Adversarially Robust Optimization and Generalization

Size: px
Start display at page:

Download "Adversarially Robust Optimization and Generalization"

Transcription

1 Adversarially Robust Optimization and Generalization Ludwig Schmidt MIT UC Berkeley Based on joint works with Logan ngstrom (MIT), Aleksander Madry (MIT), Aleksandar Makelov (MIT), Dimitris Tsipras (MIT), Kunal Talwar (Google), and Adrian Vladu (Boston University).

2 Recent Progress in ML

3 Recent Progress in ML Have we really achieved human-level performance?

4 Lack of Robustness Adversarial xamples [Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru rhan, Ian Goodfellow, Rob Fergus, 2014] [Athalye, ngstrom, Ilyas, Kwok, 2017]

5 Lack of Robustness Adversarial xamples [Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru rhan, Ian Goodfellow, Rob Fergus, 2014] [Athalye, ngstrom, Ilyas, Kwok, 2017] Translations + rotations (shifts by <10% pixels, <30 rotations) CIFAR10: 93% 8% accuracy ImageNet: 76% 31% accuracy [ngstrom, Tsipras, Schmidt, Madry, 2017]

6 Standard Generalization Adversarially Robust Generalization [ loss(x, )]

7 Standard Generalization Adversarially Robust Generalization [ loss(x, )] Adversarially Robust Generalization apple Perturbation set: rotations, translations, small perturbations, `1

8 Standard Generalization Adversarially Robust Generalization [ loss(x, )] Adversarially Robust Generalization apple Perturbation set: rotations, translations, small perturbations, `1 What is the right set of perturbations? This talk: assume the set P is given.

9 Long History

10 Why This Guarantee? apple

11 Why This Guarantee? apple If a classifier satisfies this property, we avoid arms races. JSMA Defensive Distillation Tuned JSMA [Papernot et al. 15], [Papernot et al. 16], [Carlini et al. 17] FGSM Feature Squeezing, nsembles Tuned Lagrange [Goodfellow et al. 15], [Abbasi et al. 17], [Xu et al. 17]; [He et al. 17]

12 How Can We Get There? apple

13 How Can We Get There? apple Standard image classifiers do not satisfy this property.

14 How Can We Get There? apple Standard image classifiers do not satisfy this property. How does robustness affect optimization and sample complexity?

15 Robust Optimization Main problem: min apple [Madry, Makelov, Schmidt, Tsipras, Vladu, 2017]

16 Robust Optimization Main problem: min apple [Madry, Makelov, Schmidt, Tsipras, Vladu, 2017]

17 Robust Optimization Main problem: apple min Convert to empirical risk: min nx i=1 x 0 2P (x i ) [Madry, Makelov, Schmidt, Tsipras, Vladu, 2017]

18 Robust Optimization Main problem: apple min Convert to empirical risk: min nx i=1 x 0 2P (x i ) min part: run SGD [Madry, Makelov, Schmidt, Tsipras, Vladu, 2017]

19 Robust Optimization Main problem: apple min Convert to empirical risk: min nx i=1 x 0 2P (x i ) min part: run SGD How do we get gradients for the inner max? [Madry, Makelov, Schmidt, Tsipras, Vladu, 2017]

20 Good Gradients = Good Attacks Danskin s Theorem Simplified, but holds for non-convex losses: Let x( ) = max loss(x 0, ) and let be a constrained maximizer of loss(, ). Then x r x ( ) = r loss(x, )

21 Good Gradients = Good Attacks Danskin s Theorem Simplified, but holds for non-convex losses: Let x( ) = max loss(x 0, ) and let be a constrained maximizer of loss(, ). Then x r x ( ) = r loss(x, ) Overall algorithm: adversarial training. Principled approach for min apple

22 Good Gradients = Good Attacks Danskin s Theorem Simplified, but holds for non-convex losses: Let x( ) = max loss(x 0, ) and let be a constrained maximizer of loss(, ). Then x r x ( ) = r loss(x, ) Overall algorithm: adversarial training. Principled approach for min Crucial point: need to find the best possible attack. apple

23 Is There Any Hope? Non-concave maximization problem. FGSM (single gradient) PGD (100 steps with η=0.3) Transfer FGSM Transfer PGD

24 Is There Any Hope? Non-concave maximization problem. FGSM (single gradient) PGD (100 steps with η=0.3) Transfer FGSM Transfer PGD xplains failure of FGSM

25 Loss Landscape xplore loss surface with randomly restarted PGD (100k trials): Many local maxima, but loss values concentrate.

26 Results: Robust Classifiers? Results MNIST (eps = 0.3): 90% accuracy vs white-box 93% accuracy vs black-box CIFAR10 (eps = 8): 46% accuracy vs white-box 63% accuracy vs black-box

27 Results: Robust Classifiers? Results MNIST (eps = 0.3): 90% accuracy vs white-box 93% accuracy vs black-box CIFAR10 (eps = 8): 46% accuracy vs white-box 63% accuracy vs black-box Public challenges since June (see github). Top black-box attacks 92.8% Generating Adversarial xamples with Adversarial Networks 93.5% PGD against three copies of the network (Florian Tramer)

28 What About CIFAR10?

29 What About CIFAR10? Optimization succeeds, but the model overfits on CIFAR10: 100% train adv. accuracy, but only 48% on test.

30 Robust Generalization Does robustness require more data? Theorem (informal): There is a distribution over points in R d with the following property: Learning a p classifier for this distribution requires d than learning a non-robust classifier. `1 robust linear more samples

31 Conclusions Robust generalization is a prerequisite for secure ML. Adversarial training (a.k.a. robust optimization) with strong enough attacks is a principled defense. Optimization is only half of the picture: We need to take care of adversarially robust generalization too

32 Questions What robustness guarantees should ML-based systems provide? Are there trade-offs between robust and standard generalization? What compromises in mathematical rigor are acceptable? How can we verify ML-based systems?

Towards ML You Can Rely On. Aleksander Mądry

Towards ML You Can Rely On. Aleksander Mądry Towards ML You Can Rely On Aleksander Mądry @aleks_madry madry-lab.ml Machine Learning: The Success Story? Image classification Reinforcement Learning Machine translation Machine Learning: The Success

More information

TOWARDS DEEP LEARNING MODELS RESISTANT TO ADVERSARIAL ATTACKS

TOWARDS DEEP LEARNING MODELS RESISTANT TO ADVERSARIAL ATTACKS Published as a conference paper at ICLR 8 TOWARDS DEEP LEARNING MODELS RESISTANT TO ADVERSARIAL ATTACKS Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, Adrian Vladu Department of

More information

Reinforcing Adversarial Robustness using Model Confidence Induced by Adversarial Training

Reinforcing Adversarial Robustness using Model Confidence Induced by Adversarial Training Reinforcing Adversarial Robustness using Model Confidence Induced by Adversarial Training Xi Wu * 1 Uyeong Jang * 2 Jiefeng Chen 2 Lingjiao Chen 2 Somesh Jha 2 Abstract In this paper we study leveraging

More information

arxiv: v1 [stat.ml] 27 Nov 2018

arxiv: v1 [stat.ml] 27 Nov 2018 Robust Classification of Financial Risk arxiv:1811.11079v1 [stat.ml] 27 Nov 2018 Suproteem K. Sarkar suproteemsarkar@g.harvard.edu Daniel Giebisch * danielgiebisch@college.harvard.edu Abstract Kojin Oshiba

More information

Reinforcing Adversarial Robustness using Model Confidence Induced by Adversarial Training

Reinforcing Adversarial Robustness using Model Confidence Induced by Adversarial Training Reinforcing Adversarial Robustness using Model Confidence Induced by Adversarial Training Xi Wu * 1 Uyeong Jang * 2 Jiefeng Chen 2 Lingjiao Chen 2 Somesh Jha 2 Abstract In this paper we study leveraging

More information

arxiv: v1 [cs.lg] 6 Dec 2018

arxiv: v1 [cs.lg] 6 Dec 2018 Max-Margin Adversarial (MMA) Training: Direct Input Space Margin Maximization through Adversarial Training Gavin Weiguang Ding, Yash Sharma, Kry Yik Chau Lui, and Ruitong Huang Borealis AI arxiv:1812.02637v1

More information

UNIVERSALITY, ROBUSTNESS, AND DETECTABILITY

UNIVERSALITY, ROBUSTNESS, AND DETECTABILITY UNIVERSALITY, ROBUSTNESS, AND DETECTABILITY OF ADVERSARIAL PERTURBATIONS UNDER ADVER- SARIAL TRAINING Anonymous authors Paper under double-blind review ABSTRACT Classifiers such as deep neural networks

More information

arxiv: v1 [cs.lg] 15 Nov 2017 ABSTRACT

arxiv: v1 [cs.lg] 15 Nov 2017 ABSTRACT THE BEST DEFENSE IS A GOOD OFFENSE: COUNTERING BLACK BOX ATTACKS BY PREDICTING SLIGHTLY WRONG LABELS Yannic Kilcher Department of Computer Science ETH Zurich yannic.kilcher@inf.ethz.ch Thomas Hofmann Department

More information

ENSEMBLE METHODS AS A DEFENSE TO ADVERSAR-

ENSEMBLE METHODS AS A DEFENSE TO ADVERSAR- ENSEMBLE METHODS AS A DEFENSE TO ADVERSAR- IAL PERTURBATIONS AGAINST DEEP NEURAL NET- WORKS Anonymous authors Paper under double-blind review ABSTRACT Deep learning has become the state of the art approach

More information

SSCNets A Selective Sobel Convolution-based Technique to Enhance the Robustness of Deep Neural Networks against Security Attacks

SSCNets A Selective Sobel Convolution-based Technique to Enhance the Robustness of Deep Neural Networks against Security Attacks A Selective Sobel Convolution-based Technique to Enhance the Robustness of Deep Neural Networks against Security Attacks Hammad Tariq*, Hassan Ali*, Muhammad Abdullah Hanif, Faiq Khalid, Semeen Rehman,

More information

ADVERSARIAL SPHERES ABSTRACT 1 INTRODUCTION. Workshop track - ICLR 2018

ADVERSARIAL SPHERES ABSTRACT 1 INTRODUCTION. Workshop track - ICLR 2018 ADVERSARIAL SPHERES Justin Gilmer, Luke Metz, Fartash Faghri, Samuel S. Schoenholz, Maithra Raghu, Martin Wattenberg, & Ian Goodfellow Google Brain {gilmer,lmetz,schsam,maithra,wattenberg,goodfellow}@google.com

More information

arxiv: v3 [cs.cv] 10 Sep 2018

arxiv: v3 [cs.cv] 10 Sep 2018 The Relationship Between High-Dimensional Geometry and Adversarial Examples arxiv:1801.02774v3 [cs.cv] 10 Sep 2018 Justin Gilmer, Luke Metz, Fartash Faghri, Samuel S. Schoenholz, Maithra Raghu, Martin

More information

ON THE SENSITIVITY OF ADVERSARIAL ROBUSTNESS

ON THE SENSITIVITY OF ADVERSARIAL ROBUSTNESS ON THE SENSITIVITY OF ADVERSARIAL ROBUSTNESS TO INPUT DATA DISTRIBUTIONS Anonymous authors Paper under double-blind review ABSTRACT Neural networks are vulnerable to small adversarial perturbations. Existing

More information

arxiv: v1 [cs.lg] 30 Oct 2018

arxiv: v1 [cs.lg] 30 Oct 2018 On the Effectiveness of Interval Bound Propagation for Training Verifiably Robust Models arxiv:1810.12715v1 [cs.lg] 30 Oct 2018 Sven Gowal sgowal@google.com Rudy Bunel University of Oxford rudy@robots.ox.ac.uk

More information

QuSecNets: Quantization-based Defense Mechanism for Securing Deep Neural Network against Adversarial Attacks

QuSecNets: Quantization-based Defense Mechanism for Securing Deep Neural Network against Adversarial Attacks QuSecNets: Quantization-based Defense Mechanism for Securing Deep Neural Network against Hassan Ali *, Hammad Tariq *, Muhammad Abdullah Hanif, Faiq Khalid, Semeen Rehman, Rehan Ahmed * and Muhammad Shafique

More information

Limitations of the Lipschitz constant as a defense against adversarial examples

Limitations of the Lipschitz constant as a defense against adversarial examples Limitations of the Lipschitz constant as a defense against adversarial examples Todd Huster, Cho-Yu Jason Chiang, and Ritu Chadha Perspecta Labs, Basking Ridge, NJ 07920, USA. thuster@perspectalabs.com

More information

ECE 595: Machine Learning I Adversarial Attack 1

ECE 595: Machine Learning I Adversarial Attack 1 ECE 595: Machine Learning I Adversarial Attack 1 Spring 2019 Stanley Chan School of Electrical and Computer Engineering Purdue University 1 / 32 Outline Examples of Adversarial Attack Basic Terminology

More information

arxiv: v1 [cs.lg] 8 Nov 2018

arxiv: v1 [cs.lg] 8 Nov 2018 A Geometric Perspective on the Transferability of Adversarial Directions Zachary Charles, Harrison Rosenberg, and Dimitris Papailiopoulos zcharles@wisc.edu hrosenberg@ece.wisc.edu dimitris@papail.io arxiv:1811.03531v1

More information

ECE 595: Machine Learning I Adversarial Attack 1

ECE 595: Machine Learning I Adversarial Attack 1 ECE 595: Machine Learning I Adversarial Attack 1 Spring 2019 Stanley Chan School of Electrical and Computer Engineering Purdue University 1 / 32 Outline Examples of Adversarial Attack Basic Terminology

More information

arxiv: v2 [stat.ml] 20 Nov 2017

arxiv: v2 [stat.ml] 20 Nov 2017 : Elastic-Net Attacks to Deep Neural Networks via Adversarial Examples Pin-Yu Chen1, Yash Sharma2, Huan Zhang3, Jinfeng Yi4, Cho-Jui Hsieh3 1 arxiv:1709.04114v2 [stat.ml] 20 Nov 2017 AI Foundations Lab,

More information

Adversarial Examples Generation and Defense Based on Generative Adversarial Network

Adversarial Examples Generation and Defense Based on Generative Adversarial Network Adversarial Examples Generation and Defense Based on Generative Adversarial Network Fei Xia (06082760), Ruishan Liu (06119690) December 15, 2016 1 Abstract We propose a novel generative adversarial network

More information

EAD: Elastic-Net Attacks to Deep Neural Networks via Adversarial Examples

EAD: Elastic-Net Attacks to Deep Neural Networks via Adversarial Examples EAD: Elastic-Net Attacks to Deep Neural Networks via Adversarial Examples Pin-Yu Chen1, Yash Sharma2, Huan Zhang3, Jinfeng Yi4, Cho-Jui Hsieh3 1 AI Foundations Lab, IBM T. J. Watson Research Center, Yorktown

More information

Max-Margin Adversarial (MMA) Training: Direct Input Space Margin Maximization through Adversarial Training

Max-Margin Adversarial (MMA) Training: Direct Input Space Margin Maximization through Adversarial Training Max-Margin Adversarial (MMA) Training: Direct Input Space Margin Maximization through Adversarial Training Gavin Weiguang Ding, Yash Sharma, Kry Yik Chau Lui, and Ruitong Huang Borealis AI arxiv:1812.02637v2

More information

arxiv: v1 [cs.cv] 27 Nov 2018

arxiv: v1 [cs.cv] 27 Nov 2018 Universal Adversarial Training arxiv:1811.11304v1 [cs.cv] 27 Nov 2018 Ali Shafahi ashafahi@cs.umd.edu Abstract Mahyar Najibi najibi@cs.umd.edu Larry S. Davis lsd@umiacs.umd.edu Standard adversarial attacks

More information

arxiv: v3 [cs.cv] 20 Dec 2018

arxiv: v3 [cs.cv] 20 Dec 2018 Deep Defense: Training DNNs with Improved Adversarial Robustness arxiv:1803.00404v3 [cs.cv] 0 Dec 018 Ziang Yan 1* Yiwen Guo,1* Changshui Zhang 1 1 Institute for Artificial Intelligence, Tsinghua University

More information

arxiv: v1 [stat.ml] 15 Mar 2018

arxiv: v1 [stat.ml] 15 Mar 2018 Large Margin Deep Networks for Classification arxiv:1803.05598v1 [stat.ml] 15 Mar 2018 Gamaleldin F. Elsayed Dilip Krishnan Hossein Mobahi Kevin Regan Samy Bengio Google Research {gamaleldin,dilipkay,hmobahi,kevinregan,bengio}@google.com

More information

arxiv: v1 [cs.cv] 20 Feb 2018

arxiv: v1 [cs.cv] 20 Feb 2018 On Lyapunov exponents and adversarial perturbations Vinay Uday Prabhu UnifyID Inc San Francisco, 94107 vinay@unify.id Nishant Desai UnifyID Inc San Francisco, 94107 nishant@unify.id John Whaley UnifyID

More information

arxiv: v3 [cs.lg] 8 Jun 2018

arxiv: v3 [cs.lg] 8 Jun 2018 Provable Defenses against Adversarial Examples via the Convex Outer Adversarial Polytope Eric Wong 1 J. Zico Kolter 2 arxiv:1711.00851v3 [cs.lg] 8 Jun 2018 Abstract We propose a method to learn deep ReLU-based

More information

Measuring the Robustness of Neural Networks via Minimal Adversarial Examples

Measuring the Robustness of Neural Networks via Minimal Adversarial Examples Measuring the Robustness of Neural Networks via Minimal Adversarial Examples Sumanth Dathathri sdathath@caltech.edu Stephan Zheng stephan@caltech.edu Sicun Gao sicung@ucsd.edu Richard M. Murray murray@cds.caltech.edu

More information

arxiv: v1 [cs.lg] 30 Jan 2019

arxiv: v1 [cs.lg] 30 Jan 2019 A Simple Explanation for the Existence of Adversarial Examples with Small Hamming Distance Adi Shamir 1, Itay Safran 1, Eyal Ronen 2, and Orr Dunkelman 3 arxiv:1901.10861v1 [cs.lg] 30 Jan 2019 1 Computer

More information

arxiv: v1 [cs.lg] 24 Jan 2019

arxiv: v1 [cs.lg] 24 Jan 2019 Cross-Entropy Loss and Low-Rank Features Have Responsibility for Adversarial Examples Kamil Nar Orhan Ocal S. Shankar Sastry Kannan Ramchandran arxiv:90.08360v [cs.lg] 24 Jan 209 Abstract State-of-the-art

More information

Notes on Adversarial Examples

Notes on Adversarial Examples Notes on Adversarial Examples David Meyer dmm@{1-4-5.net,uoregon.edu,...} March 14, 2017 1 Introduction The surprising discovery of adversarial examples by Szegedy et al. [6] has led to new ways of thinking

More information

arxiv: v3 [cs.lg] 22 Mar 2018

arxiv: v3 [cs.lg] 22 Mar 2018 arxiv:1710.06081v3 [cs.lg] 22 Mar 2018 Boosting Adversarial Attacks with Momentum Yinpeng Dong1, Fangzhou Liao1, Tianyu Pang1, Hang Su1, Jun Zhu1, Xiaolin Hu1, Jianguo Li2 1 Department of Computer Science

More information

Large Margin Deep Networks for Classification

Large Margin Deep Networks for Classification Large Margin Deep Networks for Classification Gamaleldin F. Elsayed Google Research Dilip Krishnan Google Research Hossein Mobahi Google Research Kevin Regan Google Research Samy Bengio Google Research

More information

LEARNING WITH A STRONG ADVERSARY

LEARNING WITH A STRONG ADVERSARY LEARNING WITH A STRONG ADVERSARY Ruitong Huang, Bing Xu, Dale Schuurmans and Csaba Szepesvári Department of Computer Science University of Alberta Edmonton, AB T6G 2E8, Canada {ruitong,bx3,daes,szepesva}@ualberta.ca

More information

A DIRECT APPROACH TO ROBUST DEEP LEARNING USING ADVERSARIAL NETWORKS

A DIRECT APPROACH TO ROBUST DEEP LEARNING USING ADVERSARIAL NETWORKS A DIRECT APPROACH TO ROBUST DEEP LEARNING USING ADVERSARIAL NETWORKS Anonymous authors Paper under double-blind review ABSTRACT Deep neural networks have been shown to perform well in many classical machine

More information

arxiv: v1 [stat.ml] 31 Jan 2018

arxiv: v1 [stat.ml] 31 Jan 2018 EVALUATING THE ROBUSTNESS OF NEURAL NET- WORKS: AN EXTREME VALUE THEORY APPROACH arxiv:1801.10578v1 [stat.ml] 31 Jan 2018 Tsui-Wei Weng 1, Huan Zhang 2, Pin-Yu Chen 3, Jinfeng Yi 4, Dong Su 3, Yupeng Gao

More information

Adversarial Examples

Adversarial Examples Adversarial Examples presentation by Ian Goodfellow Deep Learning Summer School Montreal August 9, 2015 In this presentation. - Intriguing Properties of Neural Networks. Szegedy et al., ICLR 2014. - Explaining

More information

Neural Networks in an Adversarial Setting and Ill-Conditioned Weight Space

Neural Networks in an Adversarial Setting and Ill-Conditioned Weight Space Neural Networks in an Adversarial Setting and Ill-Conditioned Weight Space Abhishek Sinha 1 [0000 0002 3598 480X], Mayank Singh 1 [0000 0001 7261 6347], and Balaji Krishnamurthy 1[0000 0003 0464 536X]

More information

Differentiable Abstract Interpretation for Provably Robust Neural Networks

Differentiable Abstract Interpretation for Provably Robust Neural Networks Matthew Mirman 1 Timon Gehr 1 Martin Vechev 1 Abstract We introduce a scalable method for training robust neural networks based on abstract interpretation. We present several abstract transformers which

More information

DCN: Detector-Corrector Network Against Evasion Attacks on Deep Neural Networks

DCN: Detector-Corrector Network Against Evasion Attacks on Deep Neural Networks DCN: Detector-Corrector Network Against Evasion Attacks on Deep Neural Networks Jing Wen Dept. of Computer Science The University of Hong Kong Email: jwen@cs.hku.hk Lucas C.K. Hui Hong Kong Applied Science

More information

arxiv: v2 [stat.ml] 4 Dec 2018

arxiv: v2 [stat.ml] 4 Dec 2018 Large Margin Deep Networks for Classification Gamaleldin F. Elsayed Google Research Dilip Krishnan Google Research Hossein Mobahi Google Research Kevin Regan Google Research arxiv:1803.05598v2 [stat.ml]

More information

arxiv: v3 [cs.ne] 10 Mar 2017

arxiv: v3 [cs.ne] 10 Mar 2017 ROBUSTNESS TO ADVERSARIAL EXAMPLES THROUGH AN ENSEMBLE OF SPECIALISTS Mahdieh Abbasi & Christian Gagné Computer Vision and Systems Laboratory, Electrical and Computer Engineering Department Université

More information

AD V-BNN: IMPROVED ADVERSARIAL DEFENSE THROUGH ROBUST BAYESIAN NEURAL NETWORK

AD V-BNN: IMPROVED ADVERSARIAL DEFENSE THROUGH ROBUST BAYESIAN NEURAL NETWORK AD V-BNN: IMPROVED ADVERSARIAL DEFENSE THROUGH ROBUST BAYESIAN NEURAL NETWORK Xuanqing Liu 1, Yao Li 2,, Chongruo Wu 3, & Cho-Jui Hsieh 1 1 : Department of Computer Science, UCLA {xqliu,choheish}@cs.ucla.edu

More information

arxiv: v1 [cs.lg] 3 Jan 2018

arxiv: v1 [cs.lg] 3 Jan 2018 Neural Networks in Adversarial Setting and Ill-Conditioned Weight Space Mayank Singh 1, Abhishek Sinha 1, and Balaji Krishnamurthy 1 1 Adobe Systems Inc, Noida, India arxiv:1801.00905v1 [cs.lg] 3 Jan 2018

More information

Distirbutional robustness, regularizing variance, and adversaries

Distirbutional robustness, regularizing variance, and adversaries Distirbutional robustness, regularizing variance, and adversaries John Duchi Based on joint work with Hongseok Namkoong and Aman Sinha Stanford University November 2017 Motivation We do not want machine-learned

More information

arxiv: v1 [cs.lg] 30 Nov 2018

arxiv: v1 [cs.lg] 30 Nov 2018 Adversarial Examples as an Input-Fault Tolerance Problem Angus Galloway 1,2, Anna Golubeva 3,4, and Graham W. Taylor 1,2 arxiv:1811.12601v1 [cs.lg] Nov 2018 1 School of Engineering, University of Guelph

More information

Universal Adversarial Networks

Universal Adversarial Networks 1 Universal Adversarial Networks Jamie Hayes University College London j.hayes@cs.ucl.ac.uk Abstract Neural networks are known to be vulnerable to adversarial examples, inputs that have been intentionally

More information

Adversarial Risk and Robustness: General Definitions and Implications for the Uniform Distribution

Adversarial Risk and Robustness: General Definitions and Implications for the Uniform Distribution Adversarial Risk and Robustness: General Definitions and Implications for the Uniform Distribution Dimitrios I. Diochnos University of Virginia diochnos@virginia.edu Saeed Mahloujifar University of Virginia

More information

arxiv: v1 [cs.lg] 2 Nov 2018

arxiv: v1 [cs.lg] 2 Nov 2018 Semidefinite relaxations for certifying robustness to adversarial examples arxiv:1811.01057v1 [cs.lg] 2 Nov 2018 Aditi Raghunathan, Jacob Steinhardt and Percy Liang Stanford University {aditir, jsteinhardt,

More information

Max-Mahalanobis Linear Discriminant Analysis Networks

Max-Mahalanobis Linear Discriminant Analysis Networks Tianyu Pang 1 Chao Du 1 Jun Zhu 1 Abstract A deep neural network (DNN) consists of a nonlinear transformation from an input to a feature representation, followed by a common softmax linear classifier.

More information

TOWARDS THE FIRST ADVERSARIALLY ROBUST

TOWARDS THE FIRST ADVERSARIALLY ROBUST TOWARDS THE FIRST ADVERSARIALLY ROBUST NEURAL NETWORK MODEL ON MNIST Anonymous authors Paper under double-blind review TRACT Despite much effort, deep neural networks remain highly susceptible to tiny

More information

arxiv: v3 [cs.cv] 20 Sep 2018

arxiv: v3 [cs.cv] 20 Sep 2018 TOWARDS THE FIRST ADVERSARIALLY ROBUST NEURAL NETWORK MODEL ON MNIST arxiv:1805.09190v3 [cs.cv] 20 Sep 2018 Lukas Schott 1-3, Jonas Rauber 1-3, Matthias Bethge 1,3,4 & Wieland Brendel 1,3 1 Centre for

More information

arxiv: v1 [cs.lg] 4 Mar 2019

arxiv: v1 [cs.lg] 4 Mar 2019 A Fundamental Performance Limitation for Adversarial Classification Abed AlRahman Al Makdah, Vaibhav Katewa, and Fabio Pasqualetti arxiv:1903.01032v1 [cs.lg] 4 Mar 2019 Abstract Despite the widespread

More information

arxiv: v1 [cs.cv] 2 Aug 2016

arxiv: v1 [cs.cv] 2 Aug 2016 A study of the effect of JPG compression on adversarial images arxiv:1608.00853v1 [cs.cv] 2 Aug 2016 Gintare Karolina Dziugaite Department of Engineering University of Cambridge Daniel M. Roy Department

More information

arxiv: v2 [stat.ml] 23 May 2017 Abstract

arxiv: v2 [stat.ml] 23 May 2017 Abstract The Space of Transferable Adversarial Examples Florian Tramèr 1, Nicolas Papernot 2, Ian Goodfellow 3, Dan Boneh 1, and Patrick McDaniel 2 1 Stanford University, 2 Pennsylvania State University, 3 Google

More information

arxiv: v1 [cs.lg] 26 Feb 2018

arxiv: v1 [cs.lg] 26 Feb 2018 Tianyu Pang 1 Chao Du 1 Jun Zhu 1 arxiv:180.09308v1 [cs.lg] 6 Feb 018 Abstract A deep neural network (DNN) consists of a nonlinear transformation from an input to a feature representation, followed by

More information

On Lyapunov exponents and adversarial perturbations

On Lyapunov exponents and adversarial perturbations On Lyapunov exponents and adversarial perturbations Vinay Uday Prabhu UnifyID Inc San Francisco, 9417 vinay@unify.id John Whaley UnifyID Inc San Francisco, 9417 john@unify.id ABSTRACT In this paper, we

More information

Regularizing Deep Networks Using Efficient Layerwise Adversarial Training

Regularizing Deep Networks Using Efficient Layerwise Adversarial Training Related Work Many approaches have been proposed to regularize the training procedure of very deep networks. Early stopping and statistical techniques like weight decay are commonly used to prevent overfitting.

More information

arxiv: v4 [cs.cr] 27 Jan 2018

arxiv: v4 [cs.cr] 27 Jan 2018 A Learning and Masking Approach to Secure Learning Linh Nguyen, Sky Wang, Arunesh Sinha University of Michigan, Ann Arbor {lvnguyen,skywang,arunesh}@umich.edu arxiv:1709.04447v4 [cs.cr] 27 Jan 2018 ABSTRACT

More information

Is Robustness the Cost of Accuracy? A Comprehensive Study on the Robustness of 18 Deep Image Classification Models

Is Robustness the Cost of Accuracy? A Comprehensive Study on the Robustness of 18 Deep Image Classification Models Is Robustness the Cost of Accuracy? A Comprehensive Study on the Robustness of 18 Deep Image Classification Models Dong Su 1*, Huan Zhang 2*, Hongge Chen 3, Jinfeng Yi 4, Pin-Yu Chen 1, and Yupeng Gao

More information

arxiv: v1 [cs.cv] 21 Jul 2017

arxiv: v1 [cs.cv] 21 Jul 2017 CONFIDENCE ESTIMATION IN DEEP NEURAL NETWORKS VIA DENSITY MODELLING Akshayvarun Subramanya Suraj Srinivas R.Venkatesh Babu Video Analytics Lab, Department of Computational and Data Sciences Indian Institute

More information

Adversarial Noise Attacks of Deep Learning Architectures Stability Analysis via Sparse Modeled Signals

Adversarial Noise Attacks of Deep Learning Architectures Stability Analysis via Sparse Modeled Signals Noname manuscript No. (will be inserted by the editor) Adversarial Noise Attacks of Deep Learning Architectures Stability Analysis via Sparse Modeled Signals Yaniv Romano Aviad Aberdam Jeremias Sulam Michael

More information

A QUANTITATIVE MEASURE OF GENERATIVE ADVERSARIAL NETWORK DISTRIBUTIONS

A QUANTITATIVE MEASURE OF GENERATIVE ADVERSARIAL NETWORK DISTRIBUTIONS A QUANTITATIVE MEASURE OF GENERATIVE ADVERSARIAL NETWORK DISTRIBUTIONS Dan Hendrycks University of Chicago dan@ttic.edu Steven Basart University of Chicago xksteven@uchicago.edu ABSTRACT We introduce a

More information

Classification of Hand-Written Digits Using Scattering Convolutional Network

Classification of Hand-Written Digits Using Scattering Convolutional Network Mid-year Progress Report Classification of Hand-Written Digits Using Scattering Convolutional Network Dongmian Zou Advisor: Professor Radu Balan Co-Advisor: Dr. Maneesh Singh (SRI) Background Overview

More information

Stochastic Variance Reduction for Nonconvex Optimization. Barnabás Póczos

Stochastic Variance Reduction for Nonconvex Optimization. Barnabás Póczos 1 Stochastic Variance Reduction for Nonconvex Optimization Barnabás Póczos Contents 2 Stochastic Variance Reduction for Nonconvex Optimization Joint work with Sashank Reddi, Ahmed Hefny, Suvrit Sra, and

More information

Learning to Attack: Adversarial Transformation Networks

Learning to Attack: Adversarial Transformation Networks Learning to Attack: Adversarial Transformation Networks Shumeet Baluja and Ian Fischer Google Research Google, Inc. Abstract With the rapidly increasing popularity of deep neural networks for image recognition

More information

arxiv: v1 [cs.lg] 9 Oct 2018

arxiv: v1 [cs.lg] 9 Oct 2018 The Adversarial Attack and Detection under the Fisher Information Metric Chenxiao Zhao East China Normal University 51174506043@stu.ecnu.edu.cn P. Thomas Fletcher University of Utah fletcher@sci.utah.edu

More information

Deep Relaxation: PDEs for optimizing Deep Neural Networks

Deep Relaxation: PDEs for optimizing Deep Neural Networks Deep Relaxation: PDEs for optimizing Deep Neural Networks IPAM Mean Field Games August 30, 2017 Adam Oberman (McGill) Thanks to the Simons Foundation (grant 395980) and the hospitality of the UCLA math

More information

Formal Guarantees on the Robustness of a Classifier against Adversarial Manipulation

Formal Guarantees on the Robustness of a Classifier against Adversarial Manipulation Formal Guarantees on the Robustness of a Classifier against Adversarial Manipulation Matthias Hein and Maksym Andriushchenko Department of Mathematics and Computer Science Saarland University, Saarbrücken

More information

EVALUATING ROBUSTNESS OF NEURAL NETWORKS

EVALUATING ROBUSTNESS OF NEURAL NETWORKS EVALUATING ROBUSTNESS OF NEURAL NETWORKS WITH MIXED INTEGER PROGRAMMING Anonymous authors Paper under double-blind review ABSTRACT Neural networks trained only to optimize for training accuracy can often

More information

Importance Reweighting Using Adversarial-Collaborative Training

Importance Reweighting Using Adversarial-Collaborative Training Importance Reweighting Using Adversarial-Collaborative Training Yifan Wu yw4@andrew.cmu.edu Tianshu Ren tren@andrew.cmu.edu Lidan Mu lmu@andrew.cmu.edu Abstract We consider the problem of reweighting a

More information

arxiv: v2 [stat.ml] 21 Feb 2017

arxiv: v2 [stat.ml] 21 Feb 2017 ON DETECTING ADVERSARIAL PERTURBATIONS Jan Hendrik Metzen & Tim Genewein & Volker Fischer & Bastian Bischoff Bosch Center for Artificial Intelligence, Robert Bosch GmbH Robert-Bosch-Campus 1, 71272 Renningen,

More information

Generative Adversarial Networks (GANs) Ian Goodfellow, OpenAI Research Scientist Presentation at Berkeley Artificial Intelligence Lab,

Generative Adversarial Networks (GANs) Ian Goodfellow, OpenAI Research Scientist Presentation at Berkeley Artificial Intelligence Lab, Generative Adversarial Networks (GANs) Ian Goodfellow, OpenAI Research Scientist Presentation at Berkeley Artificial Intelligence Lab, 2016-08-31 Generative Modeling Density estimation Sample generation

More information

what can deep learning learn from linear regression? Benjamin Recht University of California, Berkeley

what can deep learning learn from linear regression? Benjamin Recht University of California, Berkeley what can deep learning learn from linear regression? Benjamin Recht University of California, Berkeley Collaborators Joint work with Samy Bengio, Moritz Hardt, Michael Jordan, Jason Lee, Max Simchowitz,

More information

Decoupled Networks. Abstract. 1. Introduction

Decoupled Networks. Abstract. 1. Introduction Decoupled Netorks Weiyang Liu 1*, Zhen Liu 1*, Zhiding Yu 2, Bo Dai 1, Rongmei Lin 3, Yisen Wang 1,4, James M. Rehg 1, Le Song 1,5 1 Georgia Institute of Technology 2 NVIDIA 3 Emory University 4 Tsinghua

More information

Maxout Networks. Hien Quoc Dang

Maxout Networks. Hien Quoc Dang Maxout Networks Hien Quoc Dang Outline Introduction Maxout Networks Description A Universal Approximator & Proof Experiments with Maxout Why does Maxout work? Conclusion 10/12/13 Hien Quoc Dang Machine

More information

arxiv: v1 [cs.lg] 13 Mar 2017 ABSTRACT

arxiv: v1 [cs.lg] 13 Mar 2017 ABSTRACT Blocking Transferability of Adversarial Examples in Black-Box Learning Systems arxiv:73.438v [cs.lg] 3 Mar 27 ABSTRACT Hossein Hosseini hosseinh@uw.edu Baosen Zhang zhangbao@uw.edu Yize Chen yizechen@uw.edu

More information

arxiv: v2 [cs.cr] 11 Sep 2017

arxiv: v2 [cs.cr] 11 Sep 2017 MagNet: a Two-Pronged Defense against Adversarial Examples arxiv:1705.09064v2 [cs.cr] 11 Sep 2017 ABSTRACT Dongyu Meng ShanghaiTech University mengdy@shanghaitech.edu.cn Deep learning has shown impressive

More information

Certified Robustness to Adversarial Examples with Differential Privacy

Certified Robustness to Adversarial Examples with Differential Privacy Certified Robustness to Adversarial Examples with Differential Privacy Mathias Lecuyer, Vaggelis Atlidakis, Roxana Geambasu, Daniel Hsu, and Suman Jana Columbia University Abstract Adversarial examples

More information

Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks

Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks Emily Denton 1, Soumith Chintala 2, Arthur Szlam 2, Rob Fergus 2 1 New York University 2 Facebook AI Research Denotes equal

More information

Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks

Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks Accepted to the 37th IEEE Symposium on Security & Privacy, IEEE 2016. San Jose, CA. Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks 1 Nicolas Papernot, Patrick McDaniel,

More information

Adversarial Sample Detection for Deep Neural Network through Model Mutation Testing

Adversarial Sample Detection for Deep Neural Network through Model Mutation Testing Adversarial Sample Detection for Deep Neural Network through Model Mutation Testing Jingyi Wang, Guoliang Dong, Jun Sun, Xinyu Wang, Peixin Zhang Singapore University of Technology and Design Zhejiang

More information

The K-FAC method for neural network optimization

The K-FAC method for neural network optimization The K-FAC method for neural network optimization James Martens Thanks to my various collaborators on K-FAC research and engineering: Roger Grosse, Jimmy Ba, Vikram Tankasali, Matthew Johnson, Daniel Duckworth,

More information

arxiv: v1 [cs.lg] 4 Oct 2018

arxiv: v1 [cs.lg] 4 Oct 2018 Improved generalization bounds for robust learning Idan Attias Aryeh Kontorovich Department of Computer Science Ben-Gurion University of the Negev, Beer Sheva, Israel idanatti@post.bgu.ac.il karyeh@cs.bgu.ac.il

More information

arxiv: v3 [cs.cv] 8 Jul 2018

arxiv: v3 [cs.cv] 8 Jul 2018 On the Robustness of Semantic Segmentation Models to Adversarial Attacks Anurag Arnab Ondrej Miksik Philip H.S. Torr University of Oxford {anurag.arnab, ondrej.miksik, philip.torr}@eng.ox.ac.uk arxiv:1711.09856v3

More information

Support Vector Machines. Introduction to Data Mining, 2 nