A Simple Heuristic Based on Alternating Direction Method of Multipliers for Solving Mixed-Integer Nonlinear Optimization

Size: px
Start display at page:

Download "A Simple Heuristic Based on Alternating Direction Method of Multipliers for Solving Mixed-Integer Nonlinear Optimization"

Transcription

1 A Simple Heuristic Based on Alternating Direction Method of Multipliers for Solving Mixed-Integer Nonlinear Optimization Yoshihiro Kanno Satoshi Kitayama The University of Tokyo Kanazawa University May 21 24, 2018 (ACSMO 2018)

2 a challenging optim. prob. mixed-integer nonlinear programming (MINLP): Min. f (x) s. t. g i (x) 0 (i= 1,..., m), x 1,..., x r : discrete, x r+1,..., x n : continuous. hard to solve

3 a challenging optim. prob. mixed-integer nonlinear programming (MINLP): Min. f (x) s. t. g i (x) 0 (i= 1,..., m), x 1,..., x r : discrete, x r+1,..., x n : continuous. hard to solve our heuristic simple computationally cheap often finds good solutions metaheuristics generally, computationally expensive

4 ex. of MINLP (1/2) optimal design of pressure vessel [Sandgren 90] 4 design variables: s, t : discrete (chosen from catalog) L, R : continuous objective: min. manufacturing cost (nonconvex) constraints: ASME code (nonconvex) t R L s R

5 ex. of MINLP (2/2) optimal design of truss w/ discrete cross-sections design variables: member cross-sectional areas : discrete (from catalog) state variables (e.g., displacement) : continuous objective: min. structural weight (topology is fixed) constraints: stress & displacement equilibrium eq. (nonconvex)

6 basic idea of our heuristic multiple restart of ADMM from random initial points

7 basic idea of our heuristic multiple restart of ADMM from random initial points ADMM=alternating direction method of multipliers each iteration consists of... solving an NLP (nonlinear programming) problem rounding a vector to the nearest integer vector updating dual variable (by vector addition) often converges w/n 20 iterations simple & computationally cheap

8 ADMM=alternating direction method of multipliers an algorithm for convex optimization: Min. f (x)+g(z) s. t. Ax+Bz=c. f, g : convex x, z : variables

9 ADMM=alternating direction method of multipliers an algorithm for convex optimization: Min. f (x)+g(z) s. t. Ax+Bz=c. f, g : convex x, z : variables classically, [Glowinski & Marrocco 75], [Gabay & Mercier 76] distributed optim. for convex prob. a precursor: method of multipliers recently, heuristic for nonconvex prob. data science [Chartrand 07], [Kanamori & Takeda 14] mixed-integer convex program [Takapoui, Moehle, Boyd, & Bemporad 18]

10 iteration of ADMM target ( f, g : convex): Min. f (x)+g(z) s. t. Ax+Bz=c. augmented Lagrangian: L ρ (x,z;y)= f (x)+g(z) + y (Ax+Bz c)+ ρ 2 Ax+Bz c 2 y : Lagrange multiplier ρ > 0 : penalty parameter

11 iteration of ADMM target ( f, g : convex): Min. f (x)+g(z) s. t. Ax+Bz=c. augmented Lagrangian: L ρ (x,z;y)= f (x)+g(z) + y (Ax+Bz c)+ ρ 2 Ax+Bz c 2 y : Lagrange multiplier ρ > 0 : penalty parameter ADMM (primal variables are updated alternately): x k+1 minimizer of L ρ (x,z k ;y k ), (primal update-1) z k+1 minimizer of L ρ (x k+1,z;y k ), (primal update-2) y k+1 y k +ρ(ax k+1 + Bz k+1 c). (dual update)

12 iteration of ADMM target ( f, g : convex): Min. f (x)+g(z) s. t. Ax+Bz=c. augmented Lagrangian: L ρ (x,z;y)= f (x)+g(z) + y (Ax+Bz c)+ ρ 2 Ax+Bz c 2 y : Lagrange multiplier ρ > 0 : penalty parameter method of multipliers (= precursor of ADMM): (x k+1,z k+1 ) minimizer of L ρ (x,z;y k ), (primal update) y k+1 y k +ρ(ax k+1 + Bz k+1 c). (dual update)

13 our method (1/3) discrete variables only (for simple presentation): Min. f (x) s. t. g i (x) 0 (i= 1,..., m), ( write x G) x 1,..., x n : from a list. ( write x D)

14 our method (1/3) discrete variables only (for simple presentation): Min. f (x) s. t. g i (x) 0 (i= 1,..., m), ( write x G) x 1,..., x n : from a list. ( write x D) reformulation: Min. f (x) s. t. x=z ( -1) x G, z D. ( -2) augmented Lagrangian: L ρ (x,z;y)= f (x)+ y (x z)+ ρ 2 x z 2 w/ ( -2). scaling v := y/ρ (as usually done in ADMM): L ρ (x,z;v)= f (x)+ ρ 2 x z+v 2 ρ 2 v 2 w/ ( -2).

15 our method (2/3) We now have augmented Lagrangian: L ρ (x,z;v)= f (x)+ ρ 2 x z+v 2 ρ 2 v 2 with g(x) 0, z from a list. ADMM iteration: x k+1 minimizer of L ρ (x,z k ;v k ), (primal update-1) z k+1 minimizer of L ρ (x k+1,z;v k ), (primal update-2) v k+1 v k + x k+1 z k+1. (dual update)

16 our method (2/3) We now have augmented Lagrangian: L ρ (x,z;v)= f (x)+ ρ 2 x z+v 2 ρ 2 v 2 with g(x) 0, z from a list. primal update: x k+1 minimizer of L ρ (x,z k ;v k ), (primal update-1) z k+1 minimizer of L ρ (x k+1,z;v k ), (primal update-2) update of x : Min. f (x)+ ρ 2 x zk + v k 2 s. t. g(x) 0. apply nonlin. prog. approach only local optimality (but, sufficient for heuristic)

17 our method (2/3) We now have augmented Lagrangian: L ρ (x,z;v)= f (x)+ ρ 2 x z+v 2 ρ 2 v 2 with g(x) 0, z from a list. update of z : ρ Min. 2 (xk+1 + v k ) z 2 s. t. z from a list. rounding x k+1 + v k to the nearest point in the list : point in the list x k+1 j +v k j z k+1 j

18 our method (3/3) heuristic for nonconvex problems: not guaranteed to converge solution may depend on initial point & penalty parameter not guaranteed to be globally optimal but, often effective

19 numerical experiments Matlab implementation NLP solver: fmincon (Matlab built-in func.) multiple restart of ADMMM from 100 random initial points penalty parameter ρ = 100 ρ 10ρ if ADMM converges to an infeasible solution. 3 benchmark problems

20 ex.) 3-bar truss truss w/ discrete member cross-sections [Rao 96] Min. 2x 1 + x 2 + 2x 3 s. t. 3x x 3 1.5x 1 x 2 + 1, 2x 2 x x 1 x x x 3 1.5x 1 x 2 + 1, 2x 2 x x 1 x 3 0.5x 1 2x x 1 x 2 + 1, 2x 2 x x 1 x 3 x 1, x 2, x 3 {0.1, 0.2, 0.3, 0.5, 0.8, 1.0, 1.2}. (disc.) 3 disc. variables 4 nonlin. ineq. cstr.

21 ex.) 3-bar truss truss w/ discrete member cross-sections [Rao 96] x 1, x 2, x 3 {0.1, 0.2, 0.3, 0.5, 0.8, 1.0, 1.2} min. structural weight under stress cstr. x 1 x 2 x 3 proposed method finds global opt. x = (1.2, 0.5, 0.1) #trial #conv. #best #iter. time final ρ s 10 2

22 ex.) 10-bar truss truss w/ discrete member cross-sections [Cai & Thierauf, 93] min. structural weight Case D1: x i {1.62, 1.80, 1.99, 2.13,..., 33.50} under stress & displacement cstr. (42 candidates) Case D2: x i {0.100, 0.347, 0.440, 0.539,..., } (30 candidates)

23 ex.) 10-bar truss truss w/ discrete member cross-sections [Cai & Thierauf, 93] proposed method finds: obj = (case D1) obj = (case D2) [best known] [2nd-best known] case #trial #conv. #best #iter. time final ρ D s 10 3 D s 10 2 existing results in literature: case D1: obj= [Groenwold, Stander, & Snyman, 99], [Juang & Chang, 06] case D2: obj= [Thierauf & Cai, 98]

24 ex.) pressure vessel variables: 2 discrete & 2 continuous [Sandgren 90] Min x 1 x 3 x x 2 x x 1 2 x x 1 2 x 3 (nonconvex) s. t. πx 3 2 x πx (nonconvex) x x 3, x x 3 10 x 3 200, 10 x x 1, x 2 { , ,..., } (disc.) t R L s R

25 ex.) pressure vessel proposed method finds obj = #trial #conv. #best #iter. time final ρ s 10 3, 10 4 existing results of metaheuristics: obj [Kitayama, Arakawa, & Yamazaki 06] [He, Prempain, & Wu, 04] [Hsu, Sun, & Leu, 95] [Kannan & Kramer, 94] [Qian, Yu, & Zhou, 93] [Sandgren, 90] nd-best known solution was obtained.

26 conclusions heuristic for MINLP (mixed-integer nonlinear programming) based on ADMM (alternating direction method of multipliers) multiple restart from random initial points proposed ADMM no guarantee, but... simple, computationally cheap, and... each iteration consists of an NLP and a projection effective i.e., often finds a feasible solution w/ good objective value

Distributed Optimization via Alternating Direction Method of Multipliers

Distributed Optimization via Alternating Direction Method of Multipliers Distributed Optimization via Alternating Direction Method of Multipliers Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato Stanford University ITMANET, Stanford, January 2011 Outline precursors dual decomposition

More information

Truss Topology Optimization under Constraints. on Number of Different Design Variables

Truss Topology Optimization under Constraints. on Number of Different Design Variables Truss Topology Optimization under Constraints on Number of Different Design Variables Yoshihiro Kanno (Tokyo Institute of Technology) (University of Tokyo) June 11, 2015 constraint on # of different design

More information

Distributed Optimization and Statistics via Alternating Direction Method of Multipliers

Distributed Optimization and Statistics via Alternating Direction Method of Multipliers Distributed Optimization and Statistics via Alternating Direction Method of Multipliers Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato Stanford University Stanford Statistics Seminar, September 2010

More information

Accelerated primal-dual methods for linearly constrained convex problems

Accelerated primal-dual methods for linearly constrained convex problems Accelerated primal-dual methods for linearly constrained convex problems Yangyang Xu SIAM Conference on Optimization May 24, 2017 1 / 23 Accelerated proximal gradient For convex composite problem: minimize

More information

ALADIN An Algorithm for Distributed Non-Convex Optimization and Control

ALADIN An Algorithm for Distributed Non-Convex Optimization and Control ALADIN An Algorithm for Distributed Non-Convex Optimization and Control Boris Houska, Yuning Jiang, Janick Frasch, Rien Quirynen, Dimitris Kouzoupis, Moritz Diehl ShanghaiTech University, University of

