The Free Polymer Quantum Scalar Field and. its Classical Limit

Size: px
Start display at page:

Download "The Free Polymer Quantum Scalar Field and. its Classical Limit"

Transcription

1 The Free Polymer Quantum Scalar Field and its Classical Limit Madhavan Varadarajan Raman Research Institute, Bangalore, India (work done in collaboration with Alok Laddha) TheFreePolymerQuantumScalarFieldanditsClassicalLimit p.1

2 Plan Classical Parameterized Field Theory(PFT):Lagrangian, Hamiltonian Polymer Quantum Kinematics Quantum Dynamics Dirac Observables Physical States Spacetime Discreteness and Emergent Lattice Field Theory Fock from Polymer and the Continuum Limit Quantum Dynamics revisited TheFreePolymerQuantumScalarFieldanditsClassicalLimit p.2

3 Classical PFT FreeScalarFieldAction: S 0 [f] = 1 2 d 2 Xη AB A f B f Parametrize X A = (T, X) X A (x α ) = (T(x, t), X(x, t)). S 0 [f] = 1 2 d 2 x ηη αβ α f β f, η αβ = η AB α X A β X B. Varythisactionw.r.to fand2newscalarfields X A : S PFT [f, X A ] = 1 2 d 2 x η(x)η αβ (X) α f β f δf: α ( ηη αβ β f) = 0 η AB A B f = 0 δx A :nonewequations, X A areundeterminedfunctions of x, t,so2functionsworthofgauge! x, t arbitrary general covariance So Hamiltonian theory has 2 constraints. Remark:Freesclarfieldsolnsare f = f + (T + X) + f (T X) Use split into left movers + right movers in Hamiltonian theory. TheFreePolymerQuantumScalarFieldanditsClassicalLimit p.3

4 Hamiltonian description T(x), X(x) become canonical variables. Use light cone variables T(x) ± X(x) := X ± (x). Phasespace: (f, π f ), (X +, Π + ), (X, Π ) Constraints:H ± (x) = [ Π ± (x)x ± (x) ± 1 4 (π f ± f ) 2 ] Define: Y ± = π f ± f {Y +, Y } = 0, {Y ± (x), Y ± (y)}=derivativeofdeltafunction Gaugefix: X ± = t ± x deparameterize. get back standard flat spacetime free scalar field action. TheFreePolymerQuantumScalarFieldanditsClassicalLimit p.4

5 TheFreePolymerQuantumScalarFieldanditsClassicalLimit p.5

6 TheFreePolymerQuantumScalarFieldanditsClassicalLimit p.6

7 Caution: WesetSpacetimeTopology=S 1 R Not much known re:polymer repn when space is noncompact. Hence choose space= circle. There are complications coming from using single angular coordinate chart x on embedded circle. Also from using single spatial angular inertial coordinate X on the flat spacetime. Identifications of x and X mod 2π are needed. Thesecanbetakencareof.Willmentionsubtelitiesasand when dictated by pedagogy. TheFreePolymerQuantumScalarFieldanditsClassicalLimit p.7

8 TheFreePolymerQuantumScalarFieldanditsClassicalLimit p.8

9 Quantum Kinematics: Embedding Sector Holonomies: Graph : set of edges which cover the circle. Spins :alabel k e foreachedge e. Holonomies :e i k e Π + e e ElectricField : X + (x) PoissonBrkts: {X + (x), e i k e e (for xinside e) e Π + } = ik e e i e k e e Π + TheFreePolymerQuantumScalarFieldanditsClassicalLimit p.9

10 ChargeNetworks: γ, k ˆX + (x) γ, k = hk e + γ, k, xinside e. e i e k + e Π + e γ, k = γ, k + k InnerProduct: γ, k γ, k = δ γ,γδ k, k Rangeof k e : hk e Za, aisabarbero-immirziparameterwith dimensions of length. Similarly for sector. TheFreePolymerQuantumScalarFieldanditsClassicalLimit p.10

11 Quantum Kinematics: Matter Sector Holonomy: e i e l e e Y + Recallthat {Y + (x), Y + (y)}isnon-vanishing(=derivativeof delta function). WeylAlgebra : e i e l e Y + e e i l e Y + e e = exp[ i h 2 α( l, l)] e i (l e+l e e ) Y + e Chargenetwork: γ, l e i e l e Y + e γ, l = exp[ i h 2 α( l, l)] γ, l + l Rangeof l e :Modulosometechnicalities, l e Zǫ,ǫisanother Barbero-Immirizilikeparameterwithdimensions (ML) 1 2. TheFreePolymerQuantumScalarFieldanditsClassicalLimit p.11

12 TheFreePolymerQuantumScalarFieldanditsClassicalLimit p.12

13 Dirac Observables Sinceggetransfactasdiffeos,theintegralover x [0, 2π]of any periodic scalar density constructed solely from the phase space variables, is an observable so that O ± f := S 1 dxy ± (x)f(x ± (x))isanobservableforrealperiodic f. Inpolymerrepn Y ± arenotgoodoperatorsonlytheir exponentials are. So cant construct a triangulation indep O ± f. But (expio ± f )canbeconstructed! exp dxy + (x)f(x + (x)) γ, k, l := e i h 2 α( f, l) γ, k,( l + f) where f e = f( hk e ). TheFreePolymerQuantumScalarFieldanditsClassicalLimit p.13

14 Physical Hilbert Space by Group Averaging Ggeinvstatessatisfy Û ± (φ ± )Ψ = Ψ φ ±. Formally:Ψ = ψ,sumoveralldistinct ψ ggerelatedtp ψ. Sum not normalizable in kinematic Hilbert space. Better tothinkofsumofbras. γφ, k φ, l φ livesinspaceofdistributions: Distributions are linear maps from finite span of chrge nets intocomplexes.sumofinnerprodtofeachbrainsumona given chrge network ket is finite(most terms are zero). Grp averaging technique yields correct physical inner productonspaceofgrpaveragesofchargenets. TheFreePolymerQuantumScalarFieldanditsClassicalLimit p.14

