Exploring Frame Structures with Negative Poisson s Ratio. via Mixed Integer Programming. University of Tokyo

Size: px
Start display at page:

Download "Exploring Frame Structures with Negative Poisson s Ratio. via Mixed Integer Programming. University of Tokyo"

Transcription

1 Exploring Frame Structures with Negative Poisson s Ratio via Mixed Integer Programming Rui Kureta, Yoshihiro Kanno University of Tokyo ( Currently: Tokyo Keiki, Inc.) July 21, 2014 (WCCM XI, ECCM V, ECFD VI)

2 structures with negative Poisson s ratio...expand transversely when stretched longitudinally.

3 mixed-integer programming m-i linear prog.: mixed : min c T x+r T y s.t. a T i x+g T i y b i x {0,1} n, y R l x j : integer (discrete) variable y l : real (continuous) variable replace x {0,1} n with 0 x 1 linear prog. relaxation (i = 1,...,m), can be solved with, e.g., a branch-and-bound method

4 materials with NPR (= auxetic materials) naturally occurred materials cadmium [Li 76] single crystal of arsenic [Gunton & Saunders 72] layered ceramics [Song, Zhou, Xu, Xu, & Bai 08] artificial materials polymer foam [Lakes 87] re-entrant structure [Friis, Lakes, & Park 88] [Evans, Alderson, & Christian 95]

5 materials with NPR (= auxetic materials) naturally occurred materials cadmium [Li 76] single crystal of arsenic [Gunton & Saunders 72] layered ceramics [Song, Zhou, Xu, Xu, & Bai 08] artificial materials polymer foam [Lakes 87] re-entrant structure [Friis, Lakes, & Park 88] [Evans, Alderson, & Christian 95] (possible) applications tunable filters [Alderson et al. 00] fasteners [Choi & Lakes 91] artificial intervertebra discs [Martz, Lakes, Goel, & Park 05]

6 optimization to achieve NPR existing methods: truss model [Sigmund 94] continuum & homogenization method [Larsen, Sigmund, & Bouwstra 97] [Schwerdtfeger et al. 11] continuum & genetic alg. [Matsuoka, Yamamoto, & Takahara 01]

7 optimization to achieve NPR existing methods: truss model [Sigmund 94] continuum & homogenization method [Larsen, Sigmund, & Bouwstra 97] [Schwerdtfeger et al. 11] continuum & genetic alg. [Matsuoka, Yamamoto, & Takahara 01] Local stress constraints were not considered. Post-processing before manufacturing: gray areas & hinges.

8 optimization to achieve NPR existing methods: truss model [Sigmund 94] continuum & homogenization method [Larsen, Sigmund, & Bouwstra 97] [Schwerdtfeger et al. 11] continuum & genetic alg. [Matsuoka, Yamamoto, & Takahara 01] our method: periodic frame structure stress constraints & pre-determined beam sections no hinges, no thin members

9 optimization to achieve NPR existing methods: truss model [Sigmund 94] continuum & homogenization method [Larsen, Sigmund, & Bouwstra 97] [Schwerdtfeger et al. 11] continuum & genetic alg. [Matsuoka, Yamamoto, & Takahara 01] our method: periodic frame structure stress constraints & pre-determined beam sections manufacturability (no post-processing) global optim. no hinges, no thin members an idea MILP for truss [Rasmussen & Stolpe 08] [K. & Guo 10]

10 problem setting assume periodicity & symmetry unit cell: planar frame structure design variables: sections of members 2L 2L 2L 2L unit cell 2L 2L 2L 2L periodicity

11 problem setting assume periodicity & symmetry unit cell: planar frame structure design variables: sections of members x i : integer variable x i = 1 Member i has pre-determined section. x i = 0 Member i is removed. sym. L/2 2L member i L/2 2L unit cell L/2 L/2 design domain

12 problem setting assume periodicity & symmetry unit cell: planar frame structure design variables: sections of members more general setting: catalog = {ā 1,ā 2,...,ā P } x ip = 1 Member i has pre-determined section ā p. x i1 = = x ip = 0 Member i is removed. x ip 1 p (section) = p x ip ā p

13 optimization problem max u out s.t. equilibrium eq. specifying u in stress constraints avoiding member intersection u in u out u out u in can be reduced to m-i linear prog.

14 fictitious boundary cond. u in max. u out s. t. u in is specified. null structure is optimal u out = + L/2 L/2 u out L/2 L/2

15 fictitious boundary cond. u in max. u out s. t. u in is specified. null structure is optimal u out = + L/2 L/2 u out L/2 L/2 f out fictitious cond.: fix node in apply f out at node out require internal forces satisfying force-balance eq.

16 reduction to MIP (1) equilibrium eq.: Ku = f stiffness matrix: K = m 3 k ij b ij b T ij (b ij : const. vec.) i=1 j=1 member stiffnesses: k ij = k ij x i ( k ij : const.) integer variable: x i = { 1 if member i exists 0 if member i is removed

17 reduction to MIP (1) equilibrium eq.: Ku = f stiffness matrix: K = m 3 k ij b ij b T ij (b ij : const. vec.) i=1 j=1 member stiffnesses: k ij = k ij x i ( k ij : const.) integer variable: x i = { 1 if member i exists 0 if member i is removed Reformulate all constraints as linear constraints.

18 reduction to MIP (2) equil. eq. Ku = f m 3 k ij v ij b ij = f i=1 v ij = j=1 { b T iju if x i = 1 ( ) 0 if x i = 0 ( ) (force-balance) (compatibility) stress constraints: q i (u) q y i + m(e) i (u) m y i 1 ( )

19 reduction to MIP (2) equil. eq. Ku = f m 3 k ij v ij b ij = f i=1 v ij = j=1 { b T iju if x i = 1 ( ) 0 if x i = 0 ( ) (force-balance) (compatibility) stress constraints: q i (u) q y i + m(e) i (u) m y i 1 ( ) ( ) & ( ) k i1 q y i v i1 + l i 2 k i2 m y i v i2 + k i3 m y i v i3 x i ( ) v ij b T iju M(1 x i ) (M 0 : const.)

