Nonequilibrium stochastic Processes at Single-molecule and Single-cell levels

Size: px
Start display at page:

Download "Nonequilibrium stochastic Processes at Single-molecule and Single-cell levels"

Transcription

1 Nonequilibrium stochastic Processes at Single-molecule and Single-cell levels Hao Ge ( 葛颢 ) haoge@pku.edu.cn Beijing International Center for Mathematical Research 2 Biodynamic Optical Imaging Center Peking University, China

2 BICMR: Beijing International Center for Mathematical Research

3 BIOPIC: Biodynamic Optical Imaging Center

4 Summary of Ge group JSP06,08,7 PRE09,0,3,4,6 JCP2; JSTAT5 Stochastic theory of nonequilibrium statistical mechanics Nonequilibrium landscape theory and rate formulas PRL09,5 JRSI; Chaos2 Theory Stochastic Biophysics (Biomath) Providing analytical tools Providing scientific problems JPCB08,3,6; JPA2; SPA7 Phys. Rep. 2 Science3;Cell4;MSB5 Stochastic modeling of biophysical systems Statistical machine learning of single-cell data Applications

5 Interactions among math, physics, chemistry and biology

6 Which kind of physical/chemical processes can be described by stochastic processes? Mesoscopic scale (time and space) Single-molecule and single-cell (subcellular) dynamics Trajectory perspective

7 Single-molecule experiments Single Ion channel Single-molecule enzyme kinetics E. Neher and B. Sakman Nobel Prize in 99 Lu, et al. Science (998)

8 Single-cell dynamics (in vivo) Eldar, A. and Elowitz, M. Nature (200) Choi, et al. Science (2008)

9 The simplest three-state example: single-molecule enzyme kinetics Ge, H.: J. Phys. Chem. B (2008); J. Phys. A (202) Ge, H., et al. Phys. Rep. (202) Ge, et al. Stoc. Proc. Appl. In press

10 Reversible Michaelis-Menten enzyme kinetics Two reversible Michaelis-Menten reactions Ge, H.: J. Phys. Chem. B (2008) Ge, H., Qian, M. and Qian, H.: Phys. Rep. (202) Kinetic scheme of a simple reversible enzyme. From the perspective of a single enzyme molecule, the reaction is unimolecular and cyclic.

11 Simulated turnover traces of a single molecule S P (t) Min, et al. Nano Lett, (2005) Ge, H.: J. Phys. Chem. B (2008) ( t) : S P ( t) : P S the number of occurrences of forward and backward cycles up to time t

12 Steady-state cycle fluxes and nonequilibrium steady state J ss ( t) lim t t [ S] VS V KmS [ S] K ms [ P] KmP [ P] K P mp J ss J ss. Ge, H.: JPCB (2008) Ge, H., Qian, M. and Qian,H.: Phys. Rep. (202) Michaelis-Menten kinetics J ss ( t) lim t t [ S] VS KmS [ S] [ P] K K ms mp ; J ss ( t) lim t t [ P] VP KmP [ S] [ P] K K 0 ss k k2k3[ S] J Chemical potential difference: kbt ln k ln( ) 0 BT ss k k k [ P] J 2 3 ms J mp ss. 0 0

13 Waiting cycle times S k k 2 k 3 k k 2 k E ES EP E ES EP E P k - k -2 k -3 k - k -2 k -3 The kinetic scheme for computing the waiting cycle times, which also serves for molecular motors. T J ss J ss ; T J ss ; T J ss.

14 Generalized Haldane equality P E ( T t T T ) PE ( T t T T ). Superposed distributions! Carter, N. J.; Cross, R. A. Nature (2005) Waiting cycle time T is independent of whether the enzyme completes a forward cycle or a backward cycle, although the probability weight of these two cycles might be rather different. Average time course of forward and backward steps Qian, H. and Xie, X.S.: PRE (2006) Ge, H.: J. Phys. Chem. B (2008); J. Phys. A (202) Jia, et al. Ann. Appl. Prob. (206): general Markovian jumping process Ge, et al. Stoc. Proc. Appl. In press: diffusion on a circle

15 Nonequilibrium steady state Ge, H., et al. Phys. Rep. (202) B P S k k k k k k T log k ) ( ) ( T T t T P T T t T P E E Ge, H. J. Phys. Chem. B (2008); J. Phys. A (202) Generalized Haldane Equality Fluctuation theorem of fluctuating chemical work T k n E E B e n t W P n t W P ) ) ( ( ) ) ( ( ) ( T k t W B e Second law in terms of equality Free energy conservation 0 t W epr t Entropy production: Free energy dissipation Free energy input S P 0. m Equilibriu Traditional Second law t W t

16 Steady-state Gallavotti-Cohen type fluctuation theorems, J t t J t t t J t t t J t J t J has the large deviation principle with rate function I. log P t J,J x,x I x,x,t I t t 2 2 x, x I x, x x 2 2 x2 J t J has the large deviation principle with rate function I 2. t log P t I J t x I2x, t x I xx 2 2 Jia, et al. Ann. Appl. Prob. (206): Ge, et al. Stoc. Proc. Appl. In press

17 Quasi-time-reversal invariance of d B.M. and 3d Bessel process translation The distribution is the same as a random flipped 3d Bessel Process P E ( T t T T ) PE ( T t T T ) For diffusion on a d circle Ge, et al. Stoc. Proc. Appl. In press

18 Two-state model of central dogma without feedback Help to uncover the mechanism of transcriptional burst Chong, S.S., Chen, C.Y., Ge, H. and Xie, X.S. Cell (204)

19 DNA transcription

20 Regulation of gene expression Induced condition Highly expressed, i.e. low repression

21 Transcriptional burst under induced condition Golding et al. Cell (2005)

22 DNA topology and transcriptional burst Anchored DNA segment Levens and Larson: Cell (204) (preview) High-throughput in-vitro experiments Chong, S.S., Chen, C.Y., Ge, H. and Xie, X.S. Cell (204)

23 Supercoiling accumulation and gyrase activity Gene OFF Gene ON mrna ø k Chong, S.S., Chen, C.Y., Ge, H. and Xie, X.S. Cell (204)

24 Gene states Two-state model without feedback Gene ON Gene OFF Gene OFF Gene ON mrna ø Chemical master equation The mean-field deterministic model has only k one stable k fixed kpoint! 0 n 0 n n+ 2 ( n ) 2 Copy number of mrna k ( n ) n+

25 Poisson distribution with a spike at zero When α,β<<k,γ, then.,! ) ( ) ( ) ( ; (0) (0) (0) 2 2 n n k e n p n p n p e p p p n k k Poisson distribution with a spike (bimodal) Duty cycle ratio Chong, S.S., Chen, C.Y., Ge, H. and Xie, X.S. Cell (204)

26 Two-state model of central dogma with positive feedback A rate formula for stochastic phenotype transition in an intermediate region of gene-state switching Ge, H., Qian, H. and Xie, X.S., Phys. Rev. Lett. (205)

27 Central Dogma Copy numbers in a single cell Bacteria Eukaryotic cells DNA or 2 ~2 mrna A few Protein Not enough attention has been paid to this fact.

