Beyond the effective-mass approximation: multi-band models of semiconductor devices

Size: px
Start display at page:

Download "Beyond the effective-mass approximation: multi-band models of semiconductor devices"

Transcription

1 Beyond the eective-mass approximation: multi-band models o semiconductor devices Luigi Barletti Università di Firenze - Dipartimento di Matematica Ulisse Dini Symposium: Mathematical modeling o electron transport in semiconductors SIMI 2004 Conerence Venezia, Isola di San Servolo, Settembre 2004 Beyond the eective-mass approximation p1/28

2 Contributors G lì IC-CNR, Napoli G Borgioli Dip di Elettronica e Telecomunicazioni, Firenze M Camprini Post-Doc Dip di Elettronica e Tel, Firenze L Demeio Dip di Matematica, ncona G Frosali Dip di Matematica pplicata, Firenze C Manzini Perezionamento MTI-SNS, Pisa M Modugno Post-Doc, Dip di Fisica, Firenze O Morandi Dottorato in Elettronica dello Stato Solido, Firenze Beyond the eective-mass approximation p2/28

3 Support GNFM Research Project: Mathematical Models or Microelectronics, 2004 MIUR-COFIN: Mathematical problems o Kinetic Theories, 2002 Beyond the eective-mass approximation p3/28

4 The eective-mass approximation Most o mathematical models o quantum transport in semiconductor devices makes use o the so-called eective-mass approximation This amounts to substituting the true Hamiltonian with the ollowing: Beyond the eective-mass approximation p4/28

5 The eective-mass approximation (continued) The ective-mass tensor arises rom a parabolic approximation o the conduction band: Energy E c (p)! " p 0 Momentum In such approximation the electron[hole] belongs exclusively to the conduction[valence] band Beyond the eective-mass approximation p5/28

6 Interband devices The eective-mass approximation is unable to describe interband tunneling, a quantum eect which plays an important role in modern devices Scheme o the interband diode developed by P Berger s team (Ohio State University, US) Beyond the eective-mass approximation p6/28

7 Multi-band models We need thereore to go beyond the eective-mass approximation and consider more suitable models in which the electron[hole] eels the presence o at least two-bands Beyond the eective-mass approximation p7/28

8 ) ( ) (, * ' ) ( ) ( * Multi-band models We need thereore to go beyond the eective-mass approximation and consider more suitable models in which the electron[hole] eels the presence o at least two-bands 1 - two-band Kane model: -/ +* $#&% -/ +* E Kane, J Phys Chem Solids, 15 Beyond the eective-mass approximation p7/28

9 ) ( ) (, * 8 0 ) ( ) ( * Multi-band models We need thereore to go beyond the eective-mass approximation and consider more suitable models in which the electron[hole] eels the presence o at least two bands 2 - two-band order-1 M-M model: -/ * M-M -/ 17) +* 4/5 O Morandi & M Modugno, 2004 (to appear) Beyond the eective-mass approximation p8/28

10 Multi-band models (continued) ll these models urnish an approximation o the real multi-band dispersion relation: Energy E c (p) E v (p) p 0 Momentum Beyond the eective-mass approximation p/28

11 Multi-band models (continued) s an example, here is the dispersion relation computed with the Kane Hamiltonian or Gas: Energy (ev) E c 10 0 E v Momentum (10 24 Kg m/s) Beyond the eective-mass approximation p10/28

12 Research program Beyond the eective-mass approximation p11/28

13 Research program Quantum kinetic theory Beyond the eective-mass approximation p11/28

14 Research program Quantum kinetic theory Nonlinear/dissipative Wigner equations MB Wigner equations MB thermal equilibrium Beyond the eective-mass approximation p11/28

15 Research program Quantum kinetic theory Nonlinear/dissipative Wigner equations MB Wigner equations MB thermal equilibrium Quantum hydrodynamics Beyond the eective-mass approximation p11/28

16 Research program Quantum kinetic theory Nonlinear/dissipative Wigner equations MB Wigner equations MB thermal equilibrium Quantum hydrodynamics MB-QDD MB-QET MB-QHD Beyond the eective-mass approximation p11/28

17 Research program Quantum kinetic theory Nonlinear/dissipative Wigner equations MB Wigner equations MB thermal equilibrium Quantum hydrodynamics MB-QDD MB-QET MB-QHD Spintronics Beyond the eective-mass approximation p11/28

18 Research program Quantum kinetic theory Nonlinear/dissipative Wigner equations MB Wigner equations MB thermal equilibrium Quantum hydrodynamics MB-QDD MB-QET MB-QHD Spintronics pplications to electronic devices and BEC Beyond the eective-mass approximation p11/28

19 E E > F : D : CB Q N M The Wigner transorm The Wigner transorm E (LK J ;:3 is a unitary mapping o PO N into itsel It allows a quasi-kinetic ormulation o statistical QM E Wigner, Phys Rev, 132 Beyond the eective-mass approximation p12/28

20 W D ) ( V R The Wigner equation The quantum Liouville equation SUT D +* Beyond the eective-mass approximation p13/28

21 W D ) ( V F V * [ W ( Beyond the eective-mass approximation p13/28 The Wigner equation The quantum Liouville equation D SUT R +* is equivalent to the Wigner equation Z : [ ( F Z : YX S T ( F

22 ^ ` _ c ^ ^ How MB Transport Eqs should look like? Single band case (no discrete degrees o reedom): ;:3 Wigner transorm ^ ;b ` ;a \] mixed state Wigner unction Beyond the eective-mass approximation p14/28

23 ^ ` _ c ^ ^ ` _ c ^ ^ Fd How MB Transport Eqs should look like? Single band case (no discrete degrees o reedom): ;:3 Wigner transorm ^ ;b ` ;a \] mixed state Wigner unction Multi-band/spin case (one discrete degree o reedom): ;:3 F d Wigner transorm ^ ;b ` d ^ ;a F \] mixed state Wigner matrix where ;:3 F d ;:3 Beyond the eective-mass approximation p14/28

24 How MBTE should look like? (contd) Now assume >e R e and recall that the Pauli matrices gih j k k j g k j j k g k l m m k g j k k l j are a orthonormal basis o O hermitian matrices over N Beyond the eective-mass approximation p15/28

