Structured Stochastic Uncertainty

Size: px
Start display at page:

Download "Structured Stochastic Uncertainty"

Transcription

1 Structured Stochastic Uncertaint Bassam Bamieh Mechanical Engineering, UNIVERSITY OF CALIFORNIA AT SANTA BARBARA () Allerton, Oct 12 1 / 13

2 Stochastic Perturbations u M Perturbations are iid gains: u(k) = (k) (k) M is LTI nec & suff condition is the H 2 norm kmk 2 2 < 1 () Allerton, Oct 12 2 / 13

3 Stochastic Perturbations u M Perturbations are iid gains: u(k) = (k) (k) M is LTI nec & suff condition is the H 2 norm kmk 2 2 < 1 LMI proof (S. Bod, 84) x(k + 1) = (A + BC (k)) x(k) Linear Sstem w Mult. Noise P(k) :=E x(k)x(k) T ) P(k + 1) = A P(k) A T + BC P(k) C T B T LMI cond. for P(K) k!1! 0 = LMI cond. for kmk 2 2 < 1 () Allerton, Oct 12 2 / 13

4 Structured Stochastic Perturbations Perturbations 1 (t),..., n(t) are iid G n 3 5 nec & suff cond. for Mean Square Stabilit given b matrix of H 2 norms! 02 kg 11 k 2 2 kg 1n k C. 5A < 1 kg n1 k 2 2 kg nn k 2 2 (Hinrichsen&Pritchard 95, Lu&Skelton 02, Elia 04) () Allerton, Oct 12 3 / 13

5 Structured Stochastic Perturbations Perturbations 1 (t),..., n(t) are iid G n 3 5 nec & suff cond. for Mean Square Stabilit given b matrix of H 2 norms! 02 kg 11 k 2 2 kg 1n k C. 5A < 1 kg n1 k 2 2 kg nn k 2 2 (Hinrichsen&Pritchard 95, Lu&Skelton 02, Elia 04) Proof involves LMIs and scalings cf. time-varing L 2 and L 1 -norm bounded perturbations Not clear how to generalize to correlated s () Allerton, Oct 12 3 / 13

6 Applications of Structured Stochastic Perturbations Network dnamics with link/node failures, etc. (Elia, Patterson & Bamieh) x(t + 1) =Ax(t) +! MX µ i (t) b i b i i=1 x(t) Linear sstem w. multiplicative noise () Allerton, Oct 12 4 / 13

7 Applications of Structured Stochastic Perturbations Network dnamics with link/node failures, etc. PDEs with random coefficients (Elia, Patterson & Bamieh) ( discrete space ) ( continuous (x, t) = (A + B (x, t) C) (x, t) I e.g. problems from (x, t) = ( apple + apple(x, (x, apple x (x, t) x G () Allerton, Oct 12 4 / 13

8 Stochastic Hdrodnamic Stabilit and Turbulence x Uncertain base flow U(x,, t) = Ū(, t) + (x,, t) spatiotemporal correlations of should be dialed into the model () Allerton, Oct 12 5 / 13

9 AN INPUT-OUTPUT APPROACH TO STRUCTURED STOCHASTIC PERTURBATIONS () Allerton, Oct 12 6 / 13

10 An IO Approach to Stochastic Stabilit Look at the dnamics of the correlation matrix sequences uk, etc. stochastic vector signals u d z G 1 deterministic, matrix-valued signals d u e n 3 Gk l ul G k l=0 l w z n 82 <6 := E 6 4 : k X 7 7[ 1 5 n] 9 = ek e w " monotone sstem ; The loop gain operator plas a central role! 1 X L(X) := Gl X Gl l=0 complexit of L scales w # of perturbations, not state space dimension B. B AMIEH, Structured stochastic uncertaint, th Annual Allerton Conference. AFOSR, Aug / 28

11 IO notion of Mean Square Stabilit Def: G is Mean-Square Stable (MSS) if for white input process u, output process has uniforml bounded variance k = X l g k l u l k = X l g 2 k l l G u u G k := E{ k k } apple X k g 2 k! {z } sup k u k k 2 Z + = kgk 2 2 k u k 1 () Allerton, Oct 12 7 / 13

12 IO notion of Mean Square Stabilit Def: G is Mean-Square Stable (MSS) if for white input process u, output process has uniforml bounded variance k = X gk l ul k = l u G X g2k l l l G u MSS of feedback sstems (insert disturbances, d1, d2 white) u1 d1 2 G1 G2 d1 1 u2 d2 u1 1 2 u2 d2 MSS Feedback Stabilit, All internal signals have uniforml bounded variance sequences () Allerton, Oct 12 7 / 13

13 nec & suff Small Gain Condition (SISO) d u G z e w iid ) z is white ( whiten s e) ) zk = e k u is also white ) k apple kgk 2 2 u k is colored, but uncorrelated with w ) ek = k + w go around the loop with the variance sequences 1 kgk 2 2 k u k 1 apple w + d suff () Allerton, Oct 12 8 / 13

14 nec & suff Small Gain Condition (SISO) d u G z e w iid ) z is white ( whiten s e) ) zk = e k u is also white ) k apple kgk 2 2 u k is colored, but uncorrelated with w ) ek = k + w go around the loop with the variance sequences 1 kgk 2 2 k u k 1 apple w + d suff kgk ) uk unbounded as k! 1 nec don t need to construct destabilizing s! () Allerton, Oct 12 8 / 13

15 nec & suff Structured Small Gain Condition Look at the dnamics of the correlation matrix sequences uk, etc. d u Ʃd G Ʃu k X Gk l ul G k Ʃ l l=0 z n < 6 7 := E : n () 3 e 5 w $ 1 n 9 = ; Ʃz ek Ʃe Ʃw " monotone sstem Allerton, Oct 12 9 / 13

