Global Asymptotic Stability of a Nonlinear Recursive Sequence

Size: px
Start display at page:

Download "Global Asymptotic Stability of a Nonlinear Recursive Sequence"

Transcription

1 International Mathematical Forum, 5, 200, no. 22, Global Asymptotic Stability of a Nonlinear Recursive Sequence Mustafa Bayram Department of Mathematics, Faculty of Arts and Sciences Fatih University, 34500, Buyukcekmece, Istanbul, Turkey mbayram@fatih.edu.tr S. Ebru Daṣ Department of Mathematics, Faculty of Arts and Sciences Yildiz Technical University, 34220, Davutpasa, Istanbul, Turkey eyeni@yildiz.edu.tr Abstract In this work, we investigate the global asymptotic stability of the following nonlinear recursive sequence: x n+ = x nx b n 2 + xb n 3 + xb n + a x n x b n 3 + xb n 2 + xb n + a () where a, b [0, ) and the initial values x 3, x 2, x, x 0 are arbitrary positive real numbers. Mathematics Subject Classification: 39A0 Keywords: Recursive Sequence, Difference equation, Global Stability Introduction Recursive sequences are also called difference equations. Some recursive sequences can be look very simple; but in fact their global behaviors are mostly very complicated. Li and Zhu[] are obtained a sufficient condition to guarantee the global asymptotic stability of the following recursive sequence: x n+ = x nx b n + xb n 2 + a x b n + x n x b n 2 + a (2)

2 084 M. Bayram and S. Ebru Daṣ where a, b [0, ) and the initial values x 2,x,x 0 (0, ). Li[2] use a new method to investigate the qualitative properties of the following rational difference equation: x n+ = x nx n x n 3 + x n + x n + x n 3 + a, n =0,,... (3) x n x n + x n x n 3 + x n x n 3 ++a Li [3] use a new method to investigate the global behavior of the following rational difference equation: x n+ = x n x n 2 x n 3 + x n + x n 2 + x n 3 + a, n =0,,... (4) x n x n 2 + x n x n 3 + x n 2 x n 3 ++a To be motivated by the above studies, in this paper, we consider the following nonlinear difference equation: x n+ = x nx b n 2 + xb n 3 + xb n + a x n x b n 3 + x b n 2 + x b n + a, n =0,, 2,... (5) where a, b [0, ) and the initial values x 3, x 2, x, x 0 are arbitrary positive real numbers. We review some results which will be useful in our investigation. Definition. Let I R and f : I k+ I be a continuously differentiable function. Then for every set of initial conditions x k,x k+,..., x 0 I, the difference equation x n+ = f(x n,x n,..., x n k ), n =0,,... (6) has an unique solution {x n } n= k. A point x I is called an equilibrium point of Eq(6) if x = f( x, x,..., x). Definition.2 Let x be the equilibrium point of the Eq(6). (i) The equilibrium point x of Eq(6) is called locally stable if for every ε>0, there exists δ>0 such that for all x k,x k+,..., x 0 I with x k x + x k+ x x 0 x <δ, we have x n x <ε foralln k (7) (ii) The equilibrium point x of Eq(6) is called a global attractor if for every x k,x k+,..., x 0 I, we have lim n x n = x (8) (iii) The equilibrium point x of Eq(6) is called global asymptotically stable if it is locally stable and a global attractor.

3 Global asymptotic stability 085 Definition.3 Let x be an equilibrium point of Eq (6). A positive semicycle of a solution {x n } n= k of Eq (6) consists of a string of terms {x l,x l+,...,x m } all greater than or equal to x, with l k and m s either l = k or l > k and x l < x and either m = or m < and x m+ < x A negative semicycle of a solution {x n } n= k of Eq (6) consists of a string of terms {x l,x l+,...,x m } all less than x, with l k and m such that either l = k or l > k and x l x and either m = or m < and x m+ x 2 Several Lemmas It is easy to see that the positive equilibrium point x of Eq (5) satisfies x n+ = xb+ +2 x b + a (9) x b+ +2 x b + a from which one can see that Eq (5) has an unique positive equilibrium x =. Lemma 2. A positive solution {x n } n= 3 of Eq (5) is eventually equal to if and only if (x 0 )(x 2 x 3 ) = 0 (0) Proof. Assume that (0) holds. Then, according to Eq (5), it is easy to see that x n = for n. Conversely, assume that Then, we must show that Assume the contrary that for some N, (x 0 )(x 2 x 3 ) 0 () x n for any n (2) x N = and x n for 2 n N (3) Clearly, =x N = x N x b N 3 + x b N 4 + x b N 2 + a x N x b N 4 + xb N 3 + xb N 2 + a (4)

4 086 M. Bayram and S. Ebru Daṣ which implies x N 3 = x N 4 and by (), N 3. Thus, from x N 4 = x N 3 = x N 4x b N 6 + xb N 7 + xb N 5 + a x N 4 x b N 7 + x b N 6 + x b N 5 + a (x N 4 )(x b N 7 (x N 4 +)+x b N 5 + a) = 0 (5) one can obtain that from (x b N 7 (x N 4 +)+x b N 5 + a) 0,x N 4 = which contradicts (3). Lemma 2.2 Let {x n } n= 3 be a positive solution of Eq (5) which is not eventually equal to. Then the following statements are true: (i) (x n+ x n )(x n ) < 0, for n 0 (ii) (x n+ )(x n )(x n 2 x n 3 ) > 0, for n 0 (iii) (x n+ )(x n )(x n 3 ) > 0, for n 3 Proof. From Eq (5), one can see x n+ x n = ( x n)[a +(+x n )x b n 3 + xb n ] x n x b n 3 + x b n 2 + x b n + a, n =0,,... (6) Since [a +(+x n )x b n 3 + xb n ] and [x nx b n 3 + xb n 2 + xb n + a] are positive, (i) holds. From Eq (5), x n+ = (x n )(x n 2 x n 3 )[x b n x b n 3] x n x b n 3 + x b n 2 + x b n + a, n =0,,... (7) Since [x b n xn 3] b and [x n x b n 3 + xb n 2 + xb n + a] are positive, (ii) holds. (iii) is a consequence of inequalities (i) and (ii). Lemma 2.3 If x 3 <x 2 <x <x 0 <, then {x n } n= 3 has a negative semicycle with an infinite number of terms and it monotonically tends to the positive equilibrium point x =. Proof. If x 3 <x 2 <x <x 0 <, from Lemma 2.2.(i) and (ii), for n 3 x 0 <x <... < x n <x n < (8) Clearly,{x n } n= 3 has a negative semicycle with an infinite number of terms. Furthermore, we know that the positive solution is strictly increasing for n 0. So the limit lim x n = L (9) n