25 e R >e k j m k j k k j l g g g k k j j k j k m l N O n ^ How MBTE should look like? (contd) Now assume and recall that the Pauli matrices gih are a orthonormal basis o hermitian matrices over Thus, we can decompose the Wigner matrix F d as: r u oqu r t oqt r s oqs r p oqp where the unctions are real Beyond the eective-mass approximation p15/28

26 ~ } { z " ~ How MBTE should look like? (contd) z) ) z) 2 z) 2 ƒ { z2 2 { z2 ) z2 ) 2 ) +ƒl { { z2 z) v wiw wiwyx Explicitly: z) ) z2 2 l 2 ) { zc Beyond the eective-mass approximation p16/28

27 ~ } { z " ~ How MBTE should look like? (contd) z) ) z) 2 z) 2 ƒ { z2 2 { z2 ) z2 ) 2 ) +ƒl { { z2 z) v wiw wiwyx Explicitly: z) ) z2 2 l 2 ) { zc, we have K :3 ;: Putting or a pure state, h or a mixed state, 3 h in analogy with Stokes parameters describing a polarized light beam Beyond the eective-mass approximation p16/28

28 ˆ > g ^ K : Œ Interpretation we have R For Š K gf ;:3 ^ gf h ^L, implies d ^ gf g which, since Beyond the eective-mass approximation p17/28

29 ˆ > g ^ K : Œ > K : Interpretation we have R For Š K gf ;:3 ^ gf h ^L, implies d ^ gf g which, since K ;:3 h Beyond the eective-mass approximation p17/28

30 ˆ > g ^ K : Œ > K : ˆ > > R K : O Interpretation we have R For Š K gf ;:3 ^ gf h ^L, implies d ^ gf g which, since K ;:3 h, R and, or spin expectation in direction K ;:3 F Beyond the eective-mass approximation p17/28

31 > g Interpretation (continued) In the case o Kane or M-M model: >is the observable band index Beyond the eective-mass approximation p18/28

32 > g Interpretation (continued) In the case o Kane or M-M model: >is the observable band index The Wigner unction can thus be given a local meaning: h local expectation o band-index Beyond the eective-mass approximation p18/28

33 [ Z g, g R > - Dynamics The Kane Hamiltonian can be decomposed as ollows: - g h where we put ssume or simplicity that we are describing electrons in a bulk crystal (constant ), and Thus the dynamics o Wigner unctions is given by the ollowing set o equations Beyond the eective-mass approximation p1/28

34 Z Z [, [ Z, [ Z F Dynamics (continued) X - h [ Ž R X SUT -/ Ž7 R X S T h X - Ž7 R X SUT v wiwywiwiwyw wiwiwywiwywix -/ Ž7 R X SUT [ ( Z : [ ( F Z : Ž Beyond the eective-mass approximation p20/28 where

35 [ Z [ Z, [ Z, [ Z Plane-wave dynamics statistical superimposition o plane waves corresponds in the Wigner picture to a space-homogeneous Wigner unction, the : ;: ssuming space-homogeneity and previous equations reduce to h S T - S T S T v wiwywiwywiwiw wywiwiwywiwywix -/ S T Beyond the eective-mass approximation p21/28

36 , [ Z Plane-wave dynamics (continued) Putting and - the spinorial part o the previous system can be presented in the ollowing simple orm: š SUT momentum drit band transitions Beyond the eective-mass approximation p22/28

37 Plane-wave dynamics (continued) Path o a plane wave on the Poincaré sphere: 1 08 w 1 w 2 w Beyond the eective-mass approximation p23/28

38 ˆ > Beyond the eective-mass approximation p24/28 Moment equations R For, deine the local averages: K ;:3 F ;: F K ;:3 F ;: F K ;:3 F ;: œf

39 -, -, Order-0 moment equations h -/ h S T S T S T S T v wywiwywiw wiwiwywiwyx h - Beyond the eective-mass approximation p25/28

40 -, -, - Order-0 moment equations h -/ h S T S T S T S T v wywiwywiw wiwiwywiwyx h - Continuity equation or the total density: h h SUT Beyond the eective-mass approximation p25/28

41 -, -, - - ž Order-0 moment equations h -/ h S T S T S T S T v wywiwywiw wiwiwywiwyx h - Continuity equation or the total density: h h SUT interband current Beyond the eective-mass approximation p25/28

42 , - Ÿ Ÿ Ÿ ( Order-1 moment equations - h œh œ -/ œ, h œ h S T S T S T S T v wywiwywiw wiwiwywiwyx œ -/ œ Where: F F, F d Ÿ d Ÿ œf Ÿ Bohm term F ) F temperature term F Beyond the eective-mass approximation p26/28

43 > Two-band Madelung equations Theorem I are the Wigner unctions o a pure state, then the temperature terms vanish: h ˆ ª R F Beyond the eective-mass approximation p27/28

44 > Two-band Madelung equations Theorem I are the Wigner unctions o a pure state, then the temperature terms vanish: h ˆ ª R F Thereore, the order-0 and order-1 moment equations are a closed system yelding Madelung-like equations or the Kane model, equivalent to the Schrödinger equation E Madelung, Zeitschr Phys, 126 Beyond the eective-mass approximation p27/28

45 Conclusions Beyond the eective-mass approximation p28/28

46 Conclusions We have discussed the meaning o the multi-band approach to quantum transport in semiconductor devices Beyond the eective-mass approximation p28/28

47 Conclusions We have discussed the meaning o the multi-band approach to quantum transport in semiconductor devices We have ocused our attention on the description o a 2-B system by means o Wigner unctions Beyond the eective-mass approximation p28/28

48 Conclusions We have discussed the meaning o the multi-band approach to quantum transport in semiconductor devices We have ocused our attention on the description o a 2-B system by means o Wigner unctions We have seen the orm o 2-B transport equations or the Kane model Beyond the eective-mass approximation p28/28

49 Conclusions We have discussed the meaning o the multi-band approach to quantum transport in semiconductor devices We have ocused our attention on the description o a 2-B system by means o Wigner unctions We have seen the orm o 2-B transport equations or the Kane model We have seen the orm o 2-B Madelung-like QHD equation or the Kane model Beyond the eective-mass approximation p28/28

Two-band quantum models for semiconductors arising from the Bloch envelope theory

Two-band quantum models for semiconductors arising from the Bloch envelope theory Two-band quantum models for semiconductors arising from the Bloch envelope theory Giuseppe lì 1, Giovanni Frosali 2, and Omar Morandi 3 1 Istituto per le pplicazioni del Calcolo M. Picone, CNR - Via P.