28 Regulation of gene expression An example of gene circuit with positive feedback: Lac operon

29 Bimodal distributions in biology: multiple phenotypic states Ferrell, J. and Machleder, E. Science (998) Choi, et al., Science (2008) To, T. and Maheshri, N. Science (200)

30 Two-state model with positive feedback n max large k

31 Mean-field deterministic model with positive feedback g(x) x γ dx dt = g x γx x = n n max Sigmoidal influx flux Stable Off-state Unstable threshold Stable On-state 0.9 Bifurcation diagram Bifurcation diagram for simple example g x = γx ON state x * 0.5 Influx g(x) Outflux γx OFF state Flux-balance plot x /K eq

32 Interconversion of different phenotypic states How to quantify the transition rates between different phenotypic states, provided their existence? Choi, et al., Science (2008) Gupta, et al., Cell (20)

33 Recall Langevin dynamics and Kramers rate formula Chemical reaction activated by diffusional fluctuations k ǂ 2 Uǂ a kbt is large e γ = η m P. Langevin ( ) 2 d x dt m 2 f f f du dx x dx dt f t 0; 2t 2 kbt; t f s 0, s t. t U U x m x x a,x around ǂ2 2 x m x xǂ,x around x. ǂ κ = ω γ q = q A = 2πk BT ω a h k + = κ k BT h = κ k BT q e h q A a ΔG e k B T ΔU k B T 2 x A ; H.A. Kramers ( )

34 From single chemical reaction to biochemical networks (biology) Single chemical reaction Physical state of atoms Conformational state The state of system Emergent state at a higher level Molecular copy number Phenotypic state Single cell: biochemical network Chemical master equation (CME) M M X, t r X PX, t r X PX, t dp dt j j j j j j Max Delbruck(906-98) Nobel Prize in 969

35 Two-state model with positive feedback large The analytical results introduced here can be applied to any self-regulating module of a single gene, while the methodology is valid for a much more general context. n max k

36 Three time scales and three different scenarios ( i) : cell cycle ( ) ( ii) : gene - state switching ( f, hn( n ) ( iii) : synthesis rate of protein( k ) ) When stochastic gene-state switching is extremely rapid Ao, et al. (2004); ( i ) ( iii ) ( ii ) Huang, et al. (200); When stochastic gene-state switching is extremely slow Qian, et al. (2009); ( ii ) ( i ) (iii ) Wolynes, et al. (2005); When stochastic gene-state switching is relatively slow Wolynes, et al. (2005); ( i ) ( ii ) (iii ) Ge, et al. (205) When the time scales of (ii) and (iii) are comparable Assaf, et al. (20); ( i ) ( ii )(iii ) Li, et al. (204)

37 A single-molecule fluctuatingrate model is derived (A) x * k, f, തh γ Continuous Mean-field limit Bifurcation diagram Bifurcation diagram for simple example Rescaled dynamics (B) ON state k f, തh, γ Fluctuating-rate model (Piecewise deterministic Markov process) dx dt = k n max γx തhx 2 dx dt = g x γx x = f n n max OFF state dx dt = k 2 n max γx /K eq Ge, H., Qian, H. and Xie, X.S., PRL (205)

38 Stochastic dynamics of fluctuating-rate model dx dt = k n max γx തhx 2 f dx dt = k 2 n max γx Ge, H., Qian, H. and Xie, X.S., PRL (205)

39 Nonequilibrium landscape function emerges As gene-state switching is much faster than the cell cycle Landscape function p ss x e x Φ dx = g x γx dt Dynamics in the mean field limit model Stable (OFF) Unstable Stable (ON) d dx x k n max 2 f hx k2 x x n max analog to energy function at equilibrium case Quantify the relative stability x of stable fixed points Φ = Φ f x Ge, H., Qian, H. and Xie, X.S., PRL (205)

40 probabil ity Three time scales Fixed finite molecule numbers n y chemical master equation c y B Stochastic A Deterministic (a) n x (b) fast nonlinear differential equations c x discrete stochastic model among attractors emergent slow stochastic dynamics and landscape (d) A Stochastic B A B (c) appropriate reaction coordinate Ge, H. and Qian, H.: PRL (2009), JRSI (20)

41 Rate formulae associated with the landscape function Gene-state switching is relatively slow Gene-state switching is extremely slow Barrier crossing n max k k 0 e Φ n max n max n max n max Ge, H., Qian, H. and Xie, X.S., PRL (205) k linearly depend on gene-state switching rates Wolynes, et al. PNAS (2005)

42 A recent example: HIV therapy (activator + noise enhancer) Gene ON k off k on Gene OFF k k 0 e Φ ǂ ~ kon k off koff Activator: increasing k on, lower the barrier Noise enhancer: Decreasing both k on and k off, further lower the barrier Weinberger group, Science (204) Significantly increasing the transition rate

43 Rigorous analysis: quasi potential in LDP Local: The Donsker-Varadhan large deviation theory for Markov process + Global: The Freidlin-Wentzell large deviation theory for random perturbed dynamic system LDT of Fluctuating-rate model (Switching ODE) Two-scale LDT of Switching(Coupled) Diffusion See Chapter 7 in Freidlin and Wentzell: Random Perturbations of Dynamical Systems (2 nd Ed). Springer 984

44 Compared to previous rate formulae for bursty dynamics Eldar, A. and Elowitz, M. Nature (200) Cai, et al. Science (2006) If d dx x Burst size, x x b ǂ b f k n max x off f k k 0 e x ǂ x b off Walczak,et al.,pnas (2005);Choi, et al.,jmb (200);Ge,H.,Qian,H.and Xie, X.S.,PRL (205)

45 Voice on Cell

46 Summary Stochastic processes become more and more popular to model the nonequilibrium mesoscopic biophysical dynamics. Stochastic theory of nonequilibrium statistical mechanics is rigorously studied and further developed, including an unexpected equality for the cycle symmetry. Stochastic model of central dogma at single-cell level helps to uncover the mechanism of transcriptional burst, and we propose a single-molecule fluctuating-rate model as well as an associated saddle-crossing rate formula for the phenotype transition in an intermediate scenario.

47 Acknowledgement Prof. Hong Qian University of Washington Prof. Sunney Xiaoliang Xie Harvard University Peking University Fundings: NSFC, MOE of PRC

48 Thanks for your attention!

Stochastic Processes at Single-molecule and Single-cell levels

Stochastic Processes at Single-molecule and Single-cell levels Stochastic Processes at Single-molecule and Single-cell levels Hao Ge haoge@pu.edu.cn Beijing International Center for Mathematical Research 2 Biodynamic Optical Imaging Center Peing University, China

More information

Stochastic Processes at Single-molecule and Single-cell levels

Stochastic Processes at Single-molecule and Single-cell levels Stochastic Processes at Single-molecule and Single-cell levels Hao Ge haoge@pu.edu.cn Beijing International Center for Mathematical Research 2 Biodynamic Optical Imaging Center Peing University, China

More information

Stochastic Processes around Central Dogma

Stochastic Processes around Central Dogma Stochastic Processes around Central Dogma Hao Ge haoge@pku.edu.cn Beijing International Center for Mathematical Research Biodynamic Optical Imaging Center Peking University, China http://www.bicmr.org/personal/gehao/

More information

Stochastic Processes around Central Dogma

Stochastic Processes around Central Dogma Stochastic Processes around Central Dogma Hao Ge haoge@pu.edu.cn Beijing International Center for Mathematical Research Biodynamic Optical Imaging Center Peing University, China http://www.bicmr.org/personal/gehao/

More information

Nonequilibrium landscape theory of chemical reaction systems and its applications: From stochastic thermodynamics to single-cell biology

Nonequilibrium landscape theory of chemical reaction systems and its applications: From stochastic thermodynamics to single-cell biology Nonequilibrium landscape theory of chemical reaction systems and its applications: From stochastic thermodynamics to single-cell biology Hao Ge ( 葛颢 ) haoge@pu.edu.cn 1 Beijing International Center for

More information

Nonequilibrium stochastic Processes at Single-molecule and Single-cell levels

Nonequilibrium stochastic Processes at Single-molecule and Single-cell levels Nonequilibrium stochastic Processes at Single-molecule and Single-cell levels Hao Ge ( 葛颢 ) haoge@pu.edu.cn 1 Beijing International Center for Mathematical Research Biodynamic Optical Imaging Center Peing

More information

Mathematical Structures of Statistical Mechanics: from equilibrium to nonequilibrium and beyond Hao Ge

Mathematical Structures of Statistical Mechanics: from equilibrium to nonequilibrium and beyond Hao Ge Mathematical Structures of Statistical Mechanics: from equilibrium to nonequilibrium and beyond Hao Ge Beijing International Center for Mathematical Research and Biodynamic Optical Imaging Center Peking

More information

Stochastic Processes in Physics, Chemistry and Biology

Stochastic Processes in Physics, Chemistry and Biology Stochastic Processes in Physics, Chemistry and Biology a personal perspective Hao Ge haoge@pku.edu.cn 1 Beijing International Center for Mathematical Research 2 Biodynamic Optical Imaging Center Peking

More information

Lecture 7: Simple genetic circuits I

Lecture 7: Simple genetic circuits I Lecture 7: Simple genetic circuits I Paul C Bressloff (Fall 2018) 7.1 Transcription and translation In Fig. 20 we show the two main stages in the expression of a single gene according to the central dogma.

More information

Effects of Different Burst Form on Gene Expression Dynamic and First-Passage Time

Effects of Different Burst Form on Gene Expression Dynamic and First-Passage Time Advanced Studies in Biology, Vol. 9, 2017, no. 2, 91-100 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/asb.2017.726 Effects of Different Burst Form on Gene Expression Dynamic and First-Passage

More information

2. Mathematical descriptions. (i) the master equation (ii) Langevin theory. 3. Single cell measurements

2. Mathematical descriptions. (i) the master equation (ii) Langevin theory. 3. Single cell measurements 1. Why stochastic?. Mathematical descriptions (i) the master equation (ii) Langevin theory 3. Single cell measurements 4. Consequences Any chemical reaction is stochastic. k P d φ dp dt = k d P deterministic

More information

Basic Synthetic Biology circuits

Basic Synthetic Biology circuits Basic Synthetic Biology circuits Note: these practices were obtained from the Computer Modelling Practicals lecture by Vincent Rouilly and Geoff Baldwin at Imperial College s course of Introduction to

More information

ANALYTICAL MECHANICS IN STOCHASTIC DYNAMICS: MOST PROBABLE PATH, LARGE-DEVIATION RATE FUNCTION AND HAMILTON JACOBI EQUATION

ANALYTICAL MECHANICS IN STOCHASTIC DYNAMICS: MOST PROBABLE PATH, LARGE-DEVIATION RATE FUNCTION AND HAMILTON JACOBI EQUATION International Journal of Modern Physics B Vol. 26, No. 24 (2012) 1230012 (23 pages) c World Scientific Publishing Company DOI: 10.1142/S0217979212300125 ANALYTICAL MECHANICS IN STOCHASTIC DYNAMICS: MOST

More information

Bioinformatics 3. V18 Kinetic Motifs. Fri, Jan 8, 2016

Bioinformatics 3. V18 Kinetic Motifs. Fri, Jan 8, 2016 Bioinformatics 3 V18 Kinetic Motifs Fri, Jan 8, 2016 Modelling of Signalling Pathways Curr. Op. Cell Biol. 15 (2003) 221 1) How do the magnitudes of signal output and signal duration depend on the kinetic

More information

Bioinformatics 3! V20 Kinetic Motifs" Mon, Jan 13, 2014"

Bioinformatics 3! V20 Kinetic Motifs Mon, Jan 13, 2014 Bioinformatics 3! V20 Kinetic Motifs" Mon, Jan 13, 2014" Modelling of Signalling Pathways" Curr. Op. Cell Biol. 15 (2003) 221" 1) How do the magnitudes of signal output and signal duration depend on the

More information

Intrinsic Noise in Nonlinear Gene Regulation Inference

Intrinsic Noise in Nonlinear Gene Regulation Inference Intrinsic Noise in Nonlinear Gene Regulation Inference Chao Du Department of Statistics, University of Virginia Joint Work with Wing H. Wong, Department of Statistics, Stanford University Transcription

More information

Non equilibrium thermodynamics: foundations, scope, and extension to the meso scale. Miguel Rubi

Non equilibrium thermodynamics: foundations, scope, and extension to the meso scale. Miguel Rubi Non equilibrium thermodynamics: foundations, scope, and extension to the meso scale Miguel Rubi References S.R. de Groot and P. Mazur, Non equilibrium Thermodynamics, Dover, New York, 1984 J.M. Vilar and

More information

Problem Set 2. 1 Competitive and uncompetitive inhibition (12 points) Systems Biology (7.32/7.81J/8.591J)

Problem Set 2. 1 Competitive and uncompetitive inhibition (12 points) Systems Biology (7.32/7.81J/8.591J) Problem Set 2 1 Competitive and uncompetitive inhibition (12 points) a. Reversible enzyme inhibitors can bind enzymes reversibly, and slowing down or halting enzymatic reactions. If an inhibitor occupies

More information

Persistence and Stationary Distributions of Biochemical Reaction Networks

Persistence and Stationary Distributions of Biochemical Reaction Networks Persistence and Stationary Distributions of Biochemical Reaction Networks David F. Anderson Department of Mathematics University of Wisconsin - Madison Discrete Models in Systems Biology SAMSI December

More information

Brief contents. Chapter 1 Virus Dynamics 33. Chapter 2 Physics and Biology 52. Randomness in Biology. Chapter 3 Discrete Randomness 59

Brief contents. Chapter 1 Virus Dynamics 33. Chapter 2 Physics and Biology 52. Randomness in Biology. Chapter 3 Discrete Randomness 59 Brief contents I First Steps Chapter 1 Virus Dynamics 33 Chapter 2 Physics and Biology 52 II Randomness in Biology Chapter 3 Discrete Randomness 59 Chapter 4 Some Useful Discrete Distributions 96 Chapter

More information

Anatoly B. Kolomeisky. Department of Chemistry CAN WE UNDERSTAND THE COMPLEX DYNAMICS OF MOTOR PROTEINS USING SIMPLE STOCHASTIC MODELS?

Anatoly B. Kolomeisky. Department of Chemistry CAN WE UNDERSTAND THE COMPLEX DYNAMICS OF MOTOR PROTEINS USING SIMPLE STOCHASTIC MODELS? Anatoly B. Kolomeisky Department of Chemistry CAN WE UNDERSTAND THE COMPLEX DYNAMICS OF MOTOR PROTEINS USING SIMPLE STOCHASTIC MODELS? Motor Proteins Enzymes that convert the chemical energy into mechanical

More information

Regulation of metabolism

Regulation of metabolism Regulation of metabolism So far in this course we have assumed that the metabolic system is in steady state For the rest of the course, we will abandon this assumption, and look at techniques for analyzing

More information

Self-Organization in Nonequilibrium Systems

Self-Organization in Nonequilibrium Systems Self-Organization in Nonequilibrium Systems From Dissipative Structures to Order through Fluctuations G. Nicolis Universite Libre de Bruxelles Belgium I. Prigogine Universite Libre de Bruxelles Belgium

More information

Hao Ge: Curriculum Vitae

Hao Ge: Curriculum Vitae Hao Ge: Curriculum Vitae Tel: (86) 10-62744085/62751674 and Biodynamic Optical Imaging Center Email: haoge@pku.edu.cn Peking University, Beijing, China, 100871 http://bicmr.pku.edu.cn/~gehao/ RESEARCH

More information

Introduction. Dagmar Iber Jörg Stelling. CSB Deterministic, SS 2015, 1.

Introduction. Dagmar Iber Jörg Stelling. CSB Deterministic, SS 2015, 1. Introduction Dagmar Iber Jörg Stelling joerg.stelling@bsse.ethz.ch CSB Deterministic, SS 2015, 1 Origins of Systems Biology On this assumption of the passage of blood, made as a basis for argument, and

More information

Networks in systems biology

Networks in systems biology Networks in systems biology Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 4500, Spring 2017 M. Macauley (Clemson) Networks in systems

More information

Genetic transcription and regulation

Genetic transcription and regulation Genetic transcription and regulation Central dogma of biology DNA codes for DNA DNA codes for RNA RNA codes for proteins not surprisingly, many points for regulation of the process DNA codes for DNA replication

More information

STOCHASTIC CHEMICAL KINETICS

STOCHASTIC CHEMICAL KINETICS STOCHASTIC CHEICAL KINETICS Dan Gillespie GillespieDT@mailaps.org Current Support: Caltech (NIGS) Caltech (NIH) University of California at Santa Barbara (NIH) Past Support: Caltech (DARPA/AFOSR, Beckman/BNC))

More information

Extending the Tools of Chemical Reaction Engineering to the Molecular Scale

Extending the Tools of Chemical Reaction Engineering to the Molecular Scale Extending the Tools of Chemical Reaction Engineering to the Molecular Scale Multiple-time-scale order reduction for stochastic kinetics James B. Rawlings Department of Chemical and Biological Engineering

More information

Gillespie s Algorithm and its Approximations. Des Higham Department of Mathematics and Statistics University of Strathclyde

Gillespie s Algorithm and its Approximations. Des Higham Department of Mathematics and Statistics University of Strathclyde Gillespie s Algorithm and its Approximations Des Higham Department of Mathematics and Statistics University of Strathclyde djh@maths.strath.ac.uk The Three Lectures 1 Gillespie s algorithm and its relation

More information

CS-E5880 Modeling biological networks Gene regulatory networks

CS-E5880 Modeling biological networks Gene regulatory networks CS-E5880 Modeling biological networks Gene regulatory networks Jukka Intosalmi (based on slides by Harri Lähdesmäki) Department of Computer Science Aalto University January 12, 2018 Outline Modeling gene

