the Matched Problem 1 Sketch the graph of each equation, find the coordinates of the foci, and find the lengths of the major and minor aes. (A) 4 4 (B) 3 18 EXAMPLE inding the Equation of an Ellipse ind an equation of an ellipse in the form M N 1 M, N 0 10 Solutions if the center is at the origin, the major ais is along the ais, and: (A) Length of major ais 0 (B) Length of major ais 10 Length of minor ais 1 Distance of foci from center 4 (A) Compute and intercepts and make a rough sketch of the ellipse, as shown in igure IGURE b 10 IGURE b 10 a 0 (B) Make a rough sketch of the ellipse, as shown in igure 8; locate the foci and intercepts, then determine the intercepts using the special triangle relationship discussed earlier. b a 1 a 10 5 b b a b 1 6 b 3

9 64 9 Additional Topics in Analtic Geometr Matched Problem ind an equation of an ellipse in the form M N 1 M, N 0 if the center is at the origin, the major ais is along the ais, and: (A) Length of major ais 50 (B) Length of minor ais 16 Length of minor ais 30 Distance of foci from center 6 EXPLORE-DISCUSS Consider the graph of an equation in the variables and. The equation of its magnification b a factor k 0 is obtained b replacing and in the equation b /k and /k, respectivel. (A) ind the equation of the magnification b a factor 3 of the ellipse with equation ( /4) 1. Graph both equations. (B) Give an eample of an ellipse with center (0, 0) with a b that is not a magnification of ( /4) 1. (C) ind the equations of all ellipses that are magnifications of ( /4) 1. Applications You are no doubt aware of man occurrences and uses of elliptical forms: orbits of satellites, planets, and comets; shapes of galaies; gears and cams; some airplane wings, boat keels, and rudders; tabletops; public fountains; and domes in buildings are a few eamples (see ig. 9). A fairl recent application in medicine is the use of elliptical reflectors and ultrasound to break up kidne stones. Planet Sun Planetar motion (a) (b) (c) IGURE 9 Uses of elliptical forms. Elliptical gears Elliptical dome Johannes Kepler ( ), a German astronomer, discovered that planets move in elliptical orbits, with the sun at a focus, and not in circular orbits as had been thought before [ig. 9(a)]. igure 9(b) shows a pair of elliptical gears with pivot points at foci. Such gears transfer constant rotational speed to variable rotational speed, and

10 9- Ellipse 65 vice versa. igure 9(c) shows an elliptical dome. An interesting propert of such a dome is that a sound or light source at one focus will reflect off the dome and pass through the other focus. One of the chambers in the Capitol Building in Washington, D.C., has such a dome, and is referred to as a whispering room because a whispered sound at one focus can be easil heard at the other focus. Answers to Matched Problems 1. (A) oci: (3, 0), (3, 0) Major ais length 4 1 Minor ais length 0 1 (B) 18 oci: (0, 1), (0, 1) Major ais length Minor ais length (A) (B) EXERCISE 9- A In Problems 1 6, sketch a graph of each equation, find the coordinates of the foci, and find the lengths of the major and minor aes B In Problems 7 1, sketch a graph of each equation, find the coordinates of the foci, and find the lengths of the major and minor aes In Problems 13 18, find an equation of an ellipse in the form 1 M, N 0 M N if the center is at the origin, and: 13. Major ais on ais Major ais length 6 Minor ais length 14. Major ais on ais Major ais length 3 Minor ais length Major ais on ais Minor ais length 10 Distance of foci from center Major ais on ais Major ais length 16 Distance of foci from center 7

11 66 9 Additional Topics in Analtic Geometr 17. Major ais on ais Major ais length 4 Distance between foci 18. Major ais on ais Major ais length 4 Distance between foci Eplain wh an equation whose graph is an ellipse does not define a function. 0. Consider all ellipses having (0, 1) as the ends of the minor ais. Describe the connection between the elongation of the ellipse and the distance from a focus to the origin. In Problems 1 4, graph each sstem of equations in the same rectangular coordinate sstem and find the coordinates of an points of intersection. ind noninteger coordinates to three decimal places. Check Problems 1 4 with a graphing utilit.* In Problems 35 38, use a graphing utilit to find the coordinates of all points of intersection to two decimal places , ,600, ,05, , APPLICATIONS 39. Engineering. The semielliptical arch in the concrete bridge in the figure must have a clearance of 1 feet above the water and span a distance of 40 feet. ind the equation of the ellipse after inserting a coordinate sstem with the center of the ellipse at the origin and the major ais on the ais. The ais points up, and the ais points to the right. How much clearance above the water is there 5 feet from the bank? In Problems 5 8, find the first-quadrant points of intersection for each sstem of equations to three decimal places. Check Problems 5 8 with a graphing utilit In Problems 9 3, determine whether the statement is true or false. If true, eplain wh. If false, give a countereample. 9. The line segment joining the foci of an ellipse has greater length than the minor ais. 30. There is eactl one ellipse with center (0, 0) and foci (1, 0). 31. Ever line through the center of 4 16 intersects the ellipse in eactl two points. 3. Ever nonvertical line through a verte of 4 16 intersects the ellipse in eactl two points. C 33. ind an equation of the set of points in a plane, each of whose distance from (, 0) is one-half its distance from the line 8. Identif the geometric figure. 34. ind an equation of the set of points in a plane, each of whose distance from (0, 9) is three-fourths its distance from the line 16. Identif the geometric figure. *Please note that use of a graphing utilit is not required to complete these eercises. Checking them with a g.u. is optional. 40. Design. A4 8 foot elliptical tabletop is to be cut out of a 4 8 foot rectangular sheet of teak plwood (see the figure). To draw the ellipse on the plwood, how far should the foci be located from each edge and how long a piece of string must be fastened to each focus to produce the ellipse (see igure 1 in the tet)? Compute the answer to two decimal places. Elliptical bridge Elliptical table String 41. Aeronautical Engineering. Of all possible wing shapes, it has been determined that the one with the least drag along the trailing edge is an ellipse. The leading edge ma be a straight line, as shown in the figure. One of the most famous planes with this design was the World War II British Spitfire. The plane in the figure has a wingspan of 48.0 feet.