16 nec & suff Structured Small Gain Condition Look at the dnamics of the correlation matrix sequences uk, etc. d u Ʃd G Ʃu k X Gk l ul G k Ʃ l l=0 z n < 6 7 := E : n 3 e 5 w $ 1 n 9 = ; Ʃz going around the loop I L ( uk ) d +! 1 X L(X) := Gl X G l ek Ʃe Ʃw " monotone sstem w loop gain l=0 () Allerton, Oct 12 9 / 13

17 Properties of the Loop Operator L L(X) :=! 1X G l X G l l=0 L maps pos. s. def. matrices to pos. s. def. matrices It is thus cone invariant for the cone of pos. s. def. matrices & 9 a Perron eigenvalue and corresponding pos. s def. eigenmatrix (Parrilo & Khatri 00) () Allerton, Oct / 13

18 Properties of the Loop Operator L L(X) :=! 1X G l X G l l=0 L maps pos. s. def. matrices to pos. s. def. matrices It is thus cone invariant for the cone of pos. s. def. matrices & 9 a Perron eigenvalue and corresponding pos. s def. eigenmatrix these properties impl (1 (L)) uk apple I MSS stabilit condition (nec & suff) (Parrilo & Khatri 00) L ( uk ) apple d + w (L) < 1 () Allerton, Oct / 13

19 Special Case of iid s s iid! = I!! 1X 1X L(X) := I G l X G l = diag G l X G l l=0 l=0 The eigen-matrices of L must be diagonal matrices! L(X) = X How does L act on diagonal matrices? " w1... w n Therefore # = L " v1... v n #!, " w1 #.. w n apple eigs(l) = eigs kg ij k kg 11k 2 2 kg 1nk 2 " 2 v1 # 6 = kg n1k 2 2 kg nnk 2 v n 2 () Allerton, Oct / 13

20 Mutuall Correlated s (but temporall white)! 1X L(X) := G l X G l l=0 L : R n n! R n n In general, it involves terms like 1X g ij (k) g lm (k) k=0 inner products between subsstems impulse responses At worst: L represented as an n 2 n 2 matrix () Allerton, Oct / 13

21 Further Work Robust Performance and Correlations Spatial correlations in s and G have special structure e.g. spatial invariance ) simpler conditions useful for applications to large-scale sstems Partial Differential Equations L is a map on pos. s. spatial operators Temporal correlations in s??? probabl involves other aggregates of the impulse response sequence {g k } () Allerton, Oct / 13

Structured Stochastic Uncertainty

Structured Stochastic Uncertainty Structured Stochastic Uncertainty Bassam Bamieh Department of Mechanical Engineering University of California at Santa Barbara Santa Barbara, CA, 9306 bamieh@engineeringucsbedu Abstract We consider linear

More information

An Input-Output Approach to Structured Stochastic Uncertainty

An Input-Output Approach to Structured Stochastic Uncertainty 1 An Input-Output Approach to Structured Stochastic Uncertainty Bassam Bamieh, Fellow, IEEE, and Maurice Filo, Member, IEEE arxiv:1806.07473v1 [cs.sy] 19 Jun 2018 Abstract We consider linear time invariant

More information

Discrete and continuous dynamic systems

Discrete and continuous dynamic systems Discrete and continuous dynamic systems Bounded input bounded output (BIBO) and asymptotic stability Continuous and discrete time linear time-invariant systems Katalin Hangos University of Pannonia Faculty

More information

Linear System Theory. Wonhee Kim Lecture 1. March 7, 2018

Linear System Theory. Wonhee Kim Lecture 1. March 7, 2018 Linear System Theory Wonhee Kim Lecture 1 March 7, 2018 1 / 22 Overview Course Information Prerequisites Course Outline What is Control Engineering? Examples of Control Systems Structure of Control Systems

More information

Identification of Nonlinear Dynamic Systems with Multiple Inputs and Single Output using discrete-time Volterra Type Equations

Identification of Nonlinear Dynamic Systems with Multiple Inputs and Single Output using discrete-time Volterra Type Equations Identification of Nonlinear Dnamic Sstems with Multiple Inputs and Single Output using discrete-time Volterra Tpe Equations Thomas Treichl, Stefan Hofmann, Dierk Schröder Institute for Electrical Drive

More information

Communication constraints and latency in Networked Control Systems

Communication constraints and latency in Networked Control Systems Communication constraints and latency in Networked Control Systems João P. Hespanha Center for Control Engineering and Computation University of California Santa Barbara In collaboration with Antonio Ortega

More information

Iterative Learning Control Analysis and Design I

Iterative Learning Control Analysis and Design I Iterative Learning Control Analysis and Design I Electronics and Computer Science University of Southampton Southampton, SO17 1BJ, UK etar@ecs.soton.ac.uk http://www.ecs.soton.ac.uk/ Contents Basics Representations

More information

A Convex Characterization of Distributed Control Problems in Spatially Invariant Systems with Communication Constraints

A Convex Characterization of Distributed Control Problems in Spatially Invariant Systems with Communication Constraints A Convex Characterization of Distributed Control Problems in Spatially Invariant Systems with Communication Constraints Bassam Bamieh Petros G. Voulgaris Revised Dec, 23 Abstract In this paper we consider

More information

Numerical atmospheric turbulence models and LQG control for adaptive optics system

Numerical atmospheric turbulence models and LQG control for adaptive optics system Numerical atmospheric turbulence models and LQG control for adaptive optics system Jean-Pierre FOLCHER, Marcel CARBILLET UMR6525 H. Fizeau, Université de Nice Sophia-Antipolis/CNRS/Observatoire de la Côte