15 TheFreePolymerQuantumScalarFieldanditsClassicalLimit p.15

16 Finest Lattice TurnsoutthatGrpAverageofacertainfamilyofchargenets yields a superselected sector corresponding to a regular spacetime lattice a. Roughlyspeakingthefamilyisthatofallchargenetssuch that the difference of the embedding charges on successive edgesistheminimalpossiblei.e.on γ ±, hk ± e I+1 hk ± e I = ±a. ThespanofGrpAveragesofallchargenetsinthisfamilyis left invariant by the action of all the Dirac observables. Since the minimal possible increment, a, in the embedding chargesisusedtodefinethissector,thereisnostateoutside this sector corresponds to any finer discrete spacetime structure. Hence the name Finest Lattice. TheFreePolymerQuantumScalarFieldanditsClassicalLimit p.16

17 Emergence of Lattice Field Theory Restrict attention to Superselected Finest Lattice Sector True degrees of freedom encoded in Dirac Observables. Classical sympl structure is represented by commutators of basic kinematic operators. Dirac Observables are composite opertrs.sodonotexpect(donotget!)repnofclassical continuum sympl structure for Dirac Observables i.e. of true d.o.f. Recall:e io+ i f = e S 1 dxy + (x)f(x + (x)).donotgetrepnofclassical P.B.forallchoicesof f. However: Do get repn of classical sympl structure for those continuumfunctions f(x ± )whicharepiecewiseconstanti.e. constant on edges of dual lattice. Thus emergent sympl structure of true degrees of freedom that of lattice field theory. TheFreePolymerQuantumScalarFieldanditsClassicalLimit p.17

18 Canalsoshowthatdynamicsoftruedegreesoffreedomis that of lattice field theory. Remark:localisingsupportof ftooneduallatticeedgecan get lattice approximant to local field operator. Discrete (lattice) Fourier transform of this yields approximant to the creation-ann modes. TheFreePolymerQuantumScalarFieldanditsClassicalLimit p.18

19 Fock vacuum 2 point function Want polymer state which approximates behaviour of Fock 2 ptfunction.precisenatureofapproxisthrudefnof continuum limit. NotethattheB-Iparameters a, ǫdictatethesmallest increment of embedding,matter chrges. Also a is the lattice spacing.hencecontinuumlimitis a 0, ǫ 0. Accordingly we consider 2 parameter family of polymer quantizations with 2 parameter family of states and 2 parameter family of Dirac observables which are lattice approximant to the annihilation- creation modes. Require exp value of quadratic combinations of mode operators for wavelengths >> lattice spacing to approach Fock vacuum exp value in the continuum limit. We explicitly construct such a set of states. TheFreePolymerQuantumScalarFieldanditsClassicalLimit p.19

20 Summary We constructed Polymer quantization of PFT with following features: Absence of Ad-hoc Triangulations in oprtr actions Correct implementation of constraint algebra: Classical constraints ensure f oliation indep of the dynamics. Foliation indep implies a consistent spacetime dynamics. Correctly implemented, quantum constraints play similar role(kuchař). Quantum sptime covariance is tied to our faithful repn of grp of gge transformations. Continuum Limit: Crucial that limit is indep of h so seperation ofnotionsof quantumand continuum.limitnotof1 parameter set of ad- hoc triangulations in single quantiztn; rather, limit of 1(B-I) parameter family of unitarily inequivalent quantizations. TheFreePolymerQuantumScalarFieldanditsClassicalLimit p.20

21 Further research... Thiemann Quantzn and Sptime Covariance:We used density weight 2 constraints. Classically equiv to 1 sptl diffeo and 1 Hamiltonian constr. As in LQG solve sptl diffeo by averaging, imposehamconstrondiffinvdistributions(moreonthisif time...) Non- comp sptl toplgy: Related to CGHS model. Breaking of Local Lorentz Invariance: No dispersion due to ± seperation. Lattice breaks LLI. Eff theory? Lorentzian to Euclidean PFT?: etc.,etc... TheFreePolymerQuantumScalarFieldanditsClassicalLimit p.21

22 Thiemann type quantization We use density wt 2 constraints: H ± (x) = [ Π ± (x)x ± (x) ± 1 4 (π f ± f ) 2 ]. Constraint algebra is Lie algebra Define C diff [ (x) = H + + H, ] C diff (x) = Π + (x)x + (x) + Π (x)x (x) + π f (x)f (x). Define C ham = 1 X + (x)x (x) (H+ H ) Constraint algebra is Dirac algebra, same algebra as for gravitywithsptlmetric=pullbackofflatsptimemetrictothe Cauchy slice. FirstimposesptldiffeoconstrthenHamconstronsptldiffinv distrbtns. TheFreePolymerQuantumScalarFieldanditsClassicalLimit p.22

23 Results Can write 1 X + (x)x (x) asopertrthruthiemann-liketricks. Solns obtained here, trivially solve sptl diff constraint If straightfwd regulrztn done for Ham constr ala LQG, no soln ofoursissolntohamconstr! ThereisnontrivialregforwhichoursolnsaresolnsofHam constr! TheFreePolymerQuantumScalarFieldanditsClassicalLimit p.23

Propagation in Polymer PFT

Propagation in Polymer PFT Propagation in Polymer PFT Madhavan Varadarajan Raman Research Institute, Bangalore, India PropagationinPolymerPFT p.1 Non-uniqueness of Hamiltonian constraint in LQG: Classical Ham constr depends on local