12 9-3 Hperbola 67 Leading edge and 1.00 foot in front of it. The chord is 1.00 foot shorter than the major ais. Elliptical wings and tail uselage Trailing edge (A) If the straight-line leading edge is parallel to the major ais of the ellipse and is 1.14 feet in front of it, and if the leading edge is 46.0 feet long (including the width of the fuselage), find the equation of the ellipse. Let the ais lie along the major ais (positive right), and let the ais lie along the minor ais (positive forward). (B) How wide is the wing in the center of the fuselage (assuming the wing passes through the fuselage)? Compute quantities to 3 significant digits. 4. Naval Architecture. Currentl, man high-performance racing sailboats use elliptical keels, rudders, and main sails for the same reasons stated in Problem 41 less drag along the trailing edge. In the accompaning figure, the ellipse containing the keel has a 1.0-foot major ais. The straightline leading edge is parallel to the major ais of the ellipse Rudder Keel (A) ind the equation of the ellipse. Let the ais lie along the minor ais of the ellipse, and let the ais lie along the major ais, both with positive direction upward. (B) What is the width of the keel, measured perpendicular to the major ais, 1 foot up the major ais from the bottom end of the keel? Compute quantities to 3 significant digits. SECTION 9-3 Hperbola Definition of a Hperbola Drawing a Hperbola Standard Equations and Their Graphs Applications As before, we start with a coordinate-free definition of a hperbola. Using this definition, we show how a hperbola can be drawn and we derive standard equations for hperbolas speciall located in a rectangular coordinate sstem. Definition of a Hperbola The following is a coordinate-free definition of a hperbola:

The second type of conic is called an ellipse, and is defined as follows. Definition of Ellipse

The second type of conic is called an ellipse, and is defined as follows. Definition of Ellipse 72 Chapter 10 Topics in Analtic Geometr 10.3 ELLIPSES What ou should learn Write equations of ellipses in standard form and graph ellipses. Use properties of ellipses to model and solve real-life problems.

More information

Summary, Review, and Test

Summary, Review, and Test 944 Chapter 9 Conic Sections and Analtic Geometr 45. Use the polar equation for planetar orbits, to find the polar equation of the orbit for Mercur and Earth. Mercur: e = 0.056 and a = 36.0 * 10 6 miles

More information

The telescopes at the W.M. Keck Observatory in Hawaii use hyperbolic mirrors.

The telescopes at the W.M. Keck Observatory in Hawaii use hyperbolic mirrors. UNIT 15 Conic Sections The telescopes at the W.M. Keck Observator in Hawaii use hperbolic mirrors. Copright 009, K1 Inc. All rights reserved. This material ma not be reproduced in whole or in part, including

More information

C H A P T E R 9 Topics in Analytic Geometry

C H A P T E R 9 Topics in Analytic Geometry C H A P T E R Topics in Analtic Geometr Section. Circles and Parabolas.................... 77 Section. Ellipses........................... 7 Section. Hperbolas......................... 7 Section. Rotation

More information

Ready To Go On? Skills Intervention 10-1 Introduction to Conic Sections

Ready To Go On? Skills Intervention 10-1 Introduction to Conic Sections Find this vocabular word in Lesson 10-1 and the Multilingual Glossar. Graphing Parabolas and Hperbolas on a Calculator A is a single curve, whereas a has two congruent branches. Identif and describe each

More information

SECTION 8-7 De Moivre s Theorem. De Moivre s Theorem, n a Natural Number nth-roots of z

SECTION 8-7 De Moivre s Theorem. De Moivre s Theorem, n a Natural Number nth-roots of z 8-7 De Moivre s Theorem 635 B eactl; compute the modulus and argument for part C to two decimal places. 9. (A) 3 i (B) 1 i (C) 5 6i 10. (A) 1 i 3 (B) 3i (C) 7 4i 11. (A) i 3 (B) 3 i (C) 8 5i 12. (A) 3

More information

Graph and Write Equations of Ellipses. You graphed and wrote equations of parabolas and circles. You will graph and write equations of ellipses.