More information

Understanding and Controlling Turbulent Shear Flows

Understanding and Controlling Turbulent Shear Flows Understanding and Controlling Turbulent Shear Flows Bassam Bamieh Department of Mechanical Engineering University of California, Santa Barbara http://www.engineering.ucsb.edu/ bamieh 23rd Benelux Meeting

More information

ROBUST STABILITY AND PERFORMANCE ANALYSIS* [8 # ]

ROBUST STABILITY AND PERFORMANCE ANALYSIS* [8 # ] ROBUST STABILITY AND PERFORMANCE ANALYSIS* [8 # ] General control configuration with uncertainty [8.1] For our robustness analysis we use a system representation in which the uncertain perturbations are

More information

Statistics 910, #5 1. Regression Methods

Statistics 910, #5 1. Regression Methods Statistics 910, #5 1 Overview Regression Methods 1. Idea: effects of dependence 2. Examples of estimation (in R) 3. Review of regression 4. Comparisons and relative efficiencies Idea Decomposition Well-known

More information

Systems Theory and Shear Flow Turbulence Linear Multivariable Systems Theory is alive and well

Systems Theory and Shear Flow Turbulence Linear Multivariable Systems Theory is alive and well Systems Theory and Shear Flow Turbulence Linear Multivariable Systems Theory is alive and well Dedicated to J. Boyd Pearson Bassam Bamieh Mechanical & Environmental Engineering University of California

More information

Control Systems I. Lecture 2: Modeling. Suggested Readings: Åström & Murray Ch. 2-3, Guzzella Ch Emilio Frazzoli

Control Systems I. Lecture 2: Modeling. Suggested Readings: Åström & Murray Ch. 2-3, Guzzella Ch Emilio Frazzoli Control Systems I Lecture 2: Modeling Suggested Readings: Åström & Murray Ch. 2-3, Guzzella Ch. 2-3 Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich September 29, 2017 E. Frazzoli

More information

Semidefinite Programming Basics and Applications

Semidefinite Programming Basics and Applications Semidefinite Programming Basics and Applications Ray Pörn, principal lecturer Åbo Akademi University Novia University of Applied Sciences Content What is semidefinite programming (SDP)? How to represent

More information

Structured Uncertainty and Robust Performance

Structured Uncertainty and Robust Performance Structured Uncertainty and Robust Performance ELEC 571L Robust Multivariable Control prepared by: Greg Stewart Devron Profile Control Solutions Outline Structured uncertainty: motivating example. Structured

More information

Linear Matrix Inequalities in Robust Control. Venkataramanan (Ragu) Balakrishnan School of ECE, Purdue University MTNS 2002

Linear Matrix Inequalities in Robust Control. Venkataramanan (Ragu) Balakrishnan School of ECE, Purdue University MTNS 2002 Linear Matrix Inequalities in Robust Control Venkataramanan (Ragu) Balakrishnan School of ECE, Purdue University MTNS 2002 Objective A brief introduction to LMI techniques for Robust Control Emphasis on

More information

FEL3210 Multivariable Feedback Control

FEL3210 Multivariable Feedback Control FEL3210 Multivariable Feedback Control Lecture 6: Robust stability and performance in MIMO systems [Ch.8] Elling W. Jacobsen, Automatic Control Lab, KTH Lecture 6: Robust Stability and Performance () FEL3210

More information

Intro. Computer Control Systems: F9

Intro. Computer Control Systems: F9 Intro. Computer Control Systems: F9 State-feedback control and observers Dave Zachariah Dept. Information Technology, Div. Systems and Control 1 / 21 dave.zachariah@it.uu.se F8: Quiz! 2 / 21 dave.zachariah@it.uu.se

More information

Control Systems Design

Control Systems Design ELEC4410 Control Systems Design Lecture 13: Stability Julio H. Braslavsky julio@ee.newcastle.edu.au School of Electrical Engineering and Computer Science Lecture 13: Stability p.1/20 Outline Input-Output

More information

EEE582 Homework Problems

EEE582 Homework Problems EEE582 Homework Problems HW. Write a state-space realization of the linearized model for the cruise control system around speeds v = 4 (Section.3, http://tsakalis.faculty.asu.edu/notes/models.pdf). Use

More information

A State-Space Approach to Control of Interconnected Systems

A State-Space Approach to Control of Interconnected Systems A State-Space Approach to Control of Interconnected Systems Part II: General Interconnections Cédric Langbort Center for the Mathematics of Information CALIFORNIA INSTITUTE OF TECHNOLOGY clangbort@ist.caltech.edu

More information

Positive Markov Jump Linear Systems (PMJLS) with applications

Positive Markov Jump Linear Systems (PMJLS) with applications Positive Markov Jump Linear Systems (PMJLS) with applications P. Bolzern, P. Colaneri DEIB, Politecnico di Milano - Italy December 12, 2015 Summary Positive Markov Jump Linear Systems Mean stability Input-output

More information

Outline. Linear Matrix Inequalities and Robust Control. Outline. Time-Invariant Parametric Uncertainty. Robust stability analysis

Outline. Linear Matrix Inequalities and Robust Control. Outline. Time-Invariant Parametric Uncertainty. Robust stability analysis Outline Linear Matrix Inequalities and Robust Control Carsten Scherer and Siep Weiland 7th Elgersburg School on Mathematical Sstems Theor Class 4 version March 6, 2015 1 Robust Stabilit Against Uncertainties

More information

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 57, NO. 9, SEPTEMBER

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 57, NO. 9, SEPTEMBER IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL 57, NO 9, SEPTEMBER 2012 2235 Coherence in Large-Scale Networks: Dimension-Dependent Limitations of Local Feedback Bassam Bamieh, Fellow, IEEE, Mihailo R Jovanović,

More information

Here represents the impulse (or delta) function. is an diagonal matrix of intensities, and is an diagonal matrix of intensities.