More information

Introduction to Fluctuation Theorems

Introduction to Fluctuation Theorems Hyunggyu Park Introduction to Fluctuation Theorems 1. Nonequilibrium processes 2. Brief History of Fluctuation theorems 3. Jarzynski equality & Crooks FT 4. Experiments 5. Probability theory viewpoint

More information

Testing the transition state theory in stochastic dynamics of a. genetic switch

Testing the transition state theory in stochastic dynamics of a. genetic switch Testing the transition state theory in stochastic dynamics of a genetic switch Tomohiro Ushikubo 1, Wataru Inoue, Mitsumasa Yoda 1 1,, 3, and Masaki Sasai 1 Department of Computational Science and Engineering,

More information

Problem Set 5. 1 Waiting times for chemical reactions (8 points)

Problem Set 5. 1 Waiting times for chemical reactions (8 points) Problem Set 5 1 Waiting times for chemical reactions (8 points) In the previous assignment, we saw that for a chemical reaction occurring at rate r, the distribution of waiting times τ between reaction

More information

The energy speed accuracy trade-off in sensory adaptation

The energy speed accuracy trade-off in sensory adaptation SUPPLEMENTARY INFORMATION DOI: 1.138/NPHYS2276 The energy speed accuracy trade-off in sensory adaptation 1 The effective potential H(m) In the main text, we introduced a set of F a and F m functions to

More information

Cybergenetics: Control theory for living cells

Cybergenetics: Control theory for living cells Department of Biosystems Science and Engineering, ETH-Zürich Cybergenetics: Control theory for living cells Corentin Briat Joint work with Ankit Gupta and Mustafa Khammash Introduction Overview Cybergenetics:

More information

On the Asymptotic Convergence. of the Transient and Steady State Fluctuation Theorems. Gary Ayton and Denis J. Evans. Research School Of Chemistry

On the Asymptotic Convergence. of the Transient and Steady State Fluctuation Theorems. Gary Ayton and Denis J. Evans. Research School Of Chemistry 1 On the Asymptotic Convergence of the Transient and Steady State Fluctuation Theorems. Gary Ayton and Denis J. Evans Research School Of Chemistry Australian National University Canberra, ACT 0200 Australia

More information

FEATURE ARTICLE. Single-Molecule Michaelis-Menten Equations. S. C. Kou, Binny J. Cherayil,, Wei Min, Brian P. English, and X.

FEATURE ARTICLE. Single-Molecule Michaelis-Menten Equations. S. C. Kou, Binny J. Cherayil,, Wei Min, Brian P. English, and X. 1968 J. Phys. Chem. B 25, 19, 1968-1981 FEATURE ARTICLE Single-Molecule Michaelis-Menten Equations S. C. Kou, Binny J. Cherayil,, Wei Min, Brian P. English, and X. Sunney Xie*, Department of Statistics

More information

Transport of single molecules along the periodic parallel lattices with coupling

Transport of single molecules along the periodic parallel lattices with coupling THE JOURNAL OF CHEMICAL PHYSICS 124 204901 2006 Transport of single molecules along the periodic parallel lattices with coupling Evgeny B. Stukalin The James Franck Institute The University of Chicago

More information

2 Dilution of Proteins Due to Cell Growth

2 Dilution of Proteins Due to Cell Growth Problem Set 1 1 Transcription and Translation Consider the following set of reactions describing the process of maing a protein out of a gene: G β g G + M M α m M β m M + X X + S 1+ 1 X S 2+ X S X S 2

More information

Program for the rest of the course

Program for the rest of the course Program for the rest of the course 16.4 Enzyme kinetics 17.4 Metabolic Control Analysis 19.4. Exercise session 5 23.4. Metabolic Control Analysis, cont. 24.4 Recap 27.4 Exercise session 6 etabolic Modelling

More information

Multi-modality in gene regulatory networks with slow promoter kinetics. Abstract. Author summary

Multi-modality in gene regulatory networks with slow promoter kinetics. Abstract. Author summary Multi-modality in gene regulatory networks with slow promoter kinetics M. Ali Al-Radhawi 1, D. Del Vecchio 2, E. D. Sontag 3*, 1 Department of Electrical and Computer Engineering, Northeastern University,

More information

Genetic transcription and regulation

Genetic transcription and regulation Genetic transcription and regulation Central dogma of biology DNA codes for DNA DNA codes for RNA RNA codes for proteins not surprisingly, many points for regulation of the process https://www.youtube.com/

More information

BME 5742 Biosystems Modeling and Control

BME 5742 Biosystems Modeling and Control BME 5742 Biosystems Modeling and Control Lecture 24 Unregulated Gene Expression Model Dr. Zvi Roth (FAU) 1 The genetic material inside a cell, encoded in its DNA, governs the response of a cell to various

More information

Stochastic simulations

Stochastic simulations Stochastic simulations Application to molecular networks Literature overview Noise in genetic networks Origins How to measure and distinguish between the two types of noise (intrinsic vs extrinsic)? What

More information

16. Working with the Langevin and Fokker-Planck equations

16. Working with the Langevin and Fokker-Planck equations 16. Working with the Langevin and Fokker-Planck equations In the preceding Lecture, we have shown that given a Langevin equation (LE), it is possible to write down an equivalent Fokker-Planck equation

More information

Nonequilibrium Response in a Model for Sensory Adapta8on

Nonequilibrium Response in a Model for Sensory Adapta8on The 7 th KIAS Conference on Sta8s8cal Physics, 4-7 July 2016 Nonequilibrium Sta8s8cal Physics of Complex Systems Nonequilibrium Response in a Model for Sensory Adapta8on Shouwen Wang and Lei- Han Tang

More information

Bistability in ODE and Boolean network models

Bistability in ODE and Boolean network models Bistability in ODE and Boolean network models Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 4500, Spring 2017 M. Macauley (Clemson)

More information

Molecular Machines and Enzymes

Molecular Machines and Enzymes Molecular Machines and Enzymes Principles of functioning of molecular machines Enzymes and catalysis Molecular motors: kinesin 1 NB Queste diapositive sono state preparate per il corso di Biofisica tenuto

More information

When do diffusion-limited trajectories become memoryless?

When do diffusion-limited trajectories become memoryless? When do diffusion-limited trajectories become memoryless? Maciej Dobrzyński CWI (Center for Mathematics and Computer Science) Kruislaan 413, 1098 SJ Amsterdam, The Netherlands Abstract Stochastic description

More information

FUNDAMENTALS of SYSTEMS BIOLOGY From Synthetic Circuits to Whole-cell Models

FUNDAMENTALS of SYSTEMS BIOLOGY From Synthetic Circuits to Whole-cell Models FUNDAMENTALS of SYSTEMS BIOLOGY From Synthetic Circuits to Whole-cell Models Markus W. Covert Stanford University 0 CRC Press Taylor & Francis Group Boca Raton London New York Contents /... Preface, xi

More information

Computational Cell Biology Lecture 4

Computational Cell Biology Lecture 4 Computational Cell Biology Lecture 4 Case Study: Basic Modeling in Gene Expression Yang Cao Department of Computer Science DNA Structure and Base Pair Gene Expression Gene is just a small part of DNA.

More information

Principles of Synthetic Biology: Midterm Exam

Principles of Synthetic Biology: Midterm Exam Principles of Synthetic Biology: Midterm Exam October 28, 2010 1 Conceptual Simple Circuits 1.1 Consider the plots in figure 1. Identify all critical points with an x. Put a circle around the x for each

More information

European Conference on Mathematical and Theoretical Biology Gothenburg

European Conference on Mathematical and Theoretical Biology Gothenburg European Conference on Mathematical and Theoretical Biology 2014 - Gothenburg Minisymposium: Numerical methods for high-dimensional problems in biology Date: Monday, 16 th of June Time: 16:00-19:00 Organizers:

More information

Phosphorylation Energy Hypothesis: Open Chemical Systems and Their Biological Functions

Phosphorylation Energy Hypothesis: Open Chemical Systems and Their Biological Functions Annu. Rev. Phys. Chem. 2007. 58:113 42 First published online as a Review in Advance on October 20, 2006 The Annual Review of Physical Chemistry is online at http://physchem.annualreviews.org This article

More information

arxiv: v2 [math-ph] 23 May 2012

arxiv: v2 [math-ph] 23 May 2012 arxiv:0.4049v2 [math-ph] 23 May 202 Landscapes of Non-gradient Dynamics Without Detailed Balance: Stable Limit Cycles and Multiple Attractors Hao Ge and Hong Qian 2 Beijing International Center for Mathematical

More information

Supporting Information. Methods. Equations for four regimes

Supporting Information. Methods. Equations for four regimes Supporting Information A Methods All analytical expressions were obtained starting from quation 3, the tqssa approximation of the cycle, the derivation of which is discussed in Appendix C. The full mass

More information

Nonequilibrium Steady State of a Nanometric Biochemical System: Determining the Thermodynamic Driving Force from Single Enzyme Turnover Time Traces

Nonequilibrium Steady State of a Nanometric Biochemical System: Determining the Thermodynamic Driving Force from Single Enzyme Turnover Time Traces Nonequilibrium Steady State of a Nanometric Biochemical System: Determining the Thermodynamic Driving Force from Single Enzyme Turnover Time Traces NANO LETTERS 005 Vol. 5, No. 1 373-378 Wei Min, Liang

More information

For slowly varying probabilities, the continuum form of these equations is. = (r + d)p T (x) (u + l)p D (x) ar x p T(x, t) + a2 r

For slowly varying probabilities, the continuum form of these equations is. = (r + d)p T (x) (u + l)p D (x) ar x p T(x, t) + a2 r 3.2 Molecular Motors A variety of cellular processes requiring mechanical work, such as movement, transport and packaging material, are performed with the aid of protein motors. These molecules consume

More information

3.B.1 Gene Regulation. Gene regulation results in differential gene expression, leading to cell specialization.

3.B.1 Gene Regulation. Gene regulation results in differential gene expression, leading to cell specialization. 3.B.1 Gene Regulation Gene regulation results in differential gene expression, leading to cell specialization. We will focus on gene regulation in prokaryotes first. Gene regulation accounts for some of

More information

the noisy gene Biology of the Universidad Autónoma de Madrid Jan 2008 Juan F. Poyatos Spanish National Biotechnology Centre (CNB)

the noisy gene Biology of the Universidad Autónoma de Madrid Jan 2008 Juan F. Poyatos Spanish National Biotechnology Centre (CNB) Biology of the the noisy gene Universidad Autónoma de Madrid Jan 2008 Juan F. Poyatos Spanish National Biotechnology Centre (CNB) day III: noisy bacteria - Regulation of noise (B. subtilis) - Intrinsic/Extrinsic

More information

arxiv: v1 [physics.bio-ph] 11 Jul 2017

arxiv: v1 [physics.bio-ph] 11 Jul 2017 Funneled Potential and Flux Landscapes Dictate the Stabilities of both the States and the Flow: Fission Yeast Cell Cycle Xiaosheng Luo Applied Science Department at Little Rock, University of Arkansas,

More information

Non-equilibrium phenomena and fluctuation relations

Non-equilibrium phenomena and fluctuation relations Non-equilibrium phenomena and fluctuation relations Lamberto Rondoni Politecnico di Torino Beijing 16 March 2012 http://www.rarenoise.lnl.infn.it/ Outline 1 Background: Local Thermodyamic Equilibrium 2

More information

Stochastic dynamics of small gene regulation networks. Lev Tsimring BioCircuits Institute University of California, San Diego

Stochastic dynamics of small gene regulation networks. Lev Tsimring BioCircuits Institute University of California, San Diego Stochastic dynamics of small gene regulation networks Lev Tsimring BioCircuits Institute University of California, San Diego Nizhni Novgorod, June, 2011 Central dogma Activator Gene mrna Protein Repressor

More information

Simulation methods for stochastic models in chemistry

Simulation methods for stochastic models in chemistry Simulation methods for stochastic models in chemistry David F. Anderson anderson@math.wisc.edu Department of Mathematics University of Wisconsin - Madison SIAM: Barcelona June 4th, 21 Overview 1. Notation

More information

arxiv: v2 [q-bio.qm] 12 Jan 2017

arxiv: v2 [q-bio.qm] 12 Jan 2017 Approximation and inference methods for stochastic biochemical kinetics - a tutorial review arxiv:1608.06582v2 [q-bio.qm] 12 Jan 2017 David Schnoerr 1,2,3, Guido Sanguinetti 2,3, and Ramon Grima 1,3,*

More information

natural development from this collection of knowledge: it is more reliable to predict the property

natural development from this collection of knowledge: it is more reliable to predict the property 1 Chapter 1 Introduction As the basis of all life phenomena, the interaction of biomolecules has been under the scrutiny of scientists and cataloged meticulously [2]. The recent advent of systems biology

More information

4. Why not make all enzymes all the time (even if not needed)? Enzyme synthesis uses a lot of energy.

4. Why not make all enzymes all the time (even if not needed)? Enzyme synthesis uses a lot of energy. 1 C2005/F2401 '10-- Lecture 15 -- Last Edited: 11/02/10 01:58 PM Copyright 2010 Deborah Mowshowitz and Lawrence Chasin Department of Biological Sciences Columbia University New York, NY. Handouts: 15A

More information

Stochastic (intermittent) Spikes and Strong Noise Limit of SDEs.

Stochastic (intermittent) Spikes and Strong Noise Limit of SDEs. Stochastic (intermittent) Spikes and Strong Noise Limit of SDEs. D. Bernard in collaboration with M. Bauer and (in part) A. Tilloy. IPAM-UCLA, Jan 2017. 1 Strong Noise Limit of (some) SDEs Stochastic differential

More information

Introduction to Mathematical Physiology I - Biochemical Reactions

Introduction to Mathematical Physiology I - Biochemical Reactions Introduction to Mathematical Physiology I - Biochemical Reactions J. P. Keener Mathematics Department Math Physiology p.1/28 Introduction The Dilemma of Modern Biology The amount of data being collected

More information

Stochastic Simulation of Biochemical Reactions

Stochastic Simulation of Biochemical Reactions 1 / 75 Stochastic Simulation of Biochemical Reactions Jorge Júlvez University of Zaragoza 2 / 75 Outline 1 Biochemical Kinetics 2 Reaction Rate Equation 3 Chemical Master Equation 4 Stochastic Simulation

More information

Path integrals for classical Markov processes

Path integrals for classical Markov processes Path integrals for classical Markov processes Hugo Touchette National Institute for Theoretical Physics (NITheP) Stellenbosch, South Africa Chris Engelbrecht Summer School on Non-Linear Phenomena in Field

More information

Hypoelliptic multiscale Langevin diffusions and Slow fast stochastic reaction diffusion equations.

Hypoelliptic multiscale Langevin diffusions and Slow fast stochastic reaction diffusion equations. Hypoelliptic multiscale Langevin diffusions and Slow fast stochastic reaction diffusion equations. Wenqing Hu. 1 (Joint works with Michael Salins 2 and Konstantinos Spiliopoulos 3.) 1. Department of Mathematics

More information

arxiv: v4 [q-bio.mn] 24 Oct 2017

arxiv: v4 [q-bio.mn] 24 Oct 2017 Stochastic fluctuations can reveal the feedback signs of gene regulatory networks at the single-molecule level Chen Jia 1, Peng Xie 2, Min Chen 1,, Michael Q. Zhang 2,3, 1 Department of Mathematical Sciences,

More information

Math 345 Intro to Math Biology Lecture 19: Models of Molecular Events and Biochemistry

Math 345 Intro to Math Biology Lecture 19: Models of Molecular Events and Biochemistry Math 345 Intro to Math Biology Lecture 19: Models of Molecular Events and Biochemistry Junping Shi College of William and Mary, USA Molecular biology and Biochemical kinetics Molecular biology is one of

More information

Efficient Leaping Methods for Stochastic Chemical Systems

Efficient Leaping Methods for Stochastic Chemical Systems Efficient Leaping Methods for Stochastic Chemical Systems Ioana Cipcigan Muruhan Rathinam November 18, 28 Abstract. Well stirred chemical reaction systems which involve small numbers of molecules for some

More information

Bistability and a differential equation model of the lac operon

Bistability and a differential equation model of the lac operon Bistability and a differential equation model of the lac operon Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 4500, Fall 2016 M. Macauley

More information

Enzyme reaction example of Catalysis, simplest form: E + P at end of reaction No consumption of E (ES): enzyme-substrate complex Intermediate

Enzyme reaction example of Catalysis, simplest form: E + P at end of reaction No consumption of E (ES): enzyme-substrate complex Intermediate V 41 Enzyme Kinetics Enzyme reaction example of Catalysis, simplest form: k 1 E + S k -1 ES E at beginning and ES k 2 k -2 E + P at end of reaction No consumption of E (ES): enzyme-substrate complex Intermediate

More information

Introduction to asymptotic techniques for stochastic systems with multiple time-scales

Introduction to asymptotic techniques for stochastic systems with multiple time-scales Introduction to asymptotic techniques for stochastic systems with multiple time-scales Eric Vanden-Eijnden Courant Institute Motivating examples Consider the ODE {Ẋ = Y 3 + sin(πt) + cos( 2πt) X() = x

More information

Rui Dilão NonLinear Dynamics Group, IST

Rui Dilão NonLinear Dynamics Group, IST 1st Conference on Computational Interdisciplinary Sciences (CCIS 2010) 23-27 August 2010, INPE, São José dos Campos, Brasil Modeling, Simulating and Calibrating Genetic Regulatory Networks: An Application

More information

Simplicity is Complexity in Masquerade. Michael A. Savageau The University of California, Davis July 2004

Simplicity is Complexity in Masquerade. Michael A. Savageau The University of California, Davis July 2004 Simplicity is Complexity in Masquerade Michael A. Savageau The University of California, Davis July 2004 Complexity is Not Simplicity in Masquerade -- E. Yates Simplicity is Complexity in Masquerade One

More information

arxiv:physics/ v1 [physics.bio-ph] 30 Mar 2000

arxiv:physics/ v1 [physics.bio-ph] 30 Mar 2000 arxiv:physics/0003105v1 [physics.bio-ph] 30 Mar 2000 Noise-Based Switches and Amplifiers for Gene Expression Jeff Hasty 1, Joel Pradines 1, Milos Dolnik 1,2 and J.J. Collins 1 September 23, 1999 1 Center

More information

Introduction to Stochastic Thermodynamics: Application to Thermo- and Photo-electricity in small devices

Introduction to Stochastic Thermodynamics: Application to Thermo- and Photo-electricity in small devices Université Libre de Bruxelles Center for Nonlinear Phenomena and Complex Systems Introduction to Stochastic Thermodynamics: Application to Thermo- and Photo-electricity in small devices Massimiliano Esposito

