Challenge to L is not P Hypothesis by Analysing BP Lower Bounds

Size: px
Start display at page:

Download "Challenge to L is not P Hypothesis by Analysing BP Lower Bounds"

Transcription

1 Challenge to L is not P Hypothesis by Analysing BP Lower Bounds Atsuki Nagao (The University of Electro-Communications) Joint work with Kazuo Iwama (Kyoto University)

2 Self Introduction : Under graduate student in Kyoto university. Bayesian Network, User Interface : Master course and doctor course student in Kyoto university. Computational Complexity : Post doctor for ELC (A02) in The university of electro-communication. Algorithms (sorting, graph), combinatorics games etc.

3 Complexity Zoo L NC P NP PH PSPACE

4 Talk Plan Long introduction of the problem Tree evaluation problem Branching programs Introduction of the work of [Cook, McKenzie, Wehr, Braverman, Santhanam 2012] Our motivation, goal and summary of new results Quick mention of related work Basic ideas of proofs

5 Tree Evaluation Problem (TEP) Cook, McKenzie, Wehr, Braverman, Santhanam {1,..., k} k Input: Output: the value of the root node 2 h 1 Input length: k 2 log log log n k n k h

6 How to Compute TEP with Small Memory Pebble-game computation

7 How to Compute TEP with Small Memory Pebble-game computation Space becomes maximum Easy space upper bound: (log k) 2 h 1 Input length: k 2 log log log h n k n k h > log space Both k and h increase unlimitedly

8 Branching Programs A Branching Program: Known as a Decision Diagrams One of computational models underlying one DAG one root node represents one Boolean function {0, 1} n {0, 1} n : the number of input variables m : the number of edges 0-sink root 1-sink BP size is defined as the number of nodes.

9 Branching Programs A Branching Program: Known as a Decision Diagrams One of computational models underlying one DAG one root node represents one Boolean function {0, 1} n {0, 1} n : the number of input variables m : the number of edges 0-sink root 1-sink y = f(x 1, x 2, x ) x 1 x 2 x : y : : : : : : : : 0 n = m = 10 BP size is defined as the number of nodes.

10 Back ground Relation to Turing Machine TM space : O s n BP size : 2O s n root If a problem s.t. BP size : ω s (n) TM space : ω log s n This leads to L P 0-sink 1-sink Known best lower bounds. ω n 2 / log n [Nec 66] (Element distinction function)

11 Back ground Relation to circuits width 5 Branching Program (with polynomial length) can recognize NC 1 (O log n depth And-Or circuit) [Barrinton 86] The reverse also holds. [Barrinton 86] Relation to CNF BP can simulate in the same size. x 1 x 2 x x 1 x x 4 x 1 x 1 x 2 x 2 x x x 4

12 f ( x, x, x, x ) mod ( x x x x ) Boolean case Branching Programs

13 Branching Programs f ( x, x, x, x ) mod ( x x x x ) x i {0,1, 2} All BP s in this this talk are deterministic. See e.g., [Komarath, 0 0Sarma 1] 0 for ND case 0 0 0

14 Cook, McKenzie, Wehr, Braverman, Santhanam 2012 Challenge: separating L and P Using TEP and BP s BP's solving TEP need r( h) k states P L h Ok ( ) is easy, but seems optimal (next slide) In fact we do need ( k ) for h h If BP s are thrifty, we need ( k )(2 nd next slide) Conjecture: Thrifty BP s are optimal

15 k=2 Natural Construction

16 k= 6 2,1,1 2,1,2 2,1, 2,2,1 2,2,2 2,2, 2,,1 2,,2 2,, ,1,1,1,2,1,,2,1,2,,,,1,1,2,1,,2,1,2,2,2,,1,1,,2,2 7 Those BP s are thrifty! 6 6 6,1,1,,,2,,,1,,2,,,2,1,1,2,,1,2,2,,2,1,,2, 1,1,1 1,1,2 1,1, 1,2,1 1,2,2 1,2, 1,,1 1,,2 1,, 1 2

17 Thrifty BP s b a Any computation path with never reaches here. has already been known a b 2i and 2i+1 should have been read before reading i

18 Thrifty BP s i 1 2i 1 2 ( i,1,) 1 2

19 Non-Thrifty BP s 2i ,2, 1 ( i,1,1) 1 2 ( i,1,2) ( i,1,2) ( i,1,) ( i,1,) ( i,1,) ( i,1,) ( i,1,) ( i,1,) 2 2i 1 Conjecture seems OK, but proving it is. 2

20 Another Restriction Thrifty restriction is semantic and specific for TEP There is a popular (syntactic and general) restriction, read-once restriction, for BP s

21 Read-Once BP s 0 2i i ( i,1,) 1 2 i i

22 Talk Plan Long introduction of the problem Tree evaluation problem Branching programs Introduction of the work of [Cook, McKenzie, Wehr, Braverman, Santhanam 2012] Our motivation, goal and summary of new result Quick mention of related work Basic ideas of proofs

23 Our Motivation The natural construction is both thrifty and read-once and this BP is absolutely optimal under the two restrictions [Wehr 1]

24 k= 6 2,1,1 2,1,2 2,1, 2,2,1 2,2,2 2,2, 2,,1 2,,2 2,, ,1,1,1,2,1,,2,1,2,,,,1,1,2,1,,2,1,2,2,2,,1,1,,2,2 7 Those BP s are thrifty 6 6 6,1,1,, and Read-Once,2,1,1,2,,2,2,,,1,2,2,1,,2,,,1,,2,, 1,1,1 1,1,2 1,1, i 1,2,1 1,2,2 1,2, 1,,1 1,,2 1,, 1 2

25 Our Motivation The natural construction is both thrifty and read-once and this BP is absolutely optimal under the two restrictions [Wehr 1] [CMWBS 12] proved only thrifty is enough Our motivation: What about only read-once restriction? Can remove the restriction on the order of reading variables, essence of thriftiness Would be a nice progress towards the goal

