Theoretical Statistics. Lecture 22.

Size: px
Start display at page:

Download "Theoretical Statistics. Lecture 22."

Transcription

1 Theoretical Statistics. Lecture 22. Peter Bartlett 1. Recall: Asymptotic testing. 2. Quadratic mean differentiability. 3. Local asymptotic normality. [vdv7] 1

2 Recall: Asymptotic testing Consider the asymptotics of a test. We have A parametric model P θ for θ Θ. A null hypothesis θ = θ 0. An alternative hypothesis θ = θ 0 +h n. Test: compute the log likelihood ratio, λ = log n dp θ0 +h n dp θ0 (X i ), and reject the null hypothesis if it is sufficiently large. 2

3 Recall: Asymptotic testing For example, suppose P θ = N(θ,σ 2 ). Then we saw that λ = nh n σ ( X θ 2 0 ) nh2 n 2σ ) 2 θ 0 N ( nh2 n 2σ, nh2 n. 2 σ 2 For nh n h 0, the normal parameters approach ( h 2 /(2σ 2 ),h 2 /σ 2 ). 3

4 Recall: Asymptotic testing Another example. The exponential family with sufficient statistict : p θ (x) = exp(t(x)θ A(θ)). We have λ = log for h n = h/ n. n dp θ0 +h n dp θ0 (X i ) n = h n (T(X i ) P θ0 T(X i )) n 2 A (θ 0 )h 2 n +o(nh 2 n) θ 0 N ( h2 var θ0 (T(X 1 )) 2 ),h 2 var(t(x 1 )), θ 0 4

5 Local asymptotic normality: Taylor series Suppose that we have a density p θ wrt some measure, and the log likelihood, l θ (x) = logp θ (x) is twice differentiable wrt θ, and can be approximated by its second order Taylor series, l θ+h (x) = l θ (x)+h T lθ (x)+ 1 2 ht lθ (x)h+o( h 2 ). Then λ = log = n dp θ+hn dp θ (X i ) n (logp θ+hn (X i ) logp θ (X i )) = h T n n l θ (X i )+ 1 2 ht n n l θ (X i )h n +o(n h n 2 ). 5

6 Score functions Consider the log likelihood function l θ (x) = logp θ (x). Its derivative l θ is called the score function. For X P θ (and for l θ satisfying regularity conditions), we have 1. The score function has mean zero: P θ lθ = 0, 2. The mean curvature of the log likelihood is the negative Fisher information: P θ lθ = I θ, where I θ = P θ lθ lt θ. 6

7 Notice that Score functions: Proof p θ (x)dµ(x) = 1 implies ṗ θ (x)dµ(x) = 0, p θ (x)dµ(x) = 0. But and P θ lθ = P θ lθ = l θ dp θ = l θ p θ dµ = ( pθ p θ ṗθṗ T θ p 2 θ ṗθ p θ p θ dµ = ) p θ dµ = ṗ θ dµ = 0 l θ lt θ p θ dµ = I θ. 7

8 Thus, So if nh n h, Local asymptotic normality: Taylor series λ = h T n n 1 n 1/2 1 n n n l θ (X i )+ 1 2 ht n l θ (X i ) P θ N(0,I θ ), l θ (X i ) P θ I θ. n P θ N ( 1 ) 2 ht I θ h,h T I θ h. l θ (X i )h n +o(n h n 2 ) This behavior is known as local asymptotic normality. 8

9 Quadratic mean differentiability What conditions make this argument rigorous? A weaker condition than twice differentiability suffices: θ p θ differentiable for most x. Definition: The root density θ p θ (for θ R k ) is differentiable in quadratic mean at θ if there exists a vector-valued measurable function l θ : X R k such that, forh 0, ( pθ+h p θ 1 ) 2 2 ht lθ pθ dµ = o( h 2 ). 9

10 Quadratic mean differentiability Why the strange notation? Ifθ p θ is differentiable, then θ pθ = 1 2 θ p θ = 1 θ p θ pθ = 1 pθ θ l θ = pθ 2 p θ 2 1 pθ lθ. 2 Notice that we do not need differentiability at every x. Rather, the L 2 (µ) (average under µ squared) error should be small. 10

11 QMD and local asymptotic normality Theorem: If Θ is an open subset of R k, and P θ is QMD at θ Θ, then 1. P θ lθ = I θ = P θ lθ l T θ exists. 3. For every h n satisfying nh n h, log n p θ+hn p θ (X i ) = 1 n n θ N h T lθ (X i ) 1 2 ht I θ h+o Pθ (1) ( 1 ) 2 ht I θ h,h T I θ h. QMD of p θ is elegant: ( p) 2 dµ = 1; we can use inner prods inl 2 (µ). 11

12 QMD sufficient conditions Theorem: If 1. Θ is an open subset of R k. 2. θ p θ (x) is continuously differentiable at µ-almost all x. 3. I θ = ṗ θ ṗ T θ /p θdµ is continuous inθ. Then p θ is QMD at θ, with l θ = ṗ θ /p θ. 12

13 QMD Examples Exponential families are QMD. (See earlier example). Location families. p θ (x) = f(x θ), where f is positive, continuously differentiable, with I θ = ( f (x) f(x) ) 2 f(x)dx <, are QMD. (Note that, because we can shift x byθ,i θ does not depend onθ.) 13