Here represents the impulse (or delta) function. is an diagonal matrix of intensities, and is an diagonal matrix of intensities. 19 KALMAN FILTER 19.1 Introduction In the previous section, we derived the linear quadratic regulator as an optimal solution for the fullstate feedback control problem. The inherent assumption was that

More information

Control Systems. Linear Algebra topics. L. Lanari

Control Systems. Linear Algebra topics. L. Lanari Control Systems Linear Algebra topics L Lanari outline basic facts about matrices eigenvalues - eigenvectors - characteristic polynomial - algebraic multiplicity eigenvalues invariance under similarity

More information

Australian National University WORKSHOP ON SYSTEMS AND CONTROL

Australian National University WORKSHOP ON SYSTEMS AND CONTROL Australian National University WORKSHOP ON SYSTEMS AND CONTROL Canberra, AU December 7, 2017 Australian National University WORKSHOP ON SYSTEMS AND CONTROL A Distributed Algorithm for Finding a Common

More information

Chapter 9 Observers, Model-based Controllers 9. Introduction In here we deal with the general case where only a subset of the states, or linear combin

Chapter 9 Observers, Model-based Controllers 9. Introduction In here we deal with the general case where only a subset of the states, or linear combin Lectures on Dynamic Systems and Control Mohammed Dahleh Munther A. Dahleh George Verghese Department of Electrical Engineering and Computer Science Massachuasetts Institute of Technology c Chapter 9 Observers,

More information

Properties of Open-Loop Controllers

Properties of Open-Loop Controllers Properties of Open-Loop Controllers Sven Laur University of Tarty 1 Basics of Open-Loop Controller Design Two most common tasks in controller design is regulation and signal tracking. Regulating controllers

More information

BACKWARD FOKKER-PLANCK EQUATION FOR DETERMINATION OF MODEL PREDICTABILITY WITH UNCERTAIN INITIAL ERRORS

BACKWARD FOKKER-PLANCK EQUATION FOR DETERMINATION OF MODEL PREDICTABILITY WITH UNCERTAIN INITIAL ERRORS BACKWARD FOKKER-PLANCK EQUATION FOR DETERMINATION OF MODEL PREDICTABILITY WITH UNCERTAIN INITIAL ERRORS. INTRODUCTION It is widel recognized that uncertaint in atmospheric and oceanic models can be traced

More information

Economics of Networks Social Learning

Economics of Networks Social Learning Economics of Networks Social Learning Evan Sadler Massachusetts Institute of Technology Evan Sadler Social Learning 1/38 Agenda Recap of rational herding Observational learning in a network DeGroot learning

More information

8 A First Glimpse on Design with LMIs

8 A First Glimpse on Design with LMIs 8 A First Glimpse on Design with LMIs 8.1 Conceptual Design Problem Given a linear time invariant system design a linear time invariant controller or filter so as to guarantee some closed loop indices

More information

Convex Optimization of Graph Laplacian Eigenvalues

Convex Optimization of Graph Laplacian Eigenvalues Convex Optimization of Graph Laplacian Eigenvalues Stephen Boyd Abstract. We consider the problem of choosing the edge weights of an undirected graph so as to maximize or minimize some function of the

More information

Empirical Gramians and Balanced Truncation for Model Reduction of Nonlinear Systems

Empirical Gramians and Balanced Truncation for Model Reduction of Nonlinear Systems Empirical Gramians and Balanced Truncation for Model Reduction of Nonlinear Systems Antoni Ras Departament de Matemàtica Aplicada 4 Universitat Politècnica de Catalunya Lecture goals To review the basic

More information

Exam. 135 minutes, 15 minutes reading time

Exam. 135 minutes, 15 minutes reading time Exam August 6, 208 Control Systems II (5-0590-00) Dr. Jacopo Tani Exam Exam Duration: 35 minutes, 5 minutes reading time Number of Problems: 35 Number of Points: 47 Permitted aids: 0 pages (5 sheets) A4.

More information

Blind Identification of FIR Systems and Deconvolution of White Input Sequences

Blind Identification of FIR Systems and Deconvolution of White Input Sequences Blind Identification of FIR Systems and Deconvolution of White Input Sequences U. SOVERINI, P. CASTALDI, R. DIVERSI and R. GUIDORZI Dipartimento di Elettronica, Informatica e Sistemistica Università di

More information

Distributed online optimization over jointly connected digraphs

Distributed online optimization over jointly connected digraphs Distributed online optimization over jointly connected digraphs David Mateos-Núñez Jorge Cortés University of California, San Diego {dmateosn,cortes}@ucsd.edu Mathematical Theory of Networks and Systems

More information

Lecture 6. Chapter 8: Robust Stability and Performance Analysis for MIMO Systems. Eugenio Schuster.

Lecture 6. Chapter 8: Robust Stability and Performance Analysis for MIMO Systems. Eugenio Schuster. Lecture 6 Chapter 8: Robust Stability and Performance Analysis for MIMO Systems Eugenio Schuster schuster@lehigh.edu Mechanical Engineering and Mechanics Lehigh University Lecture 6 p. 1/73 6.1 General

More information

Vulnerability Analysis of Feedback Systems. Nathan Woodbury Advisor: Dr. Sean Warnick

Vulnerability Analysis of Feedback Systems. Nathan Woodbury Advisor: Dr. Sean Warnick Vulnerability Analysis of Feedback Systems Nathan Woodbury Advisor: Dr. Sean Warnick Outline : Vulnerability Mathematical Preliminaries Three System Representations & Their Structures Open-Loop Results:

More information

An LQ R weight selection approach to the discrete generalized H 2 control problem

An LQ R weight selection approach to the discrete generalized H 2 control problem INT. J. CONTROL, 1998, VOL. 71, NO. 1, 93± 11 An LQ R weight selection approach to the discrete generalized H 2 control problem D. A. WILSON², M. A. NEKOUI² and G. D. HALIKIAS² It is known that a generalized

More information

Statistical signal processing

Statistical signal processing Statistical signal processing Short overview of the fundamentals Outline Random variables Random processes Stationarity Ergodicity Spectral analysis Random variable and processes Intuition: A random variable

More information

Semidefinite and Second Order Cone Programming Seminar Fall 2012 Project: Robust Optimization and its Application of Robust Portfolio Optimization

Semidefinite and Second Order Cone Programming Seminar Fall 2012 Project: Robust Optimization and its Application of Robust Portfolio Optimization Semidefinite and Second Order Cone Programming Seminar Fall 2012 Project: Robust Optimization and its Application of Robust Portfolio Optimization Instructor: Farid Alizadeh Author: Ai Kagawa 12/12/2012

More information

Modeling flow statistics using convex optimization

Modeling flow statistics using convex optimization Modeling flow statistics using convex optimization Abstract A method is proposed to estimate the covariance of disturbances to a stable linear system when its state covariance is known and a dynamic model

More information

ECE504: Lecture 8. D. Richard Brown III. Worcester Polytechnic Institute. 28-Oct-2008

ECE504: Lecture 8. D. Richard Brown III. Worcester Polytechnic Institute. 28-Oct-2008 ECE504: Lecture 8 D. Richard Brown III Worcester Polytechnic Institute 28-Oct-2008 Worcester Polytechnic Institute D. Richard Brown III 28-Oct-2008 1 / 30 Lecture 8 Major Topics ECE504: Lecture 8 We are

More information

RANGE CONTROL MPC APPROACH FOR TWO-DIMENSIONAL SYSTEM 1

RANGE CONTROL MPC APPROACH FOR TWO-DIMENSIONAL SYSTEM 1 RANGE CONTROL MPC APPROACH FOR TWO-DIMENSIONAL SYSTEM Jirka Roubal Vladimír Havlena Department of Control Engineering, Facult of Electrical Engineering, Czech Technical Universit in Prague Karlovo náměstí

More information

Distributed Control of Spatially Invariant Systems

Distributed Control of Spatially Invariant Systems IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 47, NO. 7, JULY 2002 1091 Distributed Control of Spatially Invariant Systems Bassam Bamieh, Member, IEEE, Fernando Paganini, Member, IEEE, and Munther A. Dahleh,

More information

Fall 線性系統 Linear Systems. Chapter 08 State Feedback & State Estimators (SISO) Feng-Li Lian. NTU-EE Sep07 Jan08

Fall 線性系統 Linear Systems. Chapter 08 State Feedback & State Estimators (SISO) Feng-Li Lian. NTU-EE Sep07 Jan08 Fall 2007 線性系統 Linear Systems Chapter 08 State Feedback & State Estimators (SISO) Feng-Li Lian NTU-EE Sep07 Jan08 Materials used in these lecture notes are adopted from Linear System Theory & Design, 3rd.

More information

A Strict Stability Limit for Adaptive Gradient Type Algorithms

A Strict Stability Limit for Adaptive Gradient Type Algorithms c 009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional A Strict Stability Limit for Adaptive Gradient Type Algorithms

More information

Robustness of Discrete Periodically Time-Varying Control under LTI Unstructured Perturbations

Robustness of Discrete Periodically Time-Varying Control under LTI Unstructured Perturbations 1370 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 45, NO. 7, JULY 000 Robustness of Discrete Periodically Time-Varying Control under LTI Unstructured Perturbations Jingxin Zhang and Cishen Zhang Abstract

More information

On using the streamwise traveling waves for variance suppression in channel flows

On using the streamwise traveling waves for variance suppression in channel flows Proceedings of the 2007 American Control Conference Marriott Marquis Hotel at Times Square New York City, USA, July 11-13, 2007 WeC19.4 On using the streamwise traveling waves for variance suppression

More information

FEL3210 Multivariable Feedback Control

FEL3210 Multivariable Feedback Control FEL3210 Multivariable Feedback Control Lecture 8: Youla parametrization, LMIs, Model Reduction and Summary [Ch. 11-12] Elling W. Jacobsen, Automatic Control Lab, KTH Lecture 8: Youla, LMIs, Model Reduction

More information

Glocal Control for Hierarchical Dynamical Systems

Glocal Control for Hierarchical Dynamical Systems Lecture Series, TU Munich October 22, 29 & November 5, 2013 Glocal Control for Hierarchical Dynamical Systems Theoretical Foundations with Applications in Energy Networks Shinji HARA The University of

More information

Control Systems I. Lecture 2: Modeling and Linearization. Suggested Readings: Åström & Murray Ch Jacopo Tani

Control Systems I. Lecture 2: Modeling and Linearization. Suggested Readings: Åström & Murray Ch Jacopo Tani Control Systems I Lecture 2: Modeling and Linearization Suggested Readings: Åström & Murray Ch. 2-3 Jacopo Tani Institute for Dynamic Systems and Control D-MAVT ETH Zürich September 28, 2018 J. Tani, E.

More information

6.241 Dynamic Systems and Control

6.241 Dynamic Systems and Control 6.241 Dynamic Systems and Control Lecture 12: I/O Stability Readings: DDV, Chapters 15, 16 Emilio Frazzoli Aeronautics and Astronautics Massachusetts Institute of Technology March 14, 2011 E. Frazzoli

More information

ẋ n = f n (x 1,...,x n,u 1,...,u m ) (5) y 1 = g 1 (x 1,...,x n,u 1,...,u m ) (6) y p = g p (x 1,...,x n,u 1,...,u m ) (7)

ẋ n = f n (x 1,...,x n,u 1,...,u m ) (5) y 1 = g 1 (x 1,...,x n,u 1,...,u m ) (6) y p = g p (x 1,...,x n,u 1,...,u m ) (7) EEE582 Topical Outline A.A. Rodriguez Fall 2007 GWC 352, 965-3712 The following represents a detailed topical outline of the course. It attempts to highlight most of the key concepts to be covered and

More information

16.584: Random Vectors

16.584: Random Vectors 1 16.584: Random Vectors Define X : (X 1, X 2,..X n ) T : n-dimensional Random Vector X 1 : X(t 1 ): May correspond to samples/measurements Generalize definition of PDF: F X (x) = P[X 1 x 1, X 2 x 2,...X

More information

CHAPTER 6 FAST OUTPUT SAMPLING CONTROL TECHNIQUE

CHAPTER 6 FAST OUTPUT SAMPLING CONTROL TECHNIQUE 80 CHAPTER 6 FAST OUTPUT SAMPLING CONTROL TECHNIQUE 6.1 GENERAL In this chapter a control strategy for hyperthermia system is developed using fast output sampling feedback control law which is a type of

More information

Positive and Monotone Systems

Positive and Monotone Systems History of Control, 2012, Lund May 29, 2012 Outline. 1 Positive Systems Definition Fathers Occurrence Example Publications. 2 Monotone Systems Definition Early days Publications Positive System A continuous

More information

d A 0 + m t k A k 0 whenever λ min (B k (x)) t k λ max (B k (x)) for k = 1, 2,..., m x n B n (k).

d A 0 + m t k A k 0 whenever λ min (B k (x)) t k λ max (B k (x)) for k = 1, 2,..., m x n B n (k). MATRIX CUBES PARAMETERIZED BY EIGENVALUES JIAWANG NIE AND BERND STURMFELS Abstract. An elimination problem in semidefinite programming is solved by means of tensor algebra. It concerns families of matrix

More information

Solution of Linear State-space Systems

Solution of Linear State-space Systems Solution of Linear State-space Systems Homogeneous (u=0) LTV systems first Theorem (Peano-Baker series) The unique solution to x(t) = (t, )x 0 where The matrix function is given by is called the state

More information

Modelling and Control of Dynamic Systems. Stability of Linear Systems. Sven Laur University of Tartu

Modelling and Control of Dynamic Systems. Stability of Linear Systems. Sven Laur University of Tartu Modelling and Control of Dynamic Systems Stability of Linear Systems Sven Laur University of Tartu Motivating Example Naive open-loop control r[k] Controller Ĉ[z] u[k] ε 1 [k] System Ĝ[z] y[k] ε 2 [k]

More information

Worksheet n 6: LQG control. The case of open-cavity flow

Worksheet n 6: LQG control. The case of open-cavity flow Worksheet n 6: LQG control The case of open-cavity flow We consider the case of an open cavity at Re=6250, whose reduced-order model was obtained by the ERA algorithm for the stable subspace and an exact

More information

Networked Control System Protocols Modeling & Analysis using Stochastic Impulsive Systems

Networked Control System Protocols Modeling & Analysis using Stochastic Impulsive Systems Networked Control System Protocols Modeling & Analysis using Stochastic Impulsive Systems João P. Hespanha Center for Control Dynamical Systems and Computation Talk outline Examples feedback over shared

More information

The Kalman-Yakubovich-Popov Lemma for Differential-Algebraic Equations with Applications

The Kalman-Yakubovich-Popov Lemma for Differential-Algebraic Equations with Applications MAX PLANCK INSTITUTE Elgersburg Workshop Elgersburg February 11-14, 2013 The Kalman-Yakubovich-Popov Lemma for Differential-Algebraic Equations with Applications Timo Reis 1 Matthias Voigt 2 1 Department

More information

Robust Linear Quantum Systems Theory

Robust Linear Quantum Systems Theory Workshop On Uncertain Dynamical Systems Udine 2011 1 Robust Linear Quantum Systems Theory Ian R. Petersen School of Engineering and Information Technology, University of New South Wales @ the Australian

More information

Cover page. : On-line damage identication using model based orthonormal. functions. Author : Raymond A. de Callafon

Cover page. : On-line damage identication using model based orthonormal. functions. Author : Raymond A. de Callafon Cover page Title : On-line damage identication using model based orthonormal functions Author : Raymond A. de Callafon ABSTRACT In this paper, a new on-line damage identication method is proposed for monitoring

More information

6.241 Dynamic Systems and Control

6.241 Dynamic Systems and Control 6.41 Dynamic Systems and Control Lecture 5: H Synthesis Emilio Frazzoli Aeronautics and Astronautics Massachusetts Institute of Technology May 11, 011 E. Frazzoli (MIT) Lecture 5: H Synthesis May 11, 011

More information

Stochastic Optimal Control!

Stochastic Optimal Control! Stochastic Control! Robert Stengel! Robotics and Intelligent Systems, MAE 345, Princeton University, 2015 Learning Objectives Overview of the Linear-Quadratic-Gaussian (LQG) Regulator Introduction to Stochastic

More information

Partial Eigenvalue Assignment in Linear Systems: Existence, Uniqueness and Numerical Solution

Partial Eigenvalue Assignment in Linear Systems: Existence, Uniqueness and Numerical Solution Partial Eigenvalue Assignment in Linear Systems: Existence, Uniqueness and Numerical Solution Biswa N. Datta, IEEE Fellow Department of Mathematics Northern Illinois University DeKalb, IL, 60115 USA e-mail:

More information

Controlo Switched Systems: Mixing Logic with Differential Equations. João P. Hespanha. University of California at Santa Barbara.