5 Global asymptotic stability 087 exist and finite. Taking the limit on both sides of Eq (5), we have L = Lb+ +2L b + a L b+ +2L b + a = (20) We can easily see that {x n } n= 3 tends to the positive equilibrium point x =. Lemma 2.4 Let {x n } n= 3 be a positive solution of Eq (5) which is not eventually less than or equal to. Then, with the possible exception of the first semicycle, the following affirmations hold. (a) Every positive semicycle consists of four, two or one terms; Every negative semicycle consists of three, two or one terms. (b) The positive and negative semicycles of Eq (5) has the form 4 +,, +,, 2 +, 2, +, 3. Theorem 2.5 Let a [0, ) and b>0. Then the positive equilibrium point of Eq (5) is globally asymptotically stable. Proof. We must show that the positive equilibrium point is locally asymptotically stable and global attractor. The linearized equation of Eq (5) is z n+ =0.z n +0.z n +0.z n 2 +0.z n 3 (2) By virtue of [[4],Remark.3.7], x is locally asymptotically stable. Now we must show that every positive solution {x n } n= 3 of Eq (5) converges to as n. That is, lim x n = x (22) n If the solution is nonoscillatory about the positive equilibrium point x of Eq (5), then from Lemma 2. and Lemma 2.2, the solution is either equal to or eventually negative one which has an infinite number of terms and monotonically tends to the positive equilibrium point x of Eq (5), and so Eq (22) holds. Therefore, it suffices to prove that Eq (22) holds for the solution to be strictly oscillatory. Consider now {x n } n= 3 to be strictly oscillatory about the positive equilibrium point x of Eq (5). By virtue of Lemmas 2.2(ii) and Lemmas 2.4, the {x n } n= 3 solution of Eq (5) has the positive and negative semicycles of the form 4 +,, +,, 2 +, 2, +, 3. So we have the following sequences: {x p+5n,x p+5n+,x p+5n+2,x p+5n+3 } +, {x p+5n+4 }, {x p+5n+5 } +, {x p+5n+6 }, {x p+5n+7,x p+5n+8 } +, {x p+5n+9,x p+5n+0 }, {x p+5n+ } +, {x p+5n+2,x p+5n+3,x p+5n+4 } We now have the following assertions:

6 088 M. Bayram and S. Ebru Daṣ (i) x p+5n >x p+5n+ >x p+5n+2 >x p+5n+3, x p+5n+7 >x p+5n+8 x p+5n+0 >x p+5n+9, x p+5n+4 >x p+5n+3 >x p+5n+2 (ii) x p+5n+3 x p+5n+4 >,x p+5n+4 x p+5n+5 <,x p+5n+5 x p+5n+6 >, x p+5n+6 x p+5n+7 <,x p+5n+8 x p+5n+9 >,x p+5n+0 x p+5n+ <, x p+5n+ x p+5n+2 >,x p+5n+4 x p+5n+5 < inequality (i) can be easily seen from Lemma 2.2.(i) for n =0,,... From the observations of x p+5n+4 = x p+5n+3x b p+5n+ + x b p+5n + x b p+5n+2 + a x p+5n+3 x b p+5n + x b p+5n+ + x b p+5n+2 + a > = x p+5n+3 x b p+5n+ + x b p+5n + x b p+5n+2 + a x 2 p+5n+3x b p+5n + x b p+5n+x p+5n+3 + x b p+5n+2x p+5n+3 + ax p+5n+3 x p+5n+3 and x p+5n+5 = x p+5n+4x b p+5n+2 + xb p+5n+ + xb p+5n+3 + a x p+5n+4 x b p+5n+ + x b p+5n+2 + x b p+5n+3 + a < = x p+5n+4 x b p+5n+2 + xb p+5n+ + xb p+5n+3 + a x 2 p+5n+4x b p+5n+ + x b p+5n+2x p+5n+4 + x b p+5n+3x p+5n+4 + ax p+5n+4 x p+5n+4 x p+5n+5 x p+5n+6 >,x p+5n+6 x p+5n+7 <,x p+5n+8 x p+5n+9 >, x p+5n+0 x p+5n+ <,x p+5n+ x p+5n+2 >,x p+5n+4 x p+5n+5 < can be easily shown. From inequality (i) and (ii), x p+5n+5 < x p+5n+4 < x p+5n+3 < x p+5n+9 < x p+5n+8 <x p+5n+7 < x p+5n+4 < x p+5n+3 <x p+5n+2 <x p+5n+ <x p+5n <x p+5n+ < < x p+5n+2 x p+5n+0 <x p+5n+5 < (23) x p+5n+6 From equation (23), we can see that {x p+5n } n=0 is decreasing with lower bound. So the limit lim x p+5n = L (24) n

7 Global asymptotic stability 089 exist and are finite. From equation(23), we obtain lim n x p+5n+5 = lim n x p+5n+ = lim n x p+5n+8 = lim n x p+5n+7 = lim n x p+5n+5 = lim n x p+5n+3 = lim n x p+5n+2 = lim n x p+5n+ = L lim n x p+5n+4 = lim n x p+5n+3 = lim n x p+5n+2 = lim n x p+5n+0 = lim n x p+5n+9 =lim n x p+5n+6 = lim n x p+5n+4 = L, It suffices to verify that L =. For this, x p+5n+5 = x p+5n+4x b p+5n+2 + x b p+5n+ + x b p+5n3 + a x p+5n+4 x b p+5n+3 + x b p+5n+2 + x b p+5n3 + a (25) If we take the limits on both sides of the equation (25), L = + L b + + a L b+ L b L b a L b (26) which imply that L =. References [] X. Li and D. Zhu, Global asymptotic stability of a nonlinear recursive sequence, Compt.Math.Appl., 7 (2004), [2] X. Li, Qualitative properties for a fourth-order rational difference equation, J.Math.Anal.Appl., 3 (2005), [3] X. Li, Global behavior for a fourth-order rational difference equations, J.Math.Anal.Appl., 32 (2005), [4] V. L. Kocic and G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Kluwer Academic, Dordrecht, 993. Received: November, 2009

Two Rational Recursive Sequences

Two Rational Recursive Sequences ELSEVIER An Intemational Journal Available online at www.sciencedirectcom computers &.c,=.c= ~--~=,,,==T. mathematics with applications Computers Mathematics with Applications 47 (2004) 487-494 www.elsevier.eom/locat