14 QMD Examples Laplace location model is QMD: p θ (x) = 1 2 exp( x θ ). Notice that p θ is not differentiable. But it is QMD (because the single point of non-differentiability, θ, has measure zero). Uniform distributionp θ on[0,θ] is not QMD. Indeed, QMD requires ( o( h 2 ) = pθ+h p θ 1 ) 2 2 ht lθ pθ dµ θ+h ( pθ+h p θ 1 ) 2 2 ht lθ pθ dµ θ = h θ +h, which is a contradiction. 14

15 Recall: Contiguity Theorem: For log dq n dp n P n N(µ,σ 2 ), Q n P n iffµ = σ 2 /2. (Also, P n Q n for any µ,σ 2.) But for QMD families, if h n satisfies nh n h, log n p θ+hn p θ (X i ) = 1 n n θ N h T lθ (X i ) 1 2 ht I θ h+o Pθ (1) ( 1 ) 2 ht I θ h,h T I θ h. SoP n θ+h n P n θ. 15

16 Recall: Contiguity and change of measure Lemma: [Le Cam s Third Lemma] Suppose, for X n R k, ( X n,log dq ) n P n N µ, Σ τ. dp n τ T σ 2 Q n Then X n N(µ+τ,Σ). σ2 2 16

17 Asymptotically linear statistics Suppose the model {P θ : θ Θ} is QMD, and a statistic T n satisfies n(tn µ θ ) = 1 n n ψ θ (X i )+o Pθ (1), where P θ ψ θ = 0 andp θ ψ θ ψ T θ = Σ. Then for h n satisfying nh n h, the sequence of log likelihood ratios satisfies log dpn θ+h n dp n θ (X 1,...,X n ) = 1 n n h T lθ (X i ) 1 2 ht I θ h+o Pθ (1). 17

18 Asymptotically linear statistics Thus, the central limit theorem implies ( ) n(tn µ θ ),log dpn θ+h n θ 0 dpθ n N, Σ 1 2 ht I θ h τ T τ, h T I θ h where τ = P θ ψ θ h T lθ. Then n(t n µ θ ) θ+h n N ( ) P θ ψ θ h T lθ,σ. 18

Theoretical Statistics. Lecture 23.

Theoretical Statistics. Lecture 23. Theoretical Statistics. Lecture 23. Peter Bartlett 1. Recall: QMD and local asymptotic normality. [vdv7] 2. Convergence of experiments, maximum likelihood. 3. Relative efficiency of tests. [vdv14] 1 Local

More information

Theoretical Statistics. Lecture 25.

Theoretical Statistics. Lecture 25. Theoretical Statistics. Lecture 25. Peter Bartlett 1. Relative efficiency of tests [vdv14]: Rescaling rates. 2. Likelihood ratio tests [vdv15]. 1 Recall: Relative efficiency of tests Theorem: Suppose that

More information

A Very Brief Summary of Statistical Inference, and Examples

A Very Brief Summary of Statistical Inference, and Examples A Very Brief Summary of Statistical Inference, and Examples Trinity Term 2009 Prof. Gesine Reinert Our standard situation is that we have data x = x 1, x 2,..., x n, which we view as realisations of random

More information

Local Asymptotic Normality

Local Asymptotic Normality Chapter 8 Local Asymptotic Normality 8.1 LAN and Gaussian shift families N::efficiency.LAN LAN.defn In Chapter 3, pointwise Taylor series expansion gave quadratic approximations to to criterion functions

More information

simple if it completely specifies the density of x

simple if it completely specifies the density of x 3. Hypothesis Testing Pure significance tests Data x = (x 1,..., x n ) from f(x, θ) Hypothesis H 0 : restricts f(x, θ) Are the data consistent with H 0? H 0 is called the null hypothesis simple if it completely

More information

Theoretical Statistics. Lecture 19.

Theoretical Statistics. Lecture 19. Theoretical Statistics. Lecture 19. Peter Bartlett 1. Functional delta method. [vdv20] 2. Differentiability in normed spaces: Hadamard derivatives. [vdv20] 3. Quantile estimates. [vdv21] 1 Recall: Delta

More information

4.5.1 The use of 2 log Λ when θ is scalar

4.5.1 The use of 2 log Λ when θ is scalar 4.5. ASYMPTOTIC FORM OF THE G.L.R.T. 97 4.5.1 The use of 2 log Λ when θ is scalar Suppose we wish to test the hypothesis NH : θ = θ where θ is a given value against the alternative AH : θ θ on the basis

More information

LECTURE 10: NEYMAN-PEARSON LEMMA AND ASYMPTOTIC TESTING. The last equality is provided so this can look like a more familiar parametric test.

LECTURE 10: NEYMAN-PEARSON LEMMA AND ASYMPTOTIC TESTING. The last equality is provided so this can look like a more familiar parametric test. Economics 52 Econometrics Professor N.M. Kiefer LECTURE 1: NEYMAN-PEARSON LEMMA AND ASYMPTOTIC TESTING NEYMAN-PEARSON LEMMA: Lesson: Good tests are based on the likelihood ratio. The proof is easy in the

More information

Lecture 26: Likelihood ratio tests

Lecture 26: Likelihood ratio tests Lecture 26: Likelihood ratio tests Likelihood ratio When both H 0 and H 1 are simple (i.e., Θ 0 = {θ 0 } and Θ 1 = {θ 1 }), Theorem 6.1 applies and a UMP test rejects H 0 when f θ1 (X) f θ0 (X) > c 0 for

More information

DA Freedman Notes on the MLE Fall 2003

DA Freedman Notes on the MLE Fall 2003 DA Freedman Notes on the MLE Fall 2003 The object here is to provide a sketch of the theory of the MLE. Rigorous presentations can be found in the references cited below. Calculus. Let f be a smooth, scalar

More information

Recall that in order to prove Theorem 8.8, we argued that under certain regularity conditions, the following facts are true under H 0 : 1 n

Recall that in order to prove Theorem 8.8, we argued that under certain regularity conditions, the following facts are true under H 0 : 1 n Chapter 9 Hypothesis Testing 9.1 Wald, Rao, and Likelihood Ratio Tests Suppose we wish to test H 0 : θ = θ 0 against H 1 : θ θ 0. The likelihood-based results of Chapter 8 give rise to several possible

More information

Lecture 3 January 16

Lecture 3 January 16 Stats 3b: Theory of Statistics Winter 28 Lecture 3 January 6 Lecturer: Yu Bai/John Duchi Scribe: Shuangning Li, Theodor Misiakiewicz Warning: these notes may contain factual errors Reading: VDV Chater

More information

A Very Brief Summary of Statistical Inference, and Examples

A Very Brief Summary of Statistical Inference, and Examples A Very Brief Summary of Statistical Inference, and Examples Trinity Term 2008 Prof. Gesine Reinert 1 Data x = x 1, x 2,..., x n, realisations of random variables X 1, X 2,..., X n with distribution (model)

More information

Lecture 17: Likelihood ratio and asymptotic tests

Lecture 17: Likelihood ratio and asymptotic tests Lecture 17: Likelihood ratio and asymptotic tests Likelihood ratio When both H 0 and H 1 are simple (i.e., Θ 0 = {θ 0 } and Θ 1 = {θ 1 }), Theorem 6.1 applies and a UMP test rejects H 0 when f θ1 (X) f

More information

Introduction to Empirical Processes and Semiparametric Inference Lecture 25: Semiparametric Models

Introduction to Empirical Processes and Semiparametric Inference Lecture 25: Semiparametric Models Introduction to Empirical Processes and Semiparametric Inference Lecture 25: Semiparametric Models Michael R. Kosorok, Ph.D. Professor and Chair of Biostatistics Professor of Statistics and Operations

More information

Completeness. On the other hand, the distribution of an ancillary statistic doesn t depend on θ at all.

Completeness. On the other hand, the distribution of an ancillary statistic doesn t depend on θ at all. Completeness A minimal sufficient statistic achieves the maximum amount of data reduction while retaining all the information the sample has concerning θ. On the other hand, the distribution of an ancillary

More information

Hypothesis testing: theory and methods

Hypothesis testing: theory and methods Statistical Methods Warsaw School of Economics November 3, 2017 Statistical hypothesis is the name of any conjecture about unknown parameters of a population distribution. The hypothesis should be verifiable

More information

Stat 260/CS Learning in Sequential Decision Problems.

Stat 260/CS Learning in Sequential Decision Problems. Stat 260/CS 294-102. Learning in Sequential Decision Problems. Peter Bartlett 1. Multi-armed bandit algorithms. Exponential families. Cumulant generating function. KL-divergence. KL-UCB for an exponential

More information

Stat260: Bayesian Modeling and Inference Lecture Date: February 10th, Jeffreys priors. exp 1 ) p 2

Stat260: Bayesian Modeling and Inference Lecture Date: February 10th, Jeffreys priors. exp 1 ) p 2 Stat260: Bayesian Modeling and Inference Lecture Date: February 10th, 2010 Jeffreys priors Lecturer: Michael I. Jordan Scribe: Timothy Hunter 1 Priors for the multivariate Gaussian Consider a multivariate

More information

Ch. 5 Hypothesis Testing

Ch. 5 Hypothesis Testing Ch. 5 Hypothesis Testing The current framework of hypothesis testing is largely due to the work of Neyman and Pearson in the late 1920s, early 30s, complementing Fisher s work on estimation. As in estimation,

More information

Semiparametric posterior limits

Semiparametric posterior limits Statistics Department, Seoul National University, Korea, 2012 Semiparametric posterior limits for regular and some irregular problems Bas Kleijn, KdV Institute, University of Amsterdam Based on collaborations

More information

Section 10: Role of influence functions in characterizing large sample efficiency

Section 10: Role of influence functions in characterizing large sample efficiency Section 0: Role of influence functions in characterizing large sample efficiency. Recall that large sample efficiency (of the MLE) can refer only to a class of regular estimators. 2. To show this here,

More information

Lecture 7 Introduction to Statistical Decision Theory

Lecture 7 Introduction to Statistical Decision Theory Lecture 7 Introduction to Statistical Decision Theory I-Hsiang Wang Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw December 20, 2016 1 / 55 I-Hsiang Wang IT Lecture 7

More information

Theory of Statistical Tests

Theory of Statistical Tests Ch 9. Theory of Statistical Tests 9.1 Certain Best Tests How to construct good testing. For simple hypothesis H 0 : θ = θ, H 1 : θ = θ, Page 1 of 100 where Θ = {θ, θ } 1. Define the best test for H 0 H

