LFFs in Vertical Cavity Lasers

Size: px
Start display at page:

Download "LFFs in Vertical Cavity Lasers"

Transcription

1 LFFs in Vertical Cavity Lasers A. Torcini, G. Giacomelli, F. Marin S. Barland ISC - CNR - Firenze (I) Physics Dept - Firenze (I) INLN - Nice (F) FNOES - Nice, p.1/21

2 Plan of the Talk Schematic description of the VCSEL and experimental setup FNOES - Nice, p.2/21

3 Plan of the Talk Schematic description of the VCSEL and experimental setup The low frequency fluctuations (LFF) dynamical regime FNOES - Nice, p.2/21

4 Plan of the Talk Schematic description of the VCSEL and experimental setup The low frequency fluctuations (LFF) dynamical regime Rate equations for single mode lasers with feedback: Lang-Kobayashi eqs. FNOES - Nice, p.2/21

5 Plan of the Talk Schematic description of the VCSEL and experimental setup The low frequency fluctuations (LFF) dynamical regime Rate equations for single mode lasers with feedback: Lang-Kobayashi eqs. Deterministic versus stochastic dynamics of the LK eqs FNOES - Nice, p.2/21

6 Plan of the Talk Schematic description of the VCSEL and experimental setup The low frequency fluctuations (LFF) dynamical regime Rate equations for single mode lasers with feedback: Lang-Kobayashi eqs. Deterministic versus stochastic dynamics of the LK eqs Experimental results for VCSEL with a moderate optical feedback FNOES - Nice, p.2/21

7 Plan of the Talk Schematic description of the VCSEL and experimental setup The low frequency fluctuations (LFF) dynamical regime Rate equations for single mode lasers with feedback: Lang-Kobayashi eqs. Deterministic versus stochastic dynamics of the LK eqs Experimental results for VCSEL with a moderate optical feedback Comparison of numerical and experimental results FNOES - Nice, p.2/21

8 Plan of the Talk Schematic description of the VCSEL and experimental setup The low frequency fluctuations (LFF) dynamical regime Rate equations for single mode lasers with feedback: Lang-Kobayashi eqs. Deterministic versus stochastic dynamics of the LK eqs Experimental results for VCSEL with a moderate optical feedback Comparison of numerical and experimental results Concluding remarks FNOES - Nice, p.2/21

9 VCSEL in brief Single laser Semiconductor laser Wavelength: near IR ( nm) (optimal coupling with optical fibers) Single longitudinal mode, multiple transverse modes. Two linearly polarized emissions (symmetrical cavity). Good beam quality. FNOES - Nice, p.3/21

10 VCSEL in brief Single laser Semiconductor laser Wavelength: near IR ( nm) (optimal coupling with optical fibers) Single longitudinal mode, multiple transverse modes. Two linearly polarized emissions (symmetrical cavity). Good beam quality. VCSEL with delayed optical feedback External cavity cm, round trip time ns Polarization selective optical feedback FNOES - Nice, p.3/21

11 Dynamics of the VCSEL Power (W) Power (a.u.) 6e-5 5e-5 4e-5 3e-5 2e-5 1e Solitary laser with feedback LFF I (ma) I=2.64 ma I th = 2.76 ma Main Polarization Secondary Polarization for 6 ma the device emits linearly polarized light in the fundamental mode (the transverse modes are not active); for + feedback the VCSEL is a single mode on the main polarization and its dynamics exhibits LFFs ; the secondary polarization is absent Time (ns) FNOES - Nice, p.4/21

12 VCSEL Phase Diagram We will examine the single mode LFF regime, where the dynamical behaviour is not particularly influenced by the phase delay induced by the feedback. FNOES - Nice, p.5/21

13 LFF in a nutshell 1 I=2.7 ma Filtered at 1Ghz P (a.u.) Filtered at 2Mhz P (a.u.) 5 5 T LFF Time (ns) Time (ns) LFFs are feedback induced instabilities; the light is emitted in short pulses ns ; the filtered intensity grows to a almost constant value over a cycle of duration ns then drops to a much lower value; the LFF cycles can coexist with stable emission on a high-gain mode. FNOES - Nice, p.6/21

14 . %,% " % + + " A I A H A G F E B TO NO L O L L c K Z Y ` L L d Lang-Kobayashi eqs The dynamics of the VCSEL with delayed optical feedback is described for by the rate eqs.: " #,- " # % & " ' (*) & % "$#! % " = # :<; / 1 & % & "$# % & "$# %- % "$# % "$# 32 a?@ the carrier density, and?@ where is the complex field, Gaussian noise term (spontaneous emission).?@ A!CD?@ A?@ > ns, S K PRQ, NO K KML J. be a ` O A_^ X NO K The parameters have been experimentally measured: ps,, ns,? T []\ U KML P XML W N T PVU will be determined by comparison of numerical vs experimenal data. S. Barland, P. Spinicelli, G. Giacomelli, F. Marin, IEEE J. Quantum Electronics (25). FNOES - Nice, p.7/21

15 " / - l k ji ) e ) Stationary solutions The deterministic LK eqs admit stationary solutions of the type: % "$# % h# % " # m g 5f The unstable solutions with a real positive eigenvalue are termed Antimodes, the other solutions can be stable or unstable depending on the parameters and are termed Modes. The Modes can be destabilized by different mechanisms: e.g. Modulational or Turing instabilities α=3.2 c =.93 θ=-.32 α=3.22 c =.93 θ=-.8 Im Λ (ns -1 ) Re Λ (ns -1 ) FNOES - Nice, p.8/21

16 d J Stationary solutions.2 c =.93 α=3.1 k=.25 Modes Maximum Gain Mode Antimodes.15 ρ N Stable modes are more probable for small or -values. The maximum gain mode is stable and it coexists with the LFF dynamics. Two/three (maximum gain) modes can be stable at the same time. S. Yanchuk & M. Wolfrum, WIAS preprint n. 962, Berlin (24) FNOES - Nice, p.9/21

17 Deterministic dynamics The LFF dynamics is due to the chaotic itinerancy from one quasi-attractor to another, where the quasi-attractors are the ruins of a local chaotic attractor emerged via a period doubling bifurcations from the corresponding mode. On each local quasi-attractor the dynamics is chaotic but transient, the trajectory jumps from one quasi-attractor to another climbing towards the maximum gain mode. When the trajectory collides with an anti-mode the intensity drop and the dynamics restart again from low gain modes. (Sisyphus Cycles ) This is the deterministic explanation of LFFs ( T. Sano, PRA 5 (1994) 2719 ).5 α=4. c =.95 k= ρ S 2.3 ρ α=3.2 c = e e+5 1.4e e+5 1.5e+5 Time (ns) θ FNOES - Nice, p.1/21

18 + q LFF as a transient phenomenon 1 9 < T s > (ns) c =.93 c =.95 c =.97 c = α Below the threshold of the solitary laser ( ) and for meaningful values of the LFFs are present only as a transient phenomenon. ( ) The average transient time npo diverges for increasing ( ) and. Preliminar indications have been reported in T. Heil et al., Optics Let. 24 (1999) 1275 FNOES - Nice, p.11/21

19 J t J Lyapunov analysis Kaplan-Yorke Dimension Transient Lyapunov Exponent - averaged over 5 i.c. s 5.1 D KY <λ> c =.99 c =.97 c =.95 c = α=5. α= α c The transient dynamics is chaotic and the maximal Lyapunov increases with and. The number of active degrees of freedom (measured by dynamics increases with and. The system is not low dimensional. r3s ) involved in the FNOES - Nice, p.12/21

20 u u Stochastic Dynamics I The presence of additive gaussian noise of variance destabilize the maximum gain mode leading in the LK eqs. can for small noise to an intermittent behaviour ; for larger values to a non transient LFF dynamics. α= c = D=2 x 1-4 α= c = D=3 x 1-3 Filter 8 MHz 1.5 Filter 8 MHz D exp =(2.7 ±.6) x ρ T res ρ e+5 6e+5 9e+5 1.2e+6 Time (ns) 5e+5 1e+6 Time (ns) FNOES - Nice, p.13/21

21 }~ {z J ƒ ` O Z L NO S L? T Stochastic Dynamics II 1e+7 Residence Times in the Maximum Gain Mode α=3.3 - c =.97 <T res > (ns) W=.187 (fitted value) 1e+6 1e /D The intermittent dynamics can be seen as a stochastic escape process from the MGM induced by noise fluctuations vxwy \ where the barrier height variance of the noise for K K L almost corresponds to the experimental value of the A r y U FNOES - Nice, p.14/21

22 r J Lyapunov analysis.1.5 Transient - D= D=3x1-5 D=3x1-4 D=3x1-3 (a) λ α For noise variance r y U Lyapunov exponent for any examined the asymptotic dynamics exhibits a positive maximal -values. FNOES - Nice, p.15/21

23 L O X Jˆ r Š Jˆ Experiments vs numerics As a first comparison between experimental and numerical data the average duration of LFF is considered in the range for two sets of experimental data. v3 L 1 T LFF (ns) k= D=3 x 1-3 Exp Data Exp Data Simulation α=3.3 + Noise Simulation α=4. + Noise Simulation α=5. 1 T LFF (ns) k= D=3 x 1-3 Simulation α=4. + Noise Exp Data Simulation α=5. Simulation α=3.3 + Noise c c The agreemen is reasonably good for high values of without noise K KML with noise ( ) r y U FNOES - Nice, p.16/21

24 PDFs of the Intensities Experimental data - Filtered at 2 MHz.9 < c < 1. 1 P(ρ 2 ) ρ 2 Numerical data - Filtered at 2 MHz α=5 - no noise -.9 < c <.99 Numerical data - Filtered at 2MHz α=4. + Noise -.9 < c <.99 1 P(ρ 2 ) 1 P(ρ 2 ) ρ ρ 2 FNOES - Nice, p.17/21

25 + Œ % " u n PDFs of the LFF times n Ž % n Ž " % " Œ where is the average of n Ž and n Ž. 1 Experimental data I th = ma 1 Experimental & simulation data α=4. + noise P(x)=P(T LFF )*STD I=2.54 ma I=2.56 ma I=2.64 ma I=2.7 ma I=2.75 ma I=2.8 ma I=2.9 ma exp( x) P(x) I=2.54 ma I=2.56 ma I=2.64 ma I=2.7 ma I=2.75 ma I=2.8 ma I=2.9 ma exp( x) sim c =.9 sim c =.94 sim c =.98 sim c = x=(t LFF <T LFF >)/STD x FNOES - Nice, p.18/21

26 I A? ž? Ÿ «} ª ` ` C Av? ƒv T ž Ÿ First passage times A Brownian motion with a drift can be written as A?@ I šœ A?@ with initial condition A?O, A?@ is a Gaussian noise with zero average. The average first passage time to reach a fixed threshold variance is. ƒ A is and its The PDF of the first passage times is the so-called inverse Gaussian : ª œ ž where. FNOES - Nice, p.19/21

27 Comparison with the experiments PDF of the T LFF.1 PDF of T LFF Experimental data I=2.56 ma Inverse Gaussian.1 exp data I=2.64 ma Inverse gaussian e T LFF (ns) T LFF (ns) The inverse Gaussian describes reasonably well the experimental distributions FNOES - Nice, p.2/21

28 Concluding Remarks The deterministic LK eqs exhibit LFF as a transient chaotic dynamics; the introduction of additive noise in the LK eqs leads via intermittency to sustained LFF; the experimentally observed Sisypho Cycles can be interpreted as a Brownian motion with drift plus a reset mechanism ; the role of noise appears to be essential in the modelization of the phenomenon. FNOES - Nice, p.21/21

Numerical statistics of power dropouts based on the Lang-Kobayashi model

Numerical statistics of power dropouts based on the Lang-Kobayashi model PHYSICAL REVIEW E VOLUME 59, NUMBER 5 MAY 1999 Numerical statistics of power dropouts based on the Lang-Kobayashi model Josep Mulet 1 and Claudio R. Mirasso 2 1 Instituto Mediterráneo de Estudios Avanzados,

More information

Stability and dynamical properties of the coexisting attractors of an external-cavity semiconductor laser

Stability and dynamical properties of the coexisting attractors of an external-cavity semiconductor laser PHYSICAL REVIEW A VOLUME 57, NUMBER 2 FEBRUARY 1998 Stability and dynamical properties of the coexisting attractors of an external-cavity semiconductor laser C. Masoller 1 and N. B. Abraham 2 1 Instituto

More information

VERTICAL-CAVITY surface-emitting lasers (VCSEL s)

VERTICAL-CAVITY surface-emitting lasers (VCSEL s) IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 3, NO. 2, APRIL 1997 353 Effects of Optical Feedback on Static and Dynamic Characteristics of Vertical-Cavity Surface-Emitting Lasers Joanne

More information

Stochastic Model for Adaptation Using Basin Hopping Dynamics

Stochastic Model for Adaptation Using Basin Hopping Dynamics Stochastic Model for Adaptation Using Basin Hopping Dynamics Peter Davis NTT Communication Science Laboratories 2-4 Hikaridai, Keihanna Science City, Kyoto, Japan 619-0237 davis@cslab.kecl.ntt.co.jp Abstract

More information

Coupled TE TM mode dynamics in a semiconductor laser subject to optical feedback: the underdog s triumph scenario

Coupled TE TM mode dynamics in a semiconductor laser subject to optical feedback: the underdog s triumph scenario 2042 Vol. 32, No. 10 / October 2015 / Journal of the Optical Society of America B Research Article Coupled TE TM mode dynamics in a semiconductor laser subject to optical feedback: the underdog s triumph

More information

Cavity-Mode Properties of Semiconductor Lasers Operating in Strong-Feedback Regime

Cavity-Mode Properties of Semiconductor Lasers Operating in Strong-Feedback Regime Journal of Physical Science and Application 5 (3) (015) 09-19 doi: 10.1765/159-5348/015.03.007 D DAVID PUBLISHING Cavity-Mode Properties of Semiconductor Lasers Operating in Strong-Feedback Regime Qin

More information

Dynamical origin of low frequency fluctuations in external cavity semiconductor lasers

Dynamical origin of low frequency fluctuations in external cavity semiconductor lasers 27 March 2000 Physics Letters A 267 2000 350 356 www.elsevier.nlrlocaterphysleta Dynamical origin of low frequency fluctuations in external cavity semiconductor lasers Ruslan L. Davidchack a, Ying-Cheng

More information

as Hopf Bifurcations in Time-Delay Systems with Band-limited Feedback

as Hopf Bifurcations in Time-Delay Systems with Band-limited Feedback as Hopf Bifurcations in Time-Delay Systems with Band-limited Feedback Lucas Illing and Daniel J. Gauthier Department of Physics Center for Nonlinear and Complex Systems Duke University, North Carolina

More information

Anticipating Synchronization Based on Optical Injection-Locking in Chaotic Semiconductor Lasers

Anticipating Synchronization Based on Optical Injection-Locking in Chaotic Semiconductor Lasers IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 39, NO. 12, DECEMBER 2003 1531 Anticipating Synchronization Based on Optical Injection-Locking in Chaotic Semiconductor Lasers Kenji Kusumoto and Junji Ohtsubo,

More information

Numerical investigation of noise-induced resonance in a semiconductor laser with optical feedback

Numerical investigation of noise-induced resonance in a semiconductor laser with optical feedback Physica D 168 169 (2002) 171 176 Numerical investigation of noise-induced resonance in a semiconductor laser with optical feedback C. Masoller Instituto de Física, Facultad de Ciencias, Universidad de

More information

Quantum Dot Lasers. Jose Mayen ECE 355

Quantum Dot Lasers. Jose Mayen ECE 355 Quantum Dot Lasers Jose Mayen ECE 355 Overview of Presentation Quantum Dots Operation Principles Fabrication of Q-dot lasers Advantages over other lasers Characteristics of Q-dot laser Types of Q-dot lasers

More information

ANALYSIS OF AN INJECTION-LOCKED BISTABLE SEMICONDUCTOR LASER WITH THE FREQUENCY CHIRPING

ANALYSIS OF AN INJECTION-LOCKED BISTABLE SEMICONDUCTOR LASER WITH THE FREQUENCY CHIRPING Progress In Electromagnetics Research C, Vol. 8, 121 133, 2009 ANALYSIS OF AN INJECTION-LOCKED BISTABLE SEMICONDUCTOR LASER WITH THE FREQUENCY CHIRPING M. Aleshams Department of Electrical and Computer

More information

Statistical regimes of random laser fluctuations

Statistical regimes of random laser fluctuations Statistical regimes of random laser fluctuations Stefano Lepri Istituto dei Sistemi Complessi ISC-CNR Firenze S. Cavalieri, G.-L. Oppo, D.S. Wiersma Stefano Lepri (ISC-CNR) Random laser fluctuations 1

More information

Cavity Solitons positioning and drift in presence of a phase gradient

Cavity Solitons positioning and drift in presence of a phase gradient Cavity Solitons positioning and drift in presence of a phase gradient F. Pedaci, S. Barland, E. Caboche, P. Genevet, M. Giudici, J. Tredicce Institut non linéaire de Nice Acknowledge: FunFACS CEE project

More information

Stochastic effects in coupled semiconductor and solid-state lasers with coexisting attractors

Stochastic effects in coupled semiconductor and solid-state lasers with coexisting attractors Stochastic effects in coupled semiconductor and solid-state lasers with coexisting attractors By: Alfredo Campos Mejía Thesis submitted in partial fulfillment of the requirements for the Ph.D. degree in

More information

Stabilization of feedback-induced instabilities in semiconductor lasers

Stabilization of feedback-induced instabilities in semiconductor lasers J. Opt. B: Quantum Semiclass. Opt. 2 (2000) 413 420. Printed in the UK PII: S1464-4266(00)09621-X Stabilization of feedback-induced instabilities in semiconductor lasers T Heil, I Fischer and W Elsäßer

More information

Instabilities and Chaos in Quantum Optics

Instabilities and Chaos in Quantum Optics Instabilities and Chaos in Quantum Optics Editors: E T. Arecchi and R. G. Harrison With 135 Figures Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Contents 1. Introduction. By F.T. Arecchi

More information

arxiv: v2 [physics.optics] 15 Dec 2016

arxiv: v2 [physics.optics] 15 Dec 2016 Bifurcation analysis of the Yamada model for a pulsing semiconductor laser with saturable absorber and delayed optical feedback Abstract Soizic Terrien 1, Bernd Krauskopf 1, Neil G.R. Broderick 2 arxiv:1610.06794v2

More information

Laser Types Two main types depending on time operation Continuous Wave (CW) Pulsed operation Pulsed is easier, CW more useful

Laser Types Two main types depending on time operation Continuous Wave (CW) Pulsed operation Pulsed is easier, CW more useful Main Requirements of the Laser Optical Resonator Cavity Laser Gain Medium of 2, 3 or 4 level types in the Cavity Sufficient means of Excitation (called pumping) eg. light, current, chemical reaction Population

More information

Chapter-4 Stimulated emission devices LASERS

Chapter-4 Stimulated emission devices LASERS Semiconductor Laser Diodes Chapter-4 Stimulated emission devices LASERS The Road Ahead Lasers Basic Principles Applications Gas Lasers Semiconductor Lasers Semiconductor Lasers in Optical Networks Improvement

More information

Anomalous Lévy diffusion: From the flight of an albatross to optical lattices. Eric Lutz Abteilung für Quantenphysik, Universität Ulm

Anomalous Lévy diffusion: From the flight of an albatross to optical lattices. Eric Lutz Abteilung für Quantenphysik, Universität Ulm Anomalous Lévy diffusion: From the flight of an albatross to optical lattices Eric Lutz Abteilung für Quantenphysik, Universität Ulm Outline 1 Lévy distributions Broad distributions Central limit theorem

More information

2. THE RATE EQUATION MODEL 2.1 Laser Rate Equations The laser rate equations can be stated as follows. [23] dn dt

2. THE RATE EQUATION MODEL 2.1 Laser Rate Equations The laser rate equations can be stated as follows. [23] dn dt VOL. 4, NO., December 4 ISSN 5-77 -4. All rights reserved. Characteristics of Quantum Noise in Semiconductor Lasers Operating in Single Mode Bijoya Paul, Rumana Ahmed Chayti, 3 Sazzad M.S. Imran,, 3 Department

More information

Exploring experimental optical complexity with big data nonlinear analysis tools. Cristina Masoller

Exploring experimental optical complexity with big data nonlinear analysis tools. Cristina Masoller Exploring experimental optical complexity with big data nonlinear analysis tools Cristina Masoller Cristina.masoller@upc.edu www.fisica.edu.uy/~cris 4 th International Conference on Complex Dynamical Systems

More information

Vector dark domain wall solitons in a fiber ring laser

Vector dark domain wall solitons in a fiber ring laser Vector dark domain wall solitons in a fiber ring laser H. Zhang, D. Y. Tang*, L. M. Zhao and R. J. Knize 1 School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798

More information

Introduction Fundamentals of laser Types of lasers Semiconductor lasers

Introduction Fundamentals of laser Types of lasers Semiconductor lasers Introduction Fundamentals of laser Types of lasers Semiconductor lasers Is it Light Amplification and Stimulated Emission Radiation? No. So what if I know an acronym? What exactly is Light Amplification

More information

Delay dynamics of semiconductor lasers with short external cavities: Bifurcation scenarios and mechanisms

Delay dynamics of semiconductor lasers with short external cavities: Bifurcation scenarios and mechanisms Delay dynamics of semiconductor lasers with short external cavities: Bifurcation scenarios and mechanisms T. Heil, I. Fischer, and W. Elsäßer Institut für Angewandte Physik, Technische Universität Darmstadt,

More information

Stimulated Emission Devices: LASERS

Stimulated Emission Devices: LASERS Stimulated Emission Devices: LASERS 1. Stimulated Emission and Photon Amplification E 2 E 2 E 2 hυ hυ hυ In hυ Out hυ E 1 E 1 E 1 (a) Absorption (b) Spontaneous emission (c) Stimulated emission The Principle

More information

Computer Modelling and Numerical Simulation of the Solid State Diode Pumped Nd 3+ :YAG Laser with Intracavity Saturable Absorber

Computer Modelling and Numerical Simulation of the Solid State Diode Pumped Nd 3+ :YAG Laser with Intracavity Saturable Absorber Copyright 2009 by YASHKIR CONSULTING LTD Computer Modelling and Numerical Simulation of the Solid State Diode Pumped Nd 3+ :YAG Laser with Intracavity Saturable Absorber Yuri Yashkir 1 Introduction The

More information

Optical Self-Organization in Semiconductor Lasers Spatio-temporal Dynamics for All-Optical Processing

Optical Self-Organization in Semiconductor Lasers Spatio-temporal Dynamics for All-Optical Processing Optical Self-Organization in Semiconductor Lasers Spatio-temporal Dynamics for All-Optical Processing Self-Organization for all-optical processing What is at stake? Cavity solitons have a double concern

More information

Dynamical Systems and Chaos Part I: Theoretical Techniques. Lecture 4: Discrete systems + Chaos. Ilya Potapov Mathematics Department, TUT Room TD325

Dynamical Systems and Chaos Part I: Theoretical Techniques. Lecture 4: Discrete systems + Chaos. Ilya Potapov Mathematics Department, TUT Room TD325 Dynamical Systems and Chaos Part I: Theoretical Techniques Lecture 4: Discrete systems + Chaos Ilya Potapov Mathematics Department, TUT Room TD325 Discrete maps x n+1 = f(x n ) Discrete time steps. x 0

More information

Polarization competition and noise properties of VCSELs

Polarization competition and noise properties of VCSELs 15 January 1998 Optics Communications 146 1998 136 140 Polarization competition and noise properties of VCSELs G. Giacomelli 1, F. Marin 2, M. Gabrysch 3, K.H. Gulden 4, M. Moser 4 Istituto Nazionale di

More information

Synchronization and Communication Using Semiconductor Lasers With Optoelectronic Feedback

Synchronization and Communication Using Semiconductor Lasers With Optoelectronic Feedback IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 37, NO. 10, OCTOBER 2001 1301 Synchronization Communication Using Semiconductor Lasers With Optoelectronic Feedback Henry D. I. Abarbanel, Matthew B. Kennel, Lucas

More information

Optics Communications

Optics Communications Optics Communications 284 (2) 45 4 Contents lists available at ScienceDirect Optics Communications journal homepage: www.elsevier.com/locate/optcom dynamics in vertical-cavity surface-emitting semiconductor

More information

Complex system approach to geospace and climate studies. Tatjana Živković

Complex system approach to geospace and climate studies. Tatjana Živković Complex system approach to geospace and climate studies Tatjana Živković 30.11.2011 Outline of a talk Importance of complex system approach Phase space reconstruction Recurrence plot analysis Test for

More information

Laser Systems and Applications

Laser Systems and Applications MSc in Photonics & Europhotonics Laser Systems and Applications Cristina Masoller Research group on Dynamics, onlinear Optics and Lasers (DOLL) Departament de Física i Enginyeria uclear Universitat Politècnica

More information

Bound-soliton fiber laser

Bound-soliton fiber laser PHYSICAL REVIEW A, 66, 033806 2002 Bound-soliton fiber laser D. Y. Tang, B. Zhao, D. Y. Shen, and C. Lu School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore W. S.

More information

(b) Spontaneous emission. Absorption, spontaneous (random photon) emission and stimulated emission.

(b) Spontaneous emission. Absorption, spontaneous (random photon) emission and stimulated emission. Lecture 10 Stimulated Emission Devices Lasers Stimulated emission and light amplification Einstein coefficients Optical fiber amplifiers Gas laser and He-Ne Laser The output spectrum of a gas laser Laser

More information

4 FEL Physics. Technical Synopsis

4 FEL Physics. Technical Synopsis 4 FEL Physics Technical Synopsis This chapter presents an introduction to the Free Electron Laser (FEL) physics and the general requirements on the electron beam parameters in order to support FEL lasing

More information

WP4: Neural Inspired Information Processing. C. Masoller, A. Pons, M.C. Torrent, J. García Ojalvo UPC, Terrassa, Barcelona, Spain

WP4: Neural Inspired Information Processing. C. Masoller, A. Pons, M.C. Torrent, J. García Ojalvo UPC, Terrassa, Barcelona, Spain WP4: Neural Inspired Information Processing C. Masoller, A. Pons, M.C. Torrent, J. García Ojalvo UPC, Terrassa, Barcelona, Spain NETT Fellows Induction Nottingham, UK, April 2013 Two fellows in WP4: ESR

More information

1 Mathematical description of ultrashort laser pulses

1 Mathematical description of ultrashort laser pulses 1 Mathematical description of ultrashort laser pulses 1.1 We first perform the Fourier transform directly on the Gaussian electric field: E(ω) = F[E(t)] = A 0 e 4 ln ( t T FWHM ) e i(ω 0t+ϕ CE ) e iωt

More information

Wave Turbulence and Condensation in an Optical Experiment

Wave Turbulence and Condensation in an Optical Experiment Wave Turbulence and Condensation in an Optical Experiment S. Residori, U. Bortolozzo Institut Non Linéaire de Nice, CNRS, France S. Nazarenko, J. Laurie Mathematics Institute, University of Warwick, UK

More information

Semiconductor Lasers II

Semiconductor Lasers II Semiconductor Lasers II Materials and Structures Edited by Eli Kapon Institute of Micro and Optoelectronics Department of Physics Swiss Federal Institute oftechnology, Lausanne OPTICS AND PHOTONICS ACADEMIC

More information

Picosecond intensity statistics of semiconductor lasers operating in the low-frequency fluctuation regime

Picosecond intensity statistics of semiconductor lasers operating in the low-frequency fluctuation regime PHYSICAL REVIEW A VOLUME 60, NUMBER 1 JULY 1999 Picosecond intensity statistics of semiconductor lasers operating in the low-frequency fluctuation regime D. W. Sukow, 1 T. Heil, 2 I. Fischer, 2 A. Gavrielides,

More information

arxiv:nlin/ v1 [nlin.cd] 25 Apr 2001

arxiv:nlin/ v1 [nlin.cd] 25 Apr 2001 Anticipated synchronization in coupled chaotic maps with delays arxiv:nlin/0104061v1 [nlin.cd] 25 Apr 2001 Cristina Masoller a, Damián H. Zanette b a Instituto de Física, Facultad de Ciencias, Universidad

More information

Experimental and numerical study of the symbolic dynamics of a modulated external-cavity semiconductor laser

Experimental and numerical study of the symbolic dynamics of a modulated external-cavity semiconductor laser Experimental and numerical study of the symbolic dynamics of a modulated external-cavity semiconductor laser Andrés Aragoneses, 1, Taciano Sorrentino, 1, Sandro Perrone, 1 Daniel J. Gauthier, 3 M. C. Torrent,

More information

Chapter 5. Semiconductor Laser

Chapter 5. Semiconductor Laser Chapter 5 Semiconductor Laser 5.0 Introduction Laser is an acronym for light amplification by stimulated emission of radiation. Albert Einstein in 1917 showed that the process of stimulated emission must

More information

Current issues in coherence for small laser sources

Current issues in coherence for small laser sources Current issues in coherence for small laser sources G.L. Lippi Institut Non Linéaire de Nice Université de Nice-Sophia Antipolis and UMR 7335 CNRS with the support of : P.1 Coworkers At the INLN Experiments

More information

Laser Types Two main types depending on time operation Continuous Wave (CW) Pulsed operation Pulsed is easier, CW more useful

Laser Types Two main types depending on time operation Continuous Wave (CW) Pulsed operation Pulsed is easier, CW more useful What Makes a Laser Light Amplification by Stimulated Emission of Radiation Main Requirements of the Laser Laser Gain Medium (provides the light amplification) Optical Resonator Cavity (greatly increase

More information

INSTITUTE BECKMAN. K. Hess, Y. Liu, F. Oyafuso, W.C. Ng and B.D. Klein. The Beckman Institute University of Illinois at Urbana-Champaign

INSTITUTE BECKMAN. K. Hess, Y. Liu, F. Oyafuso, W.C. Ng and B.D. Klein. The Beckman Institute University of Illinois at Urbana-Champaign BECKMAN INSTITUTE K. Hess, Y. Liu, F. Oyafuso, W.C. Ng and B.D. Klein. The Beckman Institute University of Illinois at Urbana-Champaign Photo by Don Hamerman Typical VCSEL Structure and Electronic Mesh

More information

Engineering Medical Optics BME136/251 Winter 2017

Engineering Medical Optics BME136/251 Winter 2017 Engineering Medical Optics BME136/251 Winter 2017 Monday/Wednesday 2:00-3:20 p.m. Beckman Laser Institute Library, MSTB 214 (lab) Teaching Assistants (Office hours: Every Tuesday at 2pm outside of the

More information

Residence-time distributions as a measure for stochastic resonance

Residence-time distributions as a measure for stochastic resonance W e ie rstra ß -In stitu t fü r A n g e w a n d te A n a ly sis u n d S to ch a stik Period of Concentration: Stochastic Climate Models MPI Mathematics in the Sciences, Leipzig, 23 May 1 June 2005 Barbara

More information

Understanding Semiconductor Lasers

Understanding Semiconductor Lasers 27 April 2010 age 1 of 8 Experiment II Understanding Semiconductor Lasers The purpose of this experiment is to explore the basic characteristics of semiconductor lasers. We will measure and calculate the

More information

TANDEM BLUE-VIOLET QUANTUM WELL InGaN LASERS WITH HIGH-FREQUENCY SELF-PULSATIONS. I. Antohi, S. Rusu, and V. Z. Tronciu

TANDEM BLUE-VIOLET QUANTUM WELL InGaN LASERS WITH HIGH-FREQUENCY SELF-PULSATIONS. I. Antohi, S. Rusu, and V. Z. Tronciu TANDEM BLUE-VIOLET QUANTUM WELL InGaN LASERS WITH HIGH-FREQUENCY SELF-PULSATIONS I. Antohi, S. Rusu, and V. Z. Tronciu Department of Physics, Technical University of Moldova, Chisinau, MD2004 Republic

More information

COURSE OUTLINE. Introduction Signals and Noise Filtering Sensors: PD5 Avalanche PhotoDiodes. Sensors, Signals and Noise 1

COURSE OUTLINE. Introduction Signals and Noise Filtering Sensors: PD5 Avalanche PhotoDiodes. Sensors, Signals and Noise 1 Sensors, Signals and Noise 1 COURSE OUTLINE Introduction Signals and Noise Filtering Sensors: PD5 Avalanche PhotoDiodes Avalanche Photo-Diodes (APD) 2 Impact ionization in semiconductors Linear amplification

More information

Distinguishing Signatures of Determinism and Stochasticity in Spiking Complex Systems

Distinguishing Signatures of Determinism and Stochasticity in Spiking Complex Systems Distinguishing Signatures of Determinism and Stochasticity in Spiking Complex Systems Cristina Masoller Universitat Politecnica de Catalunya, Terrassa, Barcelona www.fisica.edu.uy/~cris XXXIII Dynamics

More information

6.2 Brief review of fundamental concepts about chaotic systems

6.2 Brief review of fundamental concepts about chaotic systems 6.2 Brief review of fundamental concepts about chaotic systems Lorenz (1963) introduced a 3-variable model that is a prototypical example of chaos theory. These equations were derived as a simplification

More information

INJECTION semiconductor laser (ISL) systems have been

INJECTION semiconductor laser (ISL) systems have been 2350 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 34, NO. 12, DECEMBER 1998 Dynamic Behavior and Locking of a Semiconductor Laser Subjected to External Injection Valerio Annovazzi-Lodi, Member, IEEE, Alessandro

More information

Testing for Chaos in Type-I ELM Dynamics on JET with the ILW. Fabio Pisano

Testing for Chaos in Type-I ELM Dynamics on JET with the ILW. Fabio Pisano Testing for Chaos in Type-I ELM Dynamics on JET with the ILW Fabio Pisano ACKNOWLEDGMENTS B. Cannas 1, A. Fanni 1, A. Murari 2, F. Pisano 1 and JET Contributors* EUROfusion Consortium, JET, Culham Science

More information

arxiv:physics/ v1 [physics.optics] 20 Apr 2001

arxiv:physics/ v1 [physics.optics] 20 Apr 2001 Synchronization and multi-mode dynamics of mutually coupled semiconductor lasers Claudio R. Mirasso 1,2, Miroslav Kolesik 1,3, Marcelo Matus 1, J.K. White 4, and Jerome V. Moloney 1 1 Arizona Center for

More information

Collective dynamics in sparse networks

Collective dynamics in sparse networks Parma 22 p. Collective dynamics in sparse networks Simona Olmi Istituto dei Sistemi Complessi - CNR - Firenze Istituto Nazionale di Fisica Nucleare - Sezione di Firenze Centro interdipartimentale di Studi

More information

Using controlling chaos technique to suppress self-modulation in a delayed feedback traveling wave tube oscillator

Using controlling chaos technique to suppress self-modulation in a delayed feedback traveling wave tube oscillator Using controlling chaos technique to suppress self-modulation in a delayed feedback traveling wave tube oscillator N.M. Ryskin, O.S. Khavroshin and V.V. Emelyanov Dept. of Nonlinear Physics Saratov State

More information

THE problem of phase noise and its influence on oscillators

THE problem of phase noise and its influence on oscillators IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 54, NO. 5, MAY 2007 435 Phase Diffusion Coefficient for Oscillators Perturbed by Colored Noise Fergal O Doherty and James P. Gleeson Abstract

More information

MULTISTABILITY IN A BUTTERFLY FLOW

MULTISTABILITY IN A BUTTERFLY FLOW International Journal of Bifurcation and Chaos, Vol. 23, No. 12 (2013) 1350199 (10 pages) c World Scientific Publishing Company DOI: 10.1142/S021812741350199X MULTISTABILITY IN A BUTTERFLY FLOW CHUNBIAO

More information

MODERN OPTICS. P47 Optics: Unit 9

MODERN OPTICS. P47 Optics: Unit 9 MODERN OPTICS P47 Optics: Unit 9 Course Outline Unit 1: Electromagnetic Waves Unit 2: Interaction with Matter Unit 3: Geometric Optics Unit 4: Superposition of Waves Unit 5: Polarization Unit 6: Interference

More information

Theory of bifurcation amplifiers utilizing the nonlinear dynamical response of an optically damped mechanical oscillator

Theory of bifurcation amplifiers utilizing the nonlinear dynamical response of an optically damped mechanical oscillator Theory of bifurcation amplifiers utilizing the nonlinear dynamical response of an optically damped mechanical oscillator Research on optomechanical systems is of relevance to gravitational wave detection

More information

ANNEX A: ANALYSIS METHODOLOGIES

ANNEX A: ANALYSIS METHODOLOGIES ANNEX A: ANALYSIS METHODOLOGIES A.1 Introduction Before discussing supplemental damping devices, this annex provides a brief review of the seismic analysis methods used in the optimization algorithms considered

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure. X-ray diffraction pattern of CH 3 NH 3 PbI 3 film. Strong reflections of the () family of planes is characteristics of the preferred orientation of the perovskite

More information

Synchronization and control in small networks of chaotic electronic circuits

Synchronization and control in small networks of chaotic electronic circuits Synchronization and control in small networks of chaotic electronic circuits A. Iglesias Dept. of Applied Mathematics and Computational Sciences, Universi~ of Cantabria, Spain Abstract In this paper, a

More information

Effects of Atomic Coherence and Injected Classical Field on Chaotic Dynamics of Non-degenerate Cascade Two-Photon Lasers

Effects of Atomic Coherence and Injected Classical Field on Chaotic Dynamics of Non-degenerate Cascade Two-Photon Lasers Commun. Theor. Phys. Beijing China) 48 2007) pp. 288 294 c International Academic Publishers Vol. 48 No. 2 August 15 2007 Effects of Atomic Coherence and Injected Classical Field on Chaotic Dynamics of

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:1.138/nature1878 I. Experimental setup OPA, DFG Ti:Sa Oscillator, Amplifier PD U DC U Analyzer HV Energy analyzer MCP PS CCD Polarizer UHV Figure S1: Experimental setup used in mid infrared photoemission

More information

Square-wave oscillations in edge-emitting diode lasers with polarization-rotated optical feedback

Square-wave oscillations in edge-emitting diode lasers with polarization-rotated optical feedback Square-wave oscillations in edge-emitting diode lasers with polarization-rotated optical feedback A. Gavrielides a,t.erneux b,d.w.sukow c, G. Burner c,t.mclachlan c, J. Miller c, and J. Amonette c a Air

More information

Instabilities in a grating feedback external cavity semiconductor laser

Instabilities in a grating feedback external cavity semiconductor laser Instabilities in a grating feedback external cavity semiconductor laser Dijun Chen, Zujie Fang, Haiwen Cai, Jianxin Geng, and Ronghui Qu Shanghai Institute of Optics and Fine Mechanics, Chinese Academy

More information

Paper Review. Special Topics in Optical Engineering II (15/1) Minkyu Kim. IEEE Journal of Quantum Electronics, Feb 1985

Paper Review. Special Topics in Optical Engineering II (15/1) Minkyu Kim. IEEE Journal of Quantum Electronics, Feb 1985 Paper Review IEEE Journal of Quantum Electronics, Feb 1985 Contents Semiconductor laser review High speed semiconductor laser Parasitic elements limitations Intermodulation products Intensity noise Large

More information

Investigation of the Feasibility of a Free Electron Laser for the Cornell Electron Storage Ring and Linear Accelerator

Investigation of the Feasibility of a Free Electron Laser for the Cornell Electron Storage Ring and Linear Accelerator Investigation of the Feasibility of a Free Electron Laser for the Cornell Electron Storage Ring and Linear Accelerator Marty Zwikel Department of Physics, Grinnell College, Grinnell, IA, 50 Abstract Free

More information

Free Electron Laser. Project report: Synchrotron radiation. Sadaf Jamil Rana

Free Electron Laser. Project report: Synchrotron radiation. Sadaf Jamil Rana Free Electron Laser Project report: Synchrotron radiation By Sadaf Jamil Rana History of Free-Electron Laser (FEL) The FEL is the result of many years of theoretical and experimental work on the generation

More information

Supplementary Figure 1. Characterization of the single-photon quantum light source based on spontaneous parametric down-conversion (SPDC).

Supplementary Figure 1. Characterization of the single-photon quantum light source based on spontaneous parametric down-conversion (SPDC). .2 Classical light source.8 g (2) ().6.4.2 EMCCD SPAD 2 3.2.4.6.8..2.4.6.8.2 Mean number of photon pairs per pump pulse 4 5 6 7 8 9 2 3 4 Supplementary Figure. Characterization of the single-photon quantum

More information

Laser Basics. What happens when light (or photon) interact with a matter? Assume photon energy is compatible with energy transition levels.

Laser Basics. What happens when light (or photon) interact with a matter? Assume photon energy is compatible with energy transition levels. What happens when light (or photon) interact with a matter? Assume photon energy is compatible with energy transition levels. Electron energy levels in an hydrogen atom n=5 n=4 - + n=3 n=2 13.6 = [ev]

More information

Antiphase dynamics in a multimode Fabry Perot semiconductor laser with external feedback

Antiphase dynamics in a multimode Fabry Perot semiconductor laser with external feedback Available online at www.sciencedirect.com Physica A 327 (2003) 129 134 www.elsevier.com/locate/physa Antiphase dynamics in a multimode Fabry Perot semiconductor laser with external feedback Paul Mandel

More information

An Opto-Mechanical Microwave-Rate Oscillator

An Opto-Mechanical Microwave-Rate Oscillator An Opto-Mechanical Microwave-Rate Oscillator Tal Carmon and Kerry Vahala California Institute of Technology Diameter of a human hair Opto excited Vibration: Explanation Pump Res Wavelength Experimental

More information

K. Pyragas* Semiconductor Physics Institute, LT-2600 Vilnius, Lithuania Received 19 March 1998

K. Pyragas* Semiconductor Physics Institute, LT-2600 Vilnius, Lithuania Received 19 March 1998 PHYSICAL REVIEW E VOLUME 58, NUMBER 3 SEPTEMBER 998 Synchronization of coupled time-delay systems: Analytical estimations K. Pyragas* Semiconductor Physics Institute, LT-26 Vilnius, Lithuania Received

More information

Statistical Optics Lecture 5

Statistical Optics Lecture 5 s Spring Quarter 2018 ECE244a - Spring 2018 1 Noise distributions s Start w/quantum optics description of noise; signal consists of photons Let p n (n) be the distribution of photons in a single mode Goal:

More information

Nonlinear Optics (WiSe 2015/16) Lecture 12: January 15, 2016

Nonlinear Optics (WiSe 2015/16) Lecture 12: January 15, 2016 Nonlinear Optics (WiSe 2015/16) Lecture 12: January 15, 2016 12 High Harmonic Generation 12.1 Atomic units 12.2 The three step model 12.2.1 Ionization 12.2.2 Propagation 12.2.3 Recombination 12.3 Attosecond

More information

University of Bristol - Explore Bristol Research. Early version, also known as pre-print

University of Bristol - Explore Bristol Research. Early version, also known as pre-print Krauskopf, B., Lenstra, D., Fischer, A. P. A., Erzgraber, H., & Vemuri, G. (6). Feedback phase sensitivity of a semiconductor laser subject to filtered optical feedback. Early version, also known as pre-print

More information

Diode Lasers and Photonic Integrated Circuits

Diode Lasers and Photonic Integrated Circuits Diode Lasers and Photonic Integrated Circuits L. A. COLDREN S. W. CORZINE University of California Santa Barbara, California A WILEY-INTERSCIENCE PUBLICATION JOHN WILEY & SONS, INC. NEW YORK / CHICHESTER

More information

University of New Mexico

University of New Mexico Quantum State Reconstruction via Continuous Measurement Ivan H. Deutsch, Andrew Silberfarb University of New Mexico Poul Jessen, Greg Smith University of Arizona Information Physics Group http://info.phys.unm.edu

More information

THEORETICAL STUDY OF QD SEMICONDUCTOR LASER DYNAMICS UNDER OPTICAL FEEDBACK

THEORETICAL STUDY OF QD SEMICONDUCTOR LASER DYNAMICS UNDER OPTICAL FEEDBACK IMPACT: International Journal of Research in Engineering & Thnology (IMPACT: IJRET) ISSN(E): 31-8843; ISSN(P): 347-4599 Vol. 3, Issue 4, Apr 015, 1-8 Impact Journals THEORETICAL STUDY OF QD SEMICONDUCTOR

More information

Solitons. Nonlinear pulses and beams

Solitons. Nonlinear pulses and beams Solitons Nonlinear pulses and beams Nail N. Akhmediev and Adrian Ankiewicz Optical Sciences Centre The Australian National University Canberra Australia m CHAPMAN & HALL London Weinheim New York Tokyo

More information

Synchronization of Limit Cycle Oscillators by Telegraph Noise. arxiv: v1 [cond-mat.stat-mech] 5 Aug 2014

Synchronization of Limit Cycle Oscillators by Telegraph Noise. arxiv: v1 [cond-mat.stat-mech] 5 Aug 2014 Synchronization of Limit Cycle Oscillators by Telegraph Noise Denis S. Goldobin arxiv:148.135v1 [cond-mat.stat-mech] 5 Aug 214 Department of Physics, University of Potsdam, Postfach 61553, D-14415 Potsdam,

More information

intensity (arb. units) time (ns) 8 INVERTED MM intensity (arb. units) ACTIVATION DELAY time (ns)

intensity (arb. units) time (ns) 8 INVERTED MM intensity (arb. units) ACTIVATION DELAY time (ns) Dynamics of power distribution in multimode semiconductor lasers with optical feedback J.M. Buldú a, F. Rogister b, J. Trull a,c.serrat a, M.C. Torrent a, Claudio R. Mirasso c and J. Garc a-ojalvo a a

More information

Vector dark domain wall solitons in a fiber ring laser

Vector dark domain wall solitons in a fiber ring laser Vector dark domain wall solitons in a fiber ring laser H. Zhang, D. Y. Tang*, L. M. Zhao and R. J. Knize School of Electrical and Electronic Engineering, Nanyang Technological University, 639798 Singapore

More information

What Makes a Laser Light Amplification by Stimulated Emission of Radiation Main Requirements of the Laser Laser Gain Medium (provides the light

What Makes a Laser Light Amplification by Stimulated Emission of Radiation Main Requirements of the Laser Laser Gain Medium (provides the light What Makes a Laser Light Amplification by Stimulated Emission of Radiation Main Requirements of the Laser Laser Gain Medium (provides the light amplification) Optical Resonator Cavity (greatly increase

More information

An ultrafast quantum random number generator based on quantum phase fluctuations

An ultrafast quantum random number generator based on quantum phase fluctuations An ultrafast quantum random number generator based on quantum phase fluctuations Feihu Xu, Bing Qi, Xiongfeng Ma, He Xu, Haoxuan Zheng, and Hoi-Kwong Lo Center for Quantum Information and Quantum Control,

More information

MODELING OF ABOVE-THRESHOLD SINGLE-MODE OPERATION OF EDGE- EMITTING DIODE LASERS

MODELING OF ABOVE-THRESHOLD SINGLE-MODE OPERATION OF EDGE- EMITTING DIODE LASERS MODELING OF ABOVE-THRESHOLD SINGLE-MODE OPERATION OF EDGE- EMITTING DIODE LASERS A. P. Napartovich, N. N. Elkin, A. G. Sukharev, V. N. Troshchieva, and D. V. Vysotsky Troitsk Institute for Innovation and

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Announcements HW #5 due today April 11 th class will be at 2PM instead of

More information

Emission Spectra of the typical DH laser

Emission Spectra of the typical DH laser Emission Spectra of the typical DH laser Emission spectra of a perfect laser above the threshold, the laser may approach near-perfect monochromatic emission with a spectra width in the order of 1 to 10

More information

Synchronization of Mutually Versus Unidirectionally Coupled Chaotic Semiconductor Lasers

Synchronization of Mutually Versus Unidirectionally Coupled Chaotic Semiconductor Lasers Synchronization of Mutually Versus Unidirectionally Coupled Chaotic Semiconductor Lasers Noam Gross, Wolfgang Kinzel 2, Ido Kanter, Michael Rosenbluh, Lev Khaykovich Department of Physics, Bar-Ilan University,

More information

A short tutorial on optical rogue waves

A short tutorial on optical rogue waves A short tutorial on optical rogue waves John M Dudley Institut FEMTO-ST CNRS-Université de Franche-Comté Besançon, France Experiments in collaboration with the group of Guy Millot Institut Carnot de Bourgogne

More information

Single Semiconductor Nanostructures for Quantum Photonics Applications: A solid-state cavity-qed system with semiconductor quantum dots

Single Semiconductor Nanostructures for Quantum Photonics Applications: A solid-state cavity-qed system with semiconductor quantum dots The 3 rd GCOE Symposium 2/17-19, 19, 2011 Tohoku University, Sendai, Japan Single Semiconductor Nanostructures for Quantum Photonics Applications: A solid-state cavity-qed system with semiconductor quantum

More information

Is the Hénon map chaotic

Is the Hénon map chaotic Is the Hénon map chaotic Zbigniew Galias Department of Electrical Engineering AGH University of Science and Technology, Poland, galias@agh.edu.pl International Workshop on Complex Networks and Applications

More information

Part II. Interaction with Single Atoms. Multiphoton Ionization Tunneling Ionization Ionization- Induced Defocusing High Harmonic Generation in Gases

Part II. Interaction with Single Atoms. Multiphoton Ionization Tunneling Ionization Ionization- Induced Defocusing High Harmonic Generation in Gases - Part II 27 / 115 - 2-28 / 115 Bohr model recap. At the Bohr radius - a B = the electric field strength is: 2 me 2 = 5.3 10 9 cm, E a = e ab 2 (cgs) 5.1 10 9 Vm 1. This leads to the atomic intensity:

More information