More information

Exploring Frame Structures with Negative Poisson s Ratio. via Mixed Integer Programming. University of Tokyo

Exploring Frame Structures with Negative Poisson s Ratio. via Mixed Integer Programming. University of Tokyo Exploring Frame Structures with Negative Poisson s Ratio via Mixed Integer Programming Rui Kureta, Yoshihiro Kanno University of Tokyo ( Currently: Tokyo Keiki, Inc.) July 21, 2014 (WCCM XI, ECCM V, ECFD

More information

Dual methods and ADMM. Barnabas Poczos & Ryan Tibshirani Convex Optimization /36-725

Dual methods and ADMM. Barnabas Poczos & Ryan Tibshirani Convex Optimization /36-725 Dual methods and ADMM Barnabas Poczos & Ryan Tibshirani Convex Optimization 10-725/36-725 1 Given f : R n R, the function is called its conjugate Recall conjugate functions f (y) = max x R n yt x f(x)

More information

Beyond Heuristics: Applying Alternating Direction Method of Multipliers in Nonconvex Territory

Beyond Heuristics: Applying Alternating Direction Method of Multipliers in Nonconvex Territory Beyond Heuristics: Applying Alternating Direction Method of Multipliers in Nonconvex Territory Xin Liu(4Ð) State Key Laboratory of Scientific and Engineering Computing Institute of Computational Mathematics

More information

Optimization for Communications and Networks. Poompat Saengudomlert. Session 4 Duality and Lagrange Multipliers

Optimization for Communications and Networks. Poompat Saengudomlert. Session 4 Duality and Lagrange Multipliers Optimization for Communications and Networks Poompat Saengudomlert Session 4 Duality and Lagrange Multipliers P Saengudomlert (2015) Optimization Session 4 1 / 14 24 Dual Problems Consider a primal convex

More information

The use of second-order information in structural topology optimization. Susana Rojas Labanda, PhD student Mathias Stolpe, Senior researcher

The use of second-order information in structural topology optimization. Susana Rojas Labanda, PhD student Mathias Stolpe, Senior researcher The use of second-order information in structural topology optimization Susana Rojas Labanda, PhD student Mathias Stolpe, Senior researcher What is Topology Optimization? Optimize the design of a structure

More information

Generalization to inequality constrained problem. Maximize

Generalization to inequality constrained problem. Maximize Lecture 11. 26 September 2006 Review of Lecture #10: Second order optimality conditions necessary condition, sufficient condition. If the necessary condition is violated the point cannot be a local minimum

More information

An Inexact Sequential Quadratic Optimization Method for Nonlinear Optimization

An Inexact Sequential Quadratic Optimization Method for Nonlinear Optimization An Inexact Sequential Quadratic Optimization Method for Nonlinear Optimization Frank E. Curtis, Lehigh University involving joint work with Travis Johnson, Northwestern University Daniel P. Robinson, Johns

More information

4M020 Design tools. Algorithms for numerical optimization. L.F.P. Etman. Department of Mechanical Engineering Eindhoven University of Technology

4M020 Design tools. Algorithms for numerical optimization. L.F.P. Etman. Department of Mechanical Engineering Eindhoven University of Technology 4M020 Design tools Algorithms for numerical optimization L.F.P. Etman Department of Mechanical Engineering Eindhoven University of Technology Wednesday September 3, 2008 1 / 32 Outline 1 Problem formulation:

More information

Recent Developments of Alternating Direction Method of Multipliers with Multi-Block Variables

Recent Developments of Alternating Direction Method of Multipliers with Multi-Block Variables Recent Developments of Alternating Direction Method of Multipliers with Multi-Block Variables Department of Systems Engineering and Engineering Management The Chinese University of Hong Kong 2014 Workshop

More information

Contraction Methods for Convex Optimization and Monotone Variational Inequalities No.11

Contraction Methods for Convex Optimization and Monotone Variational Inequalities No.11 XI - 1 Contraction Methods for Convex Optimization and Monotone Variational Inequalities No.11 Alternating direction methods of multipliers for separable convex programming Bingsheng He Department of Mathematics

More information

Theory and Applications of Simulated Annealing for Nonlinear Constrained Optimization 1

Theory and Applications of Simulated Annealing for Nonlinear Constrained Optimization 1 Theory and Applications of Simulated Annealing for Nonlinear Constrained Optimization 1 Benjamin W. Wah 1, Yixin Chen 2 and Tao Wang 3 1 Department of Electrical and Computer Engineering and the Coordinated

More information

Numerical Optimization. Review: Unconstrained Optimization

Numerical Optimization. Review: Unconstrained Optimization Numerical Optimization Finding the best feasible solution Edward P. Gatzke Department of Chemical Engineering University of South Carolina Ed Gatzke (USC CHE ) Numerical Optimization ECHE 589, Spring 2011

More information

Introduction to Alternating Direction Method of Multipliers

Introduction to Alternating Direction Method of Multipliers Introduction to Alternating Direction Method of Multipliers Yale Chang Machine Learning Group Meeting September 29, 2016 Yale Chang (Machine Learning Group Meeting) Introduction to Alternating Direction

More information

Analyzing the computational impact of individual MINLP solver components

Analyzing the computational impact of individual MINLP solver components Analyzing the computational impact of individual MINLP solver components Ambros M. Gleixner joint work with Stefan Vigerske Zuse Institute Berlin MATHEON Berlin Mathematical School MINLP 2014, June 4,

More information

Algorithms for constrained local optimization

Algorithms for constrained local optimization Algorithms for constrained local optimization Fabio Schoen 2008 http://gol.dsi.unifi.it/users/schoen Algorithms for constrained local optimization p. Feasible direction methods Algorithms for constrained

More information

Heuristics for nonconvex MINLP

Heuristics for nonconvex MINLP Heuristics for nonconvex MINLP Pietro Belotti, Timo Berthold FICO, Xpress Optimization Team, Birmingham, UK pietrobelotti@fico.com 18th Combinatorial Optimization Workshop, Aussois, 9 Jan 2014 ======This

More information

Applications of Linear Programming

Applications of Linear Programming Applications of Linear Programming lecturer: András London University of Szeged Institute of Informatics Department of Computational Optimization Lecture 9 Non-linear programming In case of LP, the goal

More information

Feasibility Pump for Mixed Integer Nonlinear Programs 1

Feasibility Pump for Mixed Integer Nonlinear Programs 1 Feasibility Pump for Mixed Integer Nonlinear Programs 1 Presenter: 1 by Pierre Bonami, Gerard Cornuejols, Andrea Lodi and Francois Margot Mixed Integer Linear or Nonlinear Programs (MILP/MINLP) Optimize

More information

Development of the new MINLP Solver Decogo using SCIP - Status Report

Development of the new MINLP Solver Decogo using SCIP - Status Report Development of the new MINLP Solver Decogo using SCIP - Status Report Pavlo Muts with Norman Breitfeld, Vitali Gintner, Ivo Nowak SCIP Workshop 2018, Aachen Table of contents 1. Introduction 2. Automatic

More information

Recent Adaptive Methods for Nonlinear Optimization

Recent Adaptive Methods for Nonlinear Optimization Recent Adaptive Methods for Nonlinear Optimization Frank E. Curtis, Lehigh University involving joint work with James V. Burke (U. of Washington), Richard H. Byrd (U. of Colorado), Nicholas I. M. Gould

More information

Truss topology design with integer variables made easy

Truss topology design with integer variables made easy Mathematical Programming manuscript No. (will be inserted by the editor) Michal Kočvara Truss topology design with integer variables made easy Dedicated to Herbert Hörnlein on the occasion of his 65th

More information

Lecture 3: Lagrangian duality and algorithms for the Lagrangian dual problem

Lecture 3: Lagrangian duality and algorithms for the Lagrangian dual problem Lecture 3: Lagrangian duality and algorithms for the Lagrangian dual problem Michael Patriksson 0-0 The Relaxation Theorem 1 Problem: find f := infimum f(x), x subject to x S, (1a) (1b) where f : R n R

More information

OQNLP: a Scatter Search Multistart Approach for Solving Constrained Non- Linear Global Optimization Problems

OQNLP: a Scatter Search Multistart Approach for Solving Constrained Non- Linear Global Optimization Problems OQNLP: a Scatter Search Multistart Approach for Solving Constrained Non- Linear Global Optimization Problems Zsolt Ugray, The University of California at Riverside, MIS Dept. Leon Lasdon, The University

More information

Does Alternating Direction Method of Multipliers Converge for Nonconvex Problems?

Does Alternating Direction Method of Multipliers Converge for Nonconvex Problems? Does Alternating Direction Method of Multipliers Converge for Nonconvex Problems? Mingyi Hong IMSE and ECpE Department Iowa State University ICCOPT, Tokyo, August 2016 Mingyi Hong (Iowa State University)

More information

Hybrid Evolutionary and Annealing Algorithms for Nonlinear Discrete Constrained Optimization 1. Abstract. 1 Introduction

Hybrid Evolutionary and Annealing Algorithms for Nonlinear Discrete Constrained Optimization 1. Abstract. 1 Introduction Hybrid Evolutionary and Annealing Algorithms for Nonlinear Discrete Constrained Optimization 1 Benjamin W. Wah and Yixin Chen Department of Electrical and Computer Engineering and the Coordinated Science

More information

The Direct Extension of ADMM for Multi-block Convex Minimization Problems is Not Necessarily Convergent

The Direct Extension of ADMM for Multi-block Convex Minimization Problems is Not Necessarily Convergent The Direct Extension of ADMM for Multi-block Convex Minimization Problems is Not Necessarily Convergent Yinyu Ye K. T. Li Professor of Engineering Department of Management Science and Engineering Stanford

More information

Projection methods to solve SDP

Projection methods to solve SDP Projection methods to solve SDP Franz Rendl http://www.math.uni-klu.ac.at Alpen-Adria-Universität Klagenfurt Austria F. Rendl, Oberwolfach Seminar, May 2010 p.1/32 Overview Augmented Primal-Dual Method

More information

From structures to heuristics to global solvers

From structures to heuristics to global solvers From structures to heuristics to global solvers Timo Berthold Zuse Institute Berlin DFG Research Center MATHEON Mathematics for key technologies OR2013, 04/Sep/13, Rotterdam Outline From structures to

More information

arxiv: v1 [math.oc] 23 May 2017

arxiv: v1 [math.oc] 23 May 2017 A DERANDOMIZED ALGORITHM FOR RP-ADMM WITH SYMMETRIC GAUSS-SEIDEL METHOD JINCHAO XU, KAILAI XU, AND YINYU YE arxiv:1705.08389v1 [math.oc] 23 May 2017 Abstract. For multi-block alternating direction method

More information

Optimization for Learning and Big Data

Optimization for Learning and Big Data Optimization for Learning and Big Data Donald Goldfarb Department of IEOR Columbia University Department of Mathematics Distinguished Lecture Series May 17-19, 2016. Lecture 1. First-Order Methods for

More information

Preconditioning via Diagonal Scaling

Preconditioning via Diagonal Scaling Preconditioning via Diagonal Scaling Reza Takapoui Hamid Javadi June 4, 2014 1 Introduction Interior point methods solve small to medium sized problems to high accuracy in a reasonable amount of time.

More information

The Alternating Direction Method of Multipliers

The Alternating Direction Method of Multipliers The Alternating Direction Method of Multipliers With Adaptive Step Size Selection Peter Sutor, Jr. Project Advisor: Professor Tom Goldstein December 2, 2015 1 / 25 Background The Dual Problem Consider

More information

Optimization Problems with Constraints - introduction to theory, numerical Methods and applications

Optimization Problems with Constraints - introduction to theory, numerical Methods and applications Optimization Problems with Constraints - introduction to theory, numerical Methods and applications Dr. Abebe Geletu Ilmenau University of Technology Department of Simulation and Optimal Processes (SOP)

More information

21. Solve the LP given in Exercise 19 using the big-m method discussed in Exercise 20.

21. Solve the LP given in Exercise 19 using the big-m method discussed in Exercise 20. Extra Problems for Chapter 3. Linear Programming Methods 20. (Big-M Method) An alternative to the two-phase method of finding an initial basic feasible solution by minimizing the sum of the artificial

More information

arxiv: v1 [math.oc] 20 Aug 2014

arxiv: v1 [math.oc] 20 Aug 2014 Adaptive Augmented Lagrangian Methods: Algorithms and Practical Numerical Experience Detailed Version Frank E. Curtis, Nicholas I. M. Gould, Hao Jiang, and Daniel P. Robinson arxiv:1408.4500v1 [math.oc]

More information

Hot-Starting NLP Solvers

Hot-Starting NLP Solvers Hot-Starting NLP Solvers Andreas Wächter Department of Industrial Engineering and Management Sciences Northwestern University waechter@iems.northwestern.edu 204 Mixed Integer Programming Workshop Ohio

More information

CONSTRAINED OPTIMALITY CRITERIA

CONSTRAINED OPTIMALITY CRITERIA 5 CONSTRAINED OPTIMALITY CRITERIA In Chapters 2 and 3, we discussed the necessary and sufficient optimality criteria for unconstrained optimization problems. But most engineering problems involve optimization

More information

Penalty and Barrier Methods General classical constrained minimization problem minimize f(x) subject to g(x) 0 h(x) =0 Penalty methods are motivated by the desire to use unconstrained optimization techniques

More information

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Course otes for EE7C (Spring 018): Conve Optimization and Approimation Instructor: Moritz Hardt Email: hardt+ee7c@berkeley.edu Graduate Instructor: Ma Simchowitz Email: msimchow+ee7c@berkeley.edu October

More information

A Customized ADMM for Rank-Constrained Optimization Problems with Approximate Formulations

A Customized ADMM for Rank-Constrained Optimization Problems with Approximate Formulations A Customized ADMM for Rank-Constrained Optimization Problems with Approximate Formulations Chuangchuang Sun and Ran Dai Abstract This paper proposes a customized Alternating Direction Method of Multipliers

More information

4y Springer NONLINEAR INTEGER PROGRAMMING

4y Springer NONLINEAR INTEGER PROGRAMMING NONLINEAR INTEGER PROGRAMMING DUAN LI Department of Systems Engineering and Engineering Management The Chinese University of Hong Kong Shatin, N. T. Hong Kong XIAOLING SUN Department of Mathematics Shanghai

More information

Sequential Quadratic Programming Method for Nonlinear Second-Order Cone Programming Problems. Hirokazu KATO

Sequential Quadratic Programming Method for Nonlinear Second-Order Cone Programming Problems. Hirokazu KATO Sequential Quadratic Programming Method for Nonlinear Second-Order Cone Programming Problems Guidance Professor Masao FUKUSHIMA Hirokazu KATO 2004 Graduate Course in Department of Applied Mathematics and

More information

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 9. Alternating Direction Method of Multipliers

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 9. Alternating Direction Method of Multipliers Shiqian Ma, MAT-258A: Numerical Optimization 1 Chapter 9 Alternating Direction Method of Multipliers Shiqian Ma, MAT-258A: Numerical Optimization 2 Separable convex optimization a special case is min f(x)

More information

arxiv: v1 [math.na] 8 Jun 2018

arxiv: v1 [math.na] 8 Jun 2018 arxiv:1806.03347v1 [math.na] 8 Jun 2018 Interior Point Method with Modified Augmented Lagrangian for Penalty-Barrier Nonlinear Programming Martin Neuenhofen June 12, 2018 Abstract We present a numerical

More information

Continuous Optimisation, Chpt 6: Solution methods for Constrained Optimisation

Continuous Optimisation, Chpt 6: Solution methods for Constrained Optimisation Continuous Optimisation, Chpt 6: Solution methods for Constrained Optimisation Peter J.C. Dickinson DMMP, University of Twente p.j.c.dickinson@utwente.nl http://dickinson.website/teaching/2017co.html version:

More information

A New Penalty-SQP Method

A New Penalty-SQP Method Background and Motivation Illustration of Numerical Results Final Remarks Frank E. Curtis Informs Annual Meeting, October 2008 Background and Motivation Illustration of Numerical Results Final Remarks

More information

Benders Decomposition

Benders Decomposition Benders Decomposition Yuping Huang, Dr. Qipeng Phil Zheng Department of Industrial and Management Systems Engineering West Virginia University IENG 593G Nonlinear Programg, Spring 2012 Yuping Huang (IMSE@WVU)

More information

What s New in Active-Set Methods for Nonlinear Optimization?

What s New in Active-Set Methods for Nonlinear Optimization? What s New in Active-Set Methods for Nonlinear Optimization? Philip E. Gill Advances in Numerical Computation, Manchester University, July 5, 2011 A Workshop in Honor of Sven Hammarling UCSD Center for

More information

Distributed Convex Optimization

Distributed Convex Optimization Master Program 2013-2015 Electrical Engineering Distributed Convex Optimization A Study on the Primal-Dual Method of Multipliers Delft University of Technology He Ming Zhang, Guoqiang Zhang, Richard Heusdens

More information

23. Cutting planes and branch & bound

23. Cutting planes and branch & bound CS/ECE/ISyE 524 Introduction to Optimization Spring 207 8 23. Cutting planes and branch & bound ˆ Algorithms for solving MIPs ˆ Cutting plane methods ˆ Branch and bound methods Laurent Lessard (www.laurentlessard.com)

More information

Interior Point Methods. We ll discuss linear programming first, followed by three nonlinear problems. Algorithms for Linear Programming Problems

Interior Point Methods. We ll discuss linear programming first, followed by three nonlinear problems. Algorithms for Linear Programming Problems AMSC 607 / CMSC 764 Advanced Numerical Optimization Fall 2008 UNIT 3: Constrained Optimization PART 4: Introduction to Interior Point Methods Dianne P. O Leary c 2008 Interior Point Methods We ll discuss

More information

Divide-and-combine Strategies in Statistical Modeling for Massive Data

Divide-and-combine Strategies in Statistical Modeling for Massive Data Divide-and-combine Strategies in Statistical Modeling for Massive Data Liqun Yu Washington University in St. Louis March 30, 2017 Liqun Yu (WUSTL) D&C Statistical Modeling for Massive Data March 30, 2017

More information

Dual Ascent. Ryan Tibshirani Convex Optimization

Dual Ascent. Ryan Tibshirani Convex Optimization Dual Ascent Ryan Tibshirani Conve Optimization 10-725 Last time: coordinate descent Consider the problem min f() where f() = g() + n i=1 h i( i ), with g conve and differentiable and each h i conve. Coordinate

More information

LOCAL LINEAR CONVERGENCE OF ADMM Daniel Boley

LOCAL LINEAR CONVERGENCE OF ADMM Daniel Boley LOCAL LINEAR CONVERGENCE OF ADMM Daniel Boley Model QP/LP: min 1 / 2 x T Qx+c T x s.t. Ax = b, x 0, (1) Lagrangian: L(x,y) = 1 / 2 x T Qx+c T x y T x s.t. Ax = b, (2) where y 0 is the vector of Lagrange

More information

An interior-point stochastic approximation method and an L1-regularized delta rule

An interior-point stochastic approximation method and an L1-regularized delta rule Photograph from National Geographic, Sept 2008 An interior-point stochastic approximation method and an L1-regularized delta rule Peter Carbonetto, Mark Schmidt and Nando de Freitas University of British

More information

Dual Methods. Lecturer: Ryan Tibshirani Convex Optimization /36-725

Dual Methods. Lecturer: Ryan Tibshirani Convex Optimization /36-725 Dual Methods Lecturer: Ryan Tibshirani Conve Optimization 10-725/36-725 1 Last time: proimal Newton method Consider the problem min g() + h() where g, h are conve, g is twice differentiable, and h is simple.

More information

Sequential Convex Programming

Sequential Convex Programming Sequential Convex Programming sequential convex programming alternating convex optimization convex-concave procedure Prof. S. Boyd, EE364b, Stanford University Methods for nonconvex optimization problems

More information

Proximal ADMM with larger step size for two-block separable convex programming and its application to the correlation matrices calibrating problems

Proximal ADMM with larger step size for two-block separable convex programming and its application to the correlation matrices calibrating problems Available online at www.isr-publications.com/jnsa J. Nonlinear Sci. Appl., (7), 538 55 Research Article Journal Homepage: www.tjnsa.com - www.isr-publications.com/jnsa Proximal ADMM with larger step size

More information

An Inexact Newton Method for Optimization

An Inexact Newton Method for Optimization New York University Brown Applied Mathematics Seminar, February 10, 2009 Brief biography New York State College of William and Mary (B.S.) Northwestern University (M.S. & Ph.D.) Courant Institute (Postdoc)

More information

Multidisciplinary System Design Optimization (MSDO)

Multidisciplinary System Design Optimization (MSDO) Multidisciplinary System Design Optimization (MSDO) Numerical Optimization II Lecture 8 Karen Willcox 1 Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox Today s Topics Sequential

More information

Lagrange Relaxation and Duality

Lagrange Relaxation and Duality Lagrange Relaxation and Duality As we have already known, constrained optimization problems are harder to solve than unconstrained problems. By relaxation we can solve a more difficult problem by a simpler

More information

Final exam.

Final exam. EE364b Convex Optimization II June 4 8, 205 Prof. John C. Duchi Final exam By now, you know how it works, so we won t repeat it here. (If not, see the instructions for the EE364a final exam.) Since you

More information

Infeasibility Detection and an Inexact Active-Set Method for Large-Scale Nonlinear Optimization

Infeasibility Detection and an Inexact Active-Set Method for Large-Scale Nonlinear Optimization Infeasibility Detection and an Inexact Active-Set Method for Large-Scale Nonlinear Optimization Frank E. Curtis, Lehigh University involving joint work with James V. Burke, University of Washington Daniel

More information

Alternating Direction Method of Multipliers. Ryan Tibshirani Convex Optimization

Alternating Direction Method of Multipliers. Ryan Tibshirani Convex Optimization Alternating Direction Method of Multipliers Ryan Tibshirani Convex Optimization 10-725 Consider the problem Last time: dual ascent min x f(x) subject to Ax = b where f is strictly convex and closed. Denote

More information

Module 04 Optimization Problems KKT Conditions & Solvers

Module 04 Optimization Problems KKT Conditions & Solvers Module 04 Optimization Problems KKT Conditions & Solvers Ahmad F. Taha EE 5243: Introduction to Cyber-Physical Systems Email: ahmad.taha@utsa.edu Webpage: http://engineering.utsa.edu/ taha/index.html September

More information

Lasso Regression: Regularization for feature selection

Lasso Regression: Regularization for feature selection Lasso Regression: Regularization for feature selection Emily Fox University of Washington January 18, 2017 1 Feature selection task 2 1 Why might you want to perform feature selection? Efficiency: - If

More information

An Inexact Newton Method for Nonlinear Constrained Optimization

An Inexact Newton Method for Nonlinear Constrained Optimization An Inexact Newton Method for Nonlinear Constrained Optimization Frank E. Curtis Numerical Analysis Seminar, January 23, 2009 Outline Motivation and background Algorithm development and theoretical results

More information

Discrete Lagrangian Methods for Designing Multiplierless Two-Channel PR-LP Filter Banks

Discrete Lagrangian Methods for Designing Multiplierless Two-Channel PR-LP Filter Banks Journal of VLSI Signal Processing: Systems for Signal, Image, and Video Technology, xx, 1 2 (1998) c 1998 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands. Discrete Lagrangian Methods

More information

AM 205: lecture 19. Last time: Conditions for optimality, Newton s method for optimization Today: survey of optimization methods

AM 205: lecture 19. Last time: Conditions for optimality, Newton s method for optimization Today: survey of optimization methods AM 205: lecture 19 Last time: Conditions for optimality, Newton s method for optimization Today: survey of optimization methods Quasi-Newton Methods General form of quasi-newton methods: x k+1 = x k α

More information

Simulated annealing with asymptotic convergence for nonlinear constrained optimization

Simulated annealing with asymptotic convergence for nonlinear constrained optimization DOI 10.1007/s10898-006-9107-z ORIGINAL PAPER Simulated annealing with asymptotic convergence for nonlinear constrained optimization Benjamin W. Wah Yixin Chen Tao Wang Received: 20 August 2005 / Accepted:

More information

Contraction Methods for Convex Optimization and monotone variational inequalities No.12

Contraction Methods for Convex Optimization and monotone variational inequalities No.12 XII - 1 Contraction Methods for Convex Optimization and monotone variational inequalities No.12 Linearized alternating direction methods of multipliers for separable convex programming Bingsheng He Department

More information

Uses of duality. Geoff Gordon & Ryan Tibshirani Optimization /

Uses of duality. Geoff Gordon & Ryan Tibshirani Optimization / Uses of duality Geoff Gordon & Ryan Tibshirani Optimization 10-725 / 36-725 1 Remember conjugate functions Given f : R n R, the function is called its conjugate f (y) = max x R n yt x f(x) Conjugates appear

More information

Mixed Integer Non Linear Programming

Mixed Integer Non Linear Programming Mixed Integer Non Linear Programming Claudia D Ambrosio CNRS Research Scientist CNRS & LIX, École Polytechnique MPRO PMA 2016-2017 Outline What is a MINLP? Dealing with nonconvexities Global Optimization

More information

Optimization in Big Data

Optimization in Big Data Optimization in Big Data Ethan Xingyuan Fang University Park PA, June, 2018 1 / 99 Outline 1 Linear Programming 2 Convex Optimization 3 Stochastic First-Order Methods 4 ADMM 2 / 99 What is Linear Programming?

More information

NUMERICAL OPTIMIZATION. J. Ch. Gilbert

NUMERICAL OPTIMIZATION. J. Ch. Gilbert NUMERICAL OPTIMIZATION J. Ch. Gilbert Numerical optimization (past) The discipline deals with the classical smooth (nonconvex) problem min {f(x) : c E (x) = 0, c I (x) 0}. Applications: variable added

More information

Lecture 11 and 12: Penalty methods and augmented Lagrangian methods for nonlinear programming

Lecture 11 and 12: Penalty methods and augmented Lagrangian methods for nonlinear programming Lecture 11 and 12: Penalty methods and augmented Lagrangian methods for nonlinear programming Coralia Cartis, Mathematical Institute, University of Oxford C6.2/B2: Continuous Optimization Lecture 11 and

More information

Mixed-Integer Nonlinear Decomposition Toolbox for Pyomo (MindtPy)

Mixed-Integer Nonlinear Decomposition Toolbox for Pyomo (MindtPy) Mario R. Eden, Marianthi Ierapetritou and Gavin P. Towler (Editors) Proceedings of the 13 th International Symposium on Process Systems Engineering PSE 2018 July 1-5, 2018, San Diego, California, USA 2018

More information

Decomposition Techniques in Mathematical Programming

Decomposition Techniques in Mathematical Programming Antonio J. Conejo Enrique Castillo Roberto Minguez Raquel Garcia-Bertrand Decomposition Techniques in Mathematical Programming Engineering and Science Applications Springer Contents Part I Motivation and

More information

Using Interior-Point Methods within Mixed-Integer Nonlinear Programming

Using Interior-Point Methods within Mixed-Integer Nonlinear Programming Using Interior-Point Methods within Mixed-Integer Nonlinear Programming. Hande Y. Benson Drexel University IMA - MINLP - p. 1/34 Motivation: Discrete Variables Motivation: Discrete Variables Interior-Point

More information

10-725/36-725: Convex Optimization Spring Lecture 21: April 6

10-725/36-725: Convex Optimization Spring Lecture 21: April 6 10-725/36-725: Conve Optimization Spring 2015 Lecturer: Ryan Tibshirani Lecture 21: April 6 Scribes: Chiqun Zhang, Hanqi Cheng, Waleed Ammar Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer:

More information

Solving linear and non-linear SDP by PENNON

Solving linear and non-linear SDP by PENNON Solving linear and non-linear SDP by PENNON Michal Kočvara School of Mathematics, The University of Birmingham University of Warwick, February 2010 Outline Why nonlinear SDP? PENNON the new generation

More information

SOLVING INTEGER LINEAR PROGRAMS. 1. Solving the LP relaxation. 2. How to deal with fractional solutions?

SOLVING INTEGER LINEAR PROGRAMS. 1. Solving the LP relaxation. 2. How to deal with fractional solutions? SOLVING INTEGER LINEAR PROGRAMS 1. Solving the LP relaxation. 2. How to deal with fractional solutions? Integer Linear Program: Example max x 1 2x 2 0.5x 3 0.2x 4 x 5 +0.6x 6 s.t. x 1 +2x 2 1 x 1 + x 2

More information

Nonlinear Optimization for Optimal Control

Nonlinear Optimization for Optimal Control Nonlinear Optimization for Optimal Control Pieter Abbeel UC Berkeley EECS Many slides and figures adapted from Stephen Boyd [optional] Boyd and Vandenberghe, Convex Optimization, Chapters 9 11 [optional]

More information

Decision Science Letters

Decision Science Letters Decision Science Letters 8 (2019) *** *** Contents lists available at GrowingScience Decision Science Letters homepage: www.growingscience.com/dsl A new logarithmic penalty function approach for nonlinear

More information

An ADMM algorithm for optimal sensor and actuator selection

An ADMM algorithm for optimal sensor and actuator selection An ADMM algorithm for optimal sensor and actuator selection Neil K. Dhingra, Mihailo R. Jovanović, and Zhi-Quan Luo 53rd Conference on Decision and Control, Los Angeles, California, 2014 1 / 25 2 / 25

More information

DEPARTMENT OF STATISTICS AND OPERATIONS RESEARCH OPERATIONS RESEARCH DETERMINISTIC QUALIFYING EXAMINATION. Part I: Short Questions

DEPARTMENT OF STATISTICS AND OPERATIONS RESEARCH OPERATIONS RESEARCH DETERMINISTIC QUALIFYING EXAMINATION. Part I: Short Questions DEPARTMENT OF STATISTICS AND OPERATIONS RESEARCH OPERATIONS RESEARCH DETERMINISTIC QUALIFYING EXAMINATION Part I: Short Questions August 12, 2008 9:00 am - 12 pm General Instructions This examination is

More information

Contents. Preface. 1 Introduction Optimization view on mathematical models NLP models, black-box versus explicit expression 3

Contents. Preface. 1 Introduction Optimization view on mathematical models NLP models, black-box versus explicit expression 3 Contents Preface ix 1 Introduction 1 1.1 Optimization view on mathematical models 1 1.2 NLP models, black-box versus explicit expression 3 2 Mathematical modeling, cases 7 2.1 Introduction 7 2.2 Enclosing

More information

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen Numerisches Rechnen (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2011/12 IGPM, RWTH Aachen Numerisches Rechnen

More information

Some Recent Advances in Mixed-Integer Nonlinear Programming

Some Recent Advances in Mixed-Integer Nonlinear Programming Some Recent Advances in Mixed-Integer Nonlinear Programming Andreas Wächter IBM T.J. Watson Research Center Yorktown Heights, New York andreasw@us.ibm.com SIAM Conference on Optimization 2008 Boston, MA

More information

Nonlinear Optimization Solvers

Nonlinear Optimization Solvers ICE05 Argonne, July 19, 2005 Nonlinear Optimization Solvers Sven Leyffer leyffer@mcs.anl.gov Mathematics & Computer Science Division, Argonne National Laboratory Nonlinear Optimization Methods Optimization

More information

arxiv: v1 [math.oc] 30 Mar 2014

arxiv: v1 [math.oc] 30 Mar 2014 True Global Optimality of the Pressure Vessel Design Problem: A Benchmark for Bio-Inspired Optimisation Algorithms arxiv:1403.7793v1 [math.oc] 30 Mar 2014 Xin-She Yang, Christian Huyck, Mehmet Karamanoglu,

More information

Contraction Methods for Convex Optimization and Monotone Variational Inequalities No.16

Contraction Methods for Convex Optimization and Monotone Variational Inequalities No.16 XVI - 1 Contraction Methods for Convex Optimization and Monotone Variational Inequalities No.16 A slightly changed ADMM for convex optimization with three separable operators Bingsheng He Department of

More information

Lower bounding problems for stress constrained. discrete structural topology optimization problems

Lower bounding problems for stress constrained. discrete structural topology optimization problems FP 6 STREP 30717 PLATO N (Aeronautics and Space) PLATO N A PLAtform for Topology Optimisation incorporating Novel, Large-Scale, Free-Material Optimisation and Mixed Integer Programming Methods Lower bounding

More information

Convex Optimization with ALADIN

Convex Optimization with ALADIN Mathematical Programming manuscript No. (will be inserted by the editor) Convex Optimization with ALADIN Boris Houska Dimitris Kouzoupis Yuning Jiang Moritz Diehl the date of receipt and acceptance should

More information

10 Numerical methods for constrained problems

10 Numerical methods for constrained problems 10 Numerical methods for constrained problems min s.t. f(x) h(x) = 0 (l), g(x) 0 (m), x X The algorithms can be roughly divided the following way: ˆ primal methods: find descent direction keeping inside

More information