20 goal: MIP formulation max u out 3 s.t. k ij v ij b ij = f, i E j=1 v ij b T iju M(1 x i ), j, i, k i1 q y i v i1 + l i 2 x ip {0,1}, k i2 m y i v i2 + k i3 m y i v i3 x ip, i, i. avoiding member intersection: x i +x i 1 i i only linear constraints (and integer constraints).

21 ex.) global optimization 66 candidate members Timoshenko beam element solver: CPLEX ver mm 12 mm beam cross-section (width) (thickness) = mm (width) (thickness) = mm

22 ex.) global optimization 66 candidate members Timoshenko beam element solver: CPLEX ver mm 12 mm beam cross-section (width) (thickness) = mm ν = (width) (thickness) = mm ν =

23 ex.) global optimization 12 mm optimal base cell 12 mm beam cross-section (width) (thickness) = mm ν = (width) (thickness) = mm ν =

24 fabricated optimal structure fabricated by photo-etching stainless steel thickness of beams: 0.5 mm, width: 0.75 mm

25 fabricated optimal structure fabricated by photo-etching stainless steel thickness of beams: 0.5 mm, width: 0.75 mm undeformed state deformed state

26 local search: a heuristics MIP approach global optim. limitation of prob. size towards large probs. local search with MIP [Stolpe & Stidsen 07] [Svanberg & Werme 07] solve MIP within neighborhood N(x,r) { m } N(x,r) = x x i x i r r : radius x : incumbent solution i=1

27 ex.) local search 12 mm 12 mm candidate members initial solution ν = local search 748 members r = 4 (radius of neighborhood) no guarantee of global optimality

28 ex.) local search 12 mm 12 mm candidate members convergence history: initial solution ν = final design ν = st step 2nd step 3rd step

29 conclusions design of counterintuitive structures Optimization might be a helpful tool. structures with negative Poisson s ratio topology optimization of frame structures max. the output displacement mixed-integer programming selection of member cross-sections integer variables from a catalog of available sections (incl. void) stress constraints no hinges, no thin members, no post-processing

Truss Topology Optimization under Constraints. on Number of Different Design Variables

Truss Topology Optimization under Constraints. on Number of Different Design Variables Truss Topology Optimization under Constraints on Number of Different Design Variables Yoshihiro Kanno (Tokyo Institute of Technology) (University of Tokyo) June 11, 2015 constraint on # of different design

More information

Topology Optimization of Tensegrity Structures Based on Nonsmooth Mechanics. Yoshihiro Kanno. November 14, 2011 ACOMEN 2011

Topology Optimization of Tensegrity Structures Based on Nonsmooth Mechanics. Yoshihiro Kanno. November 14, 2011 ACOMEN 2011 Topology Optimization of Tensegrity Structures Based on Nonsmooth Mechanics Yoshihiro Kanno November 14, 2011 ACOMEN 2011 tensegrity definition tension + integrity [Fuller 75] [Emmerich], [Snelson] pin-jointed

More information

A Simple Heuristic Based on Alternating Direction Method of Multipliers for Solving Mixed-Integer Nonlinear Optimization

A Simple Heuristic Based on Alternating Direction Method of Multipliers for Solving Mixed-Integer Nonlinear Optimization A Simple Heuristic Based on Alternating Direction Method of Multipliers for Solving Mixed-Integer Nonlinear Optimization Yoshihiro Kanno Satoshi Kitayama The University of Tokyo Kanazawa University May

More information

Cellular solid structures with unbounded thermal expansion. Roderic Lakes. Journal of Materials Science Letters, 15, (1996).

Cellular solid structures with unbounded thermal expansion. Roderic Lakes. Journal of Materials Science Letters, 15, (1996). 1 Cellular solid structures with unbounded thermal expansion Roderic Lakes Journal of Materials Science Letters, 15, 475-477 (1996). Abstract Material microstructures are presented which can exhibit coefficients

More information

Uniqueness and Symmetry of Optimal Thickness Distribution of Axisymmetric Shells

Uniqueness and Symmetry of Optimal Thickness Distribution of Axisymmetric Shells 6 th China Japan Korea Joint Symposium on Optimization of Structural and Mechanical Systems June -5, 010, Kyoto, Japan Uniqueness and Symmetry of Optimal Thickness Distribution of Axisymmetric Shells Ryo

More information

Structural Analysis of Truss Structures using Stiffness Matrix. Dr. Nasrellah Hassan Ahmed

Structural Analysis of Truss Structures using Stiffness Matrix. Dr. Nasrellah Hassan Ahmed Structural Analysis of Truss Structures using Stiffness Matrix Dr. Nasrellah Hassan Ahmed FUNDAMENTAL RELATIONSHIPS FOR STRUCTURAL ANALYSIS In general, there are three types of relationships: Equilibrium

More information

Lecture 15 Strain and stress in beams

Lecture 15 Strain and stress in beams Spring, 2019 ME 323 Mechanics of Materials Lecture 15 Strain and stress in beams Reading assignment: 6.1 6.2 News: Instructor: Prof. Marcial Gonzalez Last modified: 1/6/19 9:42:38 PM Beam theory (@ ME

More information

THE TOPOLOGICAL DESIGN OF MATERIALS WITH SPECIFIED THERMAL EXPANSION USING A LEVEL SET-BASED PARAMETERIZATION METHOD

THE TOPOLOGICAL DESIGN OF MATERIALS WITH SPECIFIED THERMAL EXPANSION USING A LEVEL SET-BASED PARAMETERIZATION METHOD 11th. World Congress on Computational Mechanics (WCCM XI) 5th. European Conference on Computational Mechanics (ECCM V) 6th. European Conference on Computational Fluid Dynamics (ECFD VI) July 20-25, 2014,

More information

Chapter 2: Elasticity

Chapter 2: Elasticity OHP 1 Mechanical Properties of Materials Chapter 2: lasticity Prof. Wenjea J. Tseng ( 曾文甲 ) Department of Materials ngineering National Chung Hsing University wenjea@dragon.nchu.edu.tw Reference: W.F.