More information

LQG Dynamics: Insights from PFT

LQG Dynamics: Insights from PFT LQG Dynamics: Insights from PFT Madhavan Varadarajan Raman Research Institute, Bangalore, India (work done in collaboration with Alok Laddha) LQGDynamics:InsightsfromPFT p.1 Papers: Talk is based on arxiv:1011.2463(al,

More information

Polymer Parametrized field theory

Polymer Parametrized field theory .... Polymer Parametrized field theory Alok Laddha Raman Research Institute, India Dec 1 Collaboration with : Madhavan Varadarajan (Raman Research Institute, India) Alok Laddha (RRI) Polymer Parametrized

More information

arxiv: v1 [gr-qc] 20 Sep 2016

arxiv: v1 [gr-qc] 20 Sep 2016 Propagation in Polymer Parameterised Field Theory Madhavan Varadarajan 1, 1 Raman Research Institute, Bangalore 560080, India arxiv:1609.06034v1 [gr-qc] 20 Sep 2016 The Hamiltonian constraint operator

More information

Canonical Gravity: Spacetime Covariance, Quantization and a New Classical Identity

Canonical Gravity: Spacetime Covariance, Quantization and a New Classical Identity Canonical Gravity: Spacetime Covariance, Quantization and a New Classical Identity Madhavan Varadarajan (Raman Research Institute) Canonical Gravity: Spacetime Covariance, Quantization and a New Classical

More information

arxiv: v2 [gr-qc] 10 Sep 2013

arxiv: v2 [gr-qc] 10 Sep 2013 Quantum geometry with a nondegenerate vacuum: a toy model Sandipan Sengupta 1, 1 Raman Research Institute Bangalore-560080, INDIA. Abstract arxiv:1306.6013v2 [gr-qc] 10 Sep 2013 Motivated by a recent proposal

More information

U(N) FRAMEWORK FOR LOOP QUANTUM GRAVITY: A PRELIMINARY BLACK HOLE MODEL

U(N) FRAMEWORK FOR LOOP QUANTUM GRAVITY: A PRELIMINARY BLACK HOLE MODEL U(N) FRAMEWORK FOR LOOP QUANTUM GRAVITY: A PRELIMINARY BLACK HOLE MODEL Iñaki Garay Programa de Pós-Graduação em Física Universidade Federal do Pará In collaboration with Jacobo Díaz Polo and Etera Livine

More information

Quantization of scalar fields

Quantization of scalar fields Quantization of scalar fields March 8, 06 We have introduced several distinct types of fields, with actions that give their field equations. These include scalar fields, S α ϕ α ϕ m ϕ d 4 x and complex

More information

The Hamiltonian operator and states

The Hamiltonian operator and states The Hamiltonian operator and states March 30, 06 Calculation of the Hamiltonian operator This is our first typical quantum field theory calculation. They re a bit to keep track of, but not really that

More information

New applications for LQG

New applications for LQG ILleQGalS, Oct 28, 2014 Plan position / momentum representations L, Sahlmann - 2014 (coming soon) Application 1: a new operator Application 2: The BF vacuum ˆq ab ˆφ,a ˆφ,b detˆq Symmetric scalar constraint

More information

Lifting General Relativity to Observer Space

Lifting General Relativity to Observer Space Lifting General Relativity to Observer Space Derek Wise Institute for Quantum Gravity University of Erlangen Work with Steffen Gielen: 1111.7195 1206.0658 1210.0019 International Loop Quantum Gravity Seminar

More information

Interfacing loop quantum gravity with cosmology.

Interfacing loop quantum gravity with cosmology. Interfacing loop quantum gravity with cosmology. THIRD EFI WINTER CONFERENCE ON QUANTUM GRAVITY TUX, AUSTRIA, 16-20.02.2015 Tomasz Pawłowski Departamento de Ciencias Físicas, Universidad Andres Bello &

More information

Maxwell s equations. based on S-54. electric field charge density. current density

Maxwell s equations. based on S-54. electric field charge density. current density Maxwell s equations based on S-54 Our next task is to find a quantum field theory description of spin-1 particles, e.g. photons. Classical electrodynamics is governed by Maxwell s equations: electric field

More information

Tutorial 5 Clifford Algebra and so(n)

Tutorial 5 Clifford Algebra and so(n) Tutorial 5 Clifford Algebra and so(n) 1 Definition of Clifford Algebra A set of N Hermitian matrices γ 1, γ,..., γ N obeying the anti-commutator γ i, γ j } = δ ij I (1) is the basis for an algebra called

More information

The Klein-Gordon equation

The Klein-Gordon equation Lecture 8 The Klein-Gordon equation WS2010/11: Introduction to Nuclear and Particle Physics The bosons in field theory Bosons with spin 0 scalar (or pseudo-scalar) meson fields canonical field quantization

More information

1 Unitary representations of the Virasoro algebra

1 Unitary representations of the Virasoro algebra Week 5 Reading material from the books Polchinski, Chapter 2, 15 Becker, Becker, Schwartz, Chapter 3 Ginspargs lectures, Chapters 3, 4 1 Unitary representations of the Virasoro algebra Now that we have

More information

Maxwell s equations. electric field charge density. current density

Maxwell s equations. electric field charge density. current density Maxwell s equations based on S-54 Our next task is to find a quantum field theory description of spin-1 particles, e.g. photons. Classical electrodynamics is governed by Maxwell s equations: electric field

More information

Attempts at relativistic QM

Attempts at relativistic QM Attempts at relativistic QM based on S-1 A proper description of particle physics should incorporate both quantum mechanics and special relativity. However historically combining quantum mechanics and