More information

Physics 5153 Classical Mechanics. Solution by Quadrature-1

Physics 5153 Classical Mechanics. Solution by Quadrature-1 October 14, 003 11:47:49 1 Introduction Physics 5153 Classical Mechanics Solution by Quadrature In the previous lectures, we have reduced the number o eective degrees o reedom that are needed to solve

More information

Derivation of quantum hydrodynamic equations with Fermi-Dirac and Bose-Einstein statistics

Derivation of quantum hydrodynamic equations with Fermi-Dirac and Bose-Einstein statistics Derivation of quantum hydrodynamic equations with Fermi-Dirac and Bose-Einstein statistics Luigi Barletti (Università di Firenze) Carlo Cintolesi (Università di Trieste) 6th MMKT Porto Ercole, june 9th

More information

i = cos 2 0i + ei sin 2 1i

i = cos 2 0i + ei sin 2 1i Chapter 10 Spin 10.1 Spin 1 as a Qubit In this chapter we will explore quantum spin, which exhibits behavior that is intrinsically quantum mechanical. For our purposes the most important particles are

More information

U U B U P x

U U B U P x Smooth Quantum Hydrodynamic Model Simulation of the Resonant Tunneling Diode Carl L. Gardner and Christian Ringhofer y Department of Mathematics Arizona State University Tempe, AZ 8587-184 Abstract Smooth

More information

Numerical simulation of an intervalley. transition by the Wigner-function approach. Lucio Demeio. Dipartimento di Scienze Matematiche

Numerical simulation of an intervalley. transition by the Wigner-function approach. Lucio Demeio. Dipartimento di Scienze Matematiche Numerical simulation of an intervalley transition by the Wigner-function approach Lucio Demeio Dipartimento di Scienze Matematiche Universit a Politecnica delle Marche Via Brecce Bianche 1, I-6131 Ancona,

More information

QUANTUM MODELS FOR SEMICONDUCTORS AND NONLINEAR DIFFUSION EQUATIONS OF FOURTH ORDER

QUANTUM MODELS FOR SEMICONDUCTORS AND NONLINEAR DIFFUSION EQUATIONS OF FOURTH ORDER QUANTUM MODELS FOR SEMICONDUCTORS AND NONLINEAR DIFFUSION EQUATIONS OF FOURTH ORDER MARIA PIA GUALDANI The modern computer and telecommunication industry relies heavily on the use of semiconductor devices.

More information

On the zero-temperature quantum hydrodynamic model for the two-band Kane system

On the zero-temperature quantum hydrodynamic model for the two-band Kane system Recent Trends in Kinetic Theory and its Applications KYIV, Ukraine, May 11-15, 2004 On the zero-temperature quantum hydrodynamic model for the two-band Kane system Giuseppe Alì Istituto per le Applicazioni

More information

Quantum Computing Lecture 3. Principles of Quantum Mechanics. Anuj Dawar

Quantum Computing Lecture 3. Principles of Quantum Mechanics. Anuj Dawar Quantum Computing Lecture 3 Principles of Quantum Mechanics Anuj Dawar What is Quantum Mechanics? Quantum Mechanics is a framework for the development of physical theories. It is not itself a physical

More information

8. INTRODUCTION TO STATISTICAL THERMODYNAMICS

8. INTRODUCTION TO STATISTICAL THERMODYNAMICS n * D n d Fluid z z z FIGURE 8-1. A SYSTEM IS IN EQUILIBRIUM EVEN IF THERE ARE VARIATIONS IN THE NUMBER OF MOLECULES IN A SMALL VOLUME, SO LONG AS THE PROPERTIES ARE UNIFORM ON A MACROSCOPIC SCALE 8. INTRODUCTION

More information

Solid State Device Fundamentals

Solid State Device Fundamentals Solid State Device Fundamentals ES 345 Lecture Course by Alexander M. Zaitsev alexander.zaitsev@csi.cuny.edu Tel: 718 982 2812 Oice 4101b 1 The ree electron model o metals The ree electron model o metals

More information

quantum semiconductor devices. The model is valid to all orders of h and to rst order in the classical potential energy. The smooth QHD equations have

quantum semiconductor devices. The model is valid to all orders of h and to rst order in the classical potential energy. The smooth QHD equations have Numerical Simulation of the Smooth Quantum Hydrodynamic Model for Semiconductor Devices Carl L. Gardner and Christian Ringhofer y Department of Mathematics Arizona State University Tempe, AZ 8587-84 Abstract

More information

Numerical simulation of the smooth quantum hydrodynamic model for semiconductor devices

Numerical simulation of the smooth quantum hydrodynamic model for semiconductor devices Comput. Methods Appl. Mech. Engrg. 181 (2000) 393±401 www.elsevier.com/locate/cma Numerical simulation of the smooth quantum hydrodynamic model for semiconductor devices Carl L. Gardner *,1, Christian

More information

Quantum Hydrodynamics models derived from the entropy principle

Quantum Hydrodynamics models derived from the entropy principle 1 Quantum Hydrodynamics models derived from the entropy principle P. Degond (1), Ch. Ringhofer (2) (1) MIP, CNRS and Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex, France degond@mip.ups-tlse.fr

More information

Solutions for Homework #8. Landing gear

Solutions for Homework #8. Landing gear Solutions or Homewor #8 PROBEM. (P. 9 on page 78 in the note) An airplane is modeled as a beam with masses as shown below: m m m m π [rad/sec] anding gear m m.5 Find the stiness and mass matrices. Find

More information

Quantum hydrodynamic models for the two-band Kane system

Quantum hydrodynamic models for the two-band Kane system IL NUOVO CIMENTO Online First Dicembre 2005 DOI 101393/ncb/i2005-10096-1 Quantum hydrodynamic models for the two-band Kane system G Alì 1 2 andg Frosali 3 1 CNR Istituto per le Applicazioni del Calcolo

More information

2.0 Basic Elements of a Quantum Information Processor. 2.1 Classical information processing The carrier of information

2.0 Basic Elements of a Quantum Information Processor. 2.1 Classical information processing The carrier of information QSIT09.L03 Page 1 2.0 Basic Elements of a Quantum Information Processor 2.1 Classical information processing 2.1.1 The carrier of information - binary representation of information as bits (Binary digits).

More information

Lecture 4: Equations of motion and canonical quantization Read Sakurai Chapter 1.6 and 1.7

Lecture 4: Equations of motion and canonical quantization Read Sakurai Chapter 1.6 and 1.7 Lecture 4: Equations of motion and canonical quantization Read Sakurai Chapter 1.6 and 1.7 In Lecture 1 and 2, we have discussed how to represent the state of a quantum mechanical system based the superposition

More information

Hydrodynamic equations for an electron gas in graphene

Hydrodynamic equations for an electron gas in graphene Barletti Journal of Mathematics in Industry 2016) 6:7 DOI 10.1186/s13362-016-0023-7 R E S E A R C H Open Access Hydrodynamic equations for an electron gas in graphene Luigi Barletti * * Correspondence:

More information

Quantum Field Theory

Quantum Field Theory Quantum Field Theory PHYS-P 621 Radovan Dermisek, Indiana University Notes based on: M. Srednicki, Quantum Field Theory 1 Attempts at relativistic QM based on S-1 A proper description of particle physics

More information

Spin-Orbit Interactions in Semiconductor Nanostructures

Spin-Orbit Interactions in Semiconductor Nanostructures Spin-Orbit Interactions in Semiconductor Nanostructures Branislav K. Nikolić Department of Physics and Astronomy, University of Delaware, U.S.A. http://www.physics.udel.edu/~bnikolic Spin-Orbit Hamiltonians

More information

Unit 8 Problem Solutions

Unit 8 Problem Solutions Unit 8 Problem Solutions Unit 8 Solutions 8. W X Y V Z 5 5 2 25 3 35 4 t (ns) 8.2 (a) = '' + + ' Static -hazards: and 8.2 (a) (contd) 8.2 (b) = ( + ') (+ + ) ( + + ') Static -hazards are: and t = '' +

More information

Particle Physics Dr. Alexander Mitov Handout 2 : The Dirac Equation

Particle Physics Dr. Alexander Mitov Handout 2 : The Dirac Equation Dr. A. Mitov Particle Physics 45 Particle Physics Dr. Alexander Mitov µ + e - e + µ - µ + e - e + µ - µ + e - e + µ - µ + e - e + µ - Handout 2 : The Dirac Equation Dr. A. Mitov Particle Physics 46 Non-Relativistic

More information

Solutions to chapter 4 problems

Solutions to chapter 4 problems Chapter 9 Solutions to chapter 4 problems Solution to Exercise 47 For example, the x component of the angular momentum is defined as ˆL x ŷˆp z ẑ ˆp y The position and momentum observables are Hermitian;

More information

Lecture 14 The Free Electron Gas: Density of States

Lecture 14 The Free Electron Gas: Density of States Lecture 4 The Free Electron Gas: Density of States Today:. Spin.. Fermionic nature of electrons. 3. Understanding the properties of metals: the free electron model and the role of Pauli s exclusion principle.

More information

Lecture 10. The Dirac equation. WS2010/11: Introduction to Nuclear and Particle Physics

Lecture 10. The Dirac equation. WS2010/11: Introduction to Nuclear and Particle Physics Lecture 10 The Dirac equation WS2010/11: Introduction to Nuclear and Particle Physics The Dirac equation The Dirac equation is a relativistic quantum mechanical wave equation formulated by British physicist

More information

Semiconductor Physics and Devices Chapter 3.

Semiconductor Physics and Devices Chapter 3. Introduction to the Quantum Theory of Solids We applied quantum mechanics and Schrödinger s equation to determine the behavior of electrons in a potential. Important findings Semiconductor Physics and

More information

APPENDIX E SPIN AND POLARIZATION

APPENDIX E SPIN AND POLARIZATION APPENDIX E SPIN AND POLARIZATION Nothing shocks me. I m a scientist. Indiana Jones You ve never seen nothing like it, no never in your life. F. Mercury Spin is a fundamental intrinsic property of elementary

More information

Atkins & de Paula: Atkins Physical Chemistry 9e Checklist of key ideas. Chapter 8: Quantum Theory: Techniques and Applications

Atkins & de Paula: Atkins Physical Chemistry 9e Checklist of key ideas. Chapter 8: Quantum Theory: Techniques and Applications Atkins & de Paula: Atkins Physical Chemistry 9e Checklist of key ideas Chapter 8: Quantum Theory: Techniques and Applications TRANSLATIONAL MOTION wavefunction of free particle, ψ k = Ae ikx + Be ikx,

More information

The Quantum Hydrodynamic Smooth Effective Potential

The Quantum Hydrodynamic Smooth Effective Potential The Quantum Hydrodynamic Smooth Effective Potential Carl L. Gardner and Christian Ringhofer Department of Mathematics Arizona State University Tempe, AZ 85287-184 carl.gardner@asu.edu Abstract An extension

More information

2.4. Quantum Mechanical description of hydrogen atom

2.4. Quantum Mechanical description of hydrogen atom 2.4. Quantum Mechanical description of hydrogen atom Atomic units Quantity Atomic unit SI Conversion Ang. mom. h [J s] h = 1, 05459 10 34 Js Mass m e [kg] m e = 9, 1094 10 31 kg Charge e [C] e = 1, 6022

More information

1D quantum rings and persistent currents

1D quantum rings and persistent currents Lehrstuhl für Theoretische Festkörperphysik Institut für Theoretische Physik IV Universität Erlangen-Nürnberg March 9, 2007 Motivation In the last decades there was a growing interest for such microscopic

More information

Particle Physics. Michaelmas Term 2011 Prof. Mark Thomson. Handout 2 : The Dirac Equation. Non-Relativistic QM (Revision)

Particle Physics. Michaelmas Term 2011 Prof. Mark Thomson. Handout 2 : The Dirac Equation. Non-Relativistic QM (Revision) Particle Physics Michaelmas Term 2011 Prof. Mark Thomson + e - e + - + e - e + - + e - e + - + e - e + - Handout 2 : The Dirac Equation Prof. M.A. Thomson Michaelmas 2011 45 Non-Relativistic QM (Revision)

