I. Review of Fe-based Superconductivity II. Disorder effects in unconventional SC

Size: px
Start display at page:

Download "I. Review of Fe-based Superconductivity II. Disorder effects in unconventional SC"

Transcription

1 I. Review of Fe-based Superconductivity II. Disorder effects in unconventional SC P. Hirschfeld, U. Florida Maglab Theory Winter School January 2013 Balatsky, Vekhter and Zhu, Rev Mod Phys 78, 373, (2006) Alloul, Bobroff, Gabay, PH, Rev. Mod. Phys. 81, 45 (2009)

2 Anderson s theorem P. W. Anderson, J.Phys. Chem. Solids 11, 26 (1959) In the presence of dirt one can still pair time-reversed members of Kramer s doublet: thermodynamics (T c, gap, sp. ht., ) are not affected by nonmagnetic impurities

3 Abrikosov-Gor kov theory Many body formulation of disorder problem in superconductor assuming weak scattering agrees with Anderson conclusions

4 Abrikosov-Gor kov theory cont d Skalski et al PR 136, A Pairbreaking in s-wave SC by magnetic impurities Gapless SC

5 Balian-Werthamer: p-wave superconductivity Nonmagnetic impurities are pairbreaking in unconventional superconductors

6 Strong magnetic impurity creates bound state in s-wave SC Yu Lu, Acta Physica Sinica 21, 75 (1965) see also H. Shiba, Prog. Theor. Phys. 40, 435 (1968). A. I., Rusinov, 1969, Zh. Eksp. i Teor. Fiz. 56, 2047, [Sov. Phys. JETP 29, 1101 (1969)].

7 T-matrix for single nonmagnetic impurity U U U i j = G G G UG G UG UG T = G + G TG = + + +, where = U + UG U + UG UG U +... = U + UG T Onsite potential Ui () = uδ ( i i) T ( ω) = 0 0 u G k ( k, ω)

8 Magnetic impurity bound state in s-wave SC G 0 = ( ωτ ξ τ iσ τ ) 0 k τ 3 1 τ 3 U = uss α = uss σ + σ 2σσ T = U + UG T = u [ ] G 0 + us τ0 + G 1 us s (1 ) (1 ) τ + ω 1 2us + u 2 2 ω s 1 subgap state Pole ω=ω 0

9 Impurity bound state in s-wave superconductor? G cc cc ωτ + ξ τ + τ 0 0 k 3 1 = = cc cc ω ξk Nambu propagator

10 bound state in s-wave superconductor? Impurity bound state in s-wave superconductor? G cc cc ωτ + ξ τ + τ 0 0 k 3 1 = = cc cc ω ξ k T 0 = U + UG T U = uτδ( i i 0 = u0τ3 + u0τ 3 k G ( k, ω) Σ T )

11 Impurity bound state in s-wave superconductor? G cc cc ωτ + ξ τ + τ 0 0 k 3 1 = = cc cc ω ξk T 0 = U + UG T U = uτδ( i i 0 = uτ + uτ Σ G ( k, ω) T T k 1 α )= Σ 2 G ( ω Tr τ G ( k, ω) G0τ0 G1τ u iω 1 0 = 2 ; α 2 2 = u0 + G1 G0 ω = i α = ω ) k α 0

12 Impurity bound state in s-wave superconductor? T G cc cc ωτ + ξ τ + τ 0 0 k 3 1 = = cc cc ω ξk 0 = U + UG T U = uτδ( i i 0 = uτ + uτ Σ G ( k, ω) T k 1 α )= Σ 2 G ( ω Tr τ G ( k, ω) G0τ0 G1τ1 iω T = ; α = 0 u0 + G1 G ω = u i α = 1 No! no pole (Anderson, AG) 2 2 ω ) k α 0

13 What about in d-wave superconductor? G ωτ + ξ τ + ( φ ) τ = ω ξ φ) k k ( ( φ) = 0 cos 2φ

14 What about in d-wave superconductor? G ωτ + ξ τ + ( φ ) τ = ω ξ φ) k k ( ( φ) = 0 cos 2φ T = 1 G τ Gτ u G0 ( ω )= ; u G G ω ( φ) φ G 1 ( ω )= ω iω 2 2 i ( φ ) ( φ) 2 2 φ

15 Nonmagnetic impurity in d- or s -wave superconductor? G ωτ + ξ τ + ( φ ) τ = ω ξ φ) k k ( ( φ) = 0 cos 2φ T = Possible pole 1 G0τ0 G1τ1 u0 0( 2 ; G ω )= 2 2 u0 + G1 G0 ω ( φ) φ u G 0 G 1 ( ω )= ω iω 2 2 i ( φ ) ( φ) 2 2 φ = 0! for d-wave

16 Bound states of nonmagnetic impurity in d-wave SC 1 ρ(, rω) = Im Grr (,; ω) π δρ imp see also Stamp, 1986 (p-wave)

17 Nonmagnetic impurity bound states in various systems

18 Finite nonmagnetic disorder in unconventional superconductors

19 (Weak nonmagnetic) disorder and unconventional superconductors: destruction of gap nodes Gor kov and Kalugin, Sov. Phys. JETP 41, 253 (1985) Rice and Ueda, Theory of Heavy Fermions and Valence Fluctuations (Springer, 1985) Self-consistent treatment of average G: Σ predictions for residual dos N(0) in p-wave states ``polar state (θ)=cos θ ``axial state (θ)=sin θ N(0)>0 for infinitesimal disorder N(0)>0 for critical disorder strength triplet classes with point nodes (with moment) are `topologically stable

20 PH et al Sol St. Comm 59, 111 (1986) Schmitt-Rink et al, PRL 57, 2575 (1986)

21

22 :

23 (cuprates, heavy fermions) (Zn, Li, vacancy ) Universal

24

25 Pan et al, Nature 403, 746 (2000). T = 4.2 K 200 pa, -200 mv ~20 Zn atoms Å Bi 2 Sr 2 Ca(Cu 1-x Zn x ) 2 O 8+δ : x 0.3% LDOS map at 1.5mV! Å

26 Zn On-site LDOS spectrum: Ω 0 =-1.5 mev 2.5 Differential Conductance (ns) Sample Bias (mv) Pan et al, Nature 403, 746 (2000).