More information

Basic modeling approaches for biological systems. Mahesh Bule

Basic modeling approaches for biological systems. Mahesh Bule Basic modeling approaches for biological systems Mahesh Bule The hierarchy of life from atoms to living organisms Modeling biological processes often requires accounting for action and feedback involving

More information

Matteo Figliuzzi

Matteo Figliuzzi Supervisors: Prof. Andrea De Martino, Prof. Enzo Marinari Dottorato in sica, XXVI ciclo (N,1) model (N,M) model 25-10-2013 Systems Biology & Networks (N,1) model (N,M) model Arabidopsis regulatory network

More information

Modeling Cellular Networks

Modeling Cellular Networks 06_4774 12/7/06 3:02 PM Page 151 CHAPTER 6 Modeling Cellular Networks Tae Jun Lee, Dennis Tu, Chee Meng Tan, and Lingchong You 6.1 Introduction Systems-level understanding of cellular dynamics is important

More information

Dynamical-Systems Perspective to Stem-cell Biology: Relevance of oscillatory gene expression dynamics and cell-cell interaction

Dynamical-Systems Perspective to Stem-cell Biology: Relevance of oscillatory gene expression dynamics and cell-cell interaction Dynamical-Systems Perspective to Stem-cell Biology: Relevance of oscillatory gene expression dynamics and cell-cell interaction Kunihiko Kaneko Universal Biology Inst., Center for Complex-Systems Biology,

More information

On the status of the Michaelis-Menten equation and its implications for enzymology

On the status of the Michaelis-Menten equation and its implications for enzymology 1 On the status of the Michaelis-Menten equation and its implications for enzymology Sosale Chandrasekhar 1 Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, India 1 E-mail:

More information

Weak Ergodicity Breaking WCHAOS 2011

Weak Ergodicity Breaking WCHAOS 2011 Weak Ergodicity Breaking Eli Barkai Bar-Ilan University Bel, Burov, Korabel, Margolin, Rebenshtok WCHAOS 211 Outline Single molecule experiments exhibit weak ergodicity breaking. Blinking quantum dots,

More information

Stochastic equations for thermodynamics

Stochastic equations for thermodynamics J. Chem. Soc., Faraday Trans. 93 (1997) 1751-1753 [arxiv 1503.09171] Stochastic equations for thermodynamics Roumen Tsekov Department of Physical Chemistry, University of Sofia, 1164 Sofia, ulgaria The

More information

CONTROLLING IN BETWEEN THE LORENZ AND THE CHEN SYSTEMS

CONTROLLING IN BETWEEN THE LORENZ AND THE CHEN SYSTEMS International Journal of Bifurcation and Chaos, Vol. 12, No. 6 (22) 1417 1422 c World Scientific Publishing Company CONTROLLING IN BETWEEN THE LORENZ AND THE CHEN SYSTEMS JINHU LÜ Institute of Systems

More information

Weak Ergodicity Breaking

Weak Ergodicity Breaking Weak Ergodicity Breaking Eli Barkai Bar-Ilan University 215 Ergodicity Ergodicity: time averages = ensemble averages. x = lim t t x(τ)dτ t. x = xp eq (x)dx. Ergodicity out of equilibrium δ 2 (, t) = t

More information

Unravelling the biochemical reaction kinetics from time-series data

Unravelling the biochemical reaction kinetics from time-series data Unravelling the biochemical reaction kinetics from time-series data Santiago Schnell Indiana University School of Informatics and Biocomplexity Institute Email: schnell@indiana.edu WWW: http://www.informatics.indiana.edu/schnell

More information

Control and synchronization of Julia sets of the complex dissipative standard system

Control and synchronization of Julia sets of the complex dissipative standard system Nonlinear Analysis: Modelling and Control, Vol. 21, No. 4, 465 476 ISSN 1392-5113 http://dx.doi.org/10.15388/na.2016.4.3 Control and synchronization of Julia sets of the complex dissipative standard system

More information

56:198:582 Biological Networks Lecture 9

56:198:582 Biological Networks Lecture 9 56:198:582 Biological Networks Lecture 9 The Feed-Forward Loop Network Motif Subgraphs in random networks We have discussed the simplest network motif, self-regulation, a pattern with one node We now consider

More information

Information Landscape and Flux, Mutual Information Rate Decomposition and Connections to Entropy Production

Information Landscape and Flux, Mutual Information Rate Decomposition and Connections to Entropy Production entropy Article Information Landscape and Flux, Mutual Information Rate Decomposition and Connections to Entropy Production Qian Zeng and Jin Wang,2, * State Key Laboratory of Electroanalytical Chemistry,

More information

L3.1: Circuits: Introduction to Transcription Networks. Cellular Design Principles Prof. Jenna Rickus

L3.1: Circuits: Introduction to Transcription Networks. Cellular Design Principles Prof. Jenna Rickus L3.1: Circuits: Introduction to Transcription Networks Cellular Design Principles Prof. Jenna Rickus In this lecture Cognitive problem of the Cell Introduce transcription networks Key processing network

More information

Lecture 1 Modeling in Biology: an introduction

Lecture 1 Modeling in Biology: an introduction Lecture 1 in Biology: an introduction Luca Bortolussi 1 Alberto Policriti 2 1 Dipartimento di Matematica ed Informatica Università degli studi di Trieste Via Valerio 12/a, 34100 Trieste. luca@dmi.units.it

More information

MD Thermodynamics. Lecture 12 3/26/18. Harvard SEAS AP 275 Atomistic Modeling of Materials Boris Kozinsky

MD Thermodynamics. Lecture 12 3/26/18. Harvard SEAS AP 275 Atomistic Modeling of Materials Boris Kozinsky MD Thermodynamics Lecture 1 3/6/18 1 Molecular dynamics The force depends on positions only (not velocities) Total energy is conserved (micro canonical evolution) Newton s equations of motion (second order

More information

Department of Applied Mathematics, University of Washington, Seattle, WA 98195, USA

Department of Applied Mathematics, University of Washington, Seattle, WA 98195, USA Int. J. Mol. Sci. 2010, 11, 3472-3500; doi:10.3390/ijms11093472 Review OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms The Chemical Master Equation Approach

More information