More information

CHAPTER 1. SPECIAL RELATIVITY AND QUANTUM MECHANICS

CHAPTER 1. SPECIAL RELATIVITY AND QUANTUM MECHANICS CHAPTER 1. SPECIAL RELATIVITY AND QUANTUM MECHANICS 1.1 PARTICLES AND FIELDS The two great structures of theoretical physics, the theory of special relativity and quantum mechanics, have been combined

More information

1 Infinite-Dimensional Vector Spaces

1 Infinite-Dimensional Vector Spaces Theoretical Physics Notes 4: Linear Operators In this installment of the notes, we move from linear operators in a finitedimensional vector space (which can be represented as matrices) to linear operators

More information

Part I. Many-Body Systems and Classical Field Theory

Part I. Many-Body Systems and Classical Field Theory Part I. Many-Body Systems and Classical Field Theory 1. Classical and Quantum Mechanics of Particle Systems 3 1.1 Introduction. 3 1.2 Classical Mechanics of Mass Points 4 1.3 Quantum Mechanics: The Harmonic

More information

Institute for Mathematics, Astrophysics and Particle Physics

Institute for Mathematics, Astrophysics and Particle Physics arxiv:1502.00278 discrete time in quantum gravity with Carlo Rovelli Institute for Mathematics, Astrophysics and Particle Physics DISCRETE TIME 0 0 time keeps track of elementary discrete changes (cfr

More information

Loop Quantum Gravity 2. The quantization : discreteness of space

Loop Quantum Gravity 2. The quantization : discreteness of space Loop Quantum Gravity 2. The quantization : discreteness of space Karim NOUI Laboratoire de Mathématiques et de Physique Théorique, TOURS Astro Particules et Cosmologie, PARIS Clermont - Ferrand ; january

More information

Diffeomorphism Invariant Gauge Theories

Diffeomorphism Invariant Gauge Theories Diffeomorphism Invariant Gauge Theories Kirill Krasnov (University of Nottingham) Oxford Geometry and Analysis Seminar 25 Nov 2013 Main message: There exists a large new class of gauge theories in 4 dimensions

More information

Intrinsic Time Quantum Geometrodynamics (ITQG)

Intrinsic Time Quantum Geometrodynamics (ITQG) Intrinsic Time Quantum Geometrodynamics (ITQG) Assistant Professor Eyo Ita Eyo Eyo Ita Physics Department LQG International Seminar United States Naval Academy Annapolis, MD 27 October, 2015 Outline of

More information

Quantum Mechanics II

Quantum Mechanics II Quantum Mechanics II Prof. Boris Altshuler March 8, 011 1 Lecture 19 1.1 Second Quantization Recall our results from simple harmonic oscillator. We know the Hamiltonian very well so no need to repeat here.

More information

Black holes in loop quantum gravity

Black holes in loop quantum gravity Black holes in loop quantum gravity Javier Olmedo Physics Department - Institute for Gravitation & the Cosmos Pennsylvania State University Quantum Gravity in the Southern Cone VII March, 31st 2017 1 /

More information

Approaches to Quantum Gravity A conceptual overview

Approaches to Quantum Gravity A conceptual overview Approaches to Quantum Gravity A conceptual overview Robert Oeckl Instituto de Matemáticas UNAM, Morelia Centro de Radioastronomía y Astrofísica UNAM, Morelia 14 February 2008 Outline 1 Introduction 2 Different

More information

Statistical physics and light-front quantization. JR and S.J. Brodsky, Phys. Rev. D70, (2004) and hep-th/

Statistical physics and light-front quantization. JR and S.J. Brodsky, Phys. Rev. D70, (2004) and hep-th/ Statistical physics and light-front quantization Jörg Raufeisen (Heidelberg U.) JR and S.J. Brodsky, Phys. Rev. D70, 085017 (2004) and hep-th/0409157 Introduction: Dirac s Forms of Hamiltonian Dynamics

More information

Representation of the quantum and classical states of light carrying orbital angular momentum

Representation of the quantum and classical states of light carrying orbital angular momentum Representation of the quantum and classical states of light carrying orbital angular momentum Humairah Bassa and Thomas Konrad Quantum Research Group, University of KwaZulu-Natal, Durban 4001, South Africa

More information

1 Equal-time and Time-ordered Green Functions

1 Equal-time and Time-ordered Green Functions 1 Equal-time and Time-ordered Green Functions Predictions for observables in quantum field theories are made by computing expectation values of products of field operators, which are called Green functions

More information

BRST and Dirac Cohomology

BRST and Dirac Cohomology BRST and Dirac Cohomology Peter Woit Columbia University Dartmouth Math Dept., October 23, 2008 Peter Woit (Columbia University) BRST and Dirac Cohomology October 2008 1 / 23 Outline 1 Introduction 2 Representation

More information

Week 5-6: Lectures The Charged Scalar Field

Week 5-6: Lectures The Charged Scalar Field Notes for Phys. 610, 2011. These summaries are meant to be informal, and are subject to revision, elaboration and correction. They will be based on material covered in class, but may differ from it by

More information

Intrinsic time quantum geometrodynamics: The. emergence of General ILQGS: 09/12/17. Eyo Eyo Ita III

Intrinsic time quantum geometrodynamics: The. emergence of General ILQGS: 09/12/17. Eyo Eyo Ita III Intrinsic time quantum geometrodynamics: The Assistant Professor Eyo Ita emergence of General Physics Department Relativity and cosmic time. United States Naval Academy ILQGS: 09/12/17 Annapolis, MD Eyo

More information

A Note On The Chern-Simons And Kodama Wavefunctions

A Note On The Chern-Simons And Kodama Wavefunctions hep-th/0306083 arxiv:gr-qc/0306083v2 19 Jun 2003 A Note On The Chern-Simons And Kodama Wavefunctions Edward Witten Institute For Advanced Study, Princeton NJ 08540 USA Yang-Mills theory in four dimensions