More information

To appear in The American Statistician vol. 61 (2007) pp

To appear in The American Statistician vol. 61 (2007) pp How Can the Score Test Be Inconsistent? David A Freedman ABSTRACT: The score test can be inconsistent because at the MLE under the null hypothesis the observed information matrix generates negative variance

More information

STAT 135 Lab 6 Duality of Hypothesis Testing and Confidence Intervals, GLRT, Pearson χ 2 Tests and Q-Q plots. March 8, 2015

STAT 135 Lab 6 Duality of Hypothesis Testing and Confidence Intervals, GLRT, Pearson χ 2 Tests and Q-Q plots. March 8, 2015 STAT 135 Lab 6 Duality of Hypothesis Testing and Confidence Intervals, GLRT, Pearson χ 2 Tests and Q-Q plots March 8, 2015 The duality between CI and hypothesis testing The duality between CI and hypothesis

More information

Answers to the 8th problem set. f(x θ = θ 0 ) L(θ 0 )

Answers to the 8th problem set. f(x θ = θ 0 ) L(θ 0 ) Answers to the 8th problem set The likelihood ratio with which we worked in this problem set is: Λ(x) = f(x θ = θ 1 ) L(θ 1 ) =. f(x θ = θ 0 ) L(θ 0 ) With a lower-case x, this defines a function. With

More information

Lecture 3 September 1

Lecture 3 September 1 STAT 383C: Statistical Modeling I Fall 2016 Lecture 3 September 1 Lecturer: Purnamrita Sarkar Scribe: Giorgio Paulon, Carlos Zanini Disclaimer: These scribe notes have been slightly proofread and may have

More information

Testing Hypothesis. Maura Mezzetti. Department of Economics and Finance Università Tor Vergata

Testing Hypothesis. Maura Mezzetti. Department of Economics and Finance Università Tor Vergata Maura Department of Economics and Finance Università Tor Vergata Hypothesis Testing Outline It is a mistake to confound strangeness with mystery Sherlock Holmes A Study in Scarlet Outline 1 The Power Function

More information

1 Complete Statistics

1 Complete Statistics Complete Statistics February 4, 2016 Debdeep Pati 1 Complete Statistics Suppose X P θ, θ Θ. Let (X (1),..., X (n) ) denote the order statistics. Definition 1. A statistic T = T (X) is complete if E θ g(t

More information

1. Fisher Information

1. Fisher Information 1. Fisher Information Let f(x θ) be a density function with the property that log f(x θ) is differentiable in θ throughout the open p-dimensional parameter set Θ R p ; then the score statistic (or score

More information

Hypothesis Testing. BS2 Statistical Inference, Lecture 11 Michaelmas Term Steffen Lauritzen, University of Oxford; November 15, 2004

Hypothesis Testing. BS2 Statistical Inference, Lecture 11 Michaelmas Term Steffen Lauritzen, University of Oxford; November 15, 2004 Hypothesis Testing BS2 Statistical Inference, Lecture 11 Michaelmas Term 2004 Steffen Lauritzen, University of Oxford; November 15, 2004 Hypothesis testing We consider a family of densities F = {f(x; θ),

More information

Economics 520. Lecture Note 19: Hypothesis Testing via the Neyman-Pearson Lemma CB 8.1,

Economics 520. Lecture Note 19: Hypothesis Testing via the Neyman-Pearson Lemma CB 8.1, Economics 520 Lecture Note 9: Hypothesis Testing via the Neyman-Pearson Lemma CB 8., 8.3.-8.3.3 Uniformly Most Powerful Tests and the Neyman-Pearson Lemma Let s return to the hypothesis testing problem

More information

IEOR 165 Lecture 13 Maximum Likelihood Estimation

IEOR 165 Lecture 13 Maximum Likelihood Estimation IEOR 165 Lecture 13 Maximum Likelihood Estimation 1 Motivating Problem Suppose we are working for a grocery store, and we have decided to model service time of an individual using the express lane (for

More information

Brief Review on Estimation Theory

Brief Review on Estimation Theory Brief Review on Estimation Theory K. Abed-Meraim ENST PARIS, Signal and Image Processing Dept. abed@tsi.enst.fr This presentation is essentially based on the course BASTA by E. Moulines Brief review on

More information

Stat 710: Mathematical Statistics Lecture 12

Stat 710: Mathematical Statistics Lecture 12 Stat 710: Mathematical Statistics Lecture 12 Jun Shao Department of Statistics University of Wisconsin Madison, WI 53706, USA Jun Shao (UW-Madison) Stat 710, Lecture 12 Feb 18, 2009 1 / 11 Lecture 12:

More information

Sampling distribution of GLM regression coefficients

Sampling distribution of GLM regression coefficients Sampling distribution of GLM regression coefficients Patrick Breheny February 5 Patrick Breheny BST 760: Advanced Regression 1/20 Introduction So far, we ve discussed the basic properties of the score,

More information

40.530: Statistics. Professor Chen Zehua. Singapore University of Design and Technology

40.530: Statistics. Professor Chen Zehua. Singapore University of Design and Technology Singapore University of Design and Technology Lecture 9: Hypothesis testing, uniformly most powerful tests. The Neyman-Pearson framework Let P be the family of distributions of concern. The Neyman-Pearson

More information

Theory of Maximum Likelihood Estimation. Konstantin Kashin

Theory of Maximum Likelihood Estimation. Konstantin Kashin Gov 2001 Section 5: Theory of Maximum Likelihood Estimation Konstantin Kashin February 28, 2013 Outline Introduction Likelihood Examples of MLE Variance of MLE Asymptotic Properties What is Statistical

More information

Classical regularity conditions

Classical regularity conditions Chapter 3 Classical regularity conditions Preliminary draft. Please do not distribute. The results from classical asymptotic theory typically require assumptions of pointwise differentiability of a criterion

More information

Stat 260/CS Learning in Sequential Decision Problems. Peter Bartlett

Stat 260/CS Learning in Sequential Decision Problems. Peter Bartlett Stat 260/CS 294-102. Learning in Sequential Decision Problems. Peter Bartlett 1. Multi-armed bandit algorithms. Concentration inequalities. P(X ǫ) exp( ψ (ǫ))). Cumulant generating function bounds. Hoeffding

More information

HYPOTHESIS TESTING: FREQUENTIST APPROACH.

HYPOTHESIS TESTING: FREQUENTIST APPROACH. HYPOTHESIS TESTING: FREQUENTIST APPROACH. These notes summarize the lectures on (the frequentist approach to) hypothesis testing. You should be familiar with the standard hypothesis testing from previous

More information

Lecture 8: Information Theory and Statistics

Lecture 8: Information Theory and Statistics Lecture 8: Information Theory and Statistics Part II: Hypothesis Testing and I-Hsiang Wang Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw December 23, 2015 1 / 50 I-Hsiang

More information

Final Exam. 1. (6 points) True/False. Please read the statements carefully, as no partial credit will be given.

Final Exam. 1. (6 points) True/False. Please read the statements carefully, as no partial credit will be given. 1. (6 points) True/False. Please read the statements carefully, as no partial credit will be given. (a) If X and Y are independent, Corr(X, Y ) = 0. (b) (c) (d) (e) A consistent estimator must be asymptotically

More information

Lecture 32: Asymptotic confidence sets and likelihoods

Lecture 32: Asymptotic confidence sets and likelihoods Lecture 32: Asymptotic confidence sets and likelihoods Asymptotic criterion In some problems, especially in nonparametric problems, it is difficult to find a reasonable confidence set with a given confidence

More information

10-704: Information Processing and Learning Fall Lecture 24: Dec 7

10-704: Information Processing and Learning Fall Lecture 24: Dec 7 0-704: Information Processing and Learning Fall 206 Lecturer: Aarti Singh Lecture 24: Dec 7 Note: These notes are based on scribed notes from Spring5 offering of this course. LaTeX template courtesy of

More information

An exponential family of distributions is a parametric statistical model having densities with respect to some positive measure λ of the form.

An exponential family of distributions is a parametric statistical model having densities with respect to some positive measure λ of the form. Stat 8112 Lecture Notes Asymptotics of Exponential Families Charles J. Geyer January 23, 2013 1 Exponential Families An exponential family of distributions is a parametric statistical model having densities

More information

Testing Statistical Hypotheses

Testing Statistical Hypotheses E.L. Lehmann Joseph P. Romano, 02LEu1 ttd ~Lt~S Testing Statistical Hypotheses Third Edition With 6 Illustrations ~Springer 2 The Probability Background 28 2.1 Probability and Measure 28 2.2 Integration.........

More information

Introduction to Estimation Methods for Time Series models Lecture 2

Introduction to Estimation Methods for Time Series models Lecture 2 Introduction to Estimation Methods for Time Series models Lecture 2 Fulvio Corsi SNS Pisa Fulvio Corsi Introduction to Estimation () Methods for Time Series models Lecture 2 SNS Pisa 1 / 21 Estimators:

More information

Chapter 2: Fundamentals of Statistics Lecture 15: Models and statistics

Chapter 2: Fundamentals of Statistics Lecture 15: Models and statistics Chapter 2: Fundamentals of Statistics Lecture 15: Models and statistics Data from one or a series of random experiments are collected. Planning experiments and collecting data (not discussed here). Analysis:

More information

Translation Invariant Experiments with Independent Increments

Translation Invariant Experiments with Independent Increments Translation Invariant Statistical Experiments with Independent Increments (joint work with Nino Kordzakhia and Alex Novikov Steklov Mathematical Institute St.Petersburg, June 10, 2013 Outline 1 Introduction

More information

CS Lecture 19. Exponential Families & Expectation Propagation

CS Lecture 19. Exponential Families & Expectation Propagation CS 6347 Lecture 19 Exponential Families & Expectation Propagation Discrete State Spaces We have been focusing on the case of MRFs over discrete state spaces Probability distributions over discrete spaces

More information

Outline. 1. Define likelihood 2. Interpretations of likelihoods 3. Likelihood plots 4. Maximum likelihood 5. Likelihood ratio benchmarks

Outline. 1. Define likelihood 2. Interpretations of likelihoods 3. Likelihood plots 4. Maximum likelihood 5. Likelihood ratio benchmarks Outline 1. Define likelihood 2. Interpretations of likelihoods 3. Likelihood plots 4. Maximum likelihood 5. Likelihood ratio benchmarks Likelihood A common and fruitful approach to statistics is to assume

More information

Chapter 3 : Likelihood function and inference

Chapter 3 : Likelihood function and inference Chapter 3 : Likelihood function and inference 4 Likelihood function and inference The likelihood Information and curvature Sufficiency and ancilarity Maximum likelihood estimation Non-regular models EM

More information

Optimization. The value x is called a maximizer of f and is written argmax X f. g(λx + (1 λ)y) < λg(x) + (1 λ)g(y) 0 < λ < 1; x, y X.