27 F i, j θ j k-space r-space F i, j Å θ j Data contrast with naïve expectation: Y 2 should be a four-fold symmetric star oriented with gap-nodes, maximum amplitude on nearest neighbor sites!

28 Spatial structure of these Ψ 2 not well understood. Zn Ni Cu:Vac.? -1.2 mv +9 mv 0 mv 0 Å 30 Å 0 Å 32 Å 0 Å 32 Å

29

30 Theories of impurity resonance spatial pattern Chemistry : M.E. Flatté et al. 2001, 03. Assume generalized extended impurity potential. Filter : C.S. Ting et al. 2001, Martin & Balatsky STM probes LDOS of neighboring Cu s due to k-dependent tunneling matrix elements. Correlations : Polkovnikov et al 2001, account for Kondo screening of correlation-induced local moment

31 Back to FeSC: intriguing defect states whose structure may reveal SC gap those shown believed to be Fe vacancies (J.E. Hoffman) 1111 (LaFeAsO) 111 (LiFeAs) 11 (FeSe) 10nm Zhou, PRL 106, (2011) Hanaguri, unpublished 10nm Song, Science 332, 1410 (2011)

32 Sometimes no impurity bound states are seen Na(Fe 1-x Co x )As Yang et al, PRB 86, (2012) but it is not surprising! 5-orbital BdG: Kariyado and Ogata, JPSJ 79, (2010). bound states are hard to tune to low E PH et al, ROPP 74, (2011) Beaird et al PRB 86, (2012) U 11 N 0 (intraband) Ω 0 S+/- state U 12 N 0 (interband)

33 How to simplify many-parameter problem II: use ab initio methods to determine intra/interband character of scattering? Ratio V inter /V intra important Impurity diagonal in orbital space has generically large interband component (Kontani 2009) Answer question with ab initio calculations for specific defects Kemper et al 2009 for Co band space: U U Kemper et al 2009, Nakamura et al 2010 Disagreement between Kemper, Nakamura, Elfimov on Co potential?

34 s ++ or s +-? Few phase-sensitive expts. Chen et al, Nature 2010 Christianson et al Nature 2008 Hanaguri et al Science 2010 NdFeAsO 0.88 F 0.12 Half-integer fluxes detected (in a small fraction of loops) Ba 0.6 K 0.4 Fe 2 As 2 Enhanced susceptibility at Q below Tc sign change of order parameter Fe(Se,Te) Field dependence of quasiparticle interference peaks depends on order parameter sign Various critiques of all experiments, alternate scenarios: where is the?

35 Hiroshi Kontani, M2S 2012

36 Hiroshi Kontani, M2S 2012

37 Inter- and intraband impurity scattering in 2-band s +/- system Inter- k -k k k mixes + and gaps, breaks pairs Intra- k -k k k k k k -k no mixing of +/- no pairbreaking

38 Scenario 1: isotropic s +/- state + interband impurity scattering low-e power laws ~ T if N( ω = 0) = const N(ω) ω Parker et al PRB 2008 Chubukov et.al., PRB 2008 Vorontsov et al PRB 2009 s +/- state has full gap but interband scattering is pairbreaking due to bound state

39 Scenario 2: anisotropic states with intraband scattering recall Fletcher et al 2008 LaFePO T c =6K λ~t nodes! Mishra et al PRB 2009 small-q scattering clean intraband scattering averages gap anisotropy, lifts nodes! dirty

40 Simplest problem: T c suppression in s +/- state naïve expectations: interband scattering will suppress T c faster T c suppression will depend on interband/intraband scattering potential ratio u/v T c suppression will depend on ratio/signs of interband/intraband pairing λ inter /λ intra as well

41 2-band disorder problem self-consistent t-matrix approx. interband Preosti, Muzikar PRB 54, ; Golubov, Mazin, Phys. Rev. B 55,

42 Electron irradiation at LSI (Irradiated Solids Lab)--Paris Pelletron Facility At LSI vacancy interstitial (Frenkel) pairs different sublattices are affected, depending on beam energy initial paper: arxiv: with 2.5MeV electrons: dominant Fe vacancies Shibauchi Matsuda Rullier-Albenque Prozorov also: C. van der Beek, M. Konczykowski Thanks: C. van der Beek

43 e- irradiation experiments Ba(Fe0.74Ru0.26)2As2

44 theory Wang et al 2012 (unpublished) (φ) α β φ u = inter band impurity potential v =intra band impurity potential (φ) φ Critical ρ 0 s range from 20µΩ cm to mω-cm!

45 e- irradiation of BaFe 2 (As,P) 2 Nonmonotonic change of low T dependence: T exp(- /T) T 2

46 DOS, λ, T 1-1 with increasing disorder: mixed inter and intraband scattering disorder N(ω) (φ) φ N(ω) (φ) (φ) φ φ N(ω) N(ω) (φ) φ ω ω ω e - /T λ ~ T T 2 T 2 T -1 1 ~ T 3 T e - /T T ω

47 (φ) φ S +/- Theory of nonmonotonic λ(t)-variations Wang et al 2012 (unpublished) (φ) S ++ φ pairbreaking at nodes node lifting s +- bound state formation α=u/v Only s+/- can explain data!

48 Comparison: expt vs. theory

49 Conclusions Unconventional superconductors are generically sensitive to nonmagnetic disorder impurity bound states may be good probes of superconducting gap structure; mysteries remain e- irradiation experiments: T c suppression, penetration depth experiments strong evidence for sign-changing in FeSC To use disorder analysis to determine order parameter structure, need to reduce # parameters ab initio methods?

Disorder and quasiparticle interference in high-t c superconductors

Disorder and quasiparticle interference in high-t c superconductors Disorder and quasiparticle interference in high-t c superconductors Peter Hirschfeld, U. Florida P. J. Hirschfeld, D. Altenfeld, I. Eremin, and I.I. Mazin}, Phys. Rev. B92, 184513 (2015) A. Kreisel, P.

More information

Visualization of atomic-scale phenomena in superconductors

Visualization of atomic-scale phenomena in superconductors Visualization of atomic-scale phenomena in superconductors Andreas Kreisel, Brian Andersen Niels Bohr Institute, University of Copenhagen, 2100 København, Denmark Peayush Choubey, Peter Hirschfeld Department

More information

New Developments in the Theory of STM on Unconventional Superconductors

New Developments in the Theory of STM on Unconventional Superconductors New Developments in the Theory of STM on Unconventional Superconductors Andreas Kreisel Institut für Theoretische Physik, Universität Leipzig, Germany R. Nelson T. Berlijn RWTH Aachen University, Germany

More information

Nodal s-wave superconductivity in BaFe 2 (As,P) 2

Nodal s-wave superconductivity in BaFe 2 (As,P) 2 Nodal swave superconductivity in BaFe 2 (As,P) 2 Taka Shibauchi Department of Physics Kyoto University Collaborators K. Hashimoto M. Yamashita Y. Matsuda S. Kasahara T. Terashima H. Ikeda Y. Nakai K. Ishida

More information

Workshop on Principles and Design of Strongly Correlated Electronic Systems August 2010

Workshop on Principles and Design of Strongly Correlated Electronic Systems August 2010 2157-5 Workshop on Principles and Design of Strongly Correlated Electronic Systems 2-13 August 2010 Accidental Order Parameter Nodes in Fe-pnictide Superconductors : Origins and Implications P. HIRSCHFELD

More information

A brief Introduction of Fe-based SC

A brief Introduction of Fe-based SC Part I: Introduction A brief Introduction of Fe-based SC Yunkyu Bang (Chonnam National Univ., Kwangju, Korea) Lecture 1: Introduction 1. Overview 2. What is sign-changing s-wave gap : +/-s-wave gap Lecture

More information

Koenigstein School April Fe-based SC. review of normal state review of sc state standard model new materials & directions

Koenigstein School April Fe-based SC. review of normal state review of sc state standard model new materials & directions Koenigstein School April 2014 Fe-based SC review of normal state review of sc state standard model new materials & directions Reviews: P.J. Hirschfeld et al, Rep. Prog. Phys. 74, 124508 (2011); G.R. Stewart

More information

Impurity states and marginal stability of unconventional superconductors

Impurity states and marginal stability of unconventional superconductors Impurity states and marginal stability of unconventional superconductors A.V.Balatsky(LANL) local =atomic or coherence length scale impurity or defect Impurity states inconventional supercondcutors Impurity

More information

Impurity effects in high T C superconductors

Impurity effects in high T C superconductors Impurity effects in high T C superconductors J. Bobroff, S. Ouazi, H. Alloul, P. Mendels, N. Blanchard Laboratoire de Physique des Solides, Université Paris XI, Orsay G. Collin J.F. Marucco, V. Guillen

More information

Impurity Resonances and the Origin of the Pseudo-Gap

Impurity Resonances and the Origin of the Pseudo-Gap Brazilian Journal of Physics, vol. 33, no. 4, December, 2003 659 Impurity Resonances and the Origin of the Pseudo-Gap Brian Møller Andersen Ørsted Laboratory, Niels Bohr Institute, Universitetsparken 5,

More information

Anomalous Scaling Relations & Pairing Mechanism of Fe-based SC

Anomalous Scaling Relations & Pairing Mechanism of Fe-based SC Part III: SH jump & CE Anomalous Scaling Relations & Pairing Mechanism of Fe-based SC Yunkyu Bang (Chonnam National Univ., Kwangju, S Korea) G R Stewart (Univ. of Florida, Gainesville, USA) Refs: New J

More information

Impurity States in D-wave Superconductors

Impurity States in D-wave Superconductors Chapter in the Proceedings of the Verditz Workshop on Quasiclassical Methods in Superconductvity and Superfluidity Edited by D. Rainer and J.A. Sauls (1998) Impurity States in D-wave Superconductors D.

More information

NMR in Strongly Correlated Electron Systems

NMR in Strongly Correlated Electron Systems NMR in Strongly Correlated Electron Systems Vesna Mitrović, Brown University Journée Claude Berthier, Grenoble, September 211 C. Berthier, M. H. Julien, M. Horvatić, and Y. Berthier, J. Phys. I France

More information

Orbital-Selective Pairing and Gap Structures of Iron-Based Superconductors

Orbital-Selective Pairing and Gap Structures of Iron-Based Superconductors Orbital-Selective Pairing and Gap Structures of Iron-Based Superconductors Andreas Kreisel Institut für Theoretische Physik, Universität Leipzig Brian Andersen Niels Bohr Institute, University of Copenhagen,

More information

Topological Kondo Insulators!

Topological Kondo Insulators! Topological Kondo Insulators! Maxim Dzero, University of Maryland Collaborators: Kai Sun, University of Maryland Victor Galitski, University of Maryland Piers Coleman, Rutgers University Main idea Kondo

More information

Inhomogeneous spin and charge densities in d-wave superconductors

Inhomogeneous spin and charge densities in d-wave superconductors Inhomogeneous spin and charge densities in d-wave superconductors Arno P. Kampf Paris, June 2009 Collaborative Research Center SFB 484 Cooperative Phenomena in Solids: Metal-Insulator-Transitions and Ordering

More information

I. Review of Fe-based Superconductivity II. Disorder effects in unconventional sc

I. Review of Fe-based Superconductivity II. Disorder effects in unconventional sc I. Review of Fe-based Superconductivity II. Disorder effects in unconventional sc P. Hirschfeld, U. Florida PH, M.M. Korshunov and I.I. Mazin, Rep. Prog. Phys. 74, 124508 (2011) Maglab Theory Winter School

More information

Pairing Mechanism for FeSe systems: HEDIS (highly electron doped FeSe )

Pairing Mechanism for FeSe systems: HEDIS (highly electron doped FeSe ) Part IV: one last challenge of IBS Pairing Mechanism for FeSe systems: HEDIS (highly electron doped FeSe ) FeSe Problem? One layer system. Only Electron pockets. Tc ~ 100K Standard Paradigm of IBS: S-wave

More information

arxiv:cond-mat/ v1 16 Jun 1993

arxiv:cond-mat/ v1 16 Jun 1993 Comment on Theory of Impure Superconductors: Anderson versus Abrikosov and Gor kov R. J. Radtke Department of Physics and the James Franck Institute, arxiv:cond-mat/9306037v1 16 Jun 1993 The University

More information

Plain s-wave superconductivity in single-layer FeSe on SrTiO 3. probed by scanning tunneling microscopy

Plain s-wave superconductivity in single-layer FeSe on SrTiO 3. probed by scanning tunneling microscopy Plain s-wave superconductivity in single-layer FeSe on SrTiO 3 probed by scanning tunneling microscopy Q. Fan 1, W. H. Zhang 1, X. Liu 1, Y. J. Yan 1, M. Q. Ren 1, R. Peng 1, H. C. Xu 1, B. P. Xie 1, 2,

More information

Superconductivity in Heavy Fermion Systems: Present Understanding and Recent Surprises. Gertrud Zwicknagl

Superconductivity in Heavy Fermion Systems: Present Understanding and Recent Surprises. Gertrud Zwicknagl Magnetism, Bad Metals and Superconductivity: Iron Pnictides and Beyond September 11, 2014 Superconductivity in Heavy Fermion Systems: Present Understanding and Recent Surprises Gertrud Zwicknagl Institut

More information

Superconductivity and Electron Correlations in Ruthenates

Superconductivity and Electron Correlations in Ruthenates University of St Andrews School of Physics and Astronomy Superconductivity and Electron Correlations in Ruthenates Andy Mackenzie University of St Andrews, UK Key collaborator: Yoshi Maeno, Kyoto University

More information

From single magnetic adatoms to coupled chains on a superconductor

From single magnetic adatoms to coupled chains on a superconductor From single magnetic adatoms to coupled chains on a superconductor Michael Ruby, Benjamin Heinrich, Yang Peng, Falko Pientka, Felix von Oppen, Katharina Franke Magnetic adatoms on a superconductor Sample

More information

Characterization and Uncertainties in the New Superconductor A x Fe 2-y Se 2 (A= K, Rb)

Characterization and Uncertainties in the New Superconductor A x Fe 2-y Se 2 (A= K, Rb) Characterization and Uncertainties in the New Superconductor A x Fe 2-y Se 2 (A= K, Rb) Hai-Hu Wen National Lab of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 2193,

More information

STM Study of Unconventional Superconductivity

STM Study of Unconventional Superconductivity STM Study of Unconventional Superconductivity 1. Introduction to conventional superconductivity 2. Introduction to scanning tunneling microscopy (STM) 3. High Tc Superconductor : Cuprates 4. High T c Superconductor

More information

Vortices in superconductors& low temperature STM

Vortices in superconductors& low temperature STM Vortices in superconductors& low temperature STM José Gabriel Rodrigo Low Temperature Laboratory Universidad Autónoma de Madrid, Spain (LBT-UAM) Cryocourse, 2011 Outline -Vortices in superconductors -Vortices

More information

High Tc superconductivity in cuprates: Determination of pairing interaction. Han-Yong Choi / SKKU SNU Colloquium May 30, 2018

High Tc superconductivity in cuprates: Determination of pairing interaction. Han-Yong Choi / SKKU SNU Colloquium May 30, 2018 High Tc superconductivity in cuprates: Determination of pairing interaction Han-Yong Choi / SKKU SNU Colloquium May 30 018 It all began with Discovered in 1911 by K Onnes. Liquid He in 1908. Nobel prize

More information

Nodal and nodeless superconductivity in Iron-based superconductors

Nodal and nodeless superconductivity in Iron-based superconductors Nodal and nodeless superconductivity in Iron-based superconductors B. Andrei Bernevig Department of Physics Princeton University Minneapolis, 2011 Collaborators: R. Thomale, Yangle Wu (Princeton) J. Hu

More information

Nematic and Magnetic orders in Fe-based Superconductors

Nematic and Magnetic orders in Fe-based Superconductors Nematic and Magnetic orders in Fe-based Superconductors Cenke Xu Harvard University Collaborators: Markus Mueller, Yang Qi Subir Sachdev, Jiangping Hu Collaborators: Subir Sachdev Markus Mueller Yang Qi

More information

High-Temperature Superconductors: Playgrounds for Broken Symmetries

High-Temperature Superconductors: Playgrounds for Broken Symmetries High-Temperature Superconductors: Playgrounds for Broken Symmetries Gauge / Phase Reflection Time Laura H. Greene Department of Physics Frederick Seitz Materials Research Laboratory Center for Nanoscale

More information

Odd-Frequency Pairing in Superconducting Heterostructures

Odd-Frequency Pairing in Superconducting Heterostructures Odd-Frequency Pairing in Superconducting Heterostructures Alexander Golubov Twente University, The Netherlands Y. Tanaka Nagoya University, Japan Y. Asano Hokkaido University, Japan S. Kawabata AIST, Tsukuba,

More information

Phase Separation and Magnetic Order in K-doped Iron Selenide Superconductor

Phase Separation and Magnetic Order in K-doped Iron Selenide Superconductor Phase Separation and Magnetic Order in K-doped Iron Selenide Superconductor Wei Li 1, Hao Ding 1, Peng Deng 1, Kai Chang 1, Canli Song 1, Ke He 2, Lili Wang 2, Xucun Ma 2, Jiang-Ping Hu 3, Xi Chen 1, *,

More information

ARPES studies of Fe pnictides: Nature of the antiferromagnetic-orthorhombic phase and the superconducting gap

ARPES studies of Fe pnictides: Nature of the antiferromagnetic-orthorhombic phase and the superconducting gap Novel Superconductors and Synchrotron Radiation: state of the art and perspective Adriatico Guest House, Trieste, December 10-11, 2014 ARPES studies of Fe pnictides: Nature of the antiferromagnetic-orthorhombic

More information

Quantum dynamics in many body systems

Quantum dynamics in many body systems Quantum dynamics in many body systems Eugene Demler Harvard University Collaborators: David Benjamin (Harvard), Israel Klich (U. Virginia), D. Abanin (Perimeter), K. Agarwal (Harvard), E. Dalla Torre (Harvard)

More information

Physics of iron-based high temperature superconductors. Abstract

Physics of iron-based high temperature superconductors. Abstract Physics of iron-based high temperature superconductors Yuji Matsuda Department of Physics, Kyoto University, Kyoto 606-8502, Japan Abstract The discovery of high-t c iron pnictide and chalcogenide superconductors

More information

Disordered Superconductors

Disordered Superconductors Cargese 2016 Disordered Superconductors Claude Chapelier, INAC-PHELIQS, CEA-Grenoble Superconductivity in pure metals Kamerlingh Onnes, H., "Further experiments with liquid helium. C. On the change of

More information

F. Rullier-Albenque 1, H. Alloul 2 1

F. Rullier-Albenque 1, H. Alloul 2 1 Distinct Ranges of Superconducting Fluctuations and Pseudogap in Cuprates Glassy29-2/7/29 F. Rullier-Albenque 1, H. Alloul 2 1 Service de Physique de l Etat Condensé, CEA, Saclay, France 2 Physique des

More information

Linear decrease of critical temperature with increasing Zn substitution in the iron-based superconductor BaFe x Zn 2x Co 0.

Linear decrease of critical temperature with increasing Zn substitution in the iron-based superconductor BaFe x Zn 2x Co 0. Linear decrease of critical temperature with increasing Zn substitution in the iron-based superconductor BaFe 1.89-2x Zn 2x Co 0.11 As 2 Jun Li, 1,2,* Yanfeng Guo, 3 Shoubao Zhang, 3 Shan Yu, 1 Yoshihiro

More information

Space group symmetry, spin-orbit coupling and the low energy effective Hamiltonian for iron based superconductors

Space group symmetry, spin-orbit coupling and the low energy effective Hamiltonian for iron based superconductors Space group symmetry, spin-orbit coupling and the low energy effective Hamiltonian for iron based superconductors Phys. Rev. B 88, 134510 (2013) Oskar Vafek National High Magnetic Field Laboratory and

More information

More a progress report than a talk

More a progress report than a talk Superconductivity and Magnetism in novel Fe-based superconductors Ilya Eremin 1,2 and Maxim Korshunov 1 1 - Max-Planck Institut für Physik komplexer Systeme, Dresden, 2- Institut für Theoretische Physik,

More information

Dynamics of fluctuations in high temperature superconductors far from equilibrium. L. Perfetti, Laboratoire des Solides Irradiés, Ecole Polytechnique

Dynamics of fluctuations in high temperature superconductors far from equilibrium. L. Perfetti, Laboratoire des Solides Irradiés, Ecole Polytechnique Dynamics of fluctuations in high temperature superconductors far from equilibrium L. Perfetti, Laboratoire des Solides Irradiés, Ecole Polytechnique Superconductors display amazing properties: Dissipation-less

More information

Studies of Iron-Based Superconductor Thin Films

Studies of Iron-Based Superconductor Thin Films MBE Growth and STM Studies of Iron-Based Superconductor Thin Films Wei Li 1, Canli Song 1,2, Xucun Ma 2, Xi Chen 1*, Qi-Kun Xu 1 State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics,

More information

Electron transport through Shiba states induced by magnetic adsorbates on a superconductor

Electron transport through Shiba states induced by magnetic adsorbates on a superconductor Electron transport through Shiba states induced by magnetic adsorbates on a superconductor Michael Ruby, Nino Hatter, Benjamin Heinrich Falko Pientka, Yang Peng, Felix von Oppen, Nacho Pascual, Katharina

More information

Spin correlations in conducting and superconducting materials Collin Broholm Johns Hopkins University

Spin correlations in conducting and superconducting materials Collin Broholm Johns Hopkins University Spin correlations in conducting and superconducting materials Collin Broholm Johns Hopkins University Supported by U.S. DoE Basic Energy Sciences, Materials Sciences & Engineering DE-FG02-08ER46544 Overview

More information

Superconductivity and spin excitations in orbitally ordered FeSe

Superconductivity and spin excitations in orbitally ordered FeSe Superconductivity and spin excitations in orbitally ordered FeSe Andreas Kreisel, Brian M. Andersen Niels Bohr Institute, University of Copenhagen, 2100 København, Denmark Peter J. Hirschfeld Department

More information

Fe-based superconductors (FBS) at highmagnetic fields

Fe-based superconductors (FBS) at highmagnetic fields Fe-based superconductors (FBS) at highmagnetic fields Alex Gurevich Old Dominion University, Norfolk, VA Dept. Physics, University of Virginia, Sept. 6, 0 Outline Fe-based superconductors: unconventional

More information

Impurity resonance states in noncentrosymmetric superconductor CePt 3 Si: A probe for Cooper-pairing symmetry

Impurity resonance states in noncentrosymmetric superconductor CePt 3 Si: A probe for Cooper-pairing symmetry PHYSICAL REVIEW B 78, 14518 28 Impurity resonance states in noncentrosymmetric superconductor CePt 3 Si: A probe for Cooper-pairing symmetry Bin Liu 1 and Ilya Eremin 1,2 1 Max-Planck-Institut für Physik

More information

Surface states in p-wave superconductors and odd-frequency pairing

Surface states in p-wave superconductors and odd-frequency pairing Surface states in p-wave superconductors and odd-frequency pairing Alexander Golubov University of Twente, The Netherlands ABS and Moscow Institute of Physics and Technology, Russia F/S junction Odd-frequency

More information

NMR studies of cuprates pseudogap, correlations, phase diagram: past and future?

NMR studies of cuprates pseudogap, correlations, phase diagram: past and future? NMR studies of cuprates pseudogap, correlations, phase diagram: past and future? P. Mendels NMR LPS, Orsay J. Bobroff PhD students: H. Casalta, L. Guerrin, S. ouazi Post-docs: T Ohno, A. Mahajan, A. Mac

More information

The Nernst effect in high-temperature superconductors

The Nernst effect in high-temperature superconductors The Nernst effect in high-temperature superconductors Iddo Ussishkin (University of Minnesota) with Shivaji Sondhi David Huse Vadim Oganesyan Outline Introduction: - High-temperature superconductors: physics

More information

Electronic inhomogeneity, magnetic order & superconductivity probed by NMR in cuprates and pnictides

Electronic inhomogeneity, magnetic order & superconductivity probed by NMR in cuprates and pnictides Electronic inhomogeneity, magnetic order & superconductivity probed by NMR in cuprates and pnictides Marc-Henri Julien Laboratoire de Spectrométrie Physique Université J. Fourier Grenoble I Acknowledgments

More information

Introduction Critical state models Pinning regimes Kinds of pinning sites HTS Results on YBCO Conclusions. Flux pinning.

Introduction Critical state models Pinning regimes Kinds of pinning sites HTS Results on YBCO Conclusions. Flux pinning. Department of Physics and Astronomy 14.6.2011 Contents Introduction Critical state models Pinning regimes Kinds of pinning sites HTS Results on YBCO Type II superconductors and vortices Type I ξ < λ S/N

More information

Magnetic-field-tuned superconductor-insulator transition in underdoped La 2-x Sr x CuO 4

Magnetic-field-tuned superconductor-insulator transition in underdoped La 2-x Sr x CuO 4 Magnetic-field-tuned superconductor-insulator transition in underdoped La 2-x Sr x CuO 4 Dragana Popović National High Magnetic Field Laboratory Florida State University, Tallahassee, FL, USA Collaborators

More information

Tuning order in cuprate superconductors

Tuning order in cuprate superconductors Tuning order in cuprate superconductors arxiv:cond-mat/0201401 v1 23 Jan 2002 Subir Sachdev 1 and Shou-Cheng Zhang 2 1 Department of Physics, Yale University, P.O. Box 208120, New Haven, CT 06520-8120,

More information

Workshop on Principles and Design of Strongly Correlated Electronic Systems August 2010

Workshop on Principles and Design of Strongly Correlated Electronic Systems August 2010 2157-6 Workshop on Principles and Design of Strongly Correlated Electronic Systems 2-13 August 2010 Selection of Magnetic Order and Magnetic Excitations in the SDW State of Iron-based Superconductors Ilya

More information

Electron Doped Cuprates

Electron Doped Cuprates Electron Doped Cuprates Daniela Lindner High temperature superconductivity in the copper-oxide ceramics obtains upon hole or electron doping the parent Mott insulating material. While the pairing symmetry

More information

Superconducting fluctuations, interactions and disorder : a subtle alchemy

Superconducting fluctuations, interactions and disorder : a subtle alchemy Les défis actuels de la supraconductivité Dautreppe 2011 Superconducting fluctuations, interactions and disorder : a subtle alchemy Claude Chapelier, Benjamin Sacépé, Thomas Dubouchet INAC-SPSMS-LaTEQS,

More information

Hidden order in URu 2. Si 2. hybridization with a twist. Rebecca Flint. Iowa State University. Hasta: spear (Latin) C/T (mj/mol K 2 ) T (K)

Hidden order in URu 2. Si 2. hybridization with a twist. Rebecca Flint. Iowa State University. Hasta: spear (Latin) C/T (mj/mol K 2 ) T (K) Hidden order in URu 2 Si 2 : Rebecca Flint Iowa State University hybridization with a twist C/T (mj/mol K 2 ) T (K) P. Chandra, P. Coleman and R. Flint, arxiv: 1501.01281 (2015) P. Chandra, P. Coleman

More information

LOCAL MOMENTS NEAR THE METAL-INSULATOR TRANSITION

LOCAL MOMENTS NEAR THE METAL-INSULATOR TRANSITION LOCAL MOMENTS NEAR THE METAL-INSULATOR TRANSITION Subir Sachdev Center for Theoretical Physics, P.O. Box 6666 Yale University, New Haven, CT 06511 This paper reviews recent progress in understanding the

More information

Visualizing out-of-equilibrium superconductivity

Visualizing out-of-equilibrium superconductivity Strongly disordered and inhomogenous superconductivity- Grenoble -2016 Visualizing out-of-equilibrium superconductivity Claude Chapelier, INAC, CEA - UGA Eduard Driessen, IRAM 1- Superconducting Photon

More information

Магнетизм в железосодержащих сверхпроводниках: взаимодействие магнитных, орбитальных и решеточных степеней свободы

Магнетизм в железосодержащих сверхпроводниках: взаимодействие магнитных, орбитальных и решеточных степеней свободы Магнетизм в железосодержащих сверхпроводниках: взаимодействие магнитных, орбитальных и решеточных степеней свободы Ilya Eremin Theoretische Physik III, Ruhr-Uni Bochum Work done in collaboration with:

More information

arxiv: v1 [cond-mat.supr-con] 1 May 2015

arxiv: v1 [cond-mat.supr-con] 1 May 2015 On the role of chalcogen vapor annealing in inducing bulk superconductivity in Fe 1+y Te 1 x Se x arxiv:1505.0071v1 [cond-mat.supr-con] 1 May 015 Wenzhi Lin, 1 P. Ganesh, 1 Anthony Gianfrancesco, Jun Wang,

More information

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC Laura Fanfarillo FROM FERMI LIQUID TO NON-FERMI LIQUID Strong Correlation Bad Metal High Temperature Fermi Liquid Low Temperature Tuning parameter

More information

Tuning magnetic anisotropy, Kondo screening and Dzyaloshinskii-Moriya interaction in pairs of Fe adatoms

Tuning magnetic anisotropy, Kondo screening and Dzyaloshinskii-Moriya interaction in pairs of Fe adatoms Tuning magnetic anisotropy, Kondo screening and Dzyaloshinskii-Moriya interaction in pairs of Fe adatoms Department of Physics, Hamburg University, Hamburg, Germany SPICE Workshop, Mainz Outline Tune magnetic

More information

Flat band and localized excitations in the magnetic spectrum of the fully frustrated dimerized magnet Ba 2 CoSi 2 O 6 Cl 2

Flat band and localized excitations in the magnetic spectrum of the fully frustrated dimerized magnet Ba 2 CoSi 2 O 6 Cl 2 Flat band and localized excitations in the magnetic spectrum of the fully frustrated dimerized magnet Ba 2 CoSi 2 O 6 Cl 2 γ 1 tr φ θ φ θ i Nobuo Furukawa Dept. of Physics, Aoyama Gakuin Univ. Collaborators

More information

ANISOTROPIC TRANSPORT IN THE IRON PNICTIDES

ANISOTROPIC TRANSPORT IN THE IRON PNICTIDES ANISOTROPIC TRANSPORT IN THE IRON PNICTIDES JÖRG SCHMALIAN AMES LABORATORY AND IOWA STATE UNIVERSITY Collaborators theory Ames: Rafael Fernandes Rutgers: Premala Chandra UCLA: Elihu Abrahams experiment

More information

New perspectives in superconductors. E. Bascones Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC)

New perspectives in superconductors. E. Bascones Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) New perspectives in superconductors E. Bascones Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) E. Bascones leni@icmm.csic.es Outline Talk I: Correlations in iron superconductors Introduction

More information

Surface electronic structure and evidence of plain s-wave

Surface electronic structure and evidence of plain s-wave Surface electronic structure and evidence of plain s-wave superconductivity in (Li 0.8 Fe 0.2 )OHFeSe Y. J. Yan 1, W. H. Zhang 1, M. Q. Ren 1, X. Liu 1, X. F. Lu 3, N. Z. Wang 3, X. H. Niu 1, Q. Fan 1,

More information

Kondo Effect in Nanostructures

Kondo Effect in Nanostructures Kondo Effect in Nanostructures Argonne National Laboratory May 7th 7 Enrico Rossi University of Illinois at Chicago Collaborators: Dirk K. Morr Argonne National Laboratory, May 7 The Kondo-effect R Metal

More information

Can superconductivity emerge out of a non Fermi liquid.

Can superconductivity emerge out of a non Fermi liquid. Can superconductivity emerge out of a non Fermi liquid. Andrey Chubukov University of Wisconsin Washington University, January 29, 2003 Superconductivity Kamerling Onnes, 1911 Ideal diamagnetism High Tc

More information

Heavy Fermion systems

Heavy Fermion systems Heavy Fermion systems Satellite structures in core-level and valence-band spectra Kondo peak Kondo insulator Band structure and Fermi surface d-electron heavy Fermion and Kondo insulators Heavy Fermion

More information

Chapter 2 Superconducting Gap Structure and Magnetic Penetration Depth

Chapter 2 Superconducting Gap Structure and Magnetic Penetration Depth Chapter 2 Superconducting Gap Structure and Magnetic Penetration Depth Abstract The BCS theory proposed by J. Bardeen, L. N. Cooper, and J. R. Schrieffer in 1957 is the first microscopic theory of superconductivity.

More information

Conference on Superconductor-Insulator Transitions May 2009

Conference on Superconductor-Insulator Transitions May 2009 2035-7 Conference on Superconductor-Insulator Transitions 18-23 May 2009 Tunneling studies in a disordered s-wave superconductor close to the Fermi glass regime P. Raychaudhuri Tata Institute of Fundamental

More information

Quantum theory of vortices and quasiparticles in d-wave superconductors

Quantum theory of vortices and quasiparticles in d-wave superconductors Quantum theory of vortices and quasiparticles in d-wave superconductors Quantum theory of vortices and quasiparticles in d-wave superconductors Physical Review B 73, 134511 (2006), Physical Review B 74,

More information

Amalia Coldea. c/a. Oxford University. KITP, Santa Barbara, Jan

Amalia Coldea. c/a. Oxford University. KITP, Santa Barbara, Jan Topological changes of the Fermi surface and the effect of electronic correlations in iron pnictides Amalia Coldea Oxford University c/a http://www.physics.ox.ac.uk/users/coldeaa KITP, Santa Barbara, Jan

More information

A New look at the Pseudogap Phase in the Cuprates.

A New look at the Pseudogap Phase in the Cuprates. A New look at the Pseudogap Phase in the Cuprates. Patrick Lee MIT Common themes: 1. Competing order. 2. superconducting fluctuations. 3. Spin gap: RVB. What is the elephant? My answer: All of the above!

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Josephson supercurrent through a topological insulator surface state M. Veldhorst, M. Snelder, M. Hoek, T. Gang, V. K. Guduru, X. L.Wang, U. Zeitler, W. G. van der Wiel, A. A. Golubov, H. Hilgenkamp and

More information

Iron-based superconductor --- an overview. Hideo Aoki

Iron-based superconductor --- an overview. Hideo Aoki Thermal Quantum Field Theory Workshop, Yukawa Institute, Kyoto, 31 August 2010 Iron-based superconductor --- an overview Hideo Aoki Dept Physics, Univ Tokyo http://cms.phys.s.u-tokyo.ac.jp/ My talk today

More information

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC Laura Fanfarillo FROM FERMI LIQUID TO NON-FERMI LIQUID Strong Correlation Bad Metal High Temperature Fermi Liquid Low Temperature Tuning parameter

More information

edited by Nan-Lin Wang Hideo Hosono Pengcheng Dai MATERIALS, PROPERTIES, AND MECHANISMS IRON-BASED SUPERCONDUCTORS

edited by Nan-Lin Wang Hideo Hosono Pengcheng Dai MATERIALS, PROPERTIES, AND MECHANISMS IRON-BASED SUPERCONDUCTORS edited by " Nan-Lin Wang Hideo Hosono Pengcheng Dai MATERIALS, PROPERTIES, AND MECHANISMS IRON-BASED SUPERCONDUCTORS Pan Stanford Publishing Contents Preface xiii 1 Iron-Based Superconductors: Discovery

More information

Superconducting glue: are there limits on T c?

Superconducting glue: are there limits on T c? Superconducting glue: are there limits on T c? Oleg V. Dolgov Max Planck Institute for Solid State Research Stuttgart Germany In collaboration with E.G. Maksimov P.N. Lebedev Physical Institute RAS Moscow

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION In the format provided by the authors and unedited. DOI: 10.1038/NPHYS4186 Stripes Developed at the Strong Limit of Nematicity in FeSe film Wei Li 1,2,3*, Yan Zhang 2,3,4,5, Peng Deng 1, Zhilin Xu 1, S.-K.

More information

Stripes developed at the strong limit of nematicity in FeSe film

Stripes developed at the strong limit of nematicity in FeSe film Stripes developed at the strong limit of nematicity in FeSe film Wei Li ( ) Department of Physics, Tsinghua University IASTU Seminar, Sep. 19, 2017 Acknowledgements Tsinghua University Prof. Qi-Kun Xue,

More information

Understanding the Tc trends in high Tc superconductors. Kazuhiko Kuroki

Understanding the Tc trends in high Tc superconductors. Kazuhiko Kuroki NQS2014 2014.11.24-28 Yukawa Inst. Understanding the Tc trends in high Tc superconductors Dept. of Physics, Osaka University Kazuhiko Kuroki Collaborators cuprates : H. Sakakibara(RIKEN), K. Suzuki(Osaka),

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1 Point-contact spectra of a Pt-Ir tip/lto film junction. The main panel shows differential conductance at 2, 12, 13, 16 K (0 T), and 10 K (2 T) to demonstrate

More information

Intrinsic tunnelling data for Bi-2212 mesa structures and implications for other properties.

Intrinsic tunnelling data for Bi-2212 mesa structures and implications for other properties. Intrinsic tunnelling data for Bi-2212 mesa structures and implications for other properties. J.R. Cooper, QM group, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK e-mail jrc19@cam.ac.uk

More information

Organic Conductors and Superconductors: signatures of electronic correlations Martin Dressel 1. Physikalisches Institut der Universität Stuttgart

Organic Conductors and Superconductors: signatures of electronic correlations Martin Dressel 1. Physikalisches Institut der Universität Stuttgart Organic Conductors and Superconductors: signatures of electronic correlations Martin Dressel 1. Physikalisches Institut der Universität Stuttgart Outline 1. Organic Conductors basics and development 2.

More information

arxiv:cond-mat/ v1 [cond-mat.supr-con] 28 May 2003

arxiv:cond-mat/ v1 [cond-mat.supr-con] 28 May 2003 arxiv:cond-mat/0305637v1 [cond-mat.supr-con] 28 May 2003 The superconducting state in a single CuO 2 layer: Experimental findings and scenario Rushan Han, Wei Guo School of Physics, Peking University,

More information

LECTURE 5. NON-CUPRATE SUPERCONDUCTIVITY

LECTURE 5. NON-CUPRATE SUPERCONDUCTIVITY TD-5.1 LECTURE 5. NON-CUPRATE SUPERCONDUCTIVITY 1.Alkali Fullerides Formula:A 3 C 60 C 60 molecule: soccer-ball pattern, with 20 hexagon and 12 pentagons: icosahedral symmetry. C atom is 1s 2 2s 2 2p 4,

More information

Talk online at

Talk online at Talk online at http://sachdev.physics.harvard.edu Outline 1. CFT3s in condensed matter physics Superfluid-insulator and Neel-valence bond solid transitions 2. Quantum-critical transport Collisionless-t0-hydrodynamic

More information

Understanding correlated electron systems by a classification of Mott insulators

Understanding correlated electron systems by a classification of Mott insulators Understanding correlated electron systems by a classification of Mott insulators Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev T. Senthil (MIT) Matthias Vojta (Karlsruhe)

More information

Impurity-Induced States in 2DEG and d-wave Superconductors

Impurity-Induced States in 2DEG and d-wave Superconductors Impurity-Induced States in 2DEG and d-wave Superconductors Symposium on Quantum Phenomena Condensed Matter Theory Center Physics Department, University of Maryland September 27th-28th 2007 Enrico Rossi

More information

Is Sr2RuO4 a triplet superconducor? ---analysis of specific heat under fields---

Is Sr2RuO4 a triplet superconducor? ---analysis of specific heat under fields--- Is Sr2RuO4 a triplet superconducor? ---analysis of specific heat under fields--- Kazu. Machida Okayama Univ collaborators M. Ichioka, T. Mizushima, H. Adachi, N. Nakai, Y. Tsutsumi Outline Phenomena related

More information

BaFe 2 As 2 : A Model Platform for Unconventional Superconductivity. David Mandrus, Oak Ridge National Lab.

BaFe 2 As 2 : A Model Platform for Unconventional Superconductivity. David Mandrus, Oak Ridge National Lab. BaFe 2 As 2 : A Model Platform for Unconventional Superconductivity David Mandrus, Oak Ridge National Lab. Correlated Electron Materials Group David Mandrus Brian Sales Rongying Jin (now at LSU) Michael

More information

Angular-dependent magnetic torque in iron-pnictide BaFe 2 x Ni x As 2

Angular-dependent magnetic torque in iron-pnictide BaFe 2 x Ni x As 2 International Journal of Modern Physics B Vol. 31, No. 3 (2017) 1750005 (9 pages) c World Scientific Publishing Company DOI: 10.1142/S0217979217500059 Angular-dependent magnetic torque in iron-pnictide

More information

Dirac-Fermion-Induced Parity Mixing in Superconducting Topological Insulators. Nagoya University Masatoshi Sato

Dirac-Fermion-Induced Parity Mixing in Superconducting Topological Insulators. Nagoya University Masatoshi Sato Dirac-Fermion-Induced Parity Mixing in Superconducting Topological Insulators Nagoya University Masatoshi Sato In collaboration with Yukio Tanaka (Nagoya University) Keiji Yada (Nagoya University) Ai Yamakage

More information

arxiv: v2 [cond-mat.supr-con] 10 May 2010

arxiv: v2 [cond-mat.supr-con] 10 May 2010 Volovik effect in the ±s-wave state for the iron-based superconductors Yunkyu Bang Department of Physics, Chonnam National University, Kwangju 5-757, Republic of Korea and Asia Pacific Center for Theoretical

More information

Mn in GaAs: from a single impurity to ferromagnetic layers

Mn in GaAs: from a single impurity to ferromagnetic layers Mn in GaAs: from a single impurity to ferromagnetic layers Paul Koenraad Department of Applied Physics Eindhoven University of Technology Materials D e v i c e s S y s t e m s COBRA Inter-University Research

More information

Intermediate valence in Yb Intermetallic compounds

Intermediate valence in Yb Intermetallic compounds Intermediate valence in Yb Intermetallic compounds Jon Lawrence University of California, Irvine This talk concerns rare earth intermediate valence (IV) metals, with a primary focus on certain Yb-based

More information

Dynamical phase transition and prethermalization. Mobile magnetic impurity in Fermi superfluids

Dynamical phase transition and prethermalization. Mobile magnetic impurity in Fermi superfluids Dynamical phase transition and prethermalization Pietro Smacchia, Alessandro Silva (SISSA, Trieste) Dima Abanin (Perimeter Institute, Waterloo) Michael Knap, Eugene Demler (Harvard) Mobile magnetic impurity

More information