More information

Loop Quantum Gravity a general-covariant lattice gauge theory. Francesca Vidotto UNIVERSITY OF THE BASQUE COUNTRY

Loop Quantum Gravity a general-covariant lattice gauge theory. Francesca Vidotto UNIVERSITY OF THE BASQUE COUNTRY a general-covariant lattice gauge theory UNIVERSITY OF THE BASQUE COUNTRY Bad Honnef - August 2 nd, 2018 THE GRAVITATIONAL FIELD GENERAL RELATIVITY: background independence! U(1) SU(2) SU(3) SL(2,C) l

More information

Generalized Global Symmetries

Generalized Global Symmetries Generalized Global Symmetries Anton Kapustin Simons Center for Geometry and Physics, Stony Brook April 9, 2015 Anton Kapustin (Simons Center for Geometry and Physics, Generalized StonyGlobal Brook) Symmetries

More information

Lorentz Invariance and Second Quantization

Lorentz Invariance and Second Quantization Lorentz Invariance and Second Quantization By treating electromagnetic modes in a cavity as a simple harmonic oscillator, with the oscillator level corresponding to the number of photons in the system

More information

The Light-Front Vacuum

The Light-Front Vacuum The Light-Front Vacuum Marc Herrmann and W. N. Polyzou Department of Physics and Astronomy, The University of Iowa, Iowa City, IA 52242, USA (Dated: February 2, 205) Background: The vacuum in the light-front

More information

Week 1. 1 The relativistic point particle. 1.1 Classical dynamics. Reading material from the books. Zwiebach, Chapter 5 and chapter 11

Week 1. 1 The relativistic point particle. 1.1 Classical dynamics. Reading material from the books. Zwiebach, Chapter 5 and chapter 11 Week 1 1 The relativistic point particle Reading material from the books Zwiebach, Chapter 5 and chapter 11 Polchinski, Chapter 1 Becker, Becker, Schwartz, Chapter 2 1.1 Classical dynamics The first thing

More information

1 Quantum fields in Minkowski spacetime

1 Quantum fields in Minkowski spacetime 1 Quantum fields in Minkowski spacetime The theory of quantum fields in curved spacetime is a generalization of the well-established theory of quantum fields in Minkowski spacetime. To a great extent,

More information

Analytical Mechanics for Relativity and Quantum Mechanics

Analytical Mechanics for Relativity and Quantum Mechanics Analytical Mechanics for Relativity and Quantum Mechanics Oliver Davis Johns San Francisco State University OXPORD UNIVERSITY PRESS CONTENTS Dedication Preface Acknowledgments v vii ix PART I INTRODUCTION:

More information

En búsqueda del mundo cuántico de la gravedad

En búsqueda del mundo cuántico de la gravedad En búsqueda del mundo cuántico de la gravedad Escuela de Verano 2015 Gustavo Niz Grupo de Gravitación y Física Matemática Grupo de Gravitación y Física Matemática Hoy y Viernes Mayor información Quantum

More information

LECTURE 3: Quantization and QFT

LECTURE 3: Quantization and QFT LECTURE 3: Quantization and QFT Robert Oeckl IQG-FAU & CCM-UNAM IQG FAU Erlangen-Nürnberg 14 November 2013 Outline 1 Classical field theory 2 Schrödinger-Feynman quantization 3 Klein-Gordon Theory Classical

More information

On deparametrized models in LQG

On deparametrized models in LQG On deparametrized models in LQG Mehdi Assanioussi Faculty of Physics, University of Warsaw ILQGS, November 2015 Plan of the talk 1 Motivations 2 Classical models General setup Examples 3 LQG quantum models

More information

Introduction to string theory 2 - Quantization

Introduction to string theory 2 - Quantization Remigiusz Durka Institute of Theoretical Physics Wroclaw / 34 Table of content Introduction to Quantization Classical String Quantum String 2 / 34 Classical Theory In the classical mechanics one has dynamical

More information

The Mandelstam Leibbrandt prescription and the Discretized Light Front Quantization.

The Mandelstam Leibbrandt prescription and the Discretized Light Front Quantization. The Mandelstam Leibbrandt prescription and the Discretized Light Front Quantization. Roberto Soldati Dipartimento di Fisica A. Righi, Università di Bologna via Irnerio 46, 40126 Bologna, Italy Abstract

More information

arxiv: v1 [gr-qc] 20 Feb 2018

arxiv: v1 [gr-qc] 20 Feb 2018 The constraint algebra in Smolins G 0 limit of 4d Euclidean Gravity Madhavan Varadarajan arxiv:1802.07033v1 [gr-qc] 20 Feb 2018 Raman Research nstitute Bangalore-560 080, ndia July 7, 2018 Abstract Smolin

More information

Classical field theory 2012 (NS-364B) Feynman propagator

Classical field theory 2012 (NS-364B) Feynman propagator Classical field theory 212 (NS-364B Feynman propagator 1. Introduction States in quantum mechanics in Schrödinger picture evolve as ( Ψt = Û(t,t Ψt, Û(t,t = T exp ı t dt Ĥ(t, (1 t where Û(t,t denotes the

More information

Bosonization of lattice fermions in higher dimensions

Bosonization of lattice fermions in higher dimensions Bosonization of lattice fermions in higher dimensions Anton Kapustin California Institute of Technology January 15, 2019 Anton Kapustin (California Institute of Technology) Bosonization of lattice fermions

More information

Superstring in the plane-wave background with RR-flux as a conformal field theory

Superstring in the plane-wave background with RR-flux as a conformal field theory 0th December, 008 At Towards New Developments of QFT and Strings, RIKEN Superstring in the plane-wave background with RR-flux as a conformal field theory Naoto Yokoi Institute of Physics, University of