Optimization. The value x is called a maximizer of f and is written argmax X f. g(λx + (1 λ)y) < λg(x) + (1 λ)g(y) 0 < λ < 1; x, y X. Optimization Background: Problem: given a function f(x) defined on X, find x such that f(x ) f(x) for all x X. The value x is called a maximizer of f and is written argmax X f. In general, argmax X f may

More information

A Very Brief Summary of Bayesian Inference, and Examples

A Very Brief Summary of Bayesian Inference, and Examples A Very Brief Summary of Bayesian Inference, and Examples Trinity Term 009 Prof Gesine Reinert Our starting point are data x = x 1, x,, x n, which we view as realisations of random variables X 1, X,, X

More information

Nuisance parameters and their treatment

Nuisance parameters and their treatment BS2 Statistical Inference, Lecture 2, Hilary Term 2008 April 2, 2008 Ancillarity Inference principles Completeness A statistic A = a(x ) is said to be ancillary if (i) The distribution of A does not depend

More information

Chapter 7. Hypothesis Testing

Chapter 7. Hypothesis Testing Chapter 7. Hypothesis Testing Joonpyo Kim June 24, 2017 Joonpyo Kim Ch7 June 24, 2017 1 / 63 Basic Concepts of Testing Suppose that our interest centers on a random variable X which has density function

More information

Unbiased Estimation. Binomial problem shows general phenomenon. An estimator can be good for some values of θ and bad for others.

Unbiased Estimation. Binomial problem shows general phenomenon. An estimator can be good for some values of θ and bad for others. Unbiased Estimation Binomial problem shows general phenomenon. An estimator can be good for some values of θ and bad for others. To compare ˆθ and θ, two estimators of θ: Say ˆθ is better than θ if it

More information

5 Introduction to the Theory of Order Statistics and Rank Statistics

5 Introduction to the Theory of Order Statistics and Rank Statistics 5 Introduction to the Theory of Order Statistics and Rank Statistics This section will contain a summary of important definitions and theorems that will be useful for understanding the theory of order

More information

f (r) (a) r! (x a) r, r=0

f (r) (a) r! (x a) r, r=0 Part 3.3 Differentiation v1 2018 Taylor Polynomials Definition 3.3.1 Taylor 1715 and Maclaurin 1742) If a is a fixed number, and f is a function whose first n derivatives exist at a then the Taylor polynomial

More information

PRINCIPLES OF STATISTICAL INFERENCE

PRINCIPLES OF STATISTICAL INFERENCE Advanced Series on Statistical Science & Applied Probability PRINCIPLES OF STATISTICAL INFERENCE from a Neo-Fisherian Perspective Luigi Pace Department of Statistics University ofudine, Italy Alessandra

More information

Information in a Two-Stage Adaptive Optimal Design

Information in a Two-Stage Adaptive Optimal Design Information in a Two-Stage Adaptive Optimal Design Department of Statistics, University of Missouri Designed Experiments: Recent Advances in Methods and Applications DEMA 2011 Isaac Newton Institute for

More information

Normalising constants and maximum likelihood inference

Normalising constants and maximum likelihood inference Normalising constants and maximum likelihood inference Jakob G. Rasmussen Department of Mathematics Aalborg University Denmark March 9, 2011 1/14 Today Normalising constants Approximation of normalising

More information

Chapter 4: Asymptotic Properties of the MLE (Part 2)

Chapter 4: Asymptotic Properties of the MLE (Part 2) Chapter 4: Asymptotic Properties of the MLE (Part 2) Daniel O. Scharfstein 09/24/13 1 / 1 Example Let {(R i, X i ) : i = 1,..., n} be an i.i.d. sample of n random vectors (R, X ). Here R is a response

More information

Patterns of Scalable Bayesian Inference Background (Session 1)

Patterns of Scalable Bayesian Inference Background (Session 1) Patterns of Scalable Bayesian Inference Background (Session 1) Jerónimo Arenas-García Universidad Carlos III de Madrid jeronimo.arenas@gmail.com June 14, 2017 1 / 15 Motivation. Bayesian Learning principles

More information

Master s Written Examination

Master s Written Examination Master s Written Examination Option: Statistics and Probability Spring 016 Full points may be obtained for correct answers to eight questions. Each numbered question which may have several parts is worth

More information

Testing Statistical Hypotheses

Testing Statistical Hypotheses E.L. Lehmann Joseph P. Romano Testing Statistical Hypotheses Third Edition 4y Springer Preface vii I Small-Sample Theory 1 1 The General Decision Problem 3 1.1 Statistical Inference and Statistical Decisions

More information

Statistical Theory MT 2007 Problems 4: Solution sketches

Statistical Theory MT 2007 Problems 4: Solution sketches Statistical Theory MT 007 Problems 4: Solution sketches 1. Consider a 1-parameter exponential family model with density f(x θ) = f(x)g(θ)exp{cφ(θ)h(x)}, x X. Suppose that the prior distribution has the

More information

Lecture 8: Minimax Lower Bounds: LeCam, Fano, and Assouad

Lecture 8: Minimax Lower Bounds: LeCam, Fano, and Assouad 40.850: athematical Foundation of Big Data Analysis Spring 206 Lecture 8: inimax Lower Bounds: LeCam, Fano, and Assouad Lecturer: Fang Han arch 07 Disclaimer: These notes have not been subjected to the

More information

Lecture 2: Random Variables and Expectation

Lecture 2: Random Variables and Expectation Econ 514: Probability and Statistics Lecture 2: Random Variables and Expectation Definition of function: Given sets X and Y, a function f with domain X and image Y is a rule that assigns to every x X one

More information

Accurate directional inference for vector parameters

Accurate directional inference for vector parameters Accurate directional inference for vector parameters Nancy Reid February 26, 2016 with Don Fraser, Nicola Sartori, Anthony Davison Nancy Reid Accurate directional inference for vector parameters York University

More information

Exercises Chapter 4 Statistical Hypothesis Testing

Exercises Chapter 4 Statistical Hypothesis Testing Exercises Chapter 4 Statistical Hypothesis Testing Advanced Econometrics - HEC Lausanne Christophe Hurlin University of Orléans December 5, 013 Christophe Hurlin (University of Orléans) Advanced Econometrics

More information

Applied Asymptotics Case studies in higher order inference

Applied Asymptotics Case studies in higher order inference Applied Asymptotics Case studies in higher order inference Nancy Reid May 18, 2006 A.C. Davison, A. R. Brazzale, A. M. Staicu Introduction likelihood-based inference in parametric models higher order approximations

More information

Fundamentals of Statistics

Fundamentals of Statistics Chapter 2 Fundamentals of Statistics This chapter discusses some fundamental concepts of mathematical statistics. These concepts are essential for the material in later chapters. 2.1 Populations, Samples,

More information

Lecture 10: Generalized likelihood ratio test

Lecture 10: Generalized likelihood ratio test Stat 200: Introduction to Statistical Inference Autumn 2018/19 Lecture 10: Generalized likelihood ratio test Lecturer: Art B. Owen October 25 Disclaimer: These notes have not been subjected to the usual

More information

Priors for the frequentist, consistency beyond Schwartz

Priors for the frequentist, consistency beyond Schwartz Victoria University, Wellington, New Zealand, 11 January 2016 Priors for the frequentist, consistency beyond Schwartz Bas Kleijn, KdV Institute for Mathematics Part I Introduction Bayesian and Frequentist

More information

Likelihood and p-value functions in the composite likelihood context

Likelihood and p-value functions in the composite likelihood context Likelihood and p-value functions in the composite likelihood context D.A.S. Fraser and N. Reid Department of Statistical Sciences University of Toronto November 19, 2016 Abstract The need for combining

More information

Hypothesis Test. The opposite of the null hypothesis, called an alternative hypothesis, becomes

Hypothesis Test. The opposite of the null hypothesis, called an alternative hypothesis, becomes Neyman-Pearson paradigm. Suppose that a researcher is interested in whether the new drug works. The process of determining whether the outcome of the experiment points to yes or no is called hypothesis

More information

Numerical Sequences and Series

Numerical Sequences and Series Numerical Sequences and Series Written by Men-Gen Tsai email: b89902089@ntu.edu.tw. Prove that the convergence of {s n } implies convergence of { s n }. Is the converse true? Solution: Since {s n } is

More information

Chapter 3. Point Estimation. 3.1 Introduction

Chapter 3. Point Estimation. 3.1 Introduction Chapter 3 Point Estimation Let (Ω, A, P θ ), P θ P = {P θ θ Θ}be probability space, X 1, X 2,..., X n : (Ω, A) (IR k, B k ) random variables (X, B X ) sample space γ : Θ IR k measurable function, i.e.

More information

Assumptions of classical multiple regression model

Assumptions of classical multiple regression model ESD: Recitation #7 Assumptions of classical multiple regression model Linearity Full rank Exogeneity of independent variables Homoscedasticity and non autocorrellation Exogenously generated data Normal

More information

11 Survival Analysis and Empirical Likelihood

11 Survival Analysis and Empirical Likelihood 11 Survival Analysis and Empirical Likelihood The first paper of empirical likelihood is actually about confidence intervals with the Kaplan-Meier estimator (Thomas and Grunkmeier 1979), i.e. deals with

More information

Statistics & Data Sciences: First Year Prelim Exam May 2018

Statistics & Data Sciences: First Year Prelim Exam May 2018 Statistics & Data Sciences: First Year Prelim Exam May 2018 Instructions: 1. Do not turn this page until instructed to do so. 2. Start each new question on a new sheet of paper. 3. This is a closed book

More information

6.1 Variational representation of f-divergences

6.1 Variational representation of f-divergences ECE598: Information-theoretic methods in high-dimensional statistics Spring 2016 Lecture 6: Variational representation, HCR and CR lower bounds Lecturer: Yihong Wu Scribe: Georgios Rovatsos, Feb 11, 2016