More information

Global Attractivity in a Higher Order Nonlinear Difference Equation

Global Attractivity in a Higher Order Nonlinear Difference Equation Applied Mathematics E-Notes, (00), 51-58 c ISSN 1607-510 Available free at mirror sites of http://www.math.nthu.edu.tw/ amen/ Global Attractivity in a Higher Order Nonlinear Difference Equation Xing-Xue

More information

Attractivity of the Recursive Sequence x n+1 = (α βx n 1 )F (x n )

Attractivity of the Recursive Sequence x n+1 = (α βx n 1 )F (x n ) ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.7(2009) No.2,pp.201-206 Attractivity of the Recursive Sequence (α βx n 1 )F (x n ) A. M. Ahmed 1,, Alaa E. Hamza

More information

Global Attractivity of a Higher-Order Nonlinear Difference Equation

Global Attractivity of a Higher-Order Nonlinear Difference Equation International Journal of Difference Equations ISSN 0973-6069, Volume 5, Number 1, pp. 95 101 (010) http://campus.mst.edu/ijde Global Attractivity of a Higher-Order Nonlinear Difference Equation Xiu-Mei

More information

Dynamics of a Rational Recursive Sequence

Dynamics of a Rational Recursive Sequence International Journal of Difference Equations ISSN 0973-6069, Volume 4, Number 2, pp 185 200 (2009) http://campusmstedu/ijde Dynamics of a Rational Recursive Sequence E M Elsayed Mansoura University Department

More information

Convergence and Oscillation in a Rational Fourth Order Difference Equation

Convergence and Oscillation in a Rational Fourth Order Difference Equation Australian Journal of Basic and Applied Sciences, 5(7): 771-777, 011 ISSN 1991-8178 Convergence and Oscillation in a Rational Fourth Order Difference Equation Hamid Gazor, Azadeh Memar, Tahereh Gazor and

More information

ON THE RECURSIVE SEQUENCE x n+1 = A x n. 1. Introduction Our aim in this paper is to establish that every positive solution of the equation

ON THE RECURSIVE SEQUENCE x n+1 = A x n. 1. Introduction Our aim in this paper is to establish that every positive solution of the equation PROCEEDINGS OF THE MERICN MTHEMTICL SOCIETY Volume 26, Number, November 998, Pages 3257 326 S 0002-9939(98)04626-7 ON THE RECURSIVE SEQUENCE x n+ = x n R. DEVULT, G. LDS, ND S. W. SCHULTZ (Communicated

More information

Research Article Global Attractivity of a Higher-Order Difference Equation

Research Article Global Attractivity of a Higher-Order Difference Equation Discrete Dynamics in Nature and Society Volume 2012, Article ID 930410, 11 pages doi:10.1155/2012/930410 Research Article Global Attractivity of a Higher-Order Difference Equation R. Abo-Zeid Department

More information

ON A DIFFERENCE EQUATION WITH MIN-MAX RESPONSE

ON A DIFFERENCE EQUATION WITH MIN-MAX RESPONSE IJMMS 2004:55, 295 2926 PII. S067204402270 http://ijmms.hindawi.com Hindawi Publishing Corp. ON A DIFFERENCE EQUATION WITH MIN-MAX RESPONSE GEORGE L. KARAKOSTAS and STEVO STEVIĆ Received 25 February 2004

More information

OscillationofNonlinearFirstOrderNeutral Di erenceequations

OscillationofNonlinearFirstOrderNeutral Di erenceequations AppliedMathematics E-Notes, 1(2001), 5-10 c Availablefreeatmirrorsites ofhttp://math2.math.nthu.edu.tw/»amen/ OscillationofNonlinearFirstOrderNeutral Di erenceequations YingGaoandGuangZhang yz Received1June2000

More information

Global Attractivity in a Nonlinear Difference Equation and Applications to a Biological Model

Global Attractivity in a Nonlinear Difference Equation and Applications to a Biological Model International Journal of Difference Equations ISSN 0973-6069, Volume 9, Number 2, pp. 233 242 (204) http://campus.mst.edu/ijde Global Attractivity in a Nonlinear Difference Equation and Applications to

More information

Stability In A Nonlinear Four-Term Recurrence Equation

Stability In A Nonlinear Four-Term Recurrence Equation Applied Mathematics E-Notes, 4(2004), 68-73 c ISSN 1607-2510 Available free at mirror sites of http://www.math.nthu.edu.tw/ amen/ Stability In A Nonlinear Four-Term Recurrence Equation Shu-rong Sun, Zhenlai

More information

On the Third Order Rational Difference Equation

On the Third Order Rational Difference Equation Int. J. Contemp. Math. Sciences, Vol. 4, 2009, no. 27, 32-334 On the Third Order Rational Difference Equation x n x n 2 x (a+x n x n 2 ) T. F. Irahim Department of Mathematics, Faculty of Science Mansoura

More information

Global Attractivity of a Rational Difference Equation

Global Attractivity of a Rational Difference Equation Math. Sci. Lett. 2, No. 3, 161-165 (2013) 161 Mathematical Sciences Letters An International Journal http://dx.doi.org/10.12785/msl/020302 Global Attractivity of a Rational Difference Equation Nouressadat

More information

Global Attractivity in a Higher Order Difference Equation with Applications

Global Attractivity in a Higher Order Difference Equation with Applications International Jr, of Qualitative Theory of Differential Equations and Applications International Vol. 3 No. 1 Jr, (January-June, of Qualitative 2017) Theory of Differential Equations and Applications Vol.

More information

Asymptotic Behavior of a Higher-Order Recursive Sequence

Asymptotic Behavior of a Higher-Order Recursive Sequence International Journal of Difference Equations ISSN 0973-6069, Volume 7, Number 2, pp. 75 80 (202) http://campus.mst.edu/ijde Asymptotic Behavior of a Higher-Order Recursive Sequence Özkan Öcalan Afyon

More information

Periodicity and Solution of Rational Recurrence Relation of Order Six

Periodicity and Solution of Rational Recurrence Relation of Order Six Applied Mathematics 3 79-733 http://d.doi.org/.436/am..377 Published Online July (http://www.scirp.org/journal/am) Periodicity and Solution of Rational Recurrence Relation of Order Si Tarek F. Ibrahim

More information

A Note on the Positive Nonoscillatory Solutions of the Difference Equation

A Note on the Positive Nonoscillatory Solutions of the Difference Equation Int. Journal of Math. Analysis, Vol. 4, 1, no. 36, 1787-1798 A Note on the Positive Nonoscillatory Solutions of the Difference Equation x n+1 = α c ix n i + x n k c ix n i ) Vu Van Khuong 1 and Mai Nam

More information

The Fibonacci sequence modulo π, chaos and some rational recursive equations

The Fibonacci sequence modulo π, chaos and some rational recursive equations J. Math. Anal. Appl. 310 (2005) 506 517 www.elsevier.com/locate/jmaa The Fibonacci sequence modulo π chaos and some rational recursive equations Mohamed Ben H. Rhouma Department of Mathematics and Statistics

More information

GLOBAL ATTRACTIVITY IN A NONLINEAR DIFFERENCE EQUATION

GLOBAL ATTRACTIVITY IN A NONLINEAR DIFFERENCE EQUATION Sixth Mississippi State Conference on ifferential Equations and Computational Simulations, Electronic Journal of ifferential Equations, Conference 15 (2007), pp. 229 238. ISSN: 1072-6691. URL: http://ejde.mathmississippi

More information

ON THE RATIONAL RECURSIVE SEQUENCE X N+1 = γx N K + (AX N + BX N K ) / (CX N DX N K ) Communicated by Mohammad Asadzadeh. 1.

ON THE RATIONAL RECURSIVE SEQUENCE X N+1 = γx N K + (AX N + BX N K ) / (CX N DX N K ) Communicated by Mohammad Asadzadeh. 1. Bulletin of the Iranian Mathematical Society Vol. 36 No. 1 (2010), pp 103-115. ON THE RATIONAL RECURSIVE SEQUENCE X N+1 γx N K + (AX N + BX N K ) / (CX N DX N K ) E.M.E. ZAYED AND M.A. EL-MONEAM* Communicated

More information

Dynamics of higher order rational difference equation x n+1 = (α + βx n )/(A + Bx n + Cx n k )

Dynamics of higher order rational difference equation x n+1 = (α + βx n )/(A + Bx n + Cx n k ) Int. J. Nonlinear Anal. Appl. 8 (2017) No. 2, 363-379 ISSN: 2008-6822 (electronic) http://dx.doi.org/10.22075/ijnaa.2017.10822.1526 Dynamics of higher order rational difference equation x n+1 = (α + βx

More information

Monotone and oscillatory solutions of a rational difference equation containing quadratic terms

Monotone and oscillatory solutions of a rational difference equation containing quadratic terms Monotone and oscillatory solutions of a rational difference equation containing quadratic terms M. Dehghan, C.M. Kent, R. Mazrooei-Sebdani N.L. Ortiz, H. Sedaghat * Department of Mathematics, Virginia

More information

A System of Difference Equations with Solutions Associated to Fibonacci Numbers

A System of Difference Equations with Solutions Associated to Fibonacci Numbers International Journal of Difference Equations ISSN 0973-6069 Volume Number pp 6 77 06) http://campusmstedu/ijde A System of Difference Equations with Solutions Associated to Fibonacci Numbers Yacine Halim

More information

Anna Andruch-Sobi lo, Ma lgorzata Migda. FURTHER PROPERTIES OF THE RATIONAL RECURSIVE SEQUENCE x n+1 =

Anna Andruch-Sobi lo, Ma lgorzata Migda. FURTHER PROPERTIES OF THE RATIONAL RECURSIVE SEQUENCE x n+1 = Ouscula Mathematica Vol. 26 No. 3 2006 Anna Andruch-Sobi lo, Ma lgorzata Migda FURTHER PROPERTIES OF THE RATIONAL RECURSIVE SEQUENCE x n+1 = Abstract. In this aer we consider the difference equation x

More information

ON THE GLOBAL ATTRACTIVITY AND THE PERIODIC CHARACTER OF A RECURSIVE SEQUENCE. E.M. Elsayed

ON THE GLOBAL ATTRACTIVITY AND THE PERIODIC CHARACTER OF A RECURSIVE SEQUENCE. E.M. Elsayed Opuscula Mathematica Vol. 30 No. 4 2010 http://dx.doi.org/10.7494/opmath.2010.30.4.431 ON THE GLOBAL ATTRACTIVITY AND THE PERIODIC CHARACTER OF A RECURSIVE SEQUENCE E.M. Elsayed Abstract. In this paper

More information

Global Behavior of a Higher Order Rational Difference Equation

Global Behavior of a Higher Order Rational Difference Equation International Journal of Difference Euations ISSN 0973-6069, Volume 10, Number 1,. 1 11 (2015) htt://camus.mst.edu/ijde Global Behavior of a Higher Order Rational Difference Euation Raafat Abo-Zeid The

More information

On the Solutions of the Recursive Sequence. i=0. Saniye Ergin and Ramazan Karataş 1

On the Solutions of the Recursive Sequence. i=0. Saniye Ergin and Ramazan Karataş 1 Thai Journal of Mathematics Volume 14 (2016) Number 2 : 391 397 http://thaijmathincmuacth ISSN 1686-0209 On the Solutions of the Recursive Sequence ax n k a k x n i Saniye Ergin and Ramazan Karataş 1 Akdeniz

More information

Review Article Solution and Attractivity for a Rational Recursive Sequence

Review Article Solution and Attractivity for a Rational Recursive Sequence Discrete Dynamics in Nature and Society Volume 2011, Article ID 982309, 17 pages doi:10.1155/2011/982309 Review Article Solution and Attractivity for a Rational Recursive Sequence E. M. Elsayed 1, 2 1

More information

A proof of a partition conjecture of Bateman and Erdős

A proof of a partition conjecture of Bateman and Erdős proof of a partition conjecture of Bateman and Erdős Jason P. Bell Department of Mathematics University of California, San Diego La Jolla C, 92093-0112. US jbell@math.ucsd.edu 1 Proposed Running Head:

More information

h(x) lim H(x) = lim Since h is nondecreasing then h(x) 0 for all x, and if h is discontinuous at a point x then H(x) > 0. Denote

h(x) lim H(x) = lim Since h is nondecreasing then h(x) 0 for all x, and if h is discontinuous at a point x then H(x) > 0. Denote Real Variables, Fall 4 Problem set 4 Solution suggestions Exercise. Let f be of bounded variation on [a, b]. Show that for each c (a, b), lim x c f(x) and lim x c f(x) exist. Prove that a monotone function

More information

Dynamics of the equation complex plane

Dynamics of the equation complex plane APPLIED & INTERDISCIPLINARY MATHEMATICS RESEARCH ARTICLE Dynamics of the equation in the complex plane Sk. Sarif Hassan 1 and Esha Chatterjee * Received: 0 April 015 Accepted: 08 November 015 Published:

More information

C.7. Numerical series. Pag. 147 Proof of the converging criteria for series. Theorem 5.29 (Comparison test) Let a k and b k be positive-term series

C.7. Numerical series. Pag. 147 Proof of the converging criteria for series. Theorem 5.29 (Comparison test) Let a k and b k be positive-term series C.7 Numerical series Pag. 147 Proof of the converging criteria for series Theorem 5.29 (Comparison test) Let and be positive-term series such that 0, for any k 0. i) If the series converges, then also

More information

DYNAMICS AND BEHAVIOR OF HIGHER ORDER AND NONLINEAR RATIONAL DIFFERENCE EQUATION

DYNAMICS AND BEHAVIOR OF HIGHER ORDER AND NONLINEAR RATIONAL DIFFERENCE EQUATION DYNAMICS AND BEHAVIOR OF HIGHER ORDER AND NONLINEAR RATIONAL DIFFERENCE EQUATION Nirmaladevi.S 1, Karthikeyan.N 2 1 Research scholar in mathematics Vivekanha college of Arts Science for Women (Autonomous)

More information

Oscillation Criteria for Delay and Advanced Difference Equations with General Arguments

Oscillation Criteria for Delay and Advanced Difference Equations with General Arguments Advances in Dynamical Systems Applications ISSN 0973-531, Volume 8, Number, pp. 349 364 (013) http://campus.mst.edu/adsa Oscillation Criteria for Delay Advanced Difference Equations with General Arguments

More information

ON THE OSCILLATION OF THE SOLUTIONS TO LINEAR DIFFERENCE EQUATIONS WITH VARIABLE DELAY

ON THE OSCILLATION OF THE SOLUTIONS TO LINEAR DIFFERENCE EQUATIONS WITH VARIABLE DELAY Electronic Journal of Differential Equations, Vol. 008(008, No. 50, pp. 1 15. ISSN: 107-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp ON THE

More information

Oscillation Criteria for Certain nth Order Differential Equations with Deviating Arguments

Oscillation Criteria for Certain nth Order Differential Equations with Deviating Arguments Journal of Mathematical Analysis Applications 6, 601 6 001) doi:10.1006/jmaa.001.7571, available online at http://www.idealibrary.com on Oscillation Criteria for Certain nth Order Differential Equations

More information

Upper Bounds for Partitions into k-th Powers Elementary Methods

Upper Bounds for Partitions into k-th Powers Elementary Methods Int. J. Contemp. Math. Sciences, Vol. 4, 2009, no. 9, 433-438 Upper Bounds for Partitions into -th Powers Elementary Methods Rafael Jaimczu División Matemática, Universidad Nacional de Luján Buenos Aires,

More information

Infinite Continued Fractions

Infinite Continued Fractions Infinite Continued Fractions 8-5-200 The value of an infinite continued fraction [a 0 ; a, a 2, ] is lim c k, where c k is the k-th convergent k If [a 0 ; a, a 2, ] is an infinite continued fraction with

More information

MATH3283W LECTURE NOTES: WEEK 6 = 5 13, = 2 5, 1 13

MATH3283W LECTURE NOTES: WEEK 6 = 5 13, = 2 5, 1 13 MATH383W LECTURE NOTES: WEEK 6 //00 Recursive sequences (cont.) Examples: () a =, a n+ = 3 a n. The first few terms are,,, 5 = 5, 3 5 = 5 3, Since 5

More information

Oscillation Criteria for Delay Neutral Difference Equations with Positive and Negative Coefficients. Contents

Oscillation Criteria for Delay Neutral Difference Equations with Positive and Negative Coefficients. Contents Bol. Soc. Paran. Mat. (3s.) v. 21 1/2 (2003): 1 12. c SPM Oscillation Criteria for Delay Neutral Difference Equations with Positive and Negative Coefficients Chuan-Jun Tian and Sui Sun Cheng abstract:

More information

Invariants for Some Rational Recursive Sequences with Periodic Coefficients

Invariants for Some Rational Recursive Sequences with Periodic Coefficients Invariants for Some Rational Recursive Sequences with Periodic Coefficients By J.FEUER, E.J.JANOWSKI, and G.LADAS Department of Mathematics University of Rhode Island Kingston, R.I. 02881-0816, USA Abstract

More information

Solutions for Homework Assignment 2

Solutions for Homework Assignment 2 Solutions for Homework Assignment 2 Problem 1. If a,b R, then a+b a + b. This fact is called the Triangle Inequality. By using the Triangle Inequality, prove that a b a b for all a,b R. Solution. To prove

More information

Research Article Global Attractivity and Periodic Character of Difference Equation of Order Four

Research Article Global Attractivity and Periodic Character of Difference Equation of Order Four Discrete Dynamics in Nature and Society Volume 2012, Article ID 746738, 20 pages doi:10.1155/2012/746738 Research Article Global Attractivity and Periodic Character of Difference Equation of Order Four

More information

M.ARCIERO, G.LADAS AND S.W.SCHULTZ

M.ARCIERO, G.LADAS AND S.W.SCHULTZ Georgian Mathematical Journal 1(1994), No. 3, 229-233 SOME OPEN PROBLEMS ABOUT THE SOLUTIONS OF THE DELAY DIFFERENCE EQUATION x n+1 = A/x 2 n + 1/x p n k M.ARCIERO, G.LADAS AND S.W.SCHULTZ Abstract. We

More information

Section Taylor and Maclaurin Series

Section Taylor and Maclaurin Series Section.0 Taylor and Maclaurin Series Ruipeng Shen Feb 5 Taylor and Maclaurin Series Main Goal: How to find a power series representation for a smooth function us assume that a smooth function has a power

More information

On the Dynamics of a Rational Difference Equation, Part 1

On the Dynamics of a Rational Difference Equation, Part 1 International Journal of Difference Equations (IJDE). ISSN 0973-6069 Volume 3 Number 1 (2008), pp. 1 35 Research India Publications http://www.ripublication.com/ijde.htm On the Dynamics of a Rational Difference

More information

1 + lim. n n+1. f(x) = x + 1, x 1. and we check that f is increasing, instead. Using the quotient rule, we easily find that. 1 (x + 1) 1 x (x + 1) 2 =

1 + lim. n n+1. f(x) = x + 1, x 1. and we check that f is increasing, instead. Using the quotient rule, we easily find that. 1 (x + 1) 1 x (x + 1) 2 = Chapter 5 Sequences and series 5. Sequences Definition 5. (Sequence). A sequence is a function which is defined on the set N of natural numbers. Since such a function is uniquely determined by its values

More information

Solutions, 2004 NCS/MAA TEAM COMPETITION

Solutions, 2004 NCS/MAA TEAM COMPETITION Solutions, 004 NCS/MAA TEAM COMPETITION Each problem number is followed by an 11-tuple (a 10, a 9, a 8, a 7, a 6, a 5, a 4, a 3, a, a 1, a 0 ), where a k is the number of teams that scored k points on

More information

Research Article New Oscillation Criteria for Second-Order Neutral Delay Differential Equations with Positive and Negative Coefficients

Research Article New Oscillation Criteria for Second-Order Neutral Delay Differential Equations with Positive and Negative Coefficients Abstract and Applied Analysis Volume 2010, Article ID 564068, 11 pages doi:10.1155/2010/564068 Research Article New Oscillation Criteria for Second-Order Neutral Delay Differential Equations with Positive

More information

MATH 54 - TOPOLOGY SUMMER 2015 FINAL EXAMINATION. Problem 1

MATH 54 - TOPOLOGY SUMMER 2015 FINAL EXAMINATION. Problem 1 MATH 54 - TOPOLOGY SUMMER 2015 FINAL EXAMINATION ELEMENTS OF SOLUTION Problem 1 1. Let X be a Hausdorff space and K 1, K 2 disjoint compact subsets of X. Prove that there exist disjoint open sets U 1 and

More information

Disconjugate operators and related differential equations

Disconjugate operators and related differential equations Disconjugate operators and related differential equations Mariella Cecchi, Zuzana Došlá and Mauro Marini Dedicated to J. Vosmanský on occasion of his 65 th birthday Abstract: There are studied asymptotic

More information

Second Order Optimality Conditions for Constrained Nonlinear Programming

Second Order Optimality Conditions for Constrained Nonlinear Programming Second Order Optimality Conditions for Constrained Nonlinear Programming Lecture 10, Continuous Optimisation Oxford University Computing Laboratory, HT 2006 Notes by Dr Raphael Hauser (hauser@comlab.ox.ac.uk)

More information

Some Results Concerning Uniqueness of Triangle Sequences

Some Results Concerning Uniqueness of Triangle Sequences Some Results Concerning Uniqueness of Triangle Sequences T. Cheslack-Postava A. Diesl M. Lepinski A. Schuyler August 12 1999 Abstract In this paper we will begin by reviewing the triangle iteration. We

More information

,... We would like to compare this with the sequence y n = 1 n

,... We would like to compare this with the sequence y n = 1 n Example 2.0 Let (x n ) n= be the sequence given by x n = 2, i.e. n 2, 4, 8, 6,.... We would like to compare this with the sequence = n (which we know converges to zero). We claim that 2 n n, n N. Proof.

More information

Global dynamics of two systems of exponential difference equations by Lyapunov function

Global dynamics of two systems of exponential difference equations by Lyapunov function Khan Advances in Difference Equations 2014 2014:297 R E S E A R C H Open Access Global dynamics of two systems of exponential difference equations by Lyapunov function Abdul Qadeer Khan * * Correspondence:

More information

Course 212: Academic Year Section 1: Metric Spaces

Course 212: Academic Year Section 1: Metric Spaces Course 212: Academic Year 1991-2 Section 1: Metric Spaces D. R. Wilkins Contents 1 Metric Spaces 3 1.1 Distance Functions and Metric Spaces............. 3 1.2 Convergence and Continuity in Metric Spaces.........

More information

Math 117: Infinite Sequences

Math 117: Infinite Sequences Math 7: Infinite Sequences John Douglas Moore November, 008 The three main theorems in the theory of infinite sequences are the Monotone Convergence Theorem, the Cauchy Sequence Theorem and the Subsequence

More information

2.4 The Precise Definition of a Limit

2.4 The Precise Definition of a Limit 2.4 The Precise Definition of a Limit Reminders/Remarks: x 4 < 3 means that the distance between x and 4 is less than 3. In other words, x lies strictly between 1 and 7. So, x a < δ means that the distance

More information

Consequences of Continuity and Differentiability

Consequences of Continuity and Differentiability Consequences of Continuity and Differentiability We have seen how continuity of functions is an important condition for evaluating limits. It is also an important conceptual tool for guaranteeing the existence

More information

Nonhyperbolic Dynamics for Competitive Systems in the Plane and Global Period-doubling Bifurcations

Nonhyperbolic Dynamics for Competitive Systems in the Plane and Global Period-doubling Bifurcations Advances in Dynamical Systems and Applications ISSN 0973-5321, Volume 3, Number 2, pp. 229 249 (2008) http://campus.mst.edu/adsa Nonhyperbolic Dynamics for Competitive Systems in the Plane and Global Period-doubling

More information

Research Article On the Difference Equation x n 1 x n x n k / x n k 1 a bx n x n k

Research Article On the Difference Equation x n 1 x n x n k / x n k 1 a bx n x n k Abstract and Applied Analysis Volume 2012, Article ID 108047, 9 pages doi:10.1155/2012/108047 Research Article On the Difference Equation x n 1 x n x n k / x n k 1 a bx n x n k Stevo Stević, 1 Josef Diblík,

More information

1 Lyapunov theory of stability

1 Lyapunov theory of stability M.Kawski, APM 581 Diff Equns Intro to Lyapunov theory. November 15, 29 1 1 Lyapunov theory of stability Introduction. Lyapunov s second (or direct) method provides tools for studying (asymptotic) stability

More information

A Note on the Distribution of Numbers with a Minimum Fixed Prime Factor with Exponent Greater than 1

A Note on the Distribution of Numbers with a Minimum Fixed Prime Factor with Exponent Greater than 1 International Mathematical Forum, Vol. 7, 2012, no. 13, 609-614 A Note on the Distribution of Numbers with a Minimum Fixed Prime Factor with Exponent Greater than 1 Rafael Jakimczuk División Matemática,

More information

2 2 + x =

2 2 + x = Lecture 30: Power series A Power Series is a series of the form c n = c 0 + c 1 x + c x + c 3 x 3 +... where x is a variable, the c n s are constants called the coefficients of the series. n = 1 + x +

More information

Oscillation of second-order nonlinear difference equations with sublinear neutral term

Oscillation of second-order nonlinear difference equations with sublinear neutral term Mathematica Moravica Vol. 23, No. (209), 0 Oscillation of second-order nonlinear difference equations with sublinear neutral term Martin Bohner, Hassan A. El-Morshedy, Said R. Grace and Ilgin Sağer Abstract.

More information

Unbounded Regions of Infinitely Logconcave Sequences

Unbounded Regions of Infinitely Logconcave Sequences The University of San Francisco USF Scholarship: a digital repository @ Gleeson Library Geschke Center Mathematics College of Arts and Sciences 007 Unbounded Regions of Infinitely Logconcave Sequences

More information

Trigonometric Recurrence Relations and Tridiagonal Trigonometric Matrices

Trigonometric Recurrence Relations and Tridiagonal Trigonometric Matrices International Journal of Difference Equations. ISSN 0973-6069 Volume 1 Number 1 2006 pp. 19 29 c Research India Publications http://www.ripublication.com/ijde.htm Trigonometric Recurrence Relations and

More information

An Alternative Proof of Primitivity of Indecomposable Nonnegative Matrices with a Positive Trace

An Alternative Proof of Primitivity of Indecomposable Nonnegative Matrices with a Positive Trace An Alternative Proof of Primitivity of Indecomposable Nonnegative Matrices with a Positive Trace Takao Fujimoto Abstract. This research memorandum is aimed at presenting an alternative proof to a well

More information

Abstract Monotone Operators Representable by Abstract Convex Functions

Abstract Monotone Operators Representable by Abstract Convex Functions Applied Mathematical Sciences, Vol. 6, 2012, no. 113, 5649-5653 Abstract Monotone Operators Representable by Abstract Convex Functions H. Mohebi and A. R. Sattarzadeh Department of Mathematics of Shahid

More information

Lyapunov Stability Theory

Lyapunov Stability Theory Lyapunov Stability Theory Peter Al Hokayem and Eduardo Gallestey March 16, 2015 1 Introduction In this lecture we consider the stability of equilibrium points of autonomous nonlinear systems, both in continuous

More information

Proof. We indicate by α, β (finite or not) the end-points of I and call

Proof. We indicate by α, β (finite or not) the end-points of I and call C.6 Continuous functions Pag. 111 Proof of Corollary 4.25 Corollary 4.25 Let f be continuous on the interval I and suppose it admits non-zero its (finite or infinite) that are different in sign for x tending

More information

Read carefully the instructions on the answer book and make sure that the particulars required are entered on each answer book.

Read carefully the instructions on the answer book and make sure that the particulars required are entered on each answer book. THE UNIVERSITY OF WARWICK FIRST YEAR EXAMINATION: January 2011 Analysis I Time Allowed: 1.5 hours Read carefully the instructions on the answer book and make sure that the particulars required are entered

More information

Research Article Oscillation Criteria of Certain Third-Order Differential Equation with Piecewise Constant Argument

Research Article Oscillation Criteria of Certain Third-Order Differential Equation with Piecewise Constant Argument Journal of Applied Mathematics Volume 2012, Article ID 498073, 18 pages doi:10.1155/2012/498073 Research Article Oscillation Criteria of Certain hird-order Differential Equation with Piecewise Constant

More information

Discrete Halanay-type inequalities and applications

Discrete Halanay-type inequalities and applications Nonlinear Analysis 55 (2003) 669 678 www.elsevier.com/locate/na Discrete Halanay-type inequalities and applications Eduardo Liz a;, Anatoli Ivanov b, Juan Bosco Ferreiro c a Departamento de Matematica

More information

e x = 1 + x + x2 2! + x3 If the function f(x) can be written as a power series on an interval I, then the power series is of the form

e x = 1 + x + x2 2! + x3 If the function f(x) can be written as a power series on an interval I, then the power series is of the form Taylor Series Given a function f(x), we would like to be able to find a power series that represents the function. For example, in the last section we noted that we can represent e x by the power series

More information

Math Review for Exam Answer each of the following questions as either True or False. Circle the correct answer.

Math Review for Exam Answer each of the following questions as either True or False. Circle the correct answer. Math 22 - Review for Exam 3. Answer each of the following questions as either True or False. Circle the correct answer. (a) True/False: If a n > 0 and a n 0, the series a n converges. Soln: False: Let

More information

4. We accept without proofs that the following functions are differentiable: (e x ) = e x, sin x = cos x, cos x = sin x, log (x) = 1 sin x

4. We accept without proofs that the following functions are differentiable: (e x ) = e x, sin x = cos x, cos x = sin x, log (x) = 1 sin x 4 We accept without proofs that the following functions are differentiable: (e x ) = e x, sin x = cos x, cos x = sin x, log (x) = 1 sin x x, x > 0 Since tan x = cos x, from the quotient rule, tan x = sin

More information

LECTURE 10: REVIEW OF POWER SERIES. 1. Motivation

LECTURE 10: REVIEW OF POWER SERIES. 1. Motivation LECTURE 10: REVIEW OF POWER SERIES By definition, a power series centered at x 0 is a series of the form where a 0, a 1,... and x 0 are constants. For convenience, we shall mostly be concerned with the

More information

2.2 Some Consequences of the Completeness Axiom

2.2 Some Consequences of the Completeness Axiom 60 CHAPTER 2. IMPORTANT PROPERTIES OF R 2.2 Some Consequences of the Completeness Axiom In this section, we use the fact that R is complete to establish some important results. First, we will prove that

More information

Correction to: Yield curve shapes and the asymptotic short rate distribution in affine one-factor models

Correction to: Yield curve shapes and the asymptotic short rate distribution in affine one-factor models Finance Stoch (218) 22:53 51 https://doi.org/1.17/s78-18-359-5 CORRECTION Correction to: Yield curve shapes and the asymptotic short rate distribution in affine one-factor models Martin Keller-Ressel 1

More information

Problem 3. Give an example of a sequence of continuous functions on a compact domain converging pointwise but not uniformly to a continuous function

Problem 3. Give an example of a sequence of continuous functions on a compact domain converging pointwise but not uniformly to a continuous function Problem 3. Give an example of a sequence of continuous functions on a compact domain converging pointwise but not uniformly to a continuous function Solution. If we does not need the pointwise limit of

More information

Math From Scratch Lesson 28: Rational Exponents

Math From Scratch Lesson 28: Rational Exponents Math From Scratch Lesson 28: Rational Exponents W. Blaine Dowler October 8, 2012 Contents 1 Exponent Review 1 1.1 x m................................. 2 x 1.2 n x................................... 2 m

More information

Infinite Series. Copyright Cengage Learning. All rights reserved.

Infinite Series. Copyright Cengage Learning. All rights reserved. Infinite Series Copyright Cengage Learning. All rights reserved. Sequences Copyright Cengage Learning. All rights reserved. Objectives List the terms of a sequence. Determine whether a sequence converges

More information

Research Article Global Dynamics of a Competitive System of Rational Difference Equations in the Plane

Research Article Global Dynamics of a Competitive System of Rational Difference Equations in the Plane Hindawi Publishing Corporation Advances in Difference Equations Volume 009 Article ID 1380 30 pages doi:101155/009/1380 Research Article Global Dynamics of a Competitive System of Rational Difference Equations

More information

GLOBAL DYNAMICS OF THE SYSTEM OF TWO EXPONENTIAL DIFFERENCE EQUATIONS

GLOBAL DYNAMICS OF THE SYSTEM OF TWO EXPONENTIAL DIFFERENCE EQUATIONS Electronic Journal of Mathematical Analysis an Applications Vol. 7(2) July 209, pp. 256-266 ISSN: 2090-729X(online) http://math-frac.org/journals/ejmaa/ GLOBAL DYNAMICS OF THE SYSTEM OF TWO EXPONENTIAL

More information

On Transitive and Localizing Operator Algebras

On Transitive and Localizing Operator Algebras International Mathematical Forum, Vol. 6, 2011, no. 60, 2955-2962 On Transitive and Localizing Operator Algebras Ömer Gök and Elif Demir Yıldız Technical University Faculty of Arts and Sciences Mathematics

More information

MATH 301 INTRO TO ANALYSIS FALL 2016

MATH 301 INTRO TO ANALYSIS FALL 2016 MATH 301 INTRO TO ANALYSIS FALL 016 Homework 04 Professional Problem Consider the recursive sequence defined by x 1 = 3 and +1 = 1 4 for n 1. (a) Prove that ( ) converges. (Hint: show that ( ) is decreasing

More information

Viscosity approximation method for m-accretive mapping and variational inequality in Banach space

Viscosity approximation method for m-accretive mapping and variational inequality in Banach space An. Şt. Univ. Ovidius Constanţa Vol. 17(1), 2009, 91 104 Viscosity approximation method for m-accretive mapping and variational inequality in Banach space Zhenhua He 1, Deifei Zhang 1, Feng Gu 2 Abstract

More information

IJITE Vol.2 Issue-11, (November 2014) ISSN: Impact Factor

IJITE Vol.2 Issue-11, (November 2014) ISSN: Impact Factor IJITE Vol Issue-, (November 4) ISSN: 3-776 ATTRACTIVITY OF A HIGHER ORDER NONLINEAR DIFFERENCE EQUATION Guagfeg Liu School of Zhagjiagag Jiagsu Uiversit of Sciece ad Techolog, Zhagjiagag, Jiagsu 56,PR

More information

REAL ANALYSIS II: PROBLEM SET 2

REAL ANALYSIS II: PROBLEM SET 2 REAL ANALYSIS II: PROBLEM SET 2 21st Feb, 2016 Exercise 1. State and prove the Inverse Function Theorem. Theorem Inverse Function Theorem). Let f be a continuous one to one function defined on an interval,

More information

Bounds on Turán determinants

Bounds on Turán determinants Bounds on Turán determinants Christian Berg Ryszard Szwarc August 6, 008 Abstract Let µ denote a symmetric probability measure on [ 1, 1] and let (p n ) be the corresponding orthogonal polynomials normalized

More information

Research Article On Boundedness of Solutions of the Difference Equation x n 1 px n qx n 1 / 1 x n for q>1 p>1

Research Article On Boundedness of Solutions of the Difference Equation x n 1 px n qx n 1 / 1 x n for q>1 p>1 Hindawi Publishing Corporation Advances in Difference Equations Volume 2009, Article ID 463169, 11 pages doi:10.1155/2009/463169 Research Article On Boundedness of Solutions of the Difference Equation

More information

SOME FIXED POINT RESULTS FOR ADMISSIBLE GERAGHTY CONTRACTION TYPE MAPPINGS IN FUZZY METRIC SPACES

SOME FIXED POINT RESULTS FOR ADMISSIBLE GERAGHTY CONTRACTION TYPE MAPPINGS IN FUZZY METRIC SPACES Iranian Journal of Fuzzy Systems Vol. 4, No. 3, 207 pp. 6-77 6 SOME FIXED POINT RESULTS FOR ADMISSIBLE GERAGHTY CONTRACTION TYPE MAPPINGS IN FUZZY METRIC SPACES M. DINARVAND Abstract. In this paper, we

More information

Classes of Polish spaces under effective Borel isomorphism

Classes of Polish spaces under effective Borel isomorphism Classes of Polish spaces under effective Borel isomorphism Vassilis Gregoriades TU Darmstadt October 203, Vienna The motivation It is essential for the development of effective descriptive set theory to

More information

CONDITIONS FOR HAVING A DIFFEOMORPHISM BETWEEN TWO BANACH SPACES

CONDITIONS FOR HAVING A DIFFEOMORPHISM BETWEEN TWO BANACH SPACES Electronic Journal of Differential Equations, Vol. 2014 (2014), No. 99, pp. 1 6. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu CONDITIONS FOR

More information

d(x n, x) d(x n, x nk ) + d(x nk, x) where we chose any fixed k > N

d(x n, x) d(x n, x nk ) + d(x nk, x) where we chose any fixed k > N Problem 1. Let f : A R R have the property that for every x A, there exists ɛ > 0 such that f(t) > ɛ if t (x ɛ, x + ɛ) A. If the set A is compact, prove there exists c > 0 such that f(x) > c for all x

More information

Oscillation criteria for difference equations with non-monotone arguments

Oscillation criteria for difference equations with non-monotone arguments Chatzarakis and Shaikhet Advances in Difference Equations (07) 07:6 DOI 0.86/s366-07-9-0 R E S E A R C H Open Access Oscillation criteria for difference equations with non-monotone arguments George E Chatzarakis

More information

Homework 4, 5, 6 Solutions. > 0, and so a n 0 = n + 1 n = ( n+1 n)( n+1+ n) 1 if n is odd 1/n if n is even diverges.

Homework 4, 5, 6 Solutions. > 0, and so a n 0 = n + 1 n = ( n+1 n)( n+1+ n) 1 if n is odd 1/n if n is even diverges. 2..2(a) lim a n = 0. Homework 4, 5, 6 Solutions Proof. Let ɛ > 0. Then for n n = 2+ 2ɛ we have 2n 3 4+ ɛ 3 > ɛ > 0, so 0 < 2n 3 < ɛ, and thus a n 0 = 2n 3 < ɛ. 2..2(g) lim ( n + n) = 0. Proof. Let ɛ >

More information

From now on we assume that K = K.

From now on we assume that K = K. Divisors From now on we assume that K = K. Definition The (additively written) free abelian group generated by P F is denoted by D F and is called the divisor group of F/K. The elements of D F are called

More information