More information

Snyder noncommutative space-time from two-time physics

Snyder noncommutative space-time from two-time physics arxiv:hep-th/0408193v1 25 Aug 2004 Snyder noncommutative space-time from two-time physics Juan M. Romero and Adolfo Zamora Instituto de Ciencias Nucleares Universidad Nacional Autónoma de México Apartado

More information

Lecture 8: 1-loop closed string vacuum amplitude

Lecture 8: 1-loop closed string vacuum amplitude Lecture 8: 1-loop closed string vacuum amplitude José D. Edelstein University of Santiago de Compostela STRING THEORY Santiago de Compostela, March 5, 2013 José D. Edelstein (USC) Lecture 8: 1-loop vacuum

More information

Observables in the GBF

Observables in the GBF Observables in the GBF Max Dohse Centro de Ciencias Matematicas (CCM) UNAM Campus Morelia M. Dohse (CCM-UNAM Morelia) GBF: Observables GBF Seminar (14.Mar.2013) 1 / 36 References:. [RO2011] R. Oeckl: Observables

More information

1 Mathematical preliminaries

1 Mathematical preliminaries 1 Mathematical preliminaries The mathematical language of quantum mechanics is that of vector spaces and linear algebra. In this preliminary section, we will collect the various definitions and mathematical

More information

On the world sheet we have used the coordinates τ,σ. We will see however that the physics is simpler in light cone coordinates + (3) ξ + ξ

On the world sheet we have used the coordinates τ,σ. We will see however that the physics is simpler in light cone coordinates + (3) ξ + ξ 1 Light cone coordinates on the world sheet On the world sheet we have used the coordinates τ,σ. We will see however that the physics is simpler in light cone coordinates ξ + = τ + σ, ξ = τ σ (1) Then

More information

Exercises Symmetries in Particle Physics

Exercises Symmetries in Particle Physics Exercises Symmetries in Particle Physics 1. A particle is moving in an external field. Which components of the momentum p and the angular momentum L are conserved? a) Field of an infinite homogeneous plane.

More information

Théorie des Cordes: une Introduction Cours VII: 26 février 2010

Théorie des Cordes: une Introduction Cours VII: 26 février 2010 Particules Élémentaires, Gravitation et Cosmologie Année 2009-10 Théorie des Cordes: une Introduction Cours VII: 26 février 2010 Généralisations de Neveu-Schwarz & Ramond Classical vs. quantum strings

More information

The quantum state as a vector

The quantum state as a vector The quantum state as a vector February 6, 27 Wave mechanics In our review of the development of wave mechanics, we have established several basic properties of the quantum description of nature:. A particle

More information

GEOMETRIC QUANTIZATION

GEOMETRIC QUANTIZATION GEOMETRIC QUANTIZATION 1. The basic idea The setting of the Hamiltonian version of classical (Newtonian) mechanics is the phase space (position and momentum), which is a symplectic manifold. The typical

More information

Preliminaries: what you need to know

Preliminaries: what you need to know January 7, 2014 Preliminaries: what you need to know Asaf Pe er 1 Quantum field theory (QFT) is the theoretical framework that forms the basis for the modern description of sub-atomic particles and their

More information

Symmetry protected entanglement between gravity and matter

Symmetry protected entanglement between gravity and matter Symmetry protected entanglement between gravity and matter Nikola Paunković SQIG Security and Quantum Information Group, IT Departamento de Matemática, IST in collaboration with Marko Vojinović GPF Group

More information

Introduction to Modern Quantum Field Theory

Introduction to Modern Quantum Field Theory Department of Mathematics University of Texas at Arlington Arlington, TX USA Febuary, 2016 Recall Einstein s famous equation, E 2 = (Mc 2 ) 2 + (c p) 2, where c is the speed of light, M is the classical

More information

2. Lie groups as manifolds. SU(2) and the three-sphere. * version 1.4 *

2. Lie groups as manifolds. SU(2) and the three-sphere. * version 1.4 * . Lie groups as manifolds. SU() and the three-sphere. * version 1.4 * Matthew Foster September 1, 017 Contents.1 The Haar measure 1. The group manifold for SU(): S 3 3.3 Left- and right- group translations

More information

Quantum gravity, probabilities and general boundaries

Quantum gravity, probabilities and general boundaries Quantum gravity, probabilities and general boundaries Robert Oeckl Instituto de Matemáticas UNAM, Morelia International Loop Quantum Gravity Seminar 17 October 2006 Outline 1 Interpretational problems

More information

Panel Discussion on: Recovering Low Energy Physics

Panel Discussion on: Recovering Low Energy Physics p. Panel Discussion on: Recovering Low Energy Physics Abhay Ashtekar, Laurent Freidel, Carlo Rovelli Continuation of the discussion on semi-classical issues from two weeks ago following John Barret s talk.

More information

COLOR AND ISOSPIN WAVES FROM TETRAHEDRAL SHUBNIKOV GROUPS

COLOR AND ISOSPIN WAVES FROM TETRAHEDRAL SHUBNIKOV GROUPS 11/2012 COLOR AND ISOSPIN WAVES FROM TETRAHEDRAL SHUBNIKOV GROUPS Bodo Lampe Abstract This note supplements a recent article [1] in which it was pointed out that the observed spectrum of quarks and leptons

More information

BF Theory and Spinfoam Models

BF Theory and Spinfoam Models BF Theory and Spinfoam Models Max Dohse Max Dohse (IMUNAM Morelia) QG Seminar 09.05.2008 1 / 63 Literature: talk closely follows J. Baez paper: An Introduction to Spin Foam Models of BF Theory and Quantum

More information

Finite temperature form factors in the free Majorana theory

Finite temperature form factors in the free Majorana theory Finite temperature form factors in the free Majorana theory Benjamin Doyon Rudolf Peierls Centre for Theoretical Physics, Oxford University, UK supported by EPSRC postdoctoral fellowship hep-th/0506105

More information

Quantum Field Theory. Kerson Huang. Second, Revised, and Enlarged Edition WILEY- VCH. From Operators to Path Integrals

Quantum Field Theory. Kerson Huang. Second, Revised, and Enlarged Edition WILEY- VCH. From Operators to Path Integrals Kerson Huang Quantum Field Theory From Operators to Path Integrals Second, Revised, and Enlarged Edition WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA I vh Contents Preface XIII 1 Introducing Quantum Fields

More information

Outline 1. Introduction 1.1. Historical Overview 1.2. The Theory 2. The Relativistic String 2.1. Set Up 2.2. The Relativistic Point Particle 2.3. The

Outline 1. Introduction 1.1. Historical Overview 1.2. The Theory 2. The Relativistic String 2.1. Set Up 2.2. The Relativistic Point Particle 2.3. The Classical String Theory Proseminar in Theoretical Physics David Reutter ETH Zürich April 15, 2013 Outline 1. Introduction 1.1. Historical Overview 1.2. The Theory 2. The Relativistic String 2.1. Set Up

More information

1 Polyakov path integral and BRST cohomology

1 Polyakov path integral and BRST cohomology Week 7 Reading material from the books Polchinski, Chapter 3,4 Becker, Becker, Schwartz, Chapter 3 Green, Schwartz, Witten, chapter 3 1 Polyakov path integral and BRST cohomology We need to discuss now

More information

Generalized GFT Condensates and Cosmology

Generalized GFT Condensates and Cosmology Generalized GFT Condensates and Cosmology Lorenzo Sindoni MPI für Gravitationsphysik (Albert Einstein Institute) Potsdam/Golm, Germany in collaboration with D. Oriti, D. Pranzetti and J. Ryan 1501.00936

More information

-state problems and an application to the free particle

-state problems and an application to the free particle -state problems and an application to the free particle Sourendu Gupta TIFR, Mumbai, India Quantum Mechanics 1 2013 3 September, 2013 Outline 1 Outline 2 The Hilbert space 3 A free particle 4 Keywords

More information

LQG, the signature-changing Poincaré algebra and spectral dimension

LQG, the signature-changing Poincaré algebra and spectral dimension LQG, the signature-changing Poincaré algebra and spectral dimension Tomasz Trześniewski Institute for Theoretical Physics, Wrocław University, Poland / Institute of Physics, Jagiellonian University, Poland

More information

Problem Set No. 3: Canonical Quantization Due Date: Wednesday October 19, 2018, 5:00 pm. 1 Spin waves in a quantum Heisenberg antiferromagnet

Problem Set No. 3: Canonical Quantization Due Date: Wednesday October 19, 2018, 5:00 pm. 1 Spin waves in a quantum Heisenberg antiferromagnet Physics 58, Fall Semester 018 Professor Eduardo Fradkin Problem Set No. 3: Canonical Quantization Due Date: Wednesday October 19, 018, 5:00 pm 1 Spin waves in a quantum Heisenberg antiferromagnet In this

More information

Théorie des cordes: quelques applications. Cours II: 4 février 2011

Théorie des cordes: quelques applications. Cours II: 4 février 2011 Particules Élémentaires, Gravitation et Cosmologie Année 2010-11 Théorie des cordes: quelques applications Cours II: 4 février 2011 Résumé des cours 2009-10: deuxième partie 04 février 2011 G. Veneziano,

More information

Canonical Quantization

Canonical Quantization Canonical Quantization March 6, 06 Canonical quantization of a particle. The Heisenberg picture One of the most direct ways to quantize a classical system is the method of canonical quantization introduced

More information

Observer dependent background geometries arxiv:

Observer dependent background geometries arxiv: Observer dependent background geometries arxiv:1403.4005 Manuel Hohmann Laboratory of Theoretical Physics Physics Institute University of Tartu DPG-Tagung Berlin Session MP 4 18. März 2014 Manuel Hohmann

More information

Summary of free theory: one particle state: vacuum state is annihilated by all a s: then, one particle state has normalization:

Summary of free theory: one particle state: vacuum state is annihilated by all a s: then, one particle state has normalization: The LSZ reduction formula based on S-5 In order to describe scattering experiments we need to construct appropriate initial and final states and calculate scattering amplitude. Summary of free theory:

More information

QFT Perturbation Theory

QFT Perturbation Theory QFT Perturbation Theory Ling-Fong Li (Institute) Slide_04 1 / 43 Interaction Theory As an illustration, take electromagnetic interaction. Lagrangian density is The combination L = ψ (x ) γ µ ( i µ ea µ

More information

On a Derivation of the Dirac Hamiltonian From a Construction of Quantum Gravity

On a Derivation of the Dirac Hamiltonian From a Construction of Quantum Gravity On a Derivation of the Dirac Hamiltonian From a Construction of Quantum Gravity Johannes Aastrup a1, Jesper Møller Grimstrup b2 & Mario Paschke c3 arxiv:1003.3802v1 [hep-th] 19 Mar 2010 a Mathematisches

More information

MP463 QUANTUM MECHANICS

MP463 QUANTUM MECHANICS MP463 QUANTUM MECHANICS Introduction Quantum theory of angular momentum Quantum theory of a particle in a central potential - Hydrogen atom - Three-dimensional isotropic harmonic oscillator (a model of

More information

Universe with cosmological constant in Loop Quantum Cosmology

Universe with cosmological constant in Loop Quantum Cosmology Universe with cosmological constant in Loop Quantum Cosmology IGC INAUGURAL CONFERENCE, PENN STATE, AUG 9-11 27 Tomasz Pawlowski (work by Abhay Ashtekar, Eloisa Bentivegna, TP) p.1 Purpose of the talk

More information

Contravariant and Covariant as Transforms

Contravariant and Covariant as Transforms Contravariant and Covariant as Transforms There is a lot more behind the concepts of contravariant and covariant tensors (of any rank) than the fact that their basis vectors are mutually orthogonal to

More information

Path Integral for Spin

Path Integral for Spin Path Integral for Spin Altland-Simons have a good discussion in 3.3 Applications of the Feynman Path Integral to the quantization of spin, which is defined by the commutation relations [Ŝj, Ŝk = iɛ jk

More information

Causal RG equation for Quantum Einstein Gravity

Causal RG equation for Quantum Einstein Gravity Causal RG equation for Quantum Einstein Gravity Stefan Rechenberger Uni Mainz 14.03.2011 arxiv:1102.5012v1 [hep-th] with Elisa Manrique and Frank Saueressig Stefan Rechenberger (Uni Mainz) Causal RGE for

More information

arxiv: v1 [gr-qc] 5 Apr 2014

arxiv: v1 [gr-qc] 5 Apr 2014 Quantum Holonomy Theory Johannes Aastrup a1 & Jesper Møller Grimstrup 2 a Mathematisches Institut, Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany. arxiv:1404.1500v1 [gr-qc] 5 Apr 2014

More information

8 Symmetries and the Hamiltonian

8 Symmetries and the Hamiltonian 8 Symmetries and the Hamiltonian Throughout the discussion of black hole thermodynamics, we have always assumed energy = M. Now we will introduce the Hamiltonian formulation of GR and show how to define

More information

(Quantum) Fields on Causal Sets

(Quantum) Fields on Causal Sets (Quantum) Fields on Causal Sets Michel Buck Imperial College London July 31, 2013 1 / 32 Outline 1. Causal Sets: discrete gravity 2. Continuum-Discrete correspondence: sprinklings 3. Relativistic fields

More information

On a non-cp-violating electric dipole moment of elementary. particles. J. Giesen, Institut fur Theoretische Physik, Bunsenstrae 9, D Gottingen

On a non-cp-violating electric dipole moment of elementary. particles. J. Giesen, Institut fur Theoretische Physik, Bunsenstrae 9, D Gottingen On a non-cp-violating electric dipole moment of elementary particles J. Giesen, Institut fur Theoretische Physik, Bunsenstrae 9, D-3773 Gottingen (e-mail: giesentheo-phys.gwdg.de) bstract description of

More information

Cluster Properties and Relativistic Quantum Mechanics

Cluster Properties and Relativistic Quantum Mechanics Cluster Properties and Relativistic Quantum Mechanics Wayne Polyzou polyzou@uiowa.edu The University of Iowa Cluster Properties p.1/45 Why is quantum field theory difficult? number of degrees of freedom.

More information

By following steps analogous to those that led to (20.177), one may show (exercise 20.30) that in Feynman s gauge, = 1, the photon propagator is

By following steps analogous to those that led to (20.177), one may show (exercise 20.30) that in Feynman s gauge, = 1, the photon propagator is 20.2 Fermionic path integrals 74 factor, which cancels. But if before integrating over all gauge transformations, we shift so that 4 changes to 4 A 0, then the exponential factor is exp[ i 2 R ( A 0 4

More information

Lecture 12. The harmonic oscillator

Lecture 12. The harmonic oscillator Lecture 12 The harmonic oscillator 107 108 LECTURE 12. THE HARMONIC OSCILLATOR 12.1 Introduction In this chapter, we are going to find explicitly the eigenfunctions and eigenvalues for the time-independent

More information

1.3 Translational Invariance

1.3 Translational Invariance 1.3. TRANSLATIONAL INVARIANCE 7 Version of January 28, 2005 Thus the required rotational invariance statement is verified: [J, H] = [L + 1 Σ, H] = iα p iα p = 0. (1.49) 2 1.3 Translational Invariance One

More information

Vector Fields. It is standard to define F µν = µ ϕ ν ν ϕ µ, so that the action may be written compactly as

Vector Fields. It is standard to define F µν = µ ϕ ν ν ϕ µ, so that the action may be written compactly as Vector Fields The most general Poincaré-invariant local quadratic action for a vector field with no more than first derivatives on the fields (ensuring that classical evolution is determined based on the

More information

Linear Algebra and Dirac Notation, Pt. 1

Linear Algebra and Dirac Notation, Pt. 1 Linear Algebra and Dirac Notation, Pt. 1 PHYS 500 - Southern Illinois University February 1, 2017 PHYS 500 - Southern Illinois University Linear Algebra and Dirac Notation, Pt. 1 February 1, 2017 1 / 13

More information

Yasu Kawahigashi ( ) the University of Tokyo/Kavli IPMU (WPI) Kyoto, July 2013

Yasu Kawahigashi ( ) the University of Tokyo/Kavli IPMU (WPI) Kyoto, July 2013 .. Operator Algebras and Conformal Field Theory Yasu Kawahigashi ( ) the University of Tokyo/Kavli IPMU (WPI) Kyoto, July 2013 Yasu Kawahigashi (Tokyo) OA and CFT Kyoto, July 2013 1 / 17 Operator algebraic

More information

A loop quantum multiverse?

A loop quantum multiverse? Space-time structure p. 1 A loop quantum multiverse? Martin Bojowald The Pennsylvania State University Institute for Gravitation and the Cosmos University Park, PA arxiv:1212.5150 Space-time structure

More information

Quantization of a Scalar Field

Quantization of a Scalar Field Quantization of a Scalar Field Required reading: Zwiebach 0.-4,.4 Suggested reading: Your favorite quantum text Any quantum field theory text Quantizing a harmonic oscillator: Let s start by reviewing

More information