26 Our Results ( k h ) lower bound for read-once BP s Tight within a constant factor Read-once restriction only for leaf leading states

27 ,1,1 2,1,2 2,1, 2,2,1 2,2,2 2,2, 2,,1 2,,2 2,, ,1,1,1,2,1,,2,1,2,2,2,,,1,,2,,,1,1 7,1,2,1,,2,1,2,2,2,,,1,,,,2,1, ,,,2,1,1,2,,1,2,2,,2,1,,2, 1,1,1 1,1,2 1,1, 1,2,1 1,2,2 1,2, 1,,1 1,,2 1,, 1 2

28 Our Results ( k h ) lower bound for read-once BP s Tight within a constant factor Read-once restriction only for leaf leading states An easier proof for the general lower bound for h=

29 Existing Lower Bounds for BP s Branching programs [Masek 76] Relation between BP size and TM space Lower bounds n n) b 2 2 ( log [Neciporuk 66] is still est ( n log n) for TEP of h ( n log n), ( n lo g n) for h 4,5,,, Lower bounds for read-once BPs n log n (2 ) [Zak 84] cn (2 ) [Ajtai86, Wegener 88, Simon-Szegedy 9] Many others (e.g., read-k BP s)

30 Talk Plan Long introduction of the problem Tree evaluation problem Branching programs Introduction of the work of [Cook, McKenzie, Wehr, Braverman, Santhanam 2012] Our motivation, goal and summary of new result Quick mention of related work Basic ideas of proofs

31 First Key Lemma FTh ( ) 1 k h i i, a, b i, a, b BP with p second-leaf reading states h 1 FT ( ) h k i i i BP with p 2 leaf k reading states h i

32 Corollary (Contraposition) of the Lemma If any (not necessarily read-once) BP for FT ( k) needs q leaf ) tates h 2 reading states, then any BP for FTh 1( k needs at least qk s h=2 case 2 1 It is easy to prove that any (general) BP needs k leaf reading states for FT ( k) Easier than [CMWBS12] We can conclude that any (general) BP needs k states for FT ( k)

33 Proof of the Lemma Select a,b such that # of states (i,a,b) is maximum

34 Main Lemma: Cut Configuration (Tool 1) Given: Input I ( f1,..., f15, a16,..., a1) and a leaf node j CC( I, j) ( a,.., a ) (i) (ii) a 1 a i 1 j 1 h 1 is the value of j's sibling CC(I,j) and the value of j fixes the output is the value of the sibling of a's parent i

35 Tool 2: Special Function Class Impose a restriction

36 Tool 2: Special Function Class f a a a a a a a a k 21 2k k1 k 2 kk (i) a11,..., a1 k (first row) is a permutation of (1,2,..., k) (ii) a11,..., a k 1 (first column) is... (iii) a,..., a can be written as j1 l ( a,..., a ) 11 1k 1 2 = 2 jk for some l, where k 1 k k 1 Elementary properties of symmetric groups

37 Counting Last Leaf Reading States j j j j Last leaf-reading states (LLRS) can be defined without denoting computation paths (read-once restriction and special function class)

38 Main Lemma: Final Claim f j FT ( ) h k k : prime j j s Need Need k h 1 f achieves CC's c1 and c2 wrt LLRS s k The number of such f N0 k! h 1 # of LLRS's is k 1 # of total such f k N N k N LLRS's k! for FT k! h f s.t. its CC is unique for all LLRS's h 1 h 1 2 h 2 0 ( k 1 ) ( k ) h 1 h 1 k k k states for FTh 1 A single CC wrt j can accomodate at most k h 1 2 h 1 different leaf inputs j i k h 1 h 1 h h 1 k k ( 1) (=# of all leaf values) 2 1 2

39 Future Work General lower bounds for height-4 TEP Other classes of BP s Read-k BP s Nondeterministic BP s Ambitious goal..

40 Other works Branching Program SAT Problems k-ibdd SAT talk in ELC meeting in 2015 Indexed Binary Decision Diagram A BP which can be divided into k BDDs Read-k-times BP SAT newest result for us A BP whose consistent paths read x i at most k times

41 k-ibdd SAT π 1 π π Check reachability at most k m times

42 In Minato lab I m interested in BDD lower / upper bounds. Lower bounds Height 4 TEP (if you are interested) Upper bounds enumeration, down sizing, optimization, etc. Also BDD SAT Error detecting, width-restricted BDD SAT, etc.

Read-Once Branching Programs for Tree Evaluation Problems

Read-Once Branching Programs for Tree Evaluation Problems Read-Once Branching Programs for Tree Evaluation Problems Kazuo Iwama 1 and Atsuki Nagao 2 1 Graduate School of Informatics, Kyoto University, Kyoto, Japan iwama@kuis.kyoto-u.ac.jp 2 Graduate School of

More information

Pebbles and Branching Programs

Pebbles and Branching Programs Pebbles and Branching Programs Stephen Cook On the occasion of Les Valiant s 60th Birthday Celebration May 30, 2009 Joint work with Mark Braverman Pierre McKenzie Rahul Santhanam Dustin Wehr 1 Perhaps

More information

The Tree Evaluation Problem: Towards Separating P from NL. Lecture #6: 26 February 2014

The Tree Evaluation Problem: Towards Separating P from NL. Lecture #6: 26 February 2014 The Tree Evaluation Problem: Towards Separating P from NL Lecture #6: 26 February 2014 Lecturer: Stephen A. Cook Scribe Notes by: Venkatesh Medabalimi 1. Introduction Consider the sequence of complexity

More information

Hardness of Function Composition for Semantic Read once Branching. Programs. June 23, 2018

Hardness of Function Composition for Semantic Read once Branching. Programs. June 23, 2018 once for once June 23, 2018 P and L once P: Polynomial time computable functions. * * * * L : s computable in logarithmic space. L? P f (x 1, x 2,.., x n ) {0, 1} Definition Deterministic program DAG with

More information

Branching Programs for Tree Evaluation

Branching Programs for Tree Evaluation Branching Programs for Tree Evaluation Mark Braverman 1, Stephen Cook 2, Pierre McKenzie 3, Rahul Santhanam 4, and Dustin Wehr 2 1 Microsoft Research 2 University of Toronto 3 Université de Montréal 4

More information

A Lower Bound Technique for Restricted Branching Programs and Applications

A Lower Bound Technique for Restricted Branching Programs and Applications A Lower Bound Technique for Restricted Branching Programs and Applications (Extended Abstract) Philipp Woelfel FB Informatik, LS2, Univ. Dortmund, 44221 Dortmund, Germany woelfel@ls2.cs.uni-dortmund.de

More information

Complete problems for classes in PH, The Polynomial-Time Hierarchy (PH) oracle is like a subroutine, or function in

Complete problems for classes in PH, The Polynomial-Time Hierarchy (PH) oracle is like a subroutine, or function in Oracle Turing Machines Nondeterministic OTM defined in the same way (transition relation, rather than function) oracle is like a subroutine, or function in your favorite PL but each call counts as single

More information

Agenda. What is a complexity class? What are the important complexity classes? How do you prove an algorithm is in a certain class

Agenda. What is a complexity class? What are the important complexity classes? How do you prove an algorithm is in a certain class Complexity Agenda What is a complexity class? What are the important complexity classes? How do you prove an algorithm is in a certain class Complexity class A complexity class is a set All problems within

More information

CS154, Lecture 15: Cook-Levin Theorem SAT, 3SAT

CS154, Lecture 15: Cook-Levin Theorem SAT, 3SAT CS154, Lecture 15: Cook-Levin Theorem SAT, 3SAT Definition: A language B is NP-complete if: 1. B NP 2. Every A in NP is poly-time reducible to B That is, A P B When this is true, we say B is NP-hard On

More information

Lecture 4 : Quest for Structure in Counting Problems

Lecture 4 : Quest for Structure in Counting Problems CS6840: Advanced Complexity Theory Jan 10, 2012 Lecture 4 : Quest for Structure in Counting Problems Lecturer: Jayalal Sarma M.N. Scribe: Dinesh K. Theme: Between P and PSPACE. Lecture Plan:Counting problems

More information

Lecture 23: More PSPACE-Complete, Randomized Complexity

Lecture 23: More PSPACE-Complete, Randomized Complexity 6.045 Lecture 23: More PSPACE-Complete, Randomized Complexity 1 Final Exam Information Who: You On What: Everything through PSPACE (today) With What: One sheet (double-sided) of notes are allowed When:

More information

MTAT Complexity Theory October 20th-21st, Lecture 7

MTAT Complexity Theory October 20th-21st, Lecture 7 MTAT.07.004 Complexity Theory October 20th-21st, 2011 Lecturer: Peeter Laud Lecture 7 Scribe(s): Riivo Talviste Polynomial hierarchy 1 Turing reducibility From the algorithmics course, we know the notion

More information

CSE200: Computability and complexity Space Complexity

CSE200: Computability and complexity Space Complexity CSE200: Computability and complexity Space Complexity Shachar Lovett January 29, 2018 1 Space complexity We would like to discuss languages that may be determined in sub-linear space. Lets first recall

More information

15.1 Proof of the Cook-Levin Theorem: SAT is NP-complete

15.1 Proof of the Cook-Levin Theorem: SAT is NP-complete CS125 Lecture 15 Fall 2016 15.1 Proof of the Cook-Levin Theorem: SAT is NP-complete Already know SAT NP, so only need to show SAT is NP-hard. Let L be any language in NP. Let M be a NTM that decides L

More information

6.045: Automata, Computability, and Complexity (GITCS) Class 17 Nancy Lynch

6.045: Automata, Computability, and Complexity (GITCS) Class 17 Nancy Lynch 6.045: Automata, Computability, and Complexity (GITCS) Class 17 Nancy Lynch Today Probabilistic Turing Machines and Probabilistic Time Complexity Classes Now add a new capability to standard TMs: random

More information

Tractability. Some problems are intractable: as they grow large, we are unable to solve them in reasonable time What constitutes reasonable time?

Tractability. Some problems are intractable: as they grow large, we are unable to solve them in reasonable time What constitutes reasonable time? Tractability Some problems are intractable: as they grow large, we are unable to solve them in reasonable time What constitutes reasonable time?» Standard working definition: polynomial time» On an input

More information

CHAPTER 3 FUNDAMENTALS OF COMPUTATIONAL COMPLEXITY. E. Amaldi Foundations of Operations Research Politecnico di Milano 1

CHAPTER 3 FUNDAMENTALS OF COMPUTATIONAL COMPLEXITY. E. Amaldi Foundations of Operations Research Politecnico di Milano 1 CHAPTER 3 FUNDAMENTALS OF COMPUTATIONAL COMPLEXITY E. Amaldi Foundations of Operations Research Politecnico di Milano 1 Goal: Evaluate the computational requirements (this course s focus: time) to solve

More information

Lecture 3: Nondeterminism, NP, and NP-completeness

Lecture 3: Nondeterminism, NP, and NP-completeness CSE 531: Computational Complexity I Winter 2016 Lecture 3: Nondeterminism, NP, and NP-completeness January 13, 2016 Lecturer: Paul Beame Scribe: Paul Beame 1 Nondeterminism and NP Recall the definition

More information

Lecture 8: Alternatation. 1 Alternate Characterizations of the Polynomial Hierarchy

Lecture 8: Alternatation. 1 Alternate Characterizations of the Polynomial Hierarchy CS 710: Complexity Theory 10/4/2011 Lecture 8: Alternatation Instructor: Dieter van Melkebeek Scribe: Sachin Ravi In this lecture, we continue with our discussion of the polynomial hierarchy complexity