Controlo Switched Systems: Mixing Logic with Differential Equations. João P. Hespanha. University of California at Santa Barbara. Controlo 00 5 th Portuguese Conference on Automatic Control University of Aveiro,, September 5-7, 5 00 Switched Systems: Mixing Logic with Differential Equations João P. Hespanha University of California

More information

Direct Adaptive NN Control of MIMO Nonlinear Discrete-Time Systems using Discrete Nussbaum Gain

Direct Adaptive NN Control of MIMO Nonlinear Discrete-Time Systems using Discrete Nussbaum Gain Direct Adaptive NN Control of MIMO Nonlinear Discrete-Time Systems using Discrete Nussbaum Gain L. F. Zhai 1, C. G. Yang 2, S. S. Ge 2, T. Y. Tai 1, and T. H. Lee 2 1 Key Laboratory of Process Industry

More information

Exercises * on Principal Component Analysis

Exercises * on Principal Component Analysis Exercises * on Principal Component Analysis Laurenz Wiskott Institut für Neuroinformatik Ruhr-Universität Bochum, Germany, EU 4 February 207 Contents Intuition 3. Problem statement..........................................

More information

Matrix Factorizations

Matrix Factorizations 1 Stat 540, Matrix Factorizations Matrix Factorizations LU Factorization Definition... Given a square k k matrix S, the LU factorization (or decomposition) represents S as the product of two triangular

More information

Feedback Stabilization of Uncertain Systems Using a Stochastic Digital Link

Feedback Stabilization of Uncertain Systems Using a Stochastic Digital Link Feedback Stabilization of Uncertain Systems Using a Stochastic Digital Link Nuno C. Martins, Munther A. Dahleh and Nicola Elia Abstract We study the stabilizability of uncertain systems in the presence

More information

Contents. 1 State-Space Linear Systems 5. 2 Linearization Causality, Time Invariance, and Linearity 31

Contents. 1 State-Space Linear Systems 5. 2 Linearization Causality, Time Invariance, and Linearity 31 Contents Preamble xiii Linear Systems I Basic Concepts 1 I System Representation 3 1 State-Space Linear Systems 5 1.1 State-Space Linear Systems 5 1.2 Block Diagrams 7 1.3 Exercises 11 2 Linearization

More information

Graph and Controller Design for Disturbance Attenuation in Consensus Networks

Graph and Controller Design for Disturbance Attenuation in Consensus Networks 203 3th International Conference on Control, Automation and Systems (ICCAS 203) Oct. 20-23, 203 in Kimdaejung Convention Center, Gwangju, Korea Graph and Controller Design for Disturbance Attenuation in

More information

University of Twente. Faculty of Mathematical Sciences. On stability robustness with respect to LTV uncertainties

University of Twente. Faculty of Mathematical Sciences. On stability robustness with respect to LTV uncertainties Faculty of Mathematical Sciences University of Twente University for Technical and Social Sciences P.O. Box 17 75 AE Enschede The Netherlands Phone: +31-53-48934 Fax: +31-53-4893114 Email: memo@math.utwente.nl

More information

Scientific Computing: Dense Linear Systems

Scientific Computing: Dense Linear Systems Scientific Computing: Dense Linear Systems Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 Course MATH-GA.2043 or CSCI-GA.2112, Spring 2012 February 9th, 2012 A. Donev (Courant Institute)

More information

APPROXIMATE SOLUTION OF A SYSTEM OF LINEAR EQUATIONS WITH RANDOM PERTURBATIONS

APPROXIMATE SOLUTION OF A SYSTEM OF LINEAR EQUATIONS WITH RANDOM PERTURBATIONS APPROXIMATE SOLUTION OF A SYSTEM OF LINEAR EQUATIONS WITH RANDOM PERTURBATIONS P. Date paresh.date@brunel.ac.uk Center for Analysis of Risk and Optimisation Modelling Applications, Department of Mathematical

More information

Lectures 25 & 26: Consensus and vehicular formation problems

Lectures 25 & 26: Consensus and vehicular formation problems EE 8235: Lectures 25 & 26 Lectures 25 & 26: Consensus and vehicular formation problems Consensus Make subsystems (agents, nodes) reach agreement Distributed decision making Vehicular formations How does

More information

Optimal Data and Training Symbol Ratio for Communication over Uncertain Channels

Optimal Data and Training Symbol Ratio for Communication over Uncertain Channels Optimal Data and Training Symbol Ratio for Communication over Uncertain Channels Ather Gattami Ericsson Research Stockholm, Sweden Email: athergattami@ericssoncom arxiv:50502997v [csit] 2 May 205 Abstract

More information

Chapter Robust Performance and Introduction to the Structured Singular Value Function Introduction As discussed in Lecture 0, a process is better desc

Chapter Robust Performance and Introduction to the Structured Singular Value Function Introduction As discussed in Lecture 0, a process is better desc Lectures on Dynamic Systems and Control Mohammed Dahleh Munther A Dahleh George Verghese Department of Electrical Engineering and Computer Science Massachuasetts Institute of Technology c Chapter Robust

More information

Lecture 8 : Eigenvalues and Eigenvectors

Lecture 8 : Eigenvalues and Eigenvectors CPS290: Algorithmic Foundations of Data Science February 24, 2017 Lecture 8 : Eigenvalues and Eigenvectors Lecturer: Kamesh Munagala Scribe: Kamesh Munagala Hermitian Matrices It is simpler to begin with

More information

Quis custodiet ipsos custodes?