More information

FLEXIBILITY METHOD FOR INDETERMINATE FRAMES

FLEXIBILITY METHOD FOR INDETERMINATE FRAMES UNIT - I FLEXIBILITY METHOD FOR INDETERMINATE FRAMES 1. What is meant by indeterminate structures? Structures that do not satisfy the conditions of equilibrium are called indeterminate structure. These

More information

Improved Two-Phase Projection Topology Optimization

Improved Two-Phase Projection Topology Optimization 10 th World Congress on Structural and Multidisciplinary Optimization May 19-24, 2013, Orlando, Florida, USA Improved Two-Phase Projection Topology Optimization Josephine V. Carstensen and James K. Guest

More information

Tunnel Reinforcement Optimization for Nonlinear Material

Tunnel Reinforcement Optimization for Nonlinear Material November 25-27, 2012, Gold Coast, Australia www.iccm-2012.org Tunnel Reinforcement Optimization for Nonlinear Material T. Nguyen* 1,2, K. Ghabraie 1,2, T. Tran-Cong 1,2 1 Computational Engineering and

More information

Three-dimensional stiff cellular structures with negative Poisson's ratio

Three-dimensional stiff cellular structures with negative Poisson's ratio ! Three-dimensional stiff cellular structures with negative Poisson's ratio Dong Li a, Jie Ma a, Liang Dong b and Roderic S. Lakes c a College of Sciences, Northeastern University, Shenyang 110819, PR

More information

The aims of this experiment were to obtain values for Young s modulus and Poisson s ratio for

The aims of this experiment were to obtain values for Young s modulus and Poisson s ratio for The Cornu Method Nikki Truss 09369481 Abstract: The aims of this experiment were to obtain values for Young s modulus and Poisson s ratio for Perspex using the Cornu Method. A value of was found for Young

More information

FP 6 STREP PLATO N (Aeronautics and Space) PLATO N

FP 6 STREP PLATO N (Aeronautics and Space) PLATO N FP 6 STREP 30717 PLATO N (Aeronautics and Space) PLATO N A PLAtform for Topology Optimisation incorporating Novel, Large-Scale, Free-Material Optimisation and Mixed Integer Programming Methods D29 Efficient

More information

3D Elasticity Theory

3D Elasticity Theory 3D lasticity Theory Many structural analysis problems are analysed using the theory of elasticity in which Hooke s law is used to enforce proportionality between stress and strain at any deformation level.

More information

If the number of unknown reaction components are equal to the number of equations, the structure is known as statically determinate.

If the number of unknown reaction components are equal to the number of equations, the structure is known as statically determinate. 1 of 6 EQUILIBRIUM OF A RIGID BODY AND ANALYSIS OF ETRUCTURAS II 9.1 reactions in supports and joints of a two-dimensional structure and statically indeterminate reactions: Statically indeterminate structures

More information

International Journal of Scientific & Engineering Research Volume 8, Issue 12, December-2017 ISSN

International Journal of Scientific & Engineering Research Volume 8, Issue 12, December-2017 ISSN 362 Study of the Effects of Random Inclusions in Composite Construction with Isotropic Negative Poisson s Ratio [Kundan Singh Deshwal1, a and Dr. Satyendra Singh2, b] 1 Assistant Professor, Department

More information

Institute of Structural Engineering Page 1. Method of Finite Elements I. Chapter 2. The Direct Stiffness Method. Method of Finite Elements I

Institute of Structural Engineering Page 1. Method of Finite Elements I. Chapter 2. The Direct Stiffness Method. Method of Finite Elements I Institute of Structural Engineering Page 1 Chapter 2 The Direct Stiffness Method Institute of Structural Engineering Page 2 Direct Stiffness Method (DSM) Computational method for structural analysis Matrix

More information

Chapter 5 Structural Elements: The truss & beam elements

Chapter 5 Structural Elements: The truss & beam elements Institute of Structural Engineering Page 1 Chapter 5 Structural Elements: The truss & beam elements Institute of Structural Engineering Page 2 Chapter Goals Learn how to formulate the Finite Element Equations

More information

MODELING AND FEM ANALYSIS OF DYNAMIC PROPERTIES OF THERMALLY OPTIMAL COMPOSITE MATERIALS

MODELING AND FEM ANALYSIS OF DYNAMIC PROPERTIES OF THERMALLY OPTIMAL COMPOSITE MATERIALS 11th World Congress on Computational Mechanics (WCCM XI) 5th European Conference on Computational Mechanics (ECCM V) 6th European Conference on Computational Fluid Dynamics (ECFD VI) E. Oñate, J. Oliver

More information

FINITE ELEMENT ANALYSIS OF EFFECTIVE MECHANICAL PROPERTIES, VIBRATION AND ACOUSTIC PERFORMANCE OF AUXETIC CHIRAL CORE SANDWICH STRUCTURES

FINITE ELEMENT ANALYSIS OF EFFECTIVE MECHANICAL PROPERTIES, VIBRATION AND ACOUSTIC PERFORMANCE OF AUXETIC CHIRAL CORE SANDWICH STRUCTURES Clemson University TigerPrints All Theses Theses 8-2013 FINITE ELEMENT ANALYSIS OF EFFECTIVE MECHANICAL PROPERTIES, VIBRATION AND ACOUSTIC PERFORMANCE OF AUXETIC CHIRAL CORE SANDWICH STRUCTURES Hrishikesh