More information

DRAFT. Algebraic computation models. Chapter 14

DRAFT. Algebraic computation models. Chapter 14 Chapter 14 Algebraic computation models Somewhat rough We think of numerical algorithms root-finding, gaussian elimination etc. as operating over R or C, even though the underlying representation of the

More information

Lecture 21: Algebraic Computation Models

Lecture 21: Algebraic Computation Models princeton university cos 522: computational complexity Lecture 21: Algebraic Computation Models Lecturer: Sanjeev Arora Scribe:Loukas Georgiadis We think of numerical algorithms root-finding, gaussian

More information

Parallelism and Machine Models

Parallelism and Machine Models Parallelism and Machine Models Andrew D Smith University of New Brunswick, Fredericton Faculty of Computer Science Overview Part 1: The Parallel Computation Thesis Part 2: Parallelism of Arithmetic RAMs

More information

Complexity Classes V. More PCPs. Eric Rachlin

Complexity Classes V. More PCPs. Eric Rachlin Complexity Classes V More PCPs Eric Rachlin 1 Recall from last time Nondeterminism is equivalent to having access to a certificate. If a valid certificate exists, the machine accepts. We see that problems

More information

Lecture 8: Complete Problems for Other Complexity Classes

Lecture 8: Complete Problems for Other Complexity Classes IAS/PCMI Summer Session 2000 Clay Mathematics Undergraduate Program Basic Course on Computational Complexity Lecture 8: Complete Problems for Other Complexity Classes David Mix Barrington and Alexis Maciel

More information

Space and Nondeterminism

Space and Nondeterminism CS 221 Computational Complexity, Lecture 5 Feb 6, 2018 Space and Nondeterminism Instructor: Madhu Sudan 1 Scribe: Yong Wook Kwon Topic Overview Today we ll talk about space and non-determinism. For some

More information

Polynomial Time Computation. Topics in Logic and Complexity Handout 2. Nondeterministic Polynomial Time. Succinct Certificates.

Polynomial Time Computation. Topics in Logic and Complexity Handout 2. Nondeterministic Polynomial Time. Succinct Certificates. 1 2 Topics in Logic and Complexity Handout 2 Anuj Dawar MPhil Advanced Computer Science, Lent 2010 Polynomial Time Computation P = TIME(n k ) k=1 The class of languages decidable in polynomial time. The

More information

Complexity, P and NP

Complexity, P and NP Complexity, P and NP EECS 477 Lecture 21, 11/26/2002 Last week Lower bound arguments Information theoretic (12.2) Decision trees (sorting) Adversary arguments (12.3) Maximum of an array Graph connectivity

More information

Philipp Woelfel FB Informatik, LS2 Univ. Dortmund Dortmund, Germany Abstract. 1.

Philipp Woelfel FB Informatik, LS2 Univ. Dortmund Dortmund, Germany Abstract. 1. On the Complexity of Integer Multiplication in Branching Programs with Multiple Tests and in Read-Once Branching Programs with Limited Nondeterminism (Extended Abstract) Philipp Woelfel FB Informatik,

More information

Computability and Complexity Theory: An Introduction

Computability and Complexity Theory: An Introduction Computability and Complexity Theory: An Introduction meena@imsc.res.in http://www.imsc.res.in/ meena IMI-IISc, 20 July 2006 p. 1 Understanding Computation Kinds of questions we seek answers to: Is a given

More information

The space complexity of a standard Turing machine. The space complexity of a nondeterministic Turing machine

The space complexity of a standard Turing machine. The space complexity of a nondeterministic Turing machine 298 8. Space Complexity The space complexity of a standard Turing machine M = (Q,,,, q 0, accept, reject) on input w is space M (w) = max{ uav : q 0 w M u q av, q Q, u, a, v * } The space complexity of

More information

CSE 3500 Algorithms and Complexity Fall 2016 Lecture 25: November 29, 2016

CSE 3500 Algorithms and Complexity Fall 2016 Lecture 25: November 29, 2016 CSE 3500 Algorithms and Complexity Fall 2016 Lecture 25: November 29, 2016 Intractable Problems There are many problems for which the best known algorithms take a very long time (e.g., exponential in some

More information

Instructor N.Sadagopan Scribe: P.Renjith. Lecture- Complexity Class- P and NP

Instructor N.Sadagopan Scribe: P.Renjith. Lecture- Complexity Class- P and NP Indian Institute of Information Technology Design and Manufacturing, Kancheepuram Chennai 600 127, India An Autonomous Institute under MHRD, Govt of India http://www.iiitdm.ac.in COM 501 Advanced Data

More information

Lecture 16: Communication Complexity

Lecture 16: Communication Complexity CSE 531: Computational Complexity I Winter 2016 Lecture 16: Communication Complexity Mar 2, 2016 Lecturer: Paul Beame Scribe: Paul Beame 1 Communication Complexity In (two-party) communication complexity

More information

Introduction to Advanced Results

Introduction to Advanced Results Introduction to Advanced Results Master Informatique Université Paris 5 René Descartes 2016 Master Info. Complexity Advanced Results 1/26 Outline Boolean Hierarchy Probabilistic Complexity Parameterized

More information

Lecture 8. MINDNF = {(φ, k) φ is a CNF expression and DNF expression ψ s.t. ψ k and ψ is equivalent to φ}

Lecture 8. MINDNF = {(φ, k) φ is a CNF expression and DNF expression ψ s.t. ψ k and ψ is equivalent to φ} 6.841 Advanced Complexity Theory February 28, 2005 Lecture 8 Lecturer: Madhu Sudan Scribe: Arnab Bhattacharyya 1 A New Theme In the past few lectures, we have concentrated on non-uniform types of computation

More information

Lecture 17: Cook-Levin Theorem, NP-Complete Problems

Lecture 17: Cook-Levin Theorem, NP-Complete Problems 6.045 Lecture 17: Cook-Levin Theorem, NP-Complete Problems 1 Is SAT solvable in O(n) time on a multitape TM? Logic circuits of 6n gates for SAT? If yes, then not only is P=NP, but there would be a dream