Graph and Write Equations of Ellipses. You graphed and wrote equations of parabolas and circles. You will graph and write equations of ellipses. TEKS 9.4 a.5, A.5.B, A.5.C Before Now Graph and Write Equations of Ellipses You graphed and wrote equations of parabolas and circles. You will graph and write equations of ellipses. Wh? So ou can model

More information

10.2 INTRODUCTION TO CONICS: PARABOLAS

10.2 INTRODUCTION TO CONICS: PARABOLAS Section 0.2 Introduction to Conics: Parabolas 733 0.2 INTRODUCTION TO CONICS: PARABOLAS What ou should learn Recognize a conic as the intersection of a plane a double-napped cone. Write equations of parabolas

More information

Equations for Some Hyperbolas

Equations for Some Hyperbolas Lesson 1-6 Lesson 1-6 BIG IDEA From the geometric defi nition of a hperbola, an equation for an hperbola smmetric to the - and -aes can be found. The edges of the silhouettes of each of the towers pictured

More information

Inclination of a Line. Definition of Inclination

Inclination of a Line. Definition of Inclination 76 Chapter 0 Topics in Analtic Geometr 0. LINES What ou should learn Find the inclination of a line. Find the angle between two lines. Find the distance between a point and a line. Wh ou should learn it

More information

-,- 2..J. EXAMPLE 9 Discussing the Equation of a Parabola. Solution

-,- 2..J. EXAMPLE 9 Discussing the Equation of a Parabola. Solution 670 CHAPTER 9 Analtic Geometr Polnomial equations define parabolas whenever the involve two variables that are quadratic in one variable and linear in the other. To discuss this tpe of equation, we first

More information

Conic Sections CHAPTER OUTLINE. The Circle Ellipses and Hyperbolas Second-Degree Inequalities and Nonlinear Systems FIGURE 1

Conic Sections CHAPTER OUTLINE. The Circle Ellipses and Hyperbolas Second-Degree Inequalities and Nonlinear Systems FIGURE 1 088_0_p676-7 /7/0 :5 PM Page 676 (FPG International / Telegraph Colour Librar) Conic Sections CHAPTER OUTLINE. The Circle. Ellipses and Hperbolas.3 Second-Degree Inequalities and Nonlinear Sstems O ne

More information

REVIEW OF CONIC SECTIONS

REVIEW OF CONIC SECTIONS REVIEW OF CONIC SECTIONS In this section we give geometric definitions of parabolas, ellipses, and hperbolas and derive their standard equations. The are called conic sections, or conics, because the result

More information

The details of the derivation of the equations of conics are com-

The details of the derivation of the equations of conics are com- Part 6 Conic sections Introduction Consider the double cone shown in the diagram, joined at the verte. These cones are right circular cones in the sense that slicing the double cones with planes at right-angles

More information

Not for reproduction

Not for reproduction REVIEW OF CONIC SECTIONS In this section we give geometric definitions of parabolas, ellipses, and hperbolas and derive their standard equations. The are called conic sections, or conics, because the result

More information

Section 9.1 Video Guide Distance and Midpoint Formulas

Section 9.1 Video Guide Distance and Midpoint Formulas Objectives: 1. Use the Distance Formula 2. Use the Midpoint Formula Section 9.1 Video Guide Distance and Midpoint Formulas Section 9.1 Objective 1: Use the Distance Formula Video Length 8:27 1. Eample:

More information

LESSON #42 - INVERSES OF FUNCTIONS AND FUNCTION NOTATION PART 2 COMMON CORE ALGEBRA II

LESSON #42 - INVERSES OF FUNCTIONS AND FUNCTION NOTATION PART 2 COMMON CORE ALGEBRA II LESSON #4 - INVERSES OF FUNCTIONS AND FUNCTION NOTATION PART COMMON CORE ALGEBRA II You will recall from unit 1 that in order to find the inverse of a function, ou must switch and and solve for. Also,

More information

Solutions to the Exercises of Chapter 4

Solutions to the Exercises of Chapter 4 Solutions to the Eercises of Chapter 4 4A. Basic Analtic Geometr. The distance between (, ) and (4, 5) is ( 4) +( 5) = 9+6 = 5 and that from (, 6) to (, ) is ( ( )) +( 6 ( )) = ( + )=.. i. AB = (6 ) +(

More information

Analytic Geometry in Two and Three Dimensions

Analytic Geometry in Two and Three Dimensions CHAPTER 8 Analtic Geometr in Two and Three Dimensions 8.1 Conic Sections and Parabolas 8.2 Ellipses 8.3 Hperbolas 8.4 Translation and Rotation of Aes 8.5 Polar Equations of Conics 8.6 Three-Dimensional

More information

Using Intercept Form

Using Intercept Form 8.5 Using Intercept Form Essential Question What are some of the characteristics of the graph of f () = a( p)( q)? Using Zeros to Write Functions Work with a partner. Each graph represents a function of

More information

Math 2412 Pre Calculus TEST 2 Prep Fall 2011

Math 2412 Pre Calculus TEST 2 Prep Fall 2011 Math 41 Pre Calculus TEST Prep Fall 011 Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Find the eact value under the given conditions. 1) sin α

More information

Lesson 9.1 Using the Distance Formula

Lesson 9.1 Using the Distance Formula Lesson. Using the Distance Formula. Find the eact distance between each pair of points. a. (0, 0) and (, ) b. (0, 0) and (7, ) c. (, 8) and (, ) d. (, ) and (, 7) e. (, 7) and (8, ) f. (8, ) and (, 0)

More information

APPENDIX D Rotation and the General Second-Degree Equation

APPENDIX D Rotation and the General Second-Degree Equation APPENDIX D Rotation and the General Second-Degree Equation Rotation of Aes Invariants Under Rotation After rotation of the - and -aes counterclockwise through an angle, the rotated aes are denoted as the

More information

MATH 115: Final Exam Review. Can you find the distance between two points and the midpoint of a line segment? (1.1)

MATH 115: Final Exam Review. Can you find the distance between two points and the midpoint of a line segment? (1.1) MATH : Final Eam Review Can ou find the distance between two points and the midpoint of a line segment? (.) () Consider the points A (,) and ( 6, ) B. (a) Find the distance between A and B. (b) Find the