More information

Properties of a chiral honeycomb with a Poisson's ratio -1

Properties of a chiral honeycomb with a Poisson's ratio -1 Properties of a chiral honeycomb with a Poisson's ratio -1 D. Prall, R. S. Lakes Int. J. of Mechanical Sciences, 39, 305-314, (1996). Abstract A theoretical and experimental investigation is conducted

More information

Poisson s ratio of rectangular anti-chiral lattices with disorder

Poisson s ratio of rectangular anti-chiral lattices with disorder Poisson s ratio of rectangular anti-chiral lattices with disorder Artur A. Poźniak 1 Krzysztof W. Wojciechowski 2 1 Institute of Physics, Poznań Universty of Technology, ul. Nieszawska 13A, 60-695 Poznań,

More information

Design of a fastener based on negative Poisson's ratio foam adapted from

Design of a fastener based on negative Poisson's ratio foam adapted from 1 Design of a fastener based on negative Poisson's ratio foam adapted from Choi, J. B. and Lakes, R. S., "Design of a fastener based on negative Poisson's ratio foam", Cellular Polymers, 10, 205-212 (1991).

More information

Computational Modelling of Vibrations Transmission Loss of Auxetic Lattice Structure

Computational Modelling of Vibrations Transmission Loss of Auxetic Lattice Structure Vibrations in Physical Systems Vol. 27 (2016) Abstract Computational Modelling of Vibrations Transmission Loss of Auxetic Lattice Structure Eligiusz IDCZAK Institute of Applied Mechanics, Poznan University

More information

ADVANCES IN NEGATIVE POISSON'S RATIO MATERIALS. Roderic Lakes adapted from Advanced Materials, 5, , (1993). Diagrams at bottom.

ADVANCES IN NEGATIVE POISSON'S RATIO MATERIALS. Roderic Lakes adapted from Advanced Materials, 5, , (1993). Diagrams at bottom. 1 ADVANCES IN NEGATIVE POISSON'S RATIO MATERIALS Roderic Lakes adapted from Advanced Materials, 5, 293-296, (1993). Diagrams at bottom. 1. Introduction Poisson's ratio of a solid is defined as the lateral

More information

An Integrated Approach to Truss Structure Design

An Integrated Approach to Truss Structure Design Slide 1 An Integrated Approach to Truss Structure Design J. N. Hooker Tallys Yunes CPAIOR Workshop on Hybrid Methods for Nonlinear Combinatorial Problems Bologna, June 2010 How to Solve Nonlinear Combinatorial

More information

Topology Optimization of Multi-Material Negative Poisson s Ratio Metamaterials Using a Reconciled Level Set Method

Topology Optimization of Multi-Material Negative Poisson s Ratio Metamaterials Using a Reconciled Level Set Method Topology Optimization of Multi-Material Negative Poisson s Ratio Metamaterials Using a Reconciled Level Set Method Panagiotis Vogiatzis, Shikui Chen*, Xiao Wang, Tiantian Li and Lifeng Wang Department

More information

GLOBAL AND LOCAL LINEAR BUCKLING BEHAVIOR OF A CHIRAL CELLULAR STRUCTURE

GLOBAL AND LOCAL LINEAR BUCKLING BEHAVIOR OF A CHIRAL CELLULAR STRUCTURE GLOBAL AND LOCAL LINEAR BUCKLING BEHAVIOR OF A CHIRAL CELLULAR STRUCTURE Alessandro Spadoni, Massimo Ruzzene School of Aerospace Engineering Georgia Institute of Technology Atlanta, GA 30332 Fabrizio Scarpa

More information

Mechanics of Irregular Honeycomb Structures

Mechanics of Irregular Honeycomb Structures Mechanics of Irregular Honeycomb Structures S. Adhikari 1, T. Mukhopadhyay 1 Chair of Aerospace Engineering, College of Engineering, Swansea University, Singleton Park, Swansea SA2 8PP, UK Sixth International

More information

A new approach for stress-based topology optimization: Internal stress penalization

A new approach for stress-based topology optimization: Internal stress penalization 10 th World Congress on Structural and Multidisciplinary Optimization May 19-24, 2013, Orlando, Florida, USA A new approach for stress-based topology optimization: Internal stress penalization Alexander

More information

When materials are stretched in a particular direction, they

When materials are stretched in a particular direction, they pubs.acs.org/nanolett Intrinsic Negative Poisson s Ratio for Single-Layer Graphene Jin-Wu Jiang,*, Tienchong Chang, Xingming Guo, and Harold S. Park Shanghai Institute of Applied Mathematics and Mechanics,

More information

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown.

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown. D : SOLID MECHANICS Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown. Q.2 Consider the forces of magnitude F acting on the sides of the regular hexagon having

More information

Fundamentals of Linear Elasticity

Fundamentals of Linear Elasticity Fundamentals of Linear Elasticity Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI bluebox.ippt.pan.pl/ tzielins/ Institute of Fundamental Technological Research of the Polish Academy

More information

Optimization of Link Member of Eccentrically Braced Frames for Maximum Energy Dissipation

Optimization of Link Member of Eccentrically Braced Frames for Maximum Energy Dissipation Optimization of Link Member of Eccentrically Braced Frames for Maximum Energy Dissipation M. Ohsaki a,, T. Nakajima b,1 a Dept. of Architecture, Hiroshima University, Higashi-Hiroshima, Japan b Dept. of

More information

MECh300H Introduction to Finite Element Methods. Finite Element Analysis (F.E.A.) of 1-D Problems

MECh300H Introduction to Finite Element Methods. Finite Element Analysis (F.E.A.) of 1-D Problems MECh300H Introduction to Finite Element Methods Finite Element Analysis (F.E.A.) of -D Problems Historical Background Hrenikoff, 94 frame work method Courant, 943 piecewise polynomial interpolation Turner,