More information

CONVECTIVE HEAT TRANSFER CHARACTERISTICS OF NANOFLUIDS. Convective heat transfer analysis of nanofluid flowing inside a

CONVECTIVE HEAT TRANSFER CHARACTERISTICS OF NANOFLUIDS. Convective heat transfer analysis of nanofluid flowing inside a Chapter 4 CONVECTIVE HEAT TRANSFER CHARACTERISTICS OF NANOFLUIDS Convective heat transer analysis o nanoluid lowing inside a straight tube o circular cross-section under laminar and turbulent conditions

More information

Analysis of cosmic ray neutron-induced single-event phenomena

Analysis of cosmic ray neutron-induced single-event phenomena Analysis o cosmic ray neutron-induced single-event phenomena Yasuyuki TUKAMOTO Yukinobu WATANABE and Hideki NAKASHIMA Department o Advanced Energy Engineering Science Kyushu University Kasuga Fukuoka 816-8580

More information

Quantum Continuum Mechanics for Many-Body Systems

Quantum Continuum Mechanics for Many-Body Systems Workshop on High Performance and Parallel Computing Methods and Algorithms for Materials Defects, 9-13 February 2015 Quantum Continuum Mechanics for Many-Body Systems J. Tao 1,2, X. Gao 1,3, G. Vignale

More information

PHY305: Notes on Entanglement and the Density Matrix

PHY305: Notes on Entanglement and the Density Matrix PHY305: Notes on Entanglement and the Density Matrix Here follows a short summary of the definitions of qubits, EPR states, entanglement, the density matrix, pure states, mixed states, measurement, and

More information

Spin Filtering: how to write and read quantum information on mobile qubits

Spin Filtering: how to write and read quantum information on mobile qubits Spin Filtering: how to write and read quantum information on mobile qubits Amnon Aharony Physics Department and Ilse Katz Nano institute Ora Entin-Wohlman (BGU), Guy Cohen (BGU) Yasuhiro Tokura (NTT) Shingo

More information

Micro-canonical ensemble model of particles obeying Bose-Einstein and Fermi-Dirac statistics

Micro-canonical ensemble model of particles obeying Bose-Einstein and Fermi-Dirac statistics Indian Journal o Pure & Applied Physics Vol. 4, October 004, pp. 749-757 Micro-canonical ensemble model o particles obeying Bose-Einstein and Fermi-Dirac statistics Y K Ayodo, K M Khanna & T W Sakwa Department

More information

Sommerfeld (1920) noted energy levels of Li deduced from spectroscopy looked like H, with slight adjustment of principal quantum number:

Sommerfeld (1920) noted energy levels of Li deduced from spectroscopy looked like H, with slight adjustment of principal quantum number: Spin. Historical Spectroscopy of Alkali atoms First expt. to suggest need for electron spin: observation of splitting of expected spectral lines for alkali atoms: i.e. expect one line based on analogy

More information

ECEN 5005 Crystals, Nanocrystals and Device Applications Class 20 Group Theory For Crystals

ECEN 5005 Crystals, Nanocrystals and Device Applications Class 20 Group Theory For Crystals ECEN 5005 Crystals, Nanocrystals and Device Applications Class 20 Group Theory For Crystals Laporte Selection Rule Polarization Dependence Spin Selection Rule 1 Laporte Selection Rule We first apply this

More information

Resistance (R) Temperature (T)

Resistance (R) Temperature (T) CHAPTER 1 Physical Properties of Elements and Semiconductors 1.1 Introduction Semiconductors constitute a large class of substances which have resistivities lying between those of insulators and conductors.

More information

Nanoscale Energy Transport and Conversion A Parallel Treatment of Electrons, Molecules, Phonons, and Photons

Nanoscale Energy Transport and Conversion A Parallel Treatment of Electrons, Molecules, Phonons, and Photons Nanoscale Energy Transport and Conversion A Parallel Treatment of Electrons, Molecules, Phonons, and Photons Gang Chen Massachusetts Institute of Technology OXFORD UNIVERSITY PRESS 2005 Contents Foreword,

More information

Modern Spectroscopy: a graduate course. Chapter 1. Light-Matter Interaction

Modern Spectroscopy: a graduate course. Chapter 1. Light-Matter Interaction Modern Spectroscopy: a graduate course. Chapter. Light-Matter Interaction. Semiclassical description o the light-matter eraction. Generally speaking, in spectroscopy we need to describe the light and matter

More information

QUANTUM- CLASSICAL ANALOGIES

QUANTUM- CLASSICAL ANALOGIES D. Dragoman M. Dragoman QUANTUM- CLASSICAL ANALOGIES With 78 Figures ^Ü Springer 1 Introduction 1 2 Analogies Between Ballistic Electrons and Electromagnetic Waves 9 2.1 Analog Parameters for Ballistic

More information

Lecture 19: Building Atoms and Molecules

Lecture 19: Building Atoms and Molecules Lecture 19: Building Atoms and Molecules +e r n = 3 n = 2 n = 1 +e +e r y even Lecture 19, p 1 Today Nuclear Magnetic Resonance Using RF photons to drive transitions between nuclear spin orientations in

More information

QUANTUM THEORY OF LIGHT EECS 638/PHYS 542/AP609 FINAL EXAMINATION

QUANTUM THEORY OF LIGHT EECS 638/PHYS 542/AP609 FINAL EXAMINATION Instructor: Professor S.C. Rand Date: April 5 001 Duration:.5 hours QUANTUM THEORY OF LIGHT EECS 638/PHYS 54/AP609 FINAL EXAMINATION PLEASE read over the entire examination before you start. DO ALL QUESTIONS

More information

conventions and notation

conventions and notation Ph95a lecture notes, //0 The Bloch Equations A quick review of spin- conventions and notation The quantum state of a spin- particle is represented by a vector in a two-dimensional complex Hilbert space

More information

Quantum Field Theory

Quantum Field Theory Quantum Field Theory PHYS-P 621 Radovan Dermisek, Indiana University Notes based on: M. Srednicki, Quantum Field Theory 1 Attempts at relativistic QM based on S-1 A proper description of particle physics

More information

Quantum Field Theory

Quantum Field Theory Quantum Field Theory PHYS-P 621 Radovan Dermisek, Indiana University Notes based on: M. Srednicki, Quantum Field Theory 1 Attempts at relativistic QM based on S-1 A proper description of particle physics

More information

8.04: Quantum Mechanics Professor Allan Adams. Problem Set 7. Due Tuesday April 9 at 11.00AM

8.04: Quantum Mechanics Professor Allan Adams. Problem Set 7. Due Tuesday April 9 at 11.00AM 8.04: Quantum Mechanics Professor Allan Adams Massachusetts Institute of Technology Thursday April 4 Problem Set 7 Due Tuesday April 9 at 11.00AM Assigned Reading: E&R 6 all Li. 7 1 9, 8 1 Ga. 4 all, 6

More information

2. Thermodynamics of native point defects in GaAs

2. Thermodynamics of native point defects in GaAs 2. Thermodynamics o native point deects in The totality o point deects in a crystal comprise those existing in a perectly chemically pure crystal, so called intrinsic deects, and those associated with

More information

Electrical Transport in Nanoscale Systems

Electrical Transport in Nanoscale Systems Electrical Transport in Nanoscale Systems Description This book provides an in-depth description of transport phenomena relevant to systems of nanoscale dimensions. The different viewpoints and theoretical

More information

Attempts at relativistic QM

Attempts at relativistic QM Attempts at relativistic QM based on S-1 A proper description of particle physics should incorporate both quantum mechanics and special relativity. However historically combining quantum mechanics and

More information

Quantum Physics II (8.05) Fall 2002 Outline

Quantum Physics II (8.05) Fall 2002 Outline Quantum Physics II (8.05) Fall 2002 Outline 1. General structure of quantum mechanics. 8.04 was based primarily on wave mechanics. We review that foundation with the intent to build a more formal basis

More information

The Principles of Quantum Mechanics: Pt. 1

The Principles of Quantum Mechanics: Pt. 1 The Principles of Quantum Mechanics: Pt. 1 PHYS 476Q - Southern Illinois University February 15, 2018 PHYS 476Q - Southern Illinois University The Principles of Quantum Mechanics: Pt. 1 February 15, 2018

More information

ME 328 Machine Design Vibration handout (vibrations is not covered in text)

ME 328 Machine Design Vibration handout (vibrations is not covered in text) ME 38 Machine Design Vibration handout (vibrations is not covered in text) The ollowing are two good textbooks or vibrations (any edition). There are numerous other texts o equal quality. M. L. James,

More information

LFFs in Vertical Cavity Lasers

LFFs in Vertical Cavity Lasers LFFs in Vertical Cavity Lasers A. Torcini, G. Giacomelli, F. Marin torcini@inoa.it, S. Barland ISC - CNR - Firenze (I) Physics Dept - Firenze (I) INLN - Nice (F) FNOES - Nice, 14.9.5 p.1/21 Plan of the

More information

Before we go to the topic of hole, we discuss this important topic. The effective mass m is defined as. 2 dk 2

Before we go to the topic of hole, we discuss this important topic. The effective mass m is defined as. 2 dk 2 Notes for Lecture 7 Holes, Electrons In the previous lecture, we learned how electrons move in response to an electric field to generate current. In this lecture, we will see why the hole is a natural

More information

PHY 407 QUANTUM MECHANICS Fall 05 Problem set 1 Due Sep

PHY 407 QUANTUM MECHANICS Fall 05 Problem set 1 Due Sep Problem set 1 Due Sep 15 2005 1. Let V be the set of all complex valued functions of a real variable θ, that are periodic with period 2π. That is u(θ + 2π) = u(θ), for all u V. (1) (i) Show that this V

More information

CHEM3023: Spins, Atoms and Molecules

CHEM3023: Spins, Atoms and Molecules CHEM3023: Spins, Atoms and Molecules Lecture 3 The Born-Oppenheimer approximation C.-K. Skylaris Learning outcomes Separate molecular Hamiltonians to electronic and nuclear parts according to the Born-Oppenheimer

More information

Atoms, Molecules and Solids. From Last Time Superposition of quantum states Philosophy of quantum mechanics Interpretation of the wave function:

Atoms, Molecules and Solids. From Last Time Superposition of quantum states Philosophy of quantum mechanics Interpretation of the wave function: Essay outline and Ref to main article due next Wed. HW 9: M Chap 5: Exercise 4 M Chap 7: Question A M Chap 8: Question A From Last Time Superposition of quantum states Philosophy of quantum mechanics Interpretation

More information

Particle in a Box and Tunneling. A Particle in a Box Boundary Conditions The Schrodinger Equation Tunneling Through a Potential Barrier Homework

Particle in a Box and Tunneling. A Particle in a Box Boundary Conditions The Schrodinger Equation Tunneling Through a Potential Barrier Homework Particle in a Box and Tunneling A Particle in a Box Boundary Conditions The Schrodinger Equation Tunneling Through a Potential Barrier Homework A Particle in a Box Consider a particle of mass m and velocity

More information

Definition: Let f(x) be a function of one variable with continuous derivatives of all orders at a the point x 0, then the series.

Definition: Let f(x) be a function of one variable with continuous derivatives of all orders at a the point x 0, then the series. 2.4 Local properties o unctions o several variables In this section we will learn how to address three kinds o problems which are o great importance in the ield o applied mathematics: how to obtain the

More information

Symmetric Surfaces of Topological Superconductor

Symmetric Surfaces of Topological Superconductor Symmetric Surfaces of Topological Superconductor Sharmistha Sahoo Zhao Zhang Jeffrey Teo Outline Introduction Brief description of time reversal symmetric topological superconductor. Coupled wire model

More information

arxiv: v1 [quant-ph] 22 Jan 2019

arxiv: v1 [quant-ph] 22 Jan 2019 Article TWO-QUBITS I A LARGE-S EVIROMET arxiv:1901.07416v1 [quant-ph] 22 Jan 2019 Eliana Fiorelli 1,2, ID, Alessandro Cuccoli 3,4 and Paola Verrucchi 5,3,4 * 1 School of Physics and Astronomy, University

More information

Spin Dynamics Basic Theory Operators. Richard Green SBD Research Group Department of Chemistry