More information

2.1 The Rectangular Coordinate System

2.1 The Rectangular Coordinate System . The Rectangular Coordinate Sstem In this section ou will learn to: plot points in a rectangular coordinate sstem understand basic functions of the graphing calculator graph equations b generating a table

More information

4 The Cartesian Coordinate System- Pictures of Equations

4 The Cartesian Coordinate System- Pictures of Equations The Cartesian Coordinate Sstem- Pictures of Equations Concepts: The Cartesian Coordinate Sstem Graphs of Equations in Two Variables -intercepts and -intercepts Distance in Two Dimensions and the Pthagorean

More information

5-4. Focus and Directrix of a Parabola. Key Concept Parabola VOCABULARY TEKS FOCUS ESSENTIAL UNDERSTANDING

5-4. Focus and Directrix of a Parabola. Key Concept Parabola VOCABULARY TEKS FOCUS ESSENTIAL UNDERSTANDING 5- Focus and Directri of a Parabola TEKS FOCUS VOCABULARY TEKS ()(B) Write the equation of a parabola using given attributes, including verte, focus, directri, ais of smmetr, and direction of opening.

More information

Coordinate geometry. + bx + c. Vertical asymptote. Sketch graphs of hyperbolas (including asymptotic behaviour) from the general

Coordinate geometry. + bx + c. Vertical asymptote. Sketch graphs of hyperbolas (including asymptotic behaviour) from the general A Sketch graphs of = a m b n c where m = or and n = or B Reciprocal graphs C Graphs of circles and ellipses D Graphs of hperbolas E Partial fractions F Sketch graphs using partial fractions Coordinate

More information

14.1 Systems of Linear Equations in Two Variables

14.1 Systems of Linear Equations in Two Variables 86 Chapter 1 Sstems of Equations and Matrices 1.1 Sstems of Linear Equations in Two Variables Use the method of substitution to solve sstems of equations in two variables. Use the method of elimination

More information

Guided Practice. Application. Practice and Apply. Homework Help. Extra Practice.

Guided Practice. Application. Practice and Apply. Homework Help. Extra Practice. Circles Vocabular circle center tangent Write equations of circles. Graph circles. are circles important in air traffic control? Radar equipment can be used to detect and locate objects that are too far

More information

Systems of Linear Equations: Solving by Graphing

Systems of Linear Equations: Solving by Graphing 8.1 Sstems of Linear Equations: Solving b Graphing 8.1 OBJECTIVE 1. Find the solution(s) for a set of linear equations b graphing NOTE There is no other ordered pair that satisfies both equations. From

More information

10.4 Nonlinear Inequalities and Systems of Inequalities. OBJECTIVES 1 Graph a Nonlinear Inequality. 2 Graph a System of Nonlinear Inequalities.

10.4 Nonlinear Inequalities and Systems of Inequalities. OBJECTIVES 1 Graph a Nonlinear Inequality. 2 Graph a System of Nonlinear Inequalities. Section 0. Nonlinear Inequalities and Sstems of Inequalities 6 CONCEPT EXTENSIONS For the eercises below, see the Concept Check in this section.. Without graphing, how can ou tell that the graph of + =

More information

Introduction to Computer Graphics (Lecture No 07) Ellipse and Other Curves

Introduction to Computer Graphics (Lecture No 07) Ellipse and Other Curves Introduction to Computer Graphics (Lecture No 07) Ellipse and Other Curves 7.1 Ellipse An ellipse is a curve that is the locus of all points in the plane the sum of whose distances r1 and r from two fixed

More information

PARAMETRIC EQUATIONS AND POLAR COORDINATES

PARAMETRIC EQUATIONS AND POLAR COORDINATES 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES PARAMETRIC EQUATIONS & POLAR COORDINATES 10.5 Conic Sections In this section, we will learn: How to derive standard equations for conic sections. CONIC SECTIONS

More information

Math Review Packet #5 Algebra II (Part 2) Notes

Math Review Packet #5 Algebra II (Part 2) Notes SCIE 0, Spring 0 Miller Math Review Packet #5 Algebra II (Part ) Notes Quadratic Functions (cont.) So far, we have onl looked at quadratic functions in which the term is squared. A more general form of

More information

Analytic Geometry in Three Dimensions

Analytic Geometry in Three Dimensions Analtic Geometr in Three Dimensions. The Three-Dimensional Coordinate Sstem. Vectors in Space. The Cross Product of Two Vectors. Lines and Planes in Space The three-dimensional coordinate sstem is used

More information

9-4 Ellipses. Write an equation of each ellipse. 1. ANSWER: ANSWER:

9-4 Ellipses. Write an equation of each ellipse. 1. ANSWER: ANSWER: Write an equation of each ellipse. 5. CCSS SENSE-MAKING An architectural firm sent a proposal to a city for building a coliseum, shown at the right. 1. a. Determine the values of a and b. b. Assuming that

More information

6.3 Ellipses. Objective: To find equations of ellipses and to graph them. Complete the Drawing an Ellipse Activity With Your Group

6.3 Ellipses. Objective: To find equations of ellipses and to graph them. Complete the Drawing an Ellipse Activity With Your Group 6.3 Ellipses Objective: To find equations of ellipses and to graph them. Complete the Drawing an Ellipse Activity With Your Group Conic Section A figure formed by the intersection of a plane and a right