More information

Basic Energy Principles in Stiffness Analysis

Basic Energy Principles in Stiffness Analysis Basic Energy Principles in Stiffness Analysis Stress-Strain Relations The application of any theory requires knowledge of the physical properties of the material(s) comprising the structure. We are limiting

More information

Lecture 4: PRELIMINARY CONCEPTS OF STRUCTURAL ANALYSIS. Introduction

Lecture 4: PRELIMINARY CONCEPTS OF STRUCTURAL ANALYSIS. Introduction Introduction In this class we will focus on the structural analysis of framed structures. We will learn about the flexibility method first, and then learn how to use the primary analytical tools associated

More information

Design of in-plane piezoelectric sensors for static response by simultaneously optimizing the host structure and the electrode profile

Design of in-plane piezoelectric sensors for static response by simultaneously optimizing the host structure and the electrode profile 10 th World Congress on Structural and Multidisciplinary Optimization May 19-24, 2013, Orlando, Florida, USA Design of in-plane piezoelectric sensors for static response by simultaneously optimizing the

More information

Institute of Structural Engineering Page 1. Method of Finite Elements I. Chapter 2. The Direct Stiffness Method. Method of Finite Elements I

Institute of Structural Engineering Page 1. Method of Finite Elements I. Chapter 2. The Direct Stiffness Method. Method of Finite Elements I Institute of Structural Engineering Page 1 Chapter 2 The Direct Stiffness Method Institute of Structural Engineering Page 2 Direct Stiffness Method (DSM) Computational method for structural analysis Matrix

More information

Exercise: concepts from chapter 5

Exercise: concepts from chapter 5 Reading: Fundamentals of Structural Geology, Ch 5 1) Study the oöids depicted in Figure 1a and 1b. Figure 1a Figure 1b Figure 1. Nearly undeformed (1a) and significantly deformed (1b) oöids with spherulitic

More information

1.105 Solid Mechanics Laboratory Fall 2003

1.105 Solid Mechanics Laboratory Fall 2003 1.105 Solid Mechanics Laboratory Fall 200 Experiment 7 Elastic Buckling. The objectives of this experiment are To study the failure of a truss structure due to local buckling of a compression member. To

More information

Lecture #2: Split Hopkinson Bar Systems

Lecture #2: Split Hopkinson Bar Systems Lecture #2: Split Hopkinson Bar Systems by Dirk Mohr ETH Zurich, Department of Mechanical and Process Engineering, Chair of Computational Modeling of Materials in Manufacturing 2015 1 1 1 Uniaxial Compression

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS STATICS AND MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr, John T. DeWolf David E Mazurek \Cawect Mc / iur/» Craw SugomcT Hilt Introduction 1 1.1 What is Mechanics? 2 1.2 Fundamental

More information

Spri ringer. INTERFACIAL TRANSPORT PHENOMENA 2 nd Edition. John C. Slattery Department ofaerospace Engineering Texas A&M University

Spri ringer. INTERFACIAL TRANSPORT PHENOMENA 2 nd Edition. John C. Slattery Department ofaerospace Engineering Texas A&M University INTERFACIAL TRANSPORT PHENOMENA 2 nd Edition John C. Slattery Department ofaerospace Engineering Texas A&M University Leonard Sagis Department of Agrotechnology & Food Science Wageningen University Eun-Suok

More information

CHAPTER THREE SYMMETRIC BENDING OF CIRCLE PLATES

CHAPTER THREE SYMMETRIC BENDING OF CIRCLE PLATES CHAPTER THREE SYMMETRIC BENDING OF CIRCLE PLATES * Governing equations in beam and plate bending ** Solution by superposition 1.1 From Beam Bending to Plate Bending 1.2 Governing Equations For Symmetric

More information

Multi-Point Constraints

Multi-Point Constraints Multi-Point Constraints Multi-Point Constraints Multi-Point Constraints Single point constraint examples Multi-Point constraint examples linear, homogeneous linear, non-homogeneous linear, homogeneous

More information

Linear Cosserat elasticity, conformal curvature and bounded stiffness

Linear Cosserat elasticity, conformal curvature and bounded stiffness 1 Linear Cosserat elasticity, conformal curvature and bounded stiffness Patrizio Neff, Jena Jeong Chair of Nonlinear Analysis & Modelling, Uni Dui.-Essen Ecole Speciale des Travaux Publics, Cachan, Paris

More information

Finite Element Method

Finite Element Method Finite Element Method Finite Element Method (ENGC 6321) Syllabus Objectives Understand the basic theory of the FEM Know the behaviour and usage of each type of elements covered in this course one dimensional

More information

Chapter 5 CENTRIC TENSION OR COMPRESSION ( AXIAL LOADING )

Chapter 5 CENTRIC TENSION OR COMPRESSION ( AXIAL LOADING ) Chapter 5 CENTRIC TENSION OR COMPRESSION ( AXIAL LOADING ) 5.1 DEFINITION A construction member is subjected to centric (axial) tension or compression if in any cross section the single distinct stress

More information

Lecture 7: The Beam Element Equations.