More information

Notes on Complexity Theory Last updated: October, Lecture 6

Notes on Complexity Theory Last updated: October, Lecture 6 Notes on Complexity Theory Last updated: October, 2015 Lecture 6 Notes by Jonathan Katz, lightly edited by Dov Gordon 1 PSPACE and PSPACE-Completeness As in our previous study of N P, it is useful to identify

More information

Notes on Computer Theory Last updated: November, Circuits

Notes on Computer Theory Last updated: November, Circuits Notes on Computer Theory Last updated: November, 2015 Circuits Notes by Jonathan Katz, lightly edited by Dov Gordon. 1 Circuits Boolean circuits offer an alternate model of computation: a non-uniform one

More information

1 Circuit Complexity. CS 6743 Lecture 15 1 Fall Definitions

1 Circuit Complexity. CS 6743 Lecture 15 1 Fall Definitions CS 6743 Lecture 15 1 Fall 2007 1 Circuit Complexity 1.1 Definitions A Boolean circuit C on n inputs x 1,..., x n is a directed acyclic graph (DAG) with n nodes of in-degree 0 (the inputs x 1,..., x n ),

More information

Algorithms as Lower Bounds

Algorithms as Lower Bounds Algorithms as Lower Bounds Lecture 3 Part 1: Solving QBF and NC1 Lower Bounds (Joint work with Rahul Santhanam, U. Edinburgh) Part 2: Time-Space Tradeoffs for SAT Ryan Williams Stanford University Quantified

More information

U.C. Berkeley CS278: Computational Complexity Professor Luca Trevisan August 30, Notes for Lecture 1

U.C. Berkeley CS278: Computational Complexity Professor Luca Trevisan August 30, Notes for Lecture 1 U.C. Berkeley CS278: Computational Complexity Handout N1 Professor Luca Trevisan August 30, 2004 Notes for Lecture 1 This course assumes CS170, or equivalent, as a prerequisite. We will assume that the

More information

Lecture 22: PSPACE

Lecture 22: PSPACE 6.045 Lecture 22: PSPACE 1 VOTE VOTE VOTE For your favorite course on automata and complexity Please complete the online subject evaluation for 6.045 2 Final Exam Information Who: You On What: Everything

More information

Reductions. Reduction. Linear Time Reduction: Examples. Linear Time Reductions

Reductions. Reduction. Linear Time Reduction: Examples. Linear Time Reductions Reduction Reductions Problem X reduces to problem Y if given a subroutine for Y, can solve X. Cost of solving X = cost of solving Y + cost of reduction. May call subroutine for Y more than once. Ex: X

More information

Basing Decisions on Sentences in Decision Diagrams

Basing Decisions on Sentences in Decision Diagrams Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence Basing Decisions on Sentences in Decision Diagrams Yexiang Xue Department of Computer Science Cornell University yexiang@cs.cornell.edu

More information

The Polynomial Hierarchy

The Polynomial Hierarchy The Polynomial Hierarchy Slides based on S.Aurora, B.Barak. Complexity Theory: A Modern Approach. Ahto Buldas Ahto.Buldas@ut.ee Motivation..synthesizing circuits is exceedingly difficulty. It is even

More information

CSC 1700 Analysis of Algorithms: P and NP Problems

CSC 1700 Analysis of Algorithms: P and NP Problems CSC 1700 Analysis of Algorithms: P and NP Problems Professor Henry Carter Fall 2016 Recap Algorithmic power is broad but limited Lower bounds determine whether an algorithm can be improved by more than

More information

Computability and Complexity CISC462, Fall 2018, Space complexity 1

Computability and Complexity CISC462, Fall 2018, Space complexity 1 Computability and Complexity CISC462, Fall 2018, Space complexity 1 SPACE COMPLEXITY This material is covered in Chapter 8 of the textbook. For simplicity, we define the space used by a Turing machine

More information

POLYNOMIAL SPACE QSAT. Games. Polynomial space cont d

POLYNOMIAL SPACE QSAT. Games. Polynomial space cont d T-79.5103 / Autumn 2008 Polynomial Space 1 T-79.5103 / Autumn 2008 Polynomial Space 3 POLYNOMIAL SPACE Polynomial space cont d Polynomial space-bounded computation has a variety of alternative characterizations

More information

Lecture 14 - P v.s. NP 1

Lecture 14 - P v.s. NP 1 CME 305: Discrete Mathematics and Algorithms Instructor: Professor Aaron Sidford (sidford@stanford.edu) February 27, 2018 Lecture 14 - P v.s. NP 1 In this lecture we start Unit 3 on NP-hardness and approximation

More information

Lecture 15 - NP Completeness 1

Lecture 15 - NP Completeness 1 CME 305: Discrete Mathematics and Algorithms Instructor: Professor Aaron Sidford (sidford@stanford.edu) February 29, 2018 Lecture 15 - NP Completeness 1 In the last lecture we discussed how to provide

More information

Notes for Lecture 3... x 4

Notes for Lecture 3... x 4 Stanford University CS254: Computational Complexity Notes 3 Luca Trevisan January 14, 2014 Notes for Lecture 3 In this lecture we introduce the computational model of boolean circuits and prove that polynomial

More information

Polynomial time reduction and NP-completeness. Exploring some time complexity limits of polynomial time algorithmic solutions

Polynomial time reduction and NP-completeness. Exploring some time complexity limits of polynomial time algorithmic solutions Polynomial time reduction and NP-completeness Exploring some time complexity limits of polynomial time algorithmic solutions 1 Polynomial time reduction Definition: A language L is said to be polynomial

More information

CS Lecture 29 P, NP, and NP-Completeness. k ) for all k. Fall The class P. The class NP