Quis custodiet ipsos custodes? Quis custodiet ipsos custodes? James B. Rawlings, Megan Zagrobelny, Luo Ji Dept. of Chemical and Biological Engineering, Univ. of Wisconsin-Madison, WI, USA IFAC Conference on Nonlinear Model Predictive

More information

MIMO analysis: loop-at-a-time

MIMO analysis: loop-at-a-time MIMO robustness MIMO analysis: loop-at-a-time y 1 y 2 P (s) + + K 2 (s) r 1 r 2 K 1 (s) Plant: P (s) = 1 s 2 + α 2 s α 2 α(s + 1) α(s + 1) s α 2. (take α = 10 in the following numerical analysis) Controller:

More information

Probability Space. J. McNames Portland State University ECE 538/638 Stochastic Signals Ver

Probability Space. J. McNames Portland State University ECE 538/638 Stochastic Signals Ver Stochastic Signals Overview Definitions Second order statistics Stationarity and ergodicity Random signal variability Power spectral density Linear systems with stationary inputs Random signal memory Correlation

More information

Completion of partially known turbulent flow statistics via convex optimization

Completion of partially known turbulent flow statistics via convex optimization Center for Turbulence Research Proceedings of the Summer Program 2014 345 Completion of partiall known turbulent flow statistics via convex optimization B A. Zare, M. R. Jovanović AND T. T. Georgiou Second-order

More information

Robust extraction of specific signals with temporal structure

Robust extraction of specific signals with temporal structure Robust extraction of specific signals with temporal structure Zhi-Lin Zhang, Zhang Yi Computational Intelligence Laboratory, School of Computer Science and Engineering, University of Electronic Science

More information

Mathematical foundations - linear algebra

Mathematical foundations - linear algebra Mathematical foundations - linear algebra Andrea Passerini passerini@disi.unitn.it Machine Learning Vector space Definition (over reals) A set X is called a vector space over IR if addition and scalar

More information

Efficient robust optimization for robust control with constraints Paul Goulart, Eric Kerrigan and Danny Ralph

Efficient robust optimization for robust control with constraints Paul Goulart, Eric Kerrigan and Danny Ralph Efficient robust optimization for robust control with constraints p. 1 Efficient robust optimization for robust control with constraints Paul Goulart, Eric Kerrigan and Danny Ralph Efficient robust optimization

More information

BUMPLESS SWITCHING CONTROLLERS. William A. Wolovich and Alan B. Arehart 1. December 27, Abstract

BUMPLESS SWITCHING CONTROLLERS. William A. Wolovich and Alan B. Arehart 1. December 27, Abstract BUMPLESS SWITCHING CONTROLLERS William A. Wolovich and Alan B. Arehart 1 December 7, 1995 Abstract This paper outlines the design of bumpless switching controllers that can be used to stabilize MIMO plants

More information

Stochastic Hybrid Systems: Modeling, analysis, and applications to networks and biology

Stochastic Hybrid Systems: Modeling, analysis, and applications to networks and biology research supported by NSF Stochastic Hybrid Systems: Modeling, analysis, and applications to networks and biology João P. Hespanha Center for Control Engineering and Computation University of California

More information

Research Article Stabilization Analysis and Synthesis of Discrete-Time Descriptor Markov Jump Systems with Partially Unknown Transition Probabilities

Research Article Stabilization Analysis and Synthesis of Discrete-Time Descriptor Markov Jump Systems with Partially Unknown Transition Probabilities Research Journal of Applied Sciences, Engineering and Technology 7(4): 728-734, 214 DOI:1.1926/rjaset.7.39 ISSN: 24-7459; e-issn: 24-7467 214 Maxwell Scientific Publication Corp. Submitted: February 25,

More information

Chapter 7 Interconnected Systems and Feedback: Well-Posedness, Stability, and Performance 7. Introduction Feedback control is a powerful approach to o

Chapter 7 Interconnected Systems and Feedback: Well-Posedness, Stability, and Performance 7. Introduction Feedback control is a powerful approach to o Lectures on Dynamic Systems and Control Mohammed Dahleh Munther A. Dahleh George Verghese Department of Electrical Engineering and Computer Science Massachuasetts Institute of Technology c Chapter 7 Interconnected

More information

University of California Department of Mechanical Engineering ECE230A/ME243A Linear Systems Fall 1999 (B. Bamieh ) Lecture 3: Simulation/Realization 1

University of California Department of Mechanical Engineering ECE230A/ME243A Linear Systems Fall 1999 (B. Bamieh ) Lecture 3: Simulation/Realization 1 University of alifornia Department of Mechanical Engineering EE/ME Linear Systems Fall 999 ( amieh ) Lecture : Simulation/Realization Given an nthorder statespace description of the form _x(t) f (x(t)

More information

EL2520 Control Theory and Practice

EL2520 Control Theory and Practice EL2520 Control Theory and Practice Lecture 8: Linear quadratic control Mikael Johansson School of Electrical Engineering KTH, Stockholm, Sweden Linear quadratic control Allows to compute the controller

More information

Distributed online optimization over jointly connected digraphs

Distributed online optimization over jointly connected digraphs Distributed online optimization over jointly connected digraphs David Mateos-Núñez Jorge Cortés University of California, San Diego {dmateosn,cortes}@ucsd.edu Southern California Optimization Day UC San

More information

Chapter 7 Iterative Techniques in Matrix Algebra

Chapter 7 Iterative Techniques in Matrix Algebra Chapter 7 Iterative Techniques in Matrix Algebra Per-Olof Persson persson@berkeley.edu Department of Mathematics University of California, Berkeley Math 128B Numerical Analysis Vector Norms Definition

More information

Book review for Stability and Control of Dynamical Systems with Applications: A tribute to Anthony M. Michel

Book review for Stability and Control of Dynamical Systems with Applications: A tribute to Anthony M. Michel To appear in International Journal of Hybrid Systems c 2004 Nonpareil Publishers Book review for Stability and Control of Dynamical Systems with Applications: A tribute to Anthony M. Michel João Hespanha

More information