Lecture 7: The Beam Element Equations. 4.1 Beam Stiffness. A Beam: A long slender structural component generally subjected to transverse loading that produces significant bending effects as opposed to twisting or axial effects. MECH 40: Finite

More information

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost Game and Media Technology Master Program - Utrecht University Dr. Nicolas Pronost Soft body physics Soft bodies In reality, objects are not purely rigid for some it is a good approximation but if you hit

More information

CHAPTER 14 BUCKLING ANALYSIS OF 1D AND 2D STRUCTURES

CHAPTER 14 BUCKLING ANALYSIS OF 1D AND 2D STRUCTURES CHAPTER 14 BUCKLING ANALYSIS OF 1D AND 2D STRUCTURES 14.1 GENERAL REMARKS In structures where dominant loading is usually static, the most common cause of the collapse is a buckling failure. Buckling may

More information

Forced Response of Plate with Viscoelastic Auxetic Dampers

Forced Response of Plate with Viscoelastic Auxetic Dampers Vibrations in Physical Systems 2018, 29, 2018003 (1 of 9) Abstract Forced Response of Plate with Viscoelastic Auxetic Dampers Tomasz STREK Poznan University of Technology, Institute of Applied Mechanics

More information

Planar auxeticity from various inclusions

Planar auxeticity from various inclusions Planar auxeticity from various inclusions Artur A. Poźniak 1 Krzysztof W. Wojciechowski 2 Joseph N. Grima 3 Luke Mizzi 4 1 Institute of Physics, Poznań Universty of Technology, Piotrowo 3, 6-695 Poznań

More information

Fig. 1. Circular fiber and interphase between the fiber and the matrix.

Fig. 1. Circular fiber and interphase between the fiber and the matrix. Finite element unit cell model based on ABAQUS for fiber reinforced composites Tian Tang Composites Manufacturing & Simulation Center, Purdue University West Lafayette, IN 47906 1. Problem Statement In

More information

PDLAMMPS - made easy

PDLAMMPS - made easy PDLAMMPS - made easy R. Rahman 1, J. T. Foster 1, and S. J. Plimpton 2 1 The University of Texas at San Antonio 2 Sandia National Laboratory February 12, 2014 1 Peridynamic theory of solids The peridynamic

More information

Strain Gage Calibration Factors for Constant Room Temperature Conditions. Gage Resistance, Gage Factor and Transverse Sensitivity Coefficient)

Strain Gage Calibration Factors for Constant Room Temperature Conditions. Gage Resistance, Gage Factor and Transverse Sensitivity Coefficient) Strain Gage Calibration Factors for Constant Room Temperature Conditions (Or equivalently, measurement of the room temperature (Or equivalently, measurement of the room temperature Gage Resistance, Gage

More information

BENCHMARK LINEAR FINITE ELEMENT ANALYSIS OF LATERALLY LOADED SINGLE PILE USING OPENSEES & COMPARISON WITH ANALYTICAL SOLUTION

BENCHMARK LINEAR FINITE ELEMENT ANALYSIS OF LATERALLY LOADED SINGLE PILE USING OPENSEES & COMPARISON WITH ANALYTICAL SOLUTION BENCHMARK LINEAR FINITE ELEMENT ANALYSIS OF LATERALLY LOADED SINGLE PILE USING OPENSEES & COMPARISON WITH ANALYTICAL SOLUTION Ahmed Elgamal and Jinchi Lu October 07 Introduction In this study: I) The response

More information

THE MANUFACTURE AND MECHANICAL PROPERTIES OF A NOVEL NEGATIVE POISSON S RATIO 3-COMPONENT COMPOSITE

THE MANUFACTURE AND MECHANICAL PROPERTIES OF A NOVEL NEGATIVE POISSON S RATIO 3-COMPONENT COMPOSITE 20 th International Conference on Composite Materials THE MANUFACTURE AND MECHANICAL PROPERTIES OF A NOVEL NEGATIVE POISSON S RATIO 3-COMPONENT COMPOSITE G.H. Zhang 1, O. Ghita 2, K.E. Evans 3 1 College

More information

Direct calculation of critical points in parameter sensitive systems

Direct calculation of critical points in parameter sensitive systems Direct calculation of critical points in parameter sensitive systems Behrang Moghaddasie a, Ilinca Stanciulescu b, a Department of Civil Engineering, Ferdowsi University of Mashhad, P.O. Box 91775-1111,

More information

MATH 126 TEST 1 SAMPLE

MATH 126 TEST 1 SAMPLE NAME: / 60 = % MATH 16 TEST 1 SAMPLE NOTE: The actual exam will only have 13 questions. The different parts of each question (part A, B, etc.) are variations. Know how to do all the variations on this

More information

Review of Strain Energy Methods and Introduction to Stiffness Matrix Methods of Structural Analysis

Review of Strain Energy Methods and Introduction to Stiffness Matrix Methods of Structural Analysis uke University epartment of Civil and Environmental Engineering CEE 42L. Matrix Structural Analysis Henri P. Gavin Fall, 22 Review of Strain Energy Methods and Introduction to Stiffness Matrix Methods

More information

UNIT IV FLEXIBILTY AND STIFFNESS METHOD

UNIT IV FLEXIBILTY AND STIFFNESS METHOD SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : SA-II (13A01505) Year & Sem: III-B.Tech & I-Sem Course & Branch: B.Tech

More information

Analysis of a portal steel frame subject to fire by use of a truss model

Analysis of a portal steel frame subject to fire by use of a truss model Analysis of a portal steel frame subject to fire by use of a truss model P. G. Papadopoulos & A. Mathiopoulou Department of Civil Engineering, Aristotle University of Thessaloniki, Greece Abstract A plane

More information

Iraq Ref. & Air. Cond. Dept/ Technical College / Kirkuk

Iraq Ref. & Air. Cond. Dept/ Technical College / Kirkuk International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-015 1678 Study the Increasing of the Cantilever Plate Stiffness by Using s Jawdat Ali Yakoob Iesam Jondi Hasan Ass.

More information

Truss topology design with integer variables made easy

Truss topology design with integer variables made easy Mathematical Programming manuscript No. (will be inserted by the editor) Michal Kočvara Truss topology design with integer variables made easy Dedicated to Herbert Hörnlein on the occasion of his 65th

More information

Methods of Analysis. Force or Flexibility Method

Methods of Analysis. Force or Flexibility Method INTRODUCTION: The structural analysis is a mathematical process by which the response of a structure to specified loads is determined. This response is measured by determining the internal forces or stresses

More information

7. Hierarchical modeling examples

7. Hierarchical modeling examples 7. Hierarchical modeling examples The objective of this chapter is to apply the hierarchical modeling approach discussed in Chapter 1 to three selected problems using the mathematical models studied in

More information

A short review of continuum mechanics

A short review of continuum mechanics A short review of continuum mechanics Professor Anette M. Karlsson, Department of Mechanical ngineering, UD September, 006 This is a short and arbitrary review of continuum mechanics. Most of this material

More information

Post Graduate Diploma in Mechanical Engineering Computational mechanics using finite element method

Post Graduate Diploma in Mechanical Engineering Computational mechanics using finite element method 9210-220 Post Graduate Diploma in Mechanical Engineering Computational mechanics using finite element method You should have the following for this examination one answer book scientific calculator No

More information

Mechanics of Inflatable Fabric Beams

Mechanics of Inflatable Fabric Beams Copyright c 2008 ICCES ICCES, vol.5, no.2, pp.93-98 Mechanics of Inflatable Fabric Beams C. Wielgosz 1,J.C.Thomas 1,A.LeVan 1 Summary In this paper we present a summary of the behaviour of inflatable fabric

More information

Acoustics Division, Naval Research Laboratory, Washington DC

Acoustics Division, Naval Research Laboratory, Washington DC DEVIATION FROM CLASSICAL ELASTICITY IN THE ACOUSTIC RESPONSE OF AUXETIC FOAMS M.D. Guild 1, C.N. Walker, D.C. Calvo 1, P.H. Mott, and C.M. Roland 1 Acoustics Division, Naval Research Laboratory, Washington

More information

Open Access Prediction on Deflection of V-core Sandwich Panels in Weak Direction

Open Access Prediction on Deflection of V-core Sandwich Panels in Weak Direction Send Orders for Reprints to reprints@benthamscience.net The Open Ocean Engineering Journal, 2013, 6, Suppl-1, M5) 73-81 73 Open Access Prediction on Deflection of V-core Sandwich Panels in Weak Direction

More information

Large Scale Topology Optimization Using Preconditioned Krylov Subspace Recycling and Continuous Approximation of Material Distribution

Large Scale Topology Optimization Using Preconditioned Krylov Subspace Recycling and Continuous Approximation of Material Distribution Large Scale Topology Optimization Using Preconditioned Krylov Subspace Recycling and Continuous Approximation of Material Distribution Eric de Sturler", Chau Le'', Shun Wang", Glaucio Paulino'' " Department

More information

Soil-Structure Interaction in Nonlinear Pushover Analysis of Frame RC Structures: Nonhomogeneous Soil Condition

Soil-Structure Interaction in Nonlinear Pushover Analysis of Frame RC Structures: Nonhomogeneous Soil Condition ABSTRACT: Soil-Structure Interaction in Nonlinear Pushover Analysis of Frame RC Structures: Nonhomogeneous Soil Condition G. Dok ve O. Kırtel Res. Assist., Department of Civil Engineering, Sakarya University,

More information

Global optimization of minimum weight truss topology problems with stress, displacement, and local buckling constraints using branch-and-bound

Global optimization of minimum weight truss topology problems with stress, displacement, and local buckling constraints using branch-and-bound INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING Int. J. Numer. Meth. Engng 2004; 61:1270 1309 (DOI: 10.1002/nme.1112) Global optimization of minimum weight truss topology problems with stress,

More information

Finite Element Method in Geotechnical Engineering

Finite Element Method in Geotechnical Engineering Finite Element Method in Geotechnical Engineering Short Course on + Dynamics Boulder, Colorado January 5-8, 2004 Stein Sture Professor of Civil Engineering University of Colorado at Boulder Contents Steps

More information

Elements of Continuum Elasticity. David M. Parks Mechanics and Materials II February 25, 2004

Elements of Continuum Elasticity. David M. Parks Mechanics and Materials II February 25, 2004 Elements of Continuum Elasticity David M. Parks Mechanics and Materials II 2.002 February 25, 2004 Solid Mechanics in 3 Dimensions: stress/equilibrium, strain/displacement, and intro to linear elastic

More information

Single-phase driven ultrasonic motor using two orthogonal bending modes of sandwiching. piezo-ceramic plates

Single-phase driven ultrasonic motor using two orthogonal bending modes of sandwiching. piezo-ceramic plates Single-phase driven ultrasonic motor using two orthogonal bending modes of sandwiching piezo-ceramic plates Yuting Ma 1,2, Minkyu Choi 2 and Kenji Uchino 2 1 CAS Key Lab of Bio-Medical Diagnostics, Suzhou

More information

UNCONVENTIONAL FINITE ELEMENT MODELS FOR NONLINEAR ANALYSIS OF BEAMS AND PLATES

UNCONVENTIONAL FINITE ELEMENT MODELS FOR NONLINEAR ANALYSIS OF BEAMS AND PLATES UNCONVENTIONAL FINITE ELEMENT MODELS FOR NONLINEAR ANALYSIS OF BEAMS AND PLATES A Thesis by WOORAM KIM Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the

More information

Minimization of Poisson s ratio in anti-tetra-chiral two-phase structure

Minimization of Poisson s ratio in anti-tetra-chiral two-phase structure IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Minimization of Poisson s ratio in anti-tetra-chiral two-phase structure To cite this article: E Idczak and T Strek 2017 IOP Conf.

