Lecture 8 Genomic Selection

Size: px
Start display at page:

Download "Lecture 8 Genomic Selection"

Transcription

1 Lecture 8 Genomic Selection Guilherme J. M. Rosa University of Wisconsin-Madison Mixed Models in Quantitative Genetics SISG, Seattle 18 0 Setember 018 OUTLINE Marker Assisted Selection Genomic Selection Models & Techniques 1

2 Marker Assisted Selection MAS: Use of genetic markers to imrove the efficiency of genetic selection Basic idea behind of MAS: Most traits of economic imortance are controlled by a fairly large number of genes Some of these genes, however, with larger effect Following the attern of inheritance of such genes might assist in selection MAS Could Hel Imrove Low heritability traits Phenotyes that can be measured on one sex only Characteristics that are not measurable before sexual maturity Traits that are difficult to measured or require sacrifice Efficiency of MAS Size (effect) of QTL Frequency of favorable allele Recombination rate between marker(s) and QTL

3 Modeling Effects at The QTL Genotye y = Xβ + Wq + Za + ε henotye fixed effects (environmental) QTL effects Polygenic effects a ~ N(0, Aσ a ) residual ε ~ N(0, Iσ ε ) Modeling Effects at the QTL Genotye QTL-genotye as a fixed effect: Regression of henotyes using QTL genotye robabilities from segregation analysis (Kinghorn et al. 1993, Meuwissen and Goddard 1997) QTL-genotye as a random effect: QTL effect is modeled as the sum of the two gametic effects (Fernando and Grossman 1989) " " v % $ $ ' Var$ a ' = $ $ # ε ' $ & $ # Gametic relationshi matrix y = Xβ + Wv + Za + ε, G v σ v 0 Aσ a Iσ ε % ' ' ' ' & 3

4 Genomic Selection (Genome-wide Marker Assisted Selection) As most quantitative traits are influenced by many genes, tracking a small number of them using molecular markers will exlain only a small fraction of the total genetic variance GWMAS, on the other hand, makes use of a very dense set of markers covering the entire genome, which otentially exlain all genetic variance Genomic Selection 1. Reference Poulation Animals with genotyic and henotyic information 4. Selected Animals. Data Analysis - QC and data rocessing - Prediction model: y i = µ + w ij b j + e i 3. Genomic Selection Prediction of genetic merit using marker information Suerior animals (higher gebv), selected earlier with higher accuracy Young animals (selection candidates) gebv k = w kjˆb j 4

5 Genomic Selection (Meuwissen et al., 001) y i = µ + x i1 g 1 + x i g x i g + e i Marker genotyes Genetic effects Genomic EBV: GEBV = x i1 ĝ 1 + x i ĝ x i ĝ = ð big small n aradigm ð Dimension reduction techniques (e.g. SVD and PLS), and stewise strategies ð Alternatively, ridge regression, random effects models, and hierarchical modeling x ij ĝ j Two-ste Procedure: Test each marker (chromosome segment) for resence of QTL and select those with significant effects Fit selected markers simultaneously using multile regression Predict breeding values using fitted regression (similar to LD- MAS aroach with multile markers) Problems: Over estimation of markers effects due to first-ste (selection) Do not cature all QTL Least Squares 5

6 BLUP y = 1µ + X j + e! # "# ˆµ ĝ $! & %& = # 1 ' 1 1 ' X "# X ' 1 X ' X + Iγ $ & %& 1! # # " 1 ' y X ' y $ & & % ~ N(0, σ 0 ) γ = σ e / σ 0 How to choose? Arbitrary; but σ 0 σ 0 σ0 = σu controls amount of shrinkage / σ u Alternative: set, where is an estimate (rior) of total additive genetic variance Bayes A y = 1µ + X j + e y µ,, σ e ~ N(1µ + X j, Iσ e ) Prior distributions: σ j ~ N(0, σ j ) σ j ~ χ (ν,s) (scaled inverted chi-square distribution with scale arameter S and ν degrees of freedom) σ e ~ χ (, 0) 6

7 Bayes B y = 1µ + X j + e y µ,, σ e ~ N(1µ + X j, Iσ e ) Prior distributions: = 0 with robability π σ j ~ N(0,σ j ) σ j ~ χ (ν,s) σ e ~ χ (, 0) with robability (1 - π) Simulation Study Genome: 1000 cm with markers every 1 cm Markers surrounding each 1 cm region combined into halotyes LD between marker and QTLs due to finite oulation size (N e = 100) Training samle: single generation with,000 animals Test samle: rediction of breeding values of their rogeny based on marker genotyes 7

8 Simulation Study Simulation Study 8

9 Simulation Study Simulation Study 9

10 Alication with Real Data Number of Animals Predictor Predictee Young Year of Birth (VanRaden et al., 008) 10

11 Model Selection ð Goodness-of-fit vs. Model Comlexity (Bias-variance tradeoff) Over-reduction Over-fit Model Selection ð Goodness-of-fit likelihood ratio aroach (LRT; nested models) L LRT = ln L ( ) ð Model comlexity number of free arameters, (effective number) 1 ~ χ 1 Linear (regularized) fitting: y ˆ = Sy = trace( S) 11