More information

P.4 Lines in the Plane

P.4 Lines in the Plane 28 CHAPTER P Prerequisites P.4 Lines in the Plane What ou ll learn about Slope of a Line Point-Slope Form Equation of a Line Slope-Intercept Form Equation of a Line Graphing Linear Equations in Two Variables

More information

APPENDIXES. B Coordinate Geometry and Lines C. D Trigonometry E F. G The Logarithm Defined as an Integral H Complex Numbers I

APPENDIXES. B Coordinate Geometry and Lines C. D Trigonometry E F. G The Logarithm Defined as an Integral H Complex Numbers I APPENDIXES A Numbers, Inequalities, and Absolute Values B Coordinate Geometr and Lines C Graphs of Second-Degree Equations D Trigonometr E F Sigma Notation Proofs of Theorems G The Logarithm Defined as

More information

Section 8.5 Parametric Equations

Section 8.5 Parametric Equations 504 Chapter 8 Section 8.5 Parametric Equations Man shapes, even ones as simple as circles, cannot be represented as an equation where is a function of. Consider, for eample, the path a moon follows as

More information

SECOND-DEGREE INEQUALITIES

SECOND-DEGREE INEQUALITIES 60 (-40) Chapter Nonlinear Sstems and the Conic Sections 0 0 4 FIGURE FOR EXERCISE GETTING MORE INVOLVED. Cooperative learning. Let (, ) be an arbitrar point on an ellipse with foci (c, 0) and ( c, 0)

More information

Module 3, Section 4 Analytic Geometry II

Module 3, Section 4 Analytic Geometry II Principles of Mathematics 11 Section, Introduction 01 Introduction, Section Analtic Geometr II As the lesson titles show, this section etends what ou have learned about Analtic Geometr to several related

More information

CHAPTER 3 Graphs and Functions

CHAPTER 3 Graphs and Functions CHAPTER Graphs and Functions Section. The Rectangular Coordinate Sstem............ Section. Graphs of Equations..................... 7 Section. Slope and Graphs of Linear Equations........... 7 Section.

More information

Find the center and radius of...

Find the center and radius of... Warm Up x h 2 + y k 2 = r 2 Circle with center h, k and radius r. Find the center and radius of... 2 2 a) ( x 3) y 7 19 2 2 b) x y 6x 4y 12 0 Chapter 6 Analytic Geometry (Conic Sections) Conic Section

More information

Analytic Geometry in Two and Three Dimensions

Analytic Geometry in Two and Three Dimensions 5144_Demana_Ch08pp631-698 1/13/06 6:49 AM Page 631 CHAPTER 8 Analtic Geometr in Two and Three Dimensions 8.1 Conic Sections and Parabolas 8. Ellipses 8.3 Hperbolas 8.4 Translation and Rotation of Aes 8.5

More information

STUDY KNOWHOW PROGRAM STUDY AND LEARNING CENTRE. Functions & Graphs

STUDY KNOWHOW PROGRAM STUDY AND LEARNING CENTRE. Functions & Graphs STUDY KNOWHOW PROGRAM STUDY AND LEARNING CENTRE Functions & Graphs Contents Functions and Relations... 1 Interval Notation... 3 Graphs: Linear Functions... 5 Lines and Gradients... 7 Graphs: Quadratic

More information

Conic Sections. Pre-Calculus Unit Completing the Square. Solve each equation by completing the square x 2 + 8x 10 = 0

Conic Sections. Pre-Calculus Unit Completing the Square. Solve each equation by completing the square x 2 + 8x 10 = 0 Pre-Calculus Unit 7 Conic Sections Name: 7.1 Completing the Square Solve each equation by completing the square. 1. x 2 + 4x = 21 6. x 2 5x 5 = 0 11. x 2 6x + 6 = 0 2. x 2 8x = 33 7. x 2 + 7x = 0 12. x

More information

Maintaining Mathematical Proficiency

Maintaining Mathematical Proficiency Chapter Maintaining Mathematical Proficienc Find the -intercept of the graph of the linear equation. 1. = + 3. = 3 + 5 3. = 10 75. = ( 9) 5. 7( 10) = +. 5 + 15 = 0 Find the distance between the two points.

More information

Chapter Summary. How does Chapter 10 fit into the BIGGER PICTURE of algebra?

Chapter Summary. How does Chapter 10 fit into the BIGGER PICTURE of algebra? Page of 5 0 Chapter Summar WHAT did ou learn? Find the distance between two points. (0.) Find the midpoint of the line segment connecting two points. (0.) Use distance and midpoint formulas in real-life

More information

Graph and Write Equations of Circles

Graph and Write Equations of Circles TEKS 9.3 a.5, A.5.B Graph and Write Equations of Circles Before You graphed and wrote equations of parabolas. Now You will graph and write equations of circles. Wh? So ou can model transmission ranges,

More information

+ 4 Ex: y = v = (1, 4) x = 1 Focus: (h, k + ) = (1, 6) L.R. = 8 units We can have parabolas that open sideways too (inverses) x = a (y k) 2 + h

+ 4 Ex: y = v = (1, 4) x = 1 Focus: (h, k + ) = (1, 6) L.R. = 8 units We can have parabolas that open sideways too (inverses) x = a (y k) 2 + h Unit 7 Notes Parabolas: E: reflectors, microphones, (football game), (Davinci) satellites. Light placed where ras will reflect parallel. This point is the focus. Parabola set of all points in a plane that