More information

Exact and Numerical Solution of Pure Torsional Shaft

Exact and Numerical Solution of Pure Torsional Shaft Australian Journal of Basic and Applied Sciences, 4(8): 3043-3052, 2010 ISSN 1991-8178 Exact and Numerical Solution of Pure Torsional Shaft 1 Irsyadi Yani, 2 M.A Hannan, 1 Hassan Basri, and 2 E. Scavino

More information

XI. NANOMECHANICS OF GRAPHENE

XI. NANOMECHANICS OF GRAPHENE XI. NANOMECHANICS OF GRAPHENE Carbon is an element of extraordinary properties. The carbon-carbon bond possesses large magnitude cohesive strength through its covalent bonds. Elemental carbon appears in

More information

A two-dimensional FE truss program

A two-dimensional FE truss program A two-dimensional FE truss program 4M020: Design Tools Eindhoven University of Technology Introduction The Matlab program fem2d allows to model and analyze two-dimensional truss structures, where trusses

More information

Non-linear and time-dependent material models in Mentat & MARC. Tutorial with Background and Exercises

Non-linear and time-dependent material models in Mentat & MARC. Tutorial with Background and Exercises Non-linear and time-dependent material models in Mentat & MARC Tutorial with Background and Exercises Eindhoven University of Technology Department of Mechanical Engineering Piet Schreurs July 7, 2009

More information

Module III - Macro-mechanics of Lamina. Lecture 23. Macro-Mechanics of Lamina

Module III - Macro-mechanics of Lamina. Lecture 23. Macro-Mechanics of Lamina Module III - Macro-mechanics of Lamina Lecture 23 Macro-Mechanics of Lamina For better understanding of the macromechanics of lamina, the knowledge of the material properties in essential. Therefore, the

More information

Multi Linear Elastic and Plastic Link in SAP2000

Multi Linear Elastic and Plastic Link in SAP2000 26/01/2016 Marco Donà Multi Linear Elastic and Plastic Link in SAP2000 1 General principles Link object connects two joints, i and j, separated by length L, such that specialized structural behaviour may

More information

Esben Byskov. Elementary Continuum. Mechanics for Everyone. With Applications to Structural Mechanics. Springer

Esben Byskov. Elementary Continuum. Mechanics for Everyone. With Applications to Structural Mechanics. Springer Esben Byskov Elementary Continuum Mechanics for Everyone With Applications to Structural Mechanics Springer Contents Preface v Contents ix Introduction What Is Continuum Mechanics? "I Need Continuum Mechanics

More information

Thickness Optimization of a Piezoelectric Converter for Energy Harvesting

Thickness Optimization of a Piezoelectric Converter for Energy Harvesting Excerpt from the Proceedings of the COMSOL Conference 29 Milan Thickness Optimization of a Piezoelectric Converter for Energy Harvesting M. Guizzetti* 1, V. Ferrari 1, D. Marioli 1 and T. Zawada 2 1 Dept.

More information

1 Nonlinear deformation

1 Nonlinear deformation NONLINEAR TRUSS 1 Nonlinear deformation When deformation and/or rotation of the truss are large, various strains and stresses can be defined and related by material laws. The material behavior can be expected

More information

Composite materials: mechanical properties

Composite materials: mechanical properties Composite materials: mechanical properties A computational lattice model describing scale effects @ nano-scale Luciano Colombo In collaboration with: Pier Luca Palla and Stefano Giordano Department of

More information

Lecture 4 Honeycombs Notes, 3.054

Lecture 4 Honeycombs Notes, 3.054 Honeycombs-In-plane behavior Lecture 4 Honeycombs Notes, 3.054 Prismatic cells Polymer, metal, ceramic honeycombs widely available Used for sandwich structure cores, energy absorption, carriers for catalysts

More information

THE USE OF AUXETIC MATERIALS IN SMART STRUCTURES

THE USE OF AUXETIC MATERIALS IN SMART STRUCTURES COMPUTATIONAL METHODS IN SCIENCE AND TECHNOLOGY 10(2), 147-160 (2004) THE USE OF AUXETIC MATERIALS IN SMART STRUCTURES E. P. HADJIGEORGIOU 1 AND G. E. STAVROULAKIS 2,3 * 1 Department of Materials Science

More information

Large Thermal Deflections of a Simple Supported Beam with Temperature-Dependent Physical Properties

Large Thermal Deflections of a Simple Supported Beam with Temperature-Dependent Physical Properties Large Thermal Deflections of a Simple Supported Beam with Temperature-Dependent Physical Properties DR. ŞEREF DOĞUŞCAN AKBAŞ Civil Engineer, Şehit Muhtar Mah. Öğüt Sok. No:2/37, 34435 Beyoğlu- Istanbul,

More information

Lower bounding problems for stress constrained. discrete structural topology optimization problems

Lower bounding problems for stress constrained. discrete structural topology optimization problems FP 6 STREP 30717 PLATO N (Aeronautics and Space) PLATO N A PLAtform for Topology Optimisation incorporating Novel, Large-Scale, Free-Material Optimisation and Mixed Integer Programming Methods Lower bounding

More information

Gyroscopic matrixes of the straight beams and the discs

Gyroscopic matrixes of the straight beams and the discs Titre : Matrice gyroscopique des poutres droites et des di[...] Date : 29/05/2013 Page : 1/12 Gyroscopic matrixes of the straight beams and the discs Summarized: This document presents the formulation

More information

The fracture toughness of planar lattices: imperfection sensitivity

The fracture toughness of planar lattices: imperfection sensitivity 1 2 The fracture toughness of planar lattices: imperfection sensitivity 3 Naomi E.R. Romijn, Norman A. Fleck 4 5 Cambridge University Engineering Department, Trumpington Street, Cambridge CB2 1PZ, UK 6

More information

CAAM 335 Matrix Analysis Planar Trusses

CAAM 335 Matrix Analysis Planar Trusses CAAM 5 Matrix Analysis Planar Trusses September 1, 010 1 The Equations for the Truss We consider trusses with m bars and n nodes. Each node can be displaced in horizontal and vertical direction. If the

More information