12 ð Balancing goodness-of-fit and comlexity Akaike information criterion (AIC): Bayesian information criterion (BIC): F If (or Schwarz Criterion) iid e ~ N(0, σ ) i e Model Selection then: AIC = ln ( L) BIC= ln(n) ln ( L) RSS AIC = + n ln n and 1 BIC = σ e RSS + ln( L) Ridge Regression βˆ ridge N = β β + λ arg min yi 0 xij j β β i= 1 j= 1 j= 1 j λ 0 (comlexity arameter) or, equivalently: βˆ ridge = arg min subject to : β j= 1 i 0 i= 1 j= 1 β N j y s β x ijβ j, 1

13 βˆ 0 = y = y / N after centering y Ridge Regression i i and x 's (i.e., y i i y and x i x) RSS(λ) = (y Xβ)'(y Xβ)+ λβ'β ˆβ ridge = (X'X + λi) 1 X'y LASSO βˆ lasso = arg min β N y β i 0 i= 1 j= 1 x ijβ j, subject to: j= 1 β t j Estimation icture for the LASSO (left) and Ridge Regression (right) The solid blue areas are the constraint regions β1 + β t (lasso) and β1 +β t (ridge regression), while the red ellises are the contours of the least squares error function. 13

14 Predictive Ability (Hastie et al 009) Behavior of test samle and training samle error as the model comlexity is varied Cross-validation ð K-FOLD Training set Testing set ð LEAVE-ONE-OUT ( n-fold ) 14

15 Bayesian Alternative y = 1µ + X j + e y µ,, σ e ~ N(1µ + X j, Iσ e ) BRR: σ 0 ~ N(0, σ 0 ) Bayes A: Bayes B,C: σ j ~ N(0, σ j ), σ j ~ χ (ν,s) k, σ j ~ π N(0, kσ j )+ (1 π) N(0, σ j ) BLasso: σ j ~ N(0, σ j ), σ j ~ Exonential(λ) BX: σ j ~ N(0, σ j ), σ j ~ X Normal/Indeendent Distributions ( ) = ( σ j )(σ j ) dσ j σ j BRR: Normal Bayes A: Student-t Bayes B,C: Mixtures BLasso: Double exonential 15

16 y = 1µ + GBLUP Regression with genetic effects with normal distribution with common variance X j + e, with: Equivalent Model y = 1µ + a + e, with: σ g ~ N(0, σ g ) a σ a ~ N(0,Gσ a ) G is the genomic relationshi matrix: # & G = % j (1 j ) ( $ ' 1 (X M)(X M)' ssgblup Single-ste GBLUP: Single mixed model with all animals (genotyed and non-genotyed) included, with matrix A relaced by H " H 1 = A 1 + $ G 1 1 # $ A % ' &' 16

17 Preventive and Personalized Medicine Prediction Model Training oulation Personalized treatment New atient _ 5,13 subjects from Framingham Heart Study _ Phenotyes measured from 1948 until death _ Genotyes: Affymetrix 500K SNPs Photo: htt:// 17

18 Models 1. No-SNP: standard covariables. Covariates + familial relationshis 3. Covariates + SNPs (PC or Bayesian LASSO) Probit B-LASSO or Results (ROC, Area Under the Curve) Comarison of Models Models with increasing number of SNPs 18

General Linear Model Introduction, Classes of Linear models and Estimation

General Linear Model Introduction, Classes of Linear models and Estimation Stat 740 General Linear Model Introduction, Classes of Linear models and Estimation An aim of scientific enquiry: To describe or to discover relationshis among events (variables) in the controlled (laboratory)

More information

Data Mining Stat 588

Data Mining Stat 588 Data Mining Stat 588 Lecture 02: Linear Methods for Regression Department of Statistics & Biostatistics Rutgers University September 13 2011 Regression Problem Quantitative generic output variable Y. Generic

More information

Lecture 28: BLUP and Genomic Selection. Bruce Walsh lecture notes Synbreed course version 11 July 2013

Lecture 28: BLUP and Genomic Selection. Bruce Walsh lecture notes Synbreed course version 11 July 2013 Lecture 28: BLUP and Genomic Selection Bruce Walsh lecture notes Synbreed course version 11 July 2013 1 BLUP Selection The idea behind BLUP selection is very straightforward: An appropriate mixed-model

More information

Lecture 9 Multi-Trait Models, Binary and Count Traits

Lecture 9 Multi-Trait Models, Binary and Count Traits Lecture 9 Multi-Trait Models, Binary and Count Traits Guilherme J. M. Rosa University of Wisconsin-Madison Mixed Models in Quantitative Genetics SISG, Seattle 18 0 September 018 OUTLINE Multiple-trait

More information

Recent advances in statistical methods for DNA-based prediction of complex traits

Recent advances in statistical methods for DNA-based prediction of complex traits Recent advances in statistical methods for DNA-based prediction of complex traits Mintu Nath Biomathematics & Statistics Scotland, Edinburgh 1 Outline Background Population genetics Animal model Methodology

More information

Genotyping strategy and reference population

Genotyping strategy and reference population GS cattle workshop Genotyping strategy and reference population Effect of size of reference group (Esa Mäntysaari, MTT) Effect of adding females to the reference population (Minna Koivula, MTT) Value of

More information

Performance of lag length selection criteria in three different situations

Performance of lag length selection criteria in three different situations MPRA Munich Personal RePEc Archive Performance of lag length selection criteria in three different situations Zahid Asghar and Irum Abid Quaid-i-Azam University, Islamabad Aril 2007 Online at htts://mra.ub.uni-muenchen.de/40042/

More information

DOI /sagmb Statistical Applications in Genetics and Molecular Biology 2013; 12(3):

DOI /sagmb Statistical Applications in Genetics and Molecular Biology 2013; 12(3): DOI 10.1515/sagmb-01-004 Statistical Alications in Genetics and Molecular Biology 013; 1(3): 375 391 Christina Lehermeier, Valentin Wimmer, Theresa Albrecht a, Hans-Jürgen Auinger, Daniel Gianola, Volker

More information

Model comparison and selection

Model comparison and selection BS2 Statistical Inference, Lectures 9 and 10, Hilary Term 2008 March 2, 2008 Hypothesis testing Consider two alternative models M 1 = {f (x; θ), θ Θ 1 } and M 2 = {f (x; θ), θ Θ 2 } for a sample (X = x)

More information

Linear Regression Models. Based on Chapter 3 of Hastie, Tibshirani and Friedman

Linear Regression Models. Based on Chapter 3 of Hastie, Tibshirani and Friedman Linear Regression Models Based on Chapter 3 of Hastie, ibshirani and Friedman Linear Regression Models Here the X s might be: p f ( X = " + " 0 j= 1 X j Raw predictor variables (continuous or coded-categorical

More information

Lecture 14: Shrinkage

Lecture 14: Shrinkage Lecture 14: Shrinkage Reading: Section 6.2 STATS 202: Data mining and analysis October 27, 2017 1 / 19 Shrinkage methods The idea is to perform a linear regression, while regularizing or shrinking the

More information

Machine Learning for OR & FE

Machine Learning for OR & FE Machine Learning for OR & FE Regression II: Regularization and Shrinkage Methods Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com

More information

MIXED MODELS THE GENERAL MIXED MODEL

MIXED MODELS THE GENERAL MIXED MODEL MIXED MODELS This chapter introduces best linear unbiased prediction (BLUP), a general method for predicting random effects, while Chapter 27 is concerned with the estimation of variances by restricted

More information

Lecture 8. QTL Mapping 1: Overview and Using Inbred Lines

Lecture 8. QTL Mapping 1: Overview and Using Inbred Lines Lecture 8 QTL Mapping 1: Overview and Using Inbred Lines Bruce Walsh. jbwalsh@u.arizona.edu. University of Arizona. Notes from a short course taught Jan-Feb 2012 at University of Uppsala While the machinery

More information

High-dimensional regression modeling

High-dimensional regression modeling High-dimensional regression modeling David Causeur Department of Statistics and Computer Science Agrocampus Ouest IRMAR CNRS UMR 6625 http://www.agrocampus-ouest.fr/math/causeur/ Course objectives Making

More information

Overview. Background

Overview. Background Overview Implementation of robust methods for locating quantitative trait loci in R Introduction to QTL mapping Andreas Baierl and Andreas Futschik Institute of Statistics and Decision Support Systems

More information

Lecture 2: Genetic Association Testing with Quantitative Traits. Summer Institute in Statistical Genetics 2017

Lecture 2: Genetic Association Testing with Quantitative Traits. Summer Institute in Statistical Genetics 2017 Lecture 2: Genetic Association Testing with Quantitative Traits Instructors: Timothy Thornton and Michael Wu Summer Institute in Statistical Genetics 2017 1 / 29 Introduction to Quantitative Trait Mapping

More information

Large scale genomic prediction using singular value decomposition of the genotype matrix

Large scale genomic prediction using singular value decomposition of the genotype matrix https://doi.org/0.86/s27-08-0373-2 Genetics Selection Evolution RESEARCH ARTICLE Open Access Large scale genomic prediction using singular value decomposition of the genotype matrix Jørgen Ødegård *, Ulf

More information

ISyE 691 Data mining and analytics

ISyE 691 Data mining and analytics ISyE 691 Data mining and analytics Regression Instructor: Prof. Kaibo Liu Department of Industrial and Systems Engineering UW-Madison Email: kliu8@wisc.edu Office: Room 3017 (Mechanical Engineering Building)

More information

Regression, Ridge Regression, Lasso

Regression, Ridge Regression, Lasso Regression, Ridge Regression, Lasso Fabio G. Cozman - fgcozman@usp.br October 2, 2018 A general definition Regression studies the relationship between a response variable Y and covariates X 1,..., X n.

More information

MS&E 226: Small Data

MS&E 226: Small Data MS&E 226: Small Data Lecture 6: Model complexity scores (v3) Ramesh Johari ramesh.johari@stanford.edu Fall 2015 1 / 34 Estimating prediction error 2 / 34 Estimating prediction error We saw how we can estimate

More information

QTL Mapping I: Overview and using Inbred Lines

QTL Mapping I: Overview and using Inbred Lines QTL Mapping I: Overview and using Inbred Lines Key idea: Looking for marker-trait associations in collections of relatives If (say) the mean trait value for marker genotype MM is statisically different

More information

INTRODUCTION TO ANIMAL BREEDING. Lecture Nr 3. The genetic evaluation (for a single trait) The Estimated Breeding Values (EBV) The accuracy of EBVs

INTRODUCTION TO ANIMAL BREEDING. Lecture Nr 3. The genetic evaluation (for a single trait) The Estimated Breeding Values (EBV) The accuracy of EBVs INTRODUCTION TO ANIMAL BREEDING Lecture Nr 3 The genetic evaluation (for a single trait) The Estimated Breeding Values (EBV) The accuracy of EBVs Etienne Verrier INA Paris-Grignon, Animal Sciences Department

More information

CS6220: DATA MINING TECHNIQUES

CS6220: DATA MINING TECHNIQUES CS6220: DATA MINING TECHNIQUES Matrix Data: Prediction Instructor: Yizhou Sun yzsun@ccs.neu.edu September 14, 2014 Today s Schedule Course Project Introduction Linear Regression Model Decision Tree 2 Methods

More information

QTL model selection: key players

QTL model selection: key players Bayesian Interval Mapping. Bayesian strategy -9. Markov chain sampling 0-7. sampling genetic architectures 8-5 4. criteria for model selection 6-44 QTL : Bayes Seattle SISG: Yandell 008 QTL model selection:

More information

MS-C1620 Statistical inference

MS-C1620 Statistical inference MS-C1620 Statistical inference 10 Linear regression III Joni Virta Department of Mathematics and Systems Analysis School of Science Aalto University Academic year 2018 2019 Period III - IV 1 / 32 Contents

More information

GENOME-ENABLED PREDICTION RIDGE REGRESSION GENOMIC BLUP ROBUST METHODS: TMAP AND LMAP

GENOME-ENABLED PREDICTION RIDGE REGRESSION GENOMIC BLUP ROBUST METHODS: TMAP AND LMAP GENOME-ENABLED PREDICTION RIDGE REGRESSION GENOMIC BLUP ROBUST METHODS: TMAP AND LMAP RIDGE REGRESSION THE ESTIMATOR (HOERL AND KENNARD, 1979) WAS DERIVED USING A CONSTRAINED MINIMIZATION ARGUMENT Recirocal

More information

Sparse Linear Models (10/7/13)

Sparse Linear Models (10/7/13) STA56: Probabilistic machine learning Sparse Linear Models (0/7/) Lecturer: Barbara Engelhardt Scribes: Jiaji Huang, Xin Jiang, Albert Oh Sparsity Sparsity has been a hot topic in statistics and machine

More information

Multiple QTL mapping

Multiple QTL mapping Multiple QTL mapping Karl W Broman Department of Biostatistics Johns Hopkins University www.biostat.jhsph.edu/~kbroman [ Teaching Miscellaneous lectures] 1 Why? Reduce residual variation = increased power

More information

Focused fine-tuning of ridge regression

Focused fine-tuning of ridge regression Focused fine-tuning of ridge regression Kristoffer Hellton Department of Mathematics, University of Oslo May 9, 2016 K. Hellton (UiO) Focused tuning May 9, 2016 1 / 22 Penalized regression The least-squares

More information

GENOMIC SELECTION WORKSHOP: Hands on Practical Sessions (BL)

GENOMIC SELECTION WORKSHOP: Hands on Practical Sessions (BL) GENOMIC SELECTION WORKSHOP: Hands on Practical Sessions (BL) Paulino Pérez 1 José Crossa 2 1 ColPos-México 2 CIMMyT-México September, 2014. SLU,Sweden GENOMIC SELECTION WORKSHOP:Hands on Practical Sessions

More information

STAT 535 Lecture 5 November, 2018 Brief overview of Model Selection and Regularization c Marina Meilă

STAT 535 Lecture 5 November, 2018 Brief overview of Model Selection and Regularization c Marina Meilă STAT 535 Lecture 5 November, 2018 Brief overview of Model Selection and Regularization c Marina Meilă mmp@stat.washington.edu Reading: Murphy: BIC, AIC 8.4.2 (pp 255), SRM 6.5 (pp 204) Hastie, Tibshirani

More information

Generalized Linear Models

Generalized Linear Models Generalized Linear Models Lecture 3. Hypothesis testing. Goodness of Fit. Model diagnostics GLM (Spring, 2018) Lecture 3 1 / 34 Models Let M(X r ) be a model with design matrix X r (with r columns) r n

More information

Biostatistics-Lecture 16 Model Selection. Ruibin Xi Peking University School of Mathematical Sciences

Biostatistics-Lecture 16 Model Selection. Ruibin Xi Peking University School of Mathematical Sciences Biostatistics-Lecture 16 Model Selection Ruibin Xi Peking University School of Mathematical Sciences Motivating example1 Interested in factors related to the life expectancy (50 US states,1969-71 ) Per

More information

Lecture 15. Hypothesis testing in the linear model

Lecture 15. Hypothesis testing in the linear model 14. Lecture 15. Hypothesis testing in the linear model Lecture 15. Hypothesis testing in the linear model 1 (1 1) Preliminary lemma 15. Hypothesis testing in the linear model 15.1. Preliminary lemma Lemma

More information

Hastie, Tibshirani & Friedman: Elements of Statistical Learning Chapter Model Assessment and Selection. CN700/March 4, 2008.

Hastie, Tibshirani & Friedman: Elements of Statistical Learning Chapter Model Assessment and Selection. CN700/March 4, 2008. Hastie, Tibshirani & Friedman: Elements of Statistical Learning Chapter 7.1-7.9 Model Assessment and Selection CN700/March 4, 2008 Satyavarta sat@cns.bu.edu Auditory Neuroscience Laboratory, Department

More information

Proportional Variance Explained by QLT and Statistical Power. Proportional Variance Explained by QTL and Statistical Power

Proportional Variance Explained by QLT and Statistical Power. Proportional Variance Explained by QTL and Statistical Power Proportional Variance Explained by QTL and Statistical Power Partitioning the Genetic Variance We previously focused on obtaining variance components of a quantitative trait to determine the proportion

More information

Bayesian linear regression

Bayesian linear regression Bayesian linear regression Linear regression is the basis of most statistical modeling. The model is Y i = X T i β + ε i, where Y i is the continuous response X i = (X i1,..., X ip ) T is the corresponding

More information

A Modern Look at Classical Multivariate Techniques

A Modern Look at Classical Multivariate Techniques A Modern Look at Classical Multivariate Techniques Yoonkyung Lee Department of Statistics The Ohio State University March 16-20, 2015 The 13th School of Probability and Statistics CIMAT, Guanajuato, Mexico

More information

Linear Regression In God we trust, all others bring data. William Edwards Deming

Linear Regression In God we trust, all others bring data. William Edwards Deming Linear Regression ddebarr@uw.edu 2017-01-19 In God we trust, all others bring data. William Edwards Deming Course Outline 1. Introduction to Statistical Learning 2. Linear Regression 3. Classification

More information

Linear Regression (1/1/17)

Linear Regression (1/1/17) STA613/CBB540: Statistical methods in computational biology Linear Regression (1/1/17) Lecturer: Barbara Engelhardt Scribe: Ethan Hada 1. Linear regression 1.1. Linear regression basics. Linear regression

More information

A Short Introduction to the Lasso Methodology

A Short Introduction to the Lasso Methodology A Short Introduction to the Lasso Methodology Michael Gutmann sites.google.com/site/michaelgutmann University of Helsinki Aalto University Helsinki Institute for Information Technology March 9, 2016 Michael

More information

Lecture 11: Multiple trait models for QTL analysis

Lecture 11: Multiple trait models for QTL analysis Lecture 11: Multiple trait models for QTL analysis Julius van der Werf Multiple trait mapping of QTL...99 Increased power of QTL detection...99 Testing for linked QTL vs pleiotropic QTL...100 Multiple

More information

Lecture 5: BLUP (Best Linear Unbiased Predictors) of genetic values. Bruce Walsh lecture notes Tucson Winter Institute 9-11 Jan 2013

Lecture 5: BLUP (Best Linear Unbiased Predictors) of genetic values. Bruce Walsh lecture notes Tucson Winter Institute 9-11 Jan 2013 Lecture 5: BLUP (Best Linear Unbiased Predictors) of genetic values Bruce Walsh lecture notes Tucson Winter Institute 9-11 Jan 013 1 Estimation of Var(A) and Breeding Values in General Pedigrees The classic

More information

Consistent high-dimensional Bayesian variable selection via penalized credible regions

Consistent high-dimensional Bayesian variable selection via penalized credible regions Consistent high-dimensional Bayesian variable selection via penalized credible regions Howard Bondell bondell@stat.ncsu.edu Joint work with Brian Reich Howard Bondell p. 1 Outline High-Dimensional Variable

More information

Mapping multiple QTL in experimental crosses

Mapping multiple QTL in experimental crosses Human vs mouse Mapping multiple QTL in experimental crosses Karl W Broman Department of Biostatistics & Medical Informatics University of Wisconsin Madison www.biostat.wisc.edu/~kbroman www.daviddeen.com

More information

BIO5312 Biostatistics Lecture 13: Maximum Likelihood Estimation

BIO5312 Biostatistics Lecture 13: Maximum Likelihood Estimation BIO5312 Biostatistics Lecture 13: Maximum Likelihood Estimation Yujin Chung November 29th, 2016 Fall 2016 Yujin Chung Lec13: MLE Fall 2016 1/24 Previous Parametric tests Mean comparisons (normality assumption)

More information

Linear Model Selection and Regularization

Linear Model Selection and Regularization Linear Model Selection and Regularization Recall the linear model Y = β 0 + β 1 X 1 + + β p X p + ɛ. In the lectures that follow, we consider some approaches for extending the linear model framework. In

More information

(Genome-wide) association analysis

(Genome-wide) association analysis (Genome-wide) association analysis 1 Key concepts Mapping QTL by association relies on linkage disequilibrium in the population; LD can be caused by close linkage between a QTL and marker (= good) or by

More information

Statistics 203: Introduction to Regression and Analysis of Variance Penalized models

Statistics 203: Introduction to Regression and Analysis of Variance Penalized models Statistics 203: Introduction to Regression and Analysis of Variance Penalized models Jonathan Taylor - p. 1/15 Today s class Bias-Variance tradeoff. Penalized regression. Cross-validation. - p. 2/15 Bias-variance

More information

IEOR 165 Lecture 7 1 Bias-Variance Tradeoff

IEOR 165 Lecture 7 1 Bias-Variance Tradeoff IEOR 165 Lecture 7 Bias-Variance Tradeoff 1 Bias-Variance Tradeoff Consider the case of parametric regression with β R, and suppose we would like to analyze the error of the estimate ˆβ in comparison to

More information

Association studies and regression

Association studies and regression Association studies and regression CM226: Machine Learning for Bioinformatics. Fall 2016 Sriram Sankararaman Acknowledgments: Fei Sha, Ameet Talwalkar Association studies and regression 1 / 104 Administration

More information

Model Selection for Multiple QTL

Model Selection for Multiple QTL Model Selection for Multiple TL 1. reality of multiple TL 3-8. selecting a class of TL models 9-15 3. comparing TL models 16-4 TL model selection criteria issues of detecting epistasis 4. simulations and

More information

Bayesian Model Averaging Kriging Jize Zhang and Alexandros Taflanidis

Bayesian Model Averaging Kriging Jize Zhang and Alexandros Taflanidis HIPAD LAB: HIGH PERFORMANCE SYSTEMS LABORATORY DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING AND EARTH SCIENCES Bayesian Model Averaging Kriging Jize Zhang and Alexandros Taflanidis Why use metamodeling

More information

Association Testing with Quantitative Traits: Common and Rare Variants. Summer Institute in Statistical Genetics 2014 Module 10 Lecture 5

Association Testing with Quantitative Traits: Common and Rare Variants. Summer Institute in Statistical Genetics 2014 Module 10 Lecture 5 Association Testing with Quantitative Traits: Common and Rare Variants Timothy Thornton and Katie Kerr Summer Institute in Statistical Genetics 2014 Module 10 Lecture 5 1 / 41 Introduction to Quantitative

More information

Biostatistics Advanced Methods in Biostatistics IV

Biostatistics Advanced Methods in Biostatistics IV Biostatistics 140.754 Advanced Methods in Biostatistics IV Jeffrey Leek Assistant Professor Department of Biostatistics jleek@jhsph.edu Lecture 12 1 / 36 Tip + Paper Tip: As a statistician the results

More information

CS6220: DATA MINING TECHNIQUES

CS6220: DATA MINING TECHNIQUES CS6220: DATA MINING TECHNIQUES Matrix Data: Prediction Instructor: Yizhou Sun yzsun@ccs.neu.edu September 21, 2015 Announcements TA Monisha s office hour has changed to Thursdays 10-12pm, 462WVH (the same

More information

QTL Model Search. Brian S. Yandell, UW-Madison January 2017

QTL Model Search. Brian S. Yandell, UW-Madison January 2017 QTL Model Search Brian S. Yandell, UW-Madison January 2017 evolution of QTL models original ideas focused on rare & costly markers models & methods refined as technology advanced single marker regression

More information

Limited dimensionality of genomic information and effective population size

Limited dimensionality of genomic information and effective population size Limited dimensionality of genomic information and effective population size Ivan Pocrnić 1, D.A.L. Lourenco 1, Y. Masuda 1, A. Legarra 2 & I. Misztal 1 1 University of Georgia, USA 2 INRA, France WCGALP,

More information

Linear Regression Linear Regression with Shrinkage

Linear Regression Linear Regression with Shrinkage Linear Regression Linear Regression ith Shrinkage Introduction Regression means predicting a continuous (usually scalar) output y from a vector of continuous inputs (features) x. Example: Predicting vehicle

More information

Linear Regression Linear Regression with Shrinkage

Linear Regression Linear Regression with Shrinkage Linear Regression Linear Regression ith Shrinkage Introduction Regression means predicting a continuous (usually scalar) output y from a vector of continuous inputs (features) x. Example: Predicting vehicle

More information

The concept of breeding value. Gene251/351 Lecture 5

The concept of breeding value. Gene251/351 Lecture 5 The concept of breeding value Gene251/351 Lecture 5 Key terms Estimated breeding value (EB) Heritability Contemporary groups Reading: No prescribed reading from Simm s book. Revision: Quantitative traits

More information

MA 575 Linear Models: Cedric E. Ginestet, Boston University Regularization: Ridge Regression and Lasso Week 14, Lecture 2

MA 575 Linear Models: Cedric E. Ginestet, Boston University Regularization: Ridge Regression and Lasso Week 14, Lecture 2 MA 575 Linear Models: Cedric E. Ginestet, Boston University Regularization: Ridge Regression and Lasso Week 14, Lecture 2 1 Ridge Regression Ridge regression and the Lasso are two forms of regularized

More information

ASSOCIATION ANALYSES of the MAS-QTL DATA SET using GRAMMAR, PRINCIPAL COMPONENTS and BAYESIAN NETWORK METHODOLOGIES

ASSOCIATION ANALYSES of the MAS-QTL DATA SET using GRAMMAR, PRINCIPAL COMPONENTS and BAYESIAN NETWORK METHODOLOGIES OSL ASSOCATO AALYSS of the MAS-QTL DATA ST using GAMMA, PCPAL COMPOTS and BAYSA TWOK MTODOLOGS Burak Karacaören, Tomi Silander, José M. Álvarez- Castro, Chris S. aley, Dirk Jan de Koning OSL STTT and (D)SVS,

More information

CS 4491/CS 7990 SPECIAL TOPICS IN BIOINFORMATICS

CS 4491/CS 7990 SPECIAL TOPICS IN BIOINFORMATICS CS 4491/CS 7990 SPECIAL TOPICS IN BIOINFORMATICS * Some contents are adapted from Dr. Hung Huang and Dr. Chengkai Li at UT Arlington Mingon Kang, Ph.D. Computer Science, Kennesaw State University Problems

More information

Business Statistics. Tommaso Proietti. Model Evaluation and Selection. DEF - Università di Roma 'Tor Vergata'

Business Statistics. Tommaso Proietti. Model Evaluation and Selection. DEF - Università di Roma 'Tor Vergata' Business Statistics Tommaso Proietti DEF - Università di Roma 'Tor Vergata' Model Evaluation and Selection Predictive Ability of a Model: Denition and Estimation We aim at achieving a balance between parsimony

More information

Mapping multiple QTL in experimental crosses

Mapping multiple QTL in experimental crosses Mapping multiple QTL in experimental crosses Karl W Broman Department of Biostatistics and Medical Informatics University of Wisconsin Madison www.biostat.wisc.edu/~kbroman [ Teaching Miscellaneous lectures]

More information

Bayesian Spatially Varying Coefficient Models in the Presence of Collinearity

Bayesian Spatially Varying Coefficient Models in the Presence of Collinearity Bayesian Satially Varying Coefficient Models in the Presence of Collinearity David C. Wheeler 1, Catherine A. Calder 1 he Ohio State University 1 Abstract he belief that relationshis between exlanatory

More information

GENOMIC SELECTION ADDITIONAL TOPICS

GENOMIC SELECTION ADDITIONAL TOPICS GENOMIC SELECTION ADDITIONAL TOPICS OUTLINE Æ INTRODUCTION w Some Bascs of Regresson n Hgh-dmensonal Problems Æ BAYESIAN ALTERNATIVE w A Quck Tour on Bayesan Models Commonly Used n Genomc Selecton Æ COMPARISON

More information

arxiv: v1 [stat.me] 10 Jun 2018

arxiv: v1 [stat.me] 10 Jun 2018 Lost in translation: On the impact of data coding on penalized regression with interactions arxiv:1806.03729v1 [stat.me] 10 Jun 2018 Johannes W R Martini 1,2 Francisco Rosales 3 Ngoc-Thuy Ha 2 Thomas Kneib

More information

9. Model Selection. statistical models. overview of model selection. information criteria. goodness-of-fit measures

9. Model Selection. statistical models. overview of model selection. information criteria. goodness-of-fit measures FE661 - Statistical Methods for Financial Engineering 9. Model Selection Jitkomut Songsiri statistical models overview of model selection information criteria goodness-of-fit measures 9-1 Statistical models

More information

Causal Graphical Models in Quantitative Genetics and Genomics

Causal Graphical Models in Quantitative Genetics and Genomics Causal Graphical Models in Quantitative Genetics and Genomics Guilherme J. M. Rosa Department of Animal Sciences Department of Biostatistics & Medical Informatics OUTLINE Introduction: Correlation and

More information

A Comparison between Biased and Unbiased Estimators in Ordinary Least Squares Regression

A Comparison between Biased and Unbiased Estimators in Ordinary Least Squares Regression Journal of Modern Alied Statistical Methods Volume Issue Article 7 --03 A Comarison between Biased and Unbiased Estimators in Ordinary Least Squares Regression Ghadban Khalaf King Khalid University, Saudi

More information

Regularization: Ridge Regression and the LASSO

Regularization: Ridge Regression and the LASSO Agenda Wednesday, November 29, 2006 Agenda Agenda 1 The Bias-Variance Tradeoff 2 Ridge Regression Solution to the l 2 problem Data Augmentation Approach Bayesian Interpretation The SVD and Ridge Regression

More information

MIT Spring 2015

MIT Spring 2015 Regression Analysis MIT 18.472 Dr. Kempthorne Spring 2015 1 Outline Regression Analysis 1 Regression Analysis 2 Multiple Linear Regression: Setup Data Set n cases i = 1, 2,..., n 1 Response (dependent)

More information

Model Selection Tutorial 2: Problems With Using AIC to Select a Subset of Exposures in a Regression Model

Model Selection Tutorial 2: Problems With Using AIC to Select a Subset of Exposures in a Regression Model Model Selection Tutorial 2: Problems With Using AIC to Select a Subset of Exposures in a Regression Model Centre for Molecular, Environmental, Genetic & Analytic (MEGA) Epidemiology School of Population

More information

IEOR165 Discussion Week 5

IEOR165 Discussion Week 5 IEOR165 Discussion Week 5 Sheng Liu University of California, Berkeley Feb 19, 2016 Outline 1 1st Homework 2 Revisit Maximum A Posterior 3 Regularization IEOR165 Discussion Sheng Liu 2 About 1st Homework

More information

GBLUP and G matrices 1

GBLUP and G matrices 1 GBLUP and G matrices 1 GBLUP from SNP-BLUP We have defined breeding values as sum of SNP effects:! = #$ To refer breeding values to an average value of 0, we adopt the centered coding for genotypes described

More information

R/qtl workshop. (part 2) Karl Broman. Biostatistics and Medical Informatics University of Wisconsin Madison. kbroman.org

R/qtl workshop. (part 2) Karl Broman. Biostatistics and Medical Informatics University of Wisconsin Madison. kbroman.org R/qtl workshop (part 2) Karl Broman Biostatistics and Medical Informatics University of Wisconsin Madison kbroman.org github.com/kbroman @kwbroman Example Sugiyama et al. Genomics 71:70-77, 2001 250 male

More information

High-dimensional regression

High-dimensional regression High-dimensional regression Advanced Methods for Data Analysis 36-402/36-608) Spring 2014 1 Back to linear regression 1.1 Shortcomings Suppose that we are given outcome measurements y 1,... y n R, and

More information

Lecture 9. QTL Mapping 2: Outbred Populations

Lecture 9. QTL Mapping 2: Outbred Populations Lecture 9 QTL Mapping 2: Outbred Populations Bruce Walsh. Aug 2004. Royal Veterinary and Agricultural University, Denmark The major difference between QTL analysis using inbred-line crosses vs. outbred

More information

Chapter 3. Linear Models for Regression

Chapter 3. Linear Models for Regression Chapter 3. Linear Models for Regression Wei Pan Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN 55455 Email: weip@biostat.umn.edu PubH 7475/8475 c Wei Pan Linear

More information

Genetic variation of polygenic characters and the evolution of genetic degeneracy

Genetic variation of polygenic characters and the evolution of genetic degeneracy Genetic variation of olygenic characters and the evolution of genetic degeneracy S. A. FRANK Deartment of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA Keywords: mutation;

More information

Lecture WS Evolutionary Genetics Part I 1

Lecture WS Evolutionary Genetics Part I 1 Quantitative genetics Quantitative genetics is the study of the inheritance of quantitative/continuous phenotypic traits, like human height and body size, grain colour in winter wheat or beak depth in

More information

Model Selection. Frank Wood. December 10, 2009

Model Selection. Frank Wood. December 10, 2009 Model Selection Frank Wood December 10, 2009 Standard Linear Regression Recipe Identify the explanatory variables Decide the functional forms in which the explanatory variables can enter the model Decide

More information

Chapter 13 Variable Selection and Model Building

Chapter 13 Variable Selection and Model Building Chater 3 Variable Selection and Model Building The comlete regsion analysis deends on the exlanatory variables ent in the model. It is understood in the regsion analysis that only correct and imortant

More information

Lecture 2: Linear Models. Bruce Walsh lecture notes Seattle SISG -Mixed Model Course version 23 June 2011

Lecture 2: Linear Models. Bruce Walsh lecture notes Seattle SISG -Mixed Model Course version 23 June 2011 Lecture 2: Linear Models Bruce Walsh lecture notes Seattle SISG -Mixed Model Course version 23 June 2011 1 Quick Review of the Major Points The general linear model can be written as y = X! + e y = vector

More information

Linear Methods for Regression. Lijun Zhang

Linear Methods for Regression. Lijun Zhang Linear Methods for Regression Lijun Zhang zlj@nju.edu.cn http://cs.nju.edu.cn/zlj Outline Introduction Linear Regression Models and Least Squares Subset Selection Shrinkage Methods Methods Using Derived

More information

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Examination in: STK4030 Modern data analysis - FASIT Day of examination: Friday 13. Desember 2013. Examination hours: 14.30 18.30. This

More information

Linear regression methods

Linear regression methods Linear regression methods Most of our intuition about statistical methods stem from linear regression. For observations i = 1,..., n, the model is Y i = p X ij β j + ε i, j=1 where Y i is the response

More information

11 Hypothesis Testing

11 Hypothesis Testing 28 11 Hypothesis Testing 111 Introduction Suppose we want to test the hypothesis: H : A q p β p 1 q 1 In terms of the rows of A this can be written as a 1 a q β, ie a i β for each row of A (here a i denotes

More information

Simple Linear Regression. Y = f (X) + ε. Regression as a term. Linear Regression. Basic structure. Ivo Ugrina. September 29, 2016

Simple Linear Regression. Y = f (X) + ε. Regression as a term. Linear Regression. Basic structure. Ivo Ugrina. September 29, 2016 Regression as a term Linear Regression Ivo Ugrina King s College London // University of Zagreb // University of Split September 29, 2016 Galton Ivo Ugrina Linear Regression September 29, 2016 1 / 56 Ivo

More information

Multiple regression. CM226: Machine Learning for Bioinformatics. Fall Sriram Sankararaman Acknowledgments: Fei Sha, Ameet Talwalkar

Multiple regression. CM226: Machine Learning for Bioinformatics. Fall Sriram Sankararaman Acknowledgments: Fei Sha, Ameet Talwalkar Multiple regression CM226: Machine Learning for Bioinformatics. Fall 2016 Sriram Sankararaman Acknowledgments: Fei Sha, Ameet Talwalkar Multiple regression 1 / 36 Previous two lectures Linear and logistic

More information

Spatial inference. Spatial inference. Accounting for spatial correlation. Multivariate normal distributions

Spatial inference. Spatial inference. Accounting for spatial correlation. Multivariate normal distributions Spatial inference I will start with a simple model, using species diversity data Strong spatial dependence, Î = 0.79 what is the mean diversity? How precise is our estimate? Sampling discussion: The 64

More information

Extended Bayesian Information Criteria for Model Selection with Large Model Spaces

Extended Bayesian Information Criteria for Model Selection with Large Model Spaces Extended Bayesian Information Criteria for Model Selection with Large Model Spaces Jiahua Chen, University of British Columbia Zehua Chen, National University of Singapore (Biometrika, 2008) 1 / 18 Variable

More information

Everyday Multithreading

Everyday Multithreading Everyday Multithreading Parallel computing for genomic evaluations in R C. Heuer, D. Hinrichs, G. Thaller Institute of Animal Breeding and Husbandry, Kiel University August 27, 2014 C. Heuer, D. Hinrichs,

More information

Lecture 7: Modeling Krak(en)

Lecture 7: Modeling Krak(en) Lecture 7: Modeling Krak(en) Variable selection Last In both time cases, we saw we two are left selection with selection problems problem -- How -- do How we pick do we either pick either subset the of

More information

Introduction and Background to Multilevel Analysis

Introduction and Background to Multilevel Analysis Introduction and Background to Multilevel Analysis Dr. J. Kyle Roberts Southern Methodist University Simmons School of Education and Human Development Department of Teaching and Learning Background and

More information

Outline for today. Maximum likelihood estimation. Computation with multivariate normal distributions. Multivariate normal distribution

Outline for today. Maximum likelihood estimation. Computation with multivariate normal distributions. Multivariate normal distribution Outline for today Maximum likelihood estimation Rasmus Waageetersen Deartment of Mathematics Aalborg University Denmark October 30, 2007 the multivariate normal distribution linear and linear mixed models

More information

Notes on Instrumental Variables Methods

Notes on Instrumental Variables Methods Notes on Instrumental Variables Methods Michele Pellizzari IGIER-Bocconi, IZA and frdb 1 The Instrumental Variable Estimator Instrumental variable estimation is the classical solution to the roblem of

More information