More information

1 is equal to. 1 (B) a. (C) a (B) (D) 4. (C) P lies inside both C & E (D) P lies inside C but outside E. (B) 1 (D) 1

1 is equal to. 1 (B) a. (C) a (B) (D) 4. (C) P lies inside both C & E (D) P lies inside C but outside E. (B) 1 (D) 1 Single Correct Q. Two mutuall perpendicular tangents of the parabola = a meet the ais in P and P. If S is the focus of the parabola then l a (SP ) is equal to (SP ) l (B) a (C) a Q. ABCD and EFGC are squares

More information

8.1 Exponents and Roots

8.1 Exponents and Roots Section 8. Eponents and Roots 75 8. Eponents and Roots Before defining the net famil of functions, the eponential functions, we will need to discuss eponent notation in detail. As we shall see, eponents

More information

Writing Quadratic Functions in Standard Form

Writing Quadratic Functions in Standard Form Chapter Summar Ke Terms standard form (general form) of a quadratic function (.1) parabola (.1) leading coefficient (.) second differences (.) vertical motion model (.3) zeros (.3) interval (.3) open interval

More information

IAS 3.1 Conic Sections

IAS 3.1 Conic Sections Year 13 Mathematics IAS 3.1 Conic Sections Robert Lakeland & Carl Nugent Contents Achievement Standard.................................................. The Straight Line.......................................................

More information

Chapter 11 Quadratic Functions

Chapter 11 Quadratic Functions Chapter 11 Quadratic Functions Mathematical Overview The relationship among parabolas, quadratic functions, and quadratic equations is investigated through activities that eplore both the geometric and

More information

ANALYTICAL GEOMETRY Revision of Grade 10 Analytical Geometry

ANALYTICAL GEOMETRY Revision of Grade 10 Analytical Geometry ANALYTICAL GEOMETRY Revision of Grade 10 Analtical Geometr Let s quickl have a look at the analtical geometr ou learnt in Grade 10. 8 LESSON Midpoint formula (_ + 1 ;_ + 1 The midpoint formula is used

More information

Cumulative Review of Vectors

Cumulative Review of Vectors Cumulative Review of Vectors 1. For the vectors a! 1, 1, and b! 1, 4, 1, determine the following: a. the angle between the two vectors! the scalar and vector projections of a! on the scalar and vector

More information

Space Coordinates and Vectors in Space. Coordinates in Space

Space Coordinates and Vectors in Space. Coordinates in Space 0_110.qd 11//0 : PM Page 77 SECTION 11. Space Coordinates and Vectors in Space 77 -plane Section 11. -plane -plane The three-dimensional coordinate sstem Figure 11.1 Space Coordinates and Vectors in Space

More information

Name Class Date. Deriving the Standard-Form Equation of a Parabola

Name Class Date. Deriving the Standard-Form Equation of a Parabola Name Class Date 1. Parabolas Essential Question: How is the distance formula connected with deriving equations for both vertical and horizontal parabolas? Eplore Deriving the Standard-Form Equation of

More information

Differentiation and applications

Differentiation and applications FS O PA G E PR O U N C O R R EC TE D Differentiation and applications. Kick off with CAS. Limits, continuit and differentiabilit. Derivatives of power functions.4 C oordinate geometr applications of differentiation.5

More information

10.3 Solving Nonlinear Systems of Equations

10.3 Solving Nonlinear Systems of Equations 60 CHAPTER 0 Conic Sections Identif whether each equation, when graphed, will be a parabola, circle, ellipse, or hperbola. Then graph each equation.. - 7 + - =. = +. = + + 6. + 9 =. 9-9 = 6. 6 - = 7. 6

More information

Saturday X-tra X-Sheet: 8. Inverses and Functions

Saturday X-tra X-Sheet: 8. Inverses and Functions Saturda X-tra X-Sheet: 8 Inverses and Functions Ke Concepts In this session we will ocus on summarising what ou need to know about: How to ind an inverse. How to sketch the inverse o a graph. How to restrict

More information

A bridge in New York City has to be build. The transportation authority in New York

A bridge in New York City has to be build. The transportation authority in New York Rupa 1 Raushan Rupa Shyyam Khan Pre calc Introduction A bridge in New York City has to be build. The transportation authority in New York City have planned to construct a new bridge over the East River

More information

For questions 5-8, solve each inequality and graph the solution set. You must show work for full credit. (2 pts each)

For questions 5-8, solve each inequality and graph the solution set. You must show work for full credit. (2 pts each) Alg Midterm Review Practice Level 1 C 1. Find the opposite and the reciprocal of 0. a. 0, 1 b. 0, 1 0 0 c. 0, 1 0 d. 0, 1 0 For questions -, insert , or = to make the sentence true. (1pt each) A. 5

More information

Vertex form of a quadratic equation

Vertex form of a quadratic equation Verte form of a quadratic equation Nikos Apostolakis Spring 017 Recall 1. Last time we looked at the graphs of quadratic equations in two variables. The upshot was that the graph of the equation: k = a(

More information

10.2 The Unit Circle: Cosine and Sine

10.2 The Unit Circle: Cosine and Sine 0. The Unit Circle: Cosine and Sine 77 0. The Unit Circle: Cosine and Sine In Section 0.., we introduced circular motion and derived a formula which describes the linear velocit of an object moving on

More information

Math 323 Exam 2 - Practice Problem Solutions. 2. Given the vectors a = 1,2,0, b = 1,0,2, and c = 0,1,1, compute the following:

Math 323 Exam 2 - Practice Problem Solutions. 2. Given the vectors a = 1,2,0, b = 1,0,2, and c = 0,1,1, compute the following: Math 323 Eam 2 - Practice Problem Solutions 1. Given the vectors a = 2,, 1, b = 3, 2,4, and c = 1, 4,, compute the following: (a) A unit vector in the direction of c. u = c c = 1, 4, 1 4 =,, 1+16+ 17 17

More information

Mth Quadratic functions and quadratic equations

Mth Quadratic functions and quadratic equations Mth 0 - Quadratic functions and quadratic equations Name Find the product. 1) 8a3(2a3 + 2 + 12a) 2) ( + 4)( + 6) 3) (3p - 1)(9p2 + 3p + 1) 4) (32 + 4-4)(2-3 + 3) ) (4a - 7)2 Factor completel. 6) 92-4 7)

More information

8.7 The Parabola. PF = PD The fixed point F is called the focus. The fixed line l is called the directrix.

8.7 The Parabola. PF = PD The fixed point F is called the focus. The fixed line l is called the directrix. 8.7 The Parabola The Hubble Space Telescope orbits the Earth at an altitude of approimatel 600 km. The telescope takes about ninet minutes to complete one orbit. Since it orbits above the Earth s atmosphere,

More information

2-6. _ k x and y = _ k. The Graph of. Vocabulary. Lesson

2-6. _ k x and y = _ k. The Graph of. Vocabulary. Lesson Chapter 2 Lesson 2-6 BIG IDEA The Graph of = _ k and = _ k 2 The graph of the set of points (, ) satisfing = k_, with k constant, is a hperbola with the - and -aes as asmptotes; the graph of the set of

More information

Polynomial and Rational Functions

Polynomial and Rational Functions Polnomial and Rational Functions Figure -mm film, once the standard for capturing photographic images, has been made largel obsolete b digital photograph. (credit film : modification of work b Horia Varlan;

More information

Number Plane Graphs and Coordinate Geometry

Number Plane Graphs and Coordinate Geometry Numer Plane Graphs and Coordinate Geometr Now this is m kind of paraola! Chapter Contents :0 The paraola PS, PS, PS Investigation: The graphs of paraolas :0 Paraolas of the form = a + + c PS Fun Spot:

More information

The Distance Formula. The Midpoint Formula

The Distance Formula. The Midpoint Formula Math 120 Intermediate Algebra Sec 9.1: Distance Midpoint Formulas The Distance Formula The distance between two points P 1 = (x 1, y 1 ) P 2 = (x 1, y 1 ), denoted by d(p 1, P 2 ), is d(p 1, P 2 ) = (x

More information

Unit 10 - Graphing Quadratic Functions

Unit 10 - Graphing Quadratic Functions Unit - Graphing Quadratic Functions PREREQUISITE SKILLS: students should be able to add, subtract and multipl polnomials students should be able to factor polnomials students should be able to identif

More information

absolute value The distance of a number from zero on a real number line.

absolute value The distance of a number from zero on a real number line. G L O S S A R Y A absolute value The distance of a number from zero on a real number line. acute angle An angle whose measure is less than 90. acute triangle A triangle in which each of the three interior

More information

(b) Find the difference quotient. Interpret your result. 3. Find the average rate of change of ƒ(x) = x 2-3x from

(b) Find the difference quotient. Interpret your result. 3. Find the average rate of change of ƒ(x) = x 2-3x from 6360_ch0pp00-075.qd 0/6/08 4:8 PM Page 67 CHAPTER Summar 67 69. ƒ() = 3 70. ƒ() = -5 (b) Find the difference quotient. Interpret our result. 7. ƒ() = - 7. ƒ() = 0 73. ƒ() = + 74. ƒ() = -3 + 4 75. ƒ() =

More information

Chapter 1 Graph of Functions

Chapter 1 Graph of Functions Graph of Functions Chapter Graph of Functions. Rectangular Coordinate Sstem and Plotting points The Coordinate Plane Quadrant II Quadrant I (0,0) Quadrant III Quadrant IV Figure. The aes divide the plane

More information

Math 101 chapter six practice exam MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Math 101 chapter six practice exam MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Math 1 chapter si practice eam MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Which equation matches the given calculator-generated graph and description?

More information

AB Calculus 2013 Summer Assignment. Theme 1: Linear Functions

AB Calculus 2013 Summer Assignment. Theme 1: Linear Functions 01 Summer Assignment Theme 1: Linear Functions 1. Write the equation for the line through the point P(, -1) that is perpendicular to the line 5y = 7. (A) + 5y = -1 (B) 5 y = 8 (C) 5 y = 1 (D) 5 + y = 7

More information

Answers for the problems can be found at the end of this packet starting on Page 12.

Answers for the problems can be found at the end of this packet starting on Page 12. MAC 0 Review for Final Eam The eam will consists of problems similar to the ones below. When preparing, focus on understanding and general procedures (when available) rather than specific question. Answers

More information

Chapter 1 Coordinates, points and lines

Chapter 1 Coordinates, points and lines Cambridge Universit Press 978--36-6000-7 Cambridge International AS and A Level Mathematics: Pure Mathematics Coursebook Hugh Neill, Douglas Quadling, Julian Gilbe Ecerpt Chapter Coordinates, points and

More information

Identifying second degree equations

Identifying second degree equations Chapter 7 Identifing second degree equations 71 The eigenvalue method In this section we appl eigenvalue methods to determine the geometrical nature of the second degree equation a 2 + 2h + b 2 + 2g +

More information

CHAPTER P Preparation for Calculus

CHAPTER P Preparation for Calculus PART II CHAPTER P Preparation for Calculus Section P. Graphs and Models..................... 8 Section P. Linear Models and Rates of Change............ 87 Section P. Functions and Their Graphs................

More information

SEPARABLE EQUATIONS 2.2

SEPARABLE EQUATIONS 2.2 46 CHAPTER FIRST-ORDER DIFFERENTIAL EQUATIONS 4. Chemical Reactions When certain kinds of chemicals are combined, the rate at which the new compound is formed is modeled b the autonomous differential equation

More information

Math 0210 Common Final Review Questions (2 5 i)(2 5 i )

Math 0210 Common Final Review Questions (2 5 i)(2 5 i ) Math 0 Common Final Review Questions In problems 1 6, perform the indicated operations and simplif if necessar. 1. ( 8)(4) ( )(9) 4 7 4 6( ). 18 6 8. ( i) ( 1 4 i ) 4. (8 i ). ( 9 i)( 7 i) 6. ( i)( i )

More information

Reteaching (continued)

Reteaching (continued) Quadratic Functions and Transformations If a, the graph is a stretch or compression of the parent function b a factor of 0 a 0. 0 0 0 0 0 a a 7 The graph is a vertical The graph is a vertical compression

More information

In order to take a closer look at what I m talking about, grab a sheet of graph paper and graph: y = x 2 We ll come back to that graph in a minute.

In order to take a closer look at what I m talking about, grab a sheet of graph paper and graph: y = x 2 We ll come back to that graph in a minute. Module 7: Conics Lesson Notes Part : Parabolas Parabola- The parabola is the net conic section we ll eamine. We talked about parabolas a little bit in our section on quadratics. Here, we eamine them more

More information

4.2 Parabolas. Explore Deriving the Standard-Form Equation. Houghton Mifflin Harcourt Publishing Company. (x - p) 2 + y 2 = (x + p) 2

4.2 Parabolas. Explore Deriving the Standard-Form Equation. Houghton Mifflin Harcourt Publishing Company. (x - p) 2 + y 2 = (x + p) 2 COMMON CORE. d Locker d LESSON Parabolas Common Core Math Standards The student is epected to: COMMON CORE A-CED.A. Create equations in two or more variables to represent relationships between quantities;

More information

8.4 Inverse Functions

8.4 Inverse Functions Section 8. Inverse Functions 803 8. Inverse Functions As we saw in the last section, in order to solve application problems involving eponential unctions, we will need to be able to solve eponential equations

More information

Math 121. Practice Questions Chapters 2 and 3 Fall Find the other endpoint of the line segment that has the given endpoint and midpoint.

Math 121. Practice Questions Chapters 2 and 3 Fall Find the other endpoint of the line segment that has the given endpoint and midpoint. Math 11. Practice Questions Chapters and 3 Fall 01 1. Find the other endpoint of the line segment that has the given endpoint and midpoint. Endpoint ( 7, ), Midpoint (, ). Solution: Let (, ) denote the

More information

= x. Algebra II Notes Quadratic Functions Unit Graphing Quadratic Functions. Math Background

= x. Algebra II Notes Quadratic Functions Unit Graphing Quadratic Functions. Math Background Algebra II Notes Quadratic Functions Unit 3.1 3. Graphing Quadratic Functions Math Background Previousl, ou Identified and graphed linear functions Applied transformations to parent functions Graphed quadratic

More information

Conic Sections: THE ELLIPSE

Conic Sections: THE ELLIPSE Conic Sections: THE ELLIPSE An ellipse is the set of all points,such that the sum of the distance between, and two distinct points is a constant. These two distinct points are called the foci (plural of

More information

Mathematics 10 Page 1 of 7 The Quadratic Function (Vertex Form): Translations. and axis of symmetry is at x a.

Mathematics 10 Page 1 of 7 The Quadratic Function (Vertex Form): Translations. and axis of symmetry is at x a. Mathematics 10 Page 1 of 7 Verte form of Quadratic Relations The epression a p q defines a quadratic relation called the verte form with a horizontal translation of p units and vertical translation of

More information

Sample Problems For Grade 9 Mathematics. Grade. 1. If x 3

Sample Problems For Grade 9 Mathematics. Grade. 1. If x 3 Sample roblems For 9 Mathematics DIRECTIONS: This section provides sample mathematics problems for the 9 test forms. These problems are based on material included in the New York Cit curriculum for 8.

More information

Skills Practice Skills Practice for Lesson 12.1

Skills Practice Skills Practice for Lesson 12.1 Skills Practice Skills Practice for Lesson.1 Name Date Try to Stay Focused Ellipses Centered at the Origin Vocabulary Match each definition to its corresponding term. 1. an equation of the form a. ellipse

More information

Summary and Vocabulary

Summary and Vocabulary Chapter 2 Chapter 2 Summar and Vocabular The functions studied in this chapter are all based on direct and inverse variation. When k and n >, formulas of the form = k n define direct-variation functions,

More information

Graph and Write Equations of Parabolas

Graph and Write Equations of Parabolas TEKS 9.2 a.5, 2A.5.B, 2A.5.C Graph and Write Equations of Parabolas Before You graphed and wrote equations of parabolas that open up or down. Now You will graph and write equations of parabolas that open

More information