Spin Dynamics Basic Theory Operators. Richard Green SBD Research Group Department of Chemistry Spin Dynamics Basic Theory Operators Richard Green SBD Research Group Department of Chemistry Objective of this session Introduce you to operators used in quantum mechanics Achieve this by looking at:

More information

Objective decomposition of the stress tensor in granular flows

Objective decomposition of the stress tensor in granular flows Objective decomposition o the stress tensor in granular lows D. Gao Ames Laboratory, Ames, Iowa 50010, USA S. Subramaniam* and R. O. Fox Iowa State University and Ames Laboratory, Ames, Iowa 50010, USA

More information

A New Kind of k-quantum Nonlinear Coherent States: Their Generation and Physical Meaning

A New Kind of k-quantum Nonlinear Coherent States: Their Generation and Physical Meaning Commun. Theor. Phys. (Beiing, China) 41 (2004) pp. 935 940 c International Academic Publishers Vol. 41, No. 6, June 15, 2004 A New Kind o -Quantum Nonlinear Coherent States: Their Generation and Physical

More information

( (Chapter 5)(Magnetism and Matter)

(  (Chapter 5)(Magnetism and Matter) Additional Exercises Question 5.16: Answer the following questions: (a) Why does a paramagnetic sample display greater magnetisation (for the same magnetising field) when cooled? (b) Why is diamagnetism,

More information

Majorana Fermions in Superconducting Chains

Majorana Fermions in Superconducting Chains 16 th December 2015 Majorana Fermions in Superconducting Chains Matilda Peruzzo Fermions (I) Quantum many-body theory: Fermions Bosons Fermions (II) Properties Pauli exclusion principle Fermions (II)

More information

3 3-Kronecker Pauli Matrices

3 3-Kronecker Pauli Matrices 3 3-Kronecker Pauli Matrices Christian Rakotonirina Civil Engineering Department, Institut Supérieur de Technologie d'antananarivo, IST-T, Madagascar rakotonirinachristianpierre@gmail.com Simon Rasamizafy

More information

of the Resonant Tunneling Diode

of the Resonant Tunneling Diode VLSI DESIGN 1998, Vol. 8, Nos. (1--4), pp. 143-146 Reprints available directly from the publisher Photocopying permitted by license only (C) 1998 OPA (Overseas Publishers Association) N.V. Published by

More information

Project Report: Band Structure of GaAs using k.p-theory

Project Report: Band Structure of GaAs using k.p-theory Proect Report: Band Structure of GaAs using k.p-theory Austin Irish Mikael Thorström December 12th 2017 1 Introduction The obective of the proect was to calculate the band structure of both strained and

More information

The Framework of Quantum Mechanics

The Framework of Quantum Mechanics The Framework of Quantum Mechanics We now use the mathematical formalism covered in the last lecture to describe the theory of quantum mechanics. In the first section we outline four axioms that lie at

More information

Quantum Optics and Quantum Informatics FKA173

Quantum Optics and Quantum Informatics FKA173 Quantum Optics and Quantum Informatics FKA173 Date and time: Tuesday, 7 October 015, 08:30-1:30. Examiners: Jonas Bylander (070-53 44 39) and Thilo Bauch (0733-66 13 79). Visits around 09:30 and 11:30.

More information

Physics 342 Lecture 27. Spin. Lecture 27. Physics 342 Quantum Mechanics I

Physics 342 Lecture 27. Spin. Lecture 27. Physics 342 Quantum Mechanics I Physics 342 Lecture 27 Spin Lecture 27 Physics 342 Quantum Mechanics I Monday, April 5th, 2010 There is an intrinsic characteristic of point particles that has an analogue in but no direct derivation from

More information

1 Recall what is Spin

1 Recall what is Spin C/CS/Phys C191 Spin measurement, initialization, manipulation by precession10/07/08 Fall 2008 Lecture 10 1 Recall what is Spin Elementary particles and composite particles carry an intrinsic angular momentum

More information

PHY4604 Introduction to Quantum Mechanics Fall 2004 Final Exam SOLUTIONS December 17, 2004, 7:30 a.m.- 9:30 a.m.

PHY4604 Introduction to Quantum Mechanics Fall 2004 Final Exam SOLUTIONS December 17, 2004, 7:30 a.m.- 9:30 a.m. PHY464 Introduction to Quantum Mechanics Fall 4 Final Eam SOLUTIONS December 7, 4, 7:3 a.m.- 9:3 a.m. No other materials allowed. If you can t do one part of a problem, solve subsequent parts in terms

More information

A more comprehensive theory was needed. 1925, Schrödinger and Heisenberg separately worked out a new theory Quantum Mechanics.

A more comprehensive theory was needed. 1925, Schrödinger and Heisenberg separately worked out a new theory Quantum Mechanics. Ch28 Quantum Mechanics of Atoms Bohr s model was very successful to explain line spectra and the ionization energy for hydrogen. However, it also had many limitations: It was not able to predict the line

More information

A few principles of classical and quantum mechanics

A few principles of classical and quantum mechanics A few principles of classical and quantum mechanics The classical approach: In classical mechanics, we usually (but not exclusively) solve Newton s nd law of motion relating the acceleration a of the system

More information

Potentially useful reading Sakurai and Napolitano, sections 1.5 (Rotation), Schumacher & Westmoreland chapter 2

Potentially useful reading Sakurai and Napolitano, sections 1.5 (Rotation), Schumacher & Westmoreland chapter 2 Problem Set 2: Interferometers & Random Matrices Graduate Quantum I Physics 6572 James Sethna Due Friday Sept. 5 Last correction at August 28, 2014, 8:32 pm Potentially useful reading Sakurai and Napolitano,

More information

Symmetry - intro. Matti Hotokka Department of Physical Chemistry Åbo Akademi University

Symmetry - intro. Matti Hotokka Department of Physical Chemistry Åbo Akademi University Symmetry - intro Matti Hotokka Department of Physical Chemistry Åbo Akademi University Jyväskylä 008 Symmetrical or not The image looks symmetrical. Why? Jyväskylä 008 Symmetrical or not The right hand

More information

Quantum Physics II (8.05) Fall 2004 Assignment 3

Quantum Physics II (8.05) Fall 2004 Assignment 3 Quantum Physics II (8.5) Fall 24 Assignment 3 Massachusetts Institute of Technology Physics Department Due September 3, 24 September 23, 24 7:pm This week we continue to study the basic principles of quantum

More information

m f f unchanged under the field redefinition (1), the complex mass matrix m should transform into

m f f unchanged under the field redefinition (1), the complex mass matrix m should transform into PHY 396 T: SUSY Solutions or problem set #8. Problem (a): To keep the net quark mass term L QCD L mass = ψ α c m ψ c α + hermitian conjugate (S.) unchanged under the ield redeinition (), the complex mass

More information

Thu June 16 Lecture Notes: Lattice Exercises I

Thu June 16 Lecture Notes: Lattice Exercises I Thu June 6 ecture Notes: attice Exercises I T. Satogata: June USPAS Accelerator Physics Most o these notes ollow the treatment in the class text, Conte and MacKay, Chapter 6 on attice Exercises. The portions

More information

Spin orbit interaction in semiconductors

Spin orbit interaction in semiconductors UNIVERSIDADE DE SÃO AULO Instituto de Física de São Carlos Spin orbit interaction in semiconductors J. Carlos Egues Instituto de Física de São Carlos Universidade de São aulo egues@ifsc.usp.br International

More information

Electrons in a periodic potential

Electrons in a periodic potential Chapter 3 Electrons in a periodic potential 3.1 Bloch s theorem. We consider in this chapter electrons under the influence of a static, periodic potential V (x), i.e. such that it fulfills V (x) = V (x

More information

Math 754 Chapter III: Fiber bundles. Classifying spaces. Applications

Math 754 Chapter III: Fiber bundles. Classifying spaces. Applications Math 754 Chapter III: Fiber bundles. Classiying spaces. Applications Laurențiu Maxim Department o Mathematics University o Wisconsin maxim@math.wisc.edu April 18, 2018 Contents 1 Fiber bundles 2 2 Principle

More information

The Postulates of Quantum Mechanics

The Postulates of Quantum Mechanics p. 1/23 The Postulates of Quantum Mechanics We have reviewed the mathematics (complex linear algebra) necessary to understand quantum mechanics. We will now see how the physics of quantum mechanics fits

More information

Lecture 6 Photons, electrons and other quanta. EECS Winter 2006 Nanophotonics and Nano-scale Fabrication P.C.Ku

Lecture 6 Photons, electrons and other quanta. EECS Winter 2006 Nanophotonics and Nano-scale Fabrication P.C.Ku Lecture 6 Photons, electrons and other quanta EECS 598-002 Winter 2006 Nanophotonics and Nano-scale Fabrication P.C.Ku From classical to quantum theory In the beginning of the 20 th century, experiments

More information

Dirac s Hole Theory and the Pauli Principle: Clearing up the Confusion

Dirac s Hole Theory and the Pauli Principle: Clearing up the Confusion Adv. Studies Theor. Phys., Vol. 3, 29, no. 9, 323-332 Dirac s Hole Theory and the Pauli Princile: Clearing u the Conusion Dan Solomon Rauland-Borg Cororation 82 W. Central Road Mount Prosect, IL 656, USA

More information

Graduate Quantum Mechanics I: Prelims and Solutions (Fall 2015)

Graduate Quantum Mechanics I: Prelims and Solutions (Fall 2015) Graduate Quantum Mechanics I: Prelims and Solutions (Fall 015 Problem 1 (0 points Suppose A and B are two two-level systems represented by the Pauli-matrices σx A,B σ x = ( 0 1 ;σ 1 0 y = ( ( 0 i 1 0 ;σ

More information

Imaginary Numbers Are Real. Timothy F. Havel (Nuclear Engineering)

Imaginary Numbers Are Real. Timothy F. Havel (Nuclear Engineering) GEOMETRIC ALGEBRA: Imaginary Numbers Are Real Timothy F. Havel (Nuclear Engineering) On spin & spinors: LECTURE The operators for the x, y & z components of the angular momentum of a spin / particle (in

More information

Spatial Vector Algebra

Spatial Vector Algebra A Short Course on The Easy Way to do Rigid Body Dynamics Roy Featherstone Dept. Inormation Engineering, RSISE The Australian National University Spatial vector algebra is a concise vector notation or describing

More information

Questioning Quantum Mechanics? Kurt Barry SASS Talk January 25 th, 2012

Questioning Quantum Mechanics? Kurt Barry SASS Talk January 25 th, 2012 Questioning Quantum Mechanics? Kurt Barry SASS Talk January 25 th, 2012 2 Model of the Universe Fundamental Theory Low-Energy Limit Effective Field Theory Quantum Mechanics Quantum Mechanics is presently

More information

1.7 Plane-wave Solutions of the Dirac Equation

1.7 Plane-wave Solutions of the Dirac Equation 0 Version of February 7, 005 CHAPTER. DIRAC EQUATION It is evident that W µ is translationally invariant, [P µ, W ν ] 0. W is a Lorentz scalar, [J µν, W ], as you will explicitly show in homework. Here

More information

Semiconductors: Applications in spintronics and quantum computation. Tatiana G. Rappoport Advanced Summer School Cinvestav 2005

Semiconductors: Applications in spintronics and quantum computation. Tatiana G. Rappoport Advanced Summer School Cinvestav 2005 Semiconductors: Applications in spintronics and quantum computation Advanced Summer School 1 I. Background II. Spintronics Spin generation (magnetic semiconductors) Spin detection III. Spintronics - electron

More information

Lecture 19: Building Atoms and Molecules

Lecture 19: Building Atoms and Molecules Lecture 19: Building Atoms and Molecules +e r n = 3 n = 2 n = 1 +e +e r ψ even Lecture 19, p 1 Today Nuclear Magnetic Resonance Using RF photons to drive transitions between nuclear spin orientations in

More information

arxiv: v1 [gr-qc] 30 Aug 2018

arxiv: v1 [gr-qc] 30 Aug 2018 Coleman-de Luccia Tunneling Wave Function J. Kristiano, R. D. Lambaga, and H. S. Ramadhan Departemen Fisika, FMIPA, Universitas Indonesia, Depok 1424, Indonesia Dated: August 31, 2018) arxiv:1808.10110v1

More information