More information

7. Estimation and hypothesis testing. Objective. Recommended reading

7. Estimation and hypothesis testing. Objective. Recommended reading 7. Estimation and hypothesis testing Objective In this chapter, we show how the election of estimators can be represented as a decision problem. Secondly, we consider the problem of hypothesis testing

More information

Stat 710: Mathematical Statistics Lecture 27

Stat 710: Mathematical Statistics Lecture 27 Stat 710: Mathematical Statistics Lecture 27 Jun Shao Department of Statistics University of Wisconsin Madison, WI 53706, USA Jun Shao (UW-Madison) Stat 710, Lecture 27 April 3, 2009 1 / 10 Lecture 27:

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Chapter 8 Maximum Likelihood Estimation 8. Consistency If X is a random variable (or vector) with density or mass function f θ (x) that depends on a parameter θ, then the function f θ (X) viewed as a function

More information

Interval Estimation III: Fisher's Information & Bootstrapping

Interval Estimation III: Fisher's Information & Bootstrapping Interval Estimation III: Fisher's Information & Bootstrapping Frequentist Confidence Interval Will consider four approaches to estimating confidence interval Standard Error (+/- 1.96 se) Likelihood Profile

More information

Accurate directional inference for vector parameters

Accurate directional inference for vector parameters Accurate directional inference for vector parameters Nancy Reid October 28, 2016 with Don Fraser, Nicola Sartori, Anthony Davison Parametric models and likelihood model f (y; θ), θ R p data y = (y 1,...,

More information

BIO5312 Biostatistics Lecture 13: Maximum Likelihood Estimation

BIO5312 Biostatistics Lecture 13: Maximum Likelihood Estimation BIO5312 Biostatistics Lecture 13: Maximum Likelihood Estimation Yujin Chung November 29th, 2016 Fall 2016 Yujin Chung Lec13: MLE Fall 2016 1/24 Previous Parametric tests Mean comparisons (normality assumption)

More information

ST5215: Advanced Statistical Theory

ST5215: Advanced Statistical Theory Department of Statistics & Applied Probability Wednesday, October 5, 2011 Lecture 13: Basic elements and notions in decision theory Basic elements X : a sample from a population P P Decision: an action

More information

CLASS NOTES Models, Algorithms and Data: Introduction to computing 2018

CLASS NOTES Models, Algorithms and Data: Introduction to computing 2018 CLASS NOTES Models, Algorithms and Data: Introduction to computing 208 Petros Koumoutsakos, Jens Honore Walther (Last update: June, 208) IMPORTANT DISCLAIMERS. REFERENCES: Much of the material (ideas,

More information

Stat 5102 Lecture Slides Deck 3. Charles J. Geyer School of Statistics University of Minnesota

Stat 5102 Lecture Slides Deck 3. Charles J. Geyer School of Statistics University of Minnesota Stat 5102 Lecture Slides Deck 3 Charles J. Geyer School of Statistics University of Minnesota 1 Likelihood Inference We have learned one very general method of estimation: method of moments. the Now we

More information

Lecture 2. (See Exercise 7.22, 7.23, 7.24 in Casella & Berger)

Lecture 2. (See Exercise 7.22, 7.23, 7.24 in Casella & Berger) 8 HENRIK HULT Lecture 2 3. Some common distributions in classical and Bayesian statistics 3.1. Conjugate prior distributions. In the Bayesian setting it is important to compute posterior distributions.

More information

LECTURE 2: LOCAL TIME FOR BROWNIAN MOTION

LECTURE 2: LOCAL TIME FOR BROWNIAN MOTION LECTURE 2: LOCAL TIME FOR BROWNIAN MOTION We will define local time for one-dimensional Brownian motion, and deduce some of its properties. We will then use the generalized Ray-Knight theorem proved in

More information

Chapter 4: Asymptotic Properties of the MLE

Chapter 4: Asymptotic Properties of the MLE Chapter 4: Asymptotic Properties of the MLE Daniel O. Scharfstein 09/19/13 1 / 1 Maximum Likelihood Maximum likelihood is the most powerful tool for estimation. In this part of the course, we will consider

More information

Part 3.3 Differentiation Taylor Polynomials

Part 3.3 Differentiation Taylor Polynomials Part 3.3 Differentiation 3..3.1 Taylor Polynomials Definition 3.3.1 Taylor 1715 and Maclaurin 1742) If a is a fixed number, and f is a function whose first n derivatives exist at a then the Taylor polynomial

More information

Advanced Quantitative Methods: maximum likelihood

Advanced Quantitative Methods: maximum likelihood Advanced Quantitative Methods: Maximum Likelihood University College Dublin 4 March 2014 1 2 3 4 5 6 Outline 1 2 3 4 5 6 of straight lines y = 1 2 x + 2 dy dx = 1 2 of curves y = x 2 4x + 5 of curves y

More information

Notes, March 4, 2013, R. Dudley Maximum likelihood estimation: actual or supposed

Notes, March 4, 2013, R. Dudley Maximum likelihood estimation: actual or supposed 18.466 Notes, March 4, 2013, R. Dudley Maximum likelihood estimation: actual or supposed 1. MLEs in exponential families Let f(x,θ) for x X and θ Θ be a likelihood function, that is, for present purposes,

More information