CS Lecture 29 P, NP, and NP-Completeness. k ) for all k. Fall The class P. The class NP CS 301 - Lecture 29 P, NP, and NP-Completeness Fall 2008 Review Languages and Grammars Alphabets, strings, languages Regular Languages Deterministic Finite and Nondeterministic Automata Equivalence of

More information

P, NP, NP-Complete, and NPhard

P, NP, NP-Complete, and NPhard P, NP, NP-Complete, and NPhard Problems Zhenjiang Li 21/09/2011 Outline Algorithm time complicity P and NP problems NP-Complete and NP-Hard problems Algorithm time complicity Outline What is this course

More information

Theory of Computation. Ch.8 Space Complexity. wherein all branches of its computation halt on all

Theory of Computation. Ch.8 Space Complexity. wherein all branches of its computation halt on all Definition 8.1 Let M be a deterministic Turing machine, DTM, that halts on all inputs. The space complexity of M is the function f : N N, where f(n) is the maximum number of tape cells that M scans on

More information

Complexity. Complexity Theory Lecture 3. Decidability and Complexity. Complexity Classes

Complexity. Complexity Theory Lecture 3. Decidability and Complexity. Complexity Classes Complexity Theory 1 Complexity Theory 2 Complexity Theory Lecture 3 Complexity For any function f : IN IN, we say that a language L is in TIME(f(n)) if there is a machine M = (Q, Σ, s, δ), such that: L

More information

Sums of Products. Pasi Rastas November 15, 2005

Sums of Products. Pasi Rastas November 15, 2005 Sums of Products Pasi Rastas November 15, 2005 1 Introduction This presentation is mainly based on 1. Bacchus, Dalmao and Pitassi : Algorithms and Complexity results for #SAT and Bayesian inference 2.

More information

Complexity Theory VU , SS The Polynomial Hierarchy. Reinhard Pichler

Complexity Theory VU , SS The Polynomial Hierarchy. Reinhard Pichler Complexity Theory Complexity Theory VU 181.142, SS 2018 6. The Polynomial Hierarchy Reinhard Pichler Institut für Informationssysteme Arbeitsbereich DBAI Technische Universität Wien 15 May, 2018 Reinhard

More information

Outline. Complexity Theory EXACT TSP. The Class DP. Definition. Problem EXACT TSP. Complexity of EXACT TSP. Proposition VU 181.

Outline. Complexity Theory EXACT TSP. The Class DP. Definition. Problem EXACT TSP. Complexity of EXACT TSP. Proposition VU 181. Complexity Theory Complexity Theory Outline Complexity Theory VU 181.142, SS 2018 6. The Polynomial Hierarchy Reinhard Pichler Institut für Informationssysteme Arbeitsbereich DBAI Technische Universität

More information

Computational Complexity of Bayesian Networks

Computational Complexity of Bayesian Networks Computational Complexity of Bayesian Networks UAI, 2015 Complexity theory Many computations on Bayesian networks are NP-hard Meaning (no more, no less) that we cannot hope for poly time algorithms that

More information

Lecture 6: Oracle TMs, Diagonalization Limits, Space Complexity

Lecture 6: Oracle TMs, Diagonalization Limits, Space Complexity CSE 531: Computational Complexity I Winter 2016 Lecture 6: Oracle TMs, Diagonalization Limits, Space Complexity January 22, 2016 Lecturer: Paul Beame Scribe: Paul Beame Diagonalization enabled us to separate

More information

A Lower Bound Technique for Nondeterministic Graph-Driven Read-Once-Branching Programs and its Applications

A Lower Bound Technique for Nondeterministic Graph-Driven Read-Once-Branching Programs and its Applications A Lower Bound Technique for Nondeterministic Graph-Driven Read-Once-Branching Programs and its Applications Beate Bollig and Philipp Woelfel FB Informatik, LS2, Univ. Dortmund, 44221 Dortmund, Germany

More information

NP-Completeness. Until now we have been designing algorithms for specific problems

NP-Completeness. Until now we have been designing algorithms for specific problems NP-Completeness 1 Introduction Until now we have been designing algorithms for specific problems We have seen running times O(log n), O(n), O(n log n), O(n 2 ), O(n 3 )... We have also discussed lower

More information

COSE215: Theory of Computation. Lecture 20 P, NP, and NP-Complete Problems

COSE215: Theory of Computation. Lecture 20 P, NP, and NP-Complete Problems COSE215: Theory of Computation Lecture 20 P, NP, and NP-Complete Problems Hakjoo Oh 2018 Spring Hakjoo Oh COSE215 2018 Spring, Lecture 20 June 6, 2018 1 / 14 Contents 1 P and N P Polynomial-time reductions

More information

CSE 135: Introduction to Theory of Computation NP-completeness

CSE 135: Introduction to Theory of Computation NP-completeness CSE 135: Introduction to Theory of Computation NP-completeness Sungjin Im University of California, Merced 04-15-2014 Significance of the question if P? NP Perhaps you have heard of (some of) the following

More information

INAPPROX APPROX PTAS. FPTAS Knapsack P

INAPPROX APPROX PTAS. FPTAS Knapsack P CMPSCI 61: Recall From Last Time Lecture 22 Clique TSP INAPPROX exists P approx alg for no ε < 1 VertexCover MAX SAT APPROX TSP some but not all ε< 1 PTAS all ε < 1 ETSP FPTAS Knapsack P poly in n, 1/ε

More information

Lecture 17. In this lecture, we will continue our discussion on randomization.

Lecture 17. In this lecture, we will continue our discussion on randomization. ITCS:CCT09 : Computational Complexity Theory May 11, 2009 Lecturer: Jayalal Sarma M.N. Lecture 17 Scribe: Hao Song In this lecture, we will continue our discussion on randomization. 1 BPP and the Polynomial

More information

6.045: Automata, Computability, and Complexity (GITCS) Class 15 Nancy Lynch

6.045: Automata, Computability, and Complexity (GITCS) Class 15 Nancy Lynch 6.045: Automata, Computability, and Complexity (GITCS) Class 15 Nancy Lynch Today: More Complexity Theory Polynomial-time reducibility, NP-completeness, and the Satisfiability (SAT) problem Topics: Introduction

More information

Limitations of Algorithm Power

Limitations of Algorithm Power Limitations of Algorithm Power Objectives We now move into the third and final major theme for this course. 1. Tools for analyzing algorithms. 2. Design strategies for designing algorithms. 3. Identifying

More information

P is the class of problems for which there are algorithms that solve the problem in time O(n k ) for some constant k.

P is the class of problems for which there are algorithms that solve the problem in time O(n k ) for some constant k. Complexity Theory Problems are divided into complexity classes. Informally: So far in this course, almost all algorithms had polynomial running time, i.e., on inputs of size n, worst-case running time

More information

Computer Science 385 Analysis of Algorithms Siena College Spring Topic Notes: Limitations of Algorithms

Computer Science 385 Analysis of Algorithms Siena College Spring Topic Notes: Limitations of Algorithms Computer Science 385 Analysis of Algorithms Siena College Spring 2011 Topic Notes: Limitations of Algorithms We conclude with a discussion of the limitations of the power of algorithms. That is, what kinds

More information

Friday Four Square! Today at 4:15PM, Outside Gates

Friday Four Square! Today at 4:15PM, Outside Gates P and NP Friday Four Square! Today at 4:15PM, Outside Gates Recap from Last Time Regular Languages DCFLs CFLs Efficiently Decidable Languages R Undecidable Languages Time Complexity A step of a Turing

More information

Lecture 7: The Polynomial-Time Hierarchy. 1 Nondeterministic Space is Closed under Complement

Lecture 7: The Polynomial-Time Hierarchy. 1 Nondeterministic Space is Closed under Complement CS 710: Complexity Theory 9/29/2011 Lecture 7: The Polynomial-Time Hierarchy Instructor: Dieter van Melkebeek Scribe: Xi Wu In this lecture we first finish the discussion of space-bounded nondeterminism

More information

Lecture 10: Boolean Circuits (cont.)

Lecture 10: Boolean Circuits (cont.) CSE 200 Computability and Complexity Wednesday, May, 203 Lecture 0: Boolean Circuits (cont.) Instructor: Professor Shachar Lovett Scribe: Dongcai Shen Recap Definition (Boolean circuit) A Boolean circuit

More information

Hardness of Mastermind

Hardness of Mastermind Giovanni Viglietta Department of Computer Science, University of Pisa, Italy Pisa - January 19 th, 2011 Easy to learn. Easy to play. But not so easy to win. Mastermind commercial, 1981 Mastermind is played

More information

-bit integers are all in ThC. Th The following problems are complete for PSPACE NPSPACE ATIME QSAT, GEOGRAPHY, SUCCINCT REACH.

-bit integers are all in ThC. Th The following problems are complete for PSPACE NPSPACE ATIME QSAT, GEOGRAPHY, SUCCINCT REACH. CMPSCI 601: Recall From Last Time Lecture 26 Theorem: All CFL s are in sac. Facts: ITADD, MULT, ITMULT and DIVISION on -bit integers are all in ThC. Th The following problems are complete for PSPACE NPSPACE

More information

NP Complete Problems. COMP 215 Lecture 20

NP Complete Problems. COMP 215 Lecture 20 NP Complete Problems COMP 215 Lecture 20 Complexity Theory Complexity theory is a research area unto itself. The central project is classifying problems as either tractable or intractable. Tractable Worst

More information

Comparison of several polynomial and exponential time complexity functions. Size n

Comparison of several polynomial and exponential time complexity functions. Size n Comparison of several polynomial and exponential time complexity functions Time complexity function n n 2 n 3 n 5 2 n 3 n Size n 10 20 30 40 50 60.00001.00002.00003.00004.00005.00006 second second second

More information

SOLUTION: SOLUTION: SOLUTION:

SOLUTION: SOLUTION: SOLUTION: Convert R and S into nondeterministic finite automata N1 and N2. Given a string s, if we know the states N1 and N2 may reach when s[1...i] has been read, we are able to derive the states N1 and N2 may

More information

Instructor N.Sadagopan Scribe: P.Renjith

Instructor N.Sadagopan Scribe: P.Renjith Indian Institute of Information Technology Design and Manufacturing, Kancheepuram Chennai 600 127, India An Autonomous Institute under MHRD, Govt of India http://www.iiitdm.ac.in COM 501 Advanced Data

More information

Space Complexity. Master Informatique. Université Paris 5 René Descartes. Master Info. Complexity Space 1/26

Space Complexity. Master Informatique. Université Paris 5 René Descartes. Master Info. Complexity Space 1/26 Space Complexity Master Informatique Université Paris 5 René Descartes 2016 Master Info. Complexity Space 1/26 Outline Basics on Space Complexity Main Space Complexity Classes Deterministic and Non-Deterministic

More information

CSC 5170: Theory of Computational Complexity Lecture 4 The Chinese University of Hong Kong 1 February 2010

CSC 5170: Theory of Computational Complexity Lecture 4 The Chinese University of Hong Kong 1 February 2010 CSC 5170: Theory of Computational Complexity Lecture 4 The Chinese University of Hong Kong 1 February 2010 Computational complexity studies the amount of resources necessary to perform given computations.

More information

Notes on induction proofs and recursive definitions

Notes on induction proofs and recursive definitions Notes on induction proofs and recursive definitions James Aspnes December 13, 2010 1 Simple induction Most of the proof techniques we ve talked about so far are only really useful for proving a property

More information

Pebbling Meets Coloring : Reversible Pebble Game On Trees

Pebbling Meets Coloring : Reversible Pebble Game On Trees Electronic Colloquium on Computational Complexity, Report No. 67 (206) Pebbling Meets Coloring : Reversible Pebble Game On Trees Balagopal Komarath Jayalal Sarma Saurabh Sawlani Department of Computer

More information

Models of Computation

Models of Computation Models of Computation Analysis of Algorithms Week 1, Lecture 2 Prepared by John Reif, Ph.D. Distinguished Professor of Computer Science Duke University Models of Computation (RAM) a) Random Access Machines

More information

Computational Game Theory Spring Semester, 2005/6. Lecturer: Yishay Mansour Scribe: Ilan Cohen, Natan Rubin, Ophir Bleiberg*

Computational Game Theory Spring Semester, 2005/6. Lecturer: Yishay Mansour Scribe: Ilan Cohen, Natan Rubin, Ophir Bleiberg* Computational Game Theory Spring Semester, 2005/6 Lecture 5: 2-Player Zero Sum Games Lecturer: Yishay Mansour Scribe: Ilan Cohen, Natan Rubin, Ophir Bleiberg* 1 5.1 2-Player Zero Sum Games In this lecture

More information

Computational Complexity

Computational Complexity CS311 Computational Structures Computational Complexity Lecture 16 Andrew P. Black Andrew Tolmach 1 So, itʼs computable! But at what cost? Some things that are computable in principle are in practice intractable

More information

1 Non-deterministic Turing Machine

1 Non-deterministic Turing Machine 1 Non-deterministic Turing Machine A nondeterministic Turing machine is a generalization of the standard TM for which every configuration may yield none, or one or more than one next configurations. In

More information

Lecture 2. 1 More N P-Compete Languages. Notes on Complexity Theory: Fall 2005 Last updated: September, Jonathan Katz

Lecture 2. 1 More N P-Compete Languages. Notes on Complexity Theory: Fall 2005 Last updated: September, Jonathan Katz Notes on Complexity Theory: Fall 2005 Last updated: September, 2005 Jonathan Katz Lecture 2 1 More N P-Compete Languages It will be nice to find more natural N P-complete languages. To that end, we ine

More information

satisfiability (sat) Satisfiability unsatisfiability (unsat or sat complement) and validity Any Expression φ Can Be Converted into CNFs and DNFs

satisfiability (sat) Satisfiability unsatisfiability (unsat or sat complement) and validity Any Expression φ Can Be Converted into CNFs and DNFs Any Expression φ Can Be Converted into CNFs and DNFs φ = x j : This is trivially true. φ = φ 1 and a CNF is sought: Turn φ 1 into a DNF and apply de Morgan s laws to make a CNF for φ. φ = φ 1 and a DNF

More information

NP Completeness and Approximation Algorithms

NP Completeness and Approximation Algorithms Winter School on Optimization Techniques December 15-20, 2016 Organized by ACMU, ISI and IEEE CEDA NP Completeness and Approximation Algorithms Susmita Sur-Kolay Advanced Computing and Microelectronic

More information

The Class NP. NP is the problems that can be solved in polynomial time by a nondeterministic machine.

The Class NP. NP is the problems that can be solved in polynomial time by a nondeterministic machine. The Class NP NP is the problems that can be solved in polynomial time by a nondeterministic machine. NP The time taken by nondeterministic TM is the length of the longest branch. The collection of all

More information

COMPLEXITY THEORY. PSPACE = SPACE(n k ) k N. NPSPACE = NSPACE(n k ) 10/30/2012. Space Complexity: Savitch's Theorem and PSPACE- Completeness

COMPLEXITY THEORY. PSPACE = SPACE(n k ) k N. NPSPACE = NSPACE(n k ) 10/30/2012. Space Complexity: Savitch's Theorem and PSPACE- Completeness 15-455 COMPLEXITY THEORY Space Complexity: Savitch's Theorem and PSPACE- Completeness October 30,2012 MEASURING SPACE COMPLEXITY FINITE STATE CONTROL I N P U T 1 2 3 4 5 6 7 8 9 10 We measure space complexity

More information

Function Problems and Syntactic Subclasses of TFNP

Function Problems and Syntactic Subclasses of TFNP Function Problems and Syntactic Subclasses of TFNP N. Elgers Abstract Function problems are an extension of decision problems in the sense that they require a more extensive answer than yes or no. FP,

More information

CS 151 Complexity Theory Spring Solution Set 5

CS 151 Complexity Theory Spring Solution Set 5 CS 151 Complexity Theory Spring 2017 Solution Set 5 Posted: May 17 Chris Umans 1. We are given a Boolean circuit C on n variables x 1, x 2,..., x n with m, and gates. Our 3-CNF formula will have m auxiliary

More information

CP405 Theory of Computation

CP405 Theory of Computation CP405 Theory of Computation BB(3) q 0 q 1 q 2 0 q 1 1R q 2 0R q 2 1L 1 H1R q 1 1R q 0 1L Growing Fast BB(3) = 6 BB(4) = 13 BB(5) = 4098 BB(6) = 3.515 x 10 18267 (known) (known) (possible) (possible) Language:

More information

Intractable Problems [HMU06,Chp.10a]

Intractable Problems [HMU06,Chp.10a] Intractable Problems [HMU06,Chp.10a] Time-Bounded Turing Machines Classes P and NP Polynomial-Time Reductions A 10 Minute Motivation https://www.youtube.com/watch?v=yx40hbahx3s 1 Time-Bounded TM s A Turing

More information

Intro to Theory of Computation

Intro to Theory of Computation Intro to Theory of Computation LECTURE 25 Last time Class NP Today Polynomial-time reductions Adam Smith; Sofya Raskhodnikova 4/18/2016 L25.1 The classes P and NP P is the class of languages decidable

More information

NP-Completeness. Andreas Klappenecker. [based on slides by Prof. Welch]

NP-Completeness. Andreas Klappenecker. [based on slides by Prof. Welch] NP-Completeness Andreas Klappenecker [based on slides by Prof. Welch] 1 Prelude: Informal Discussion (Incidentally, we will never get very formal in this course) 2 Polynomial Time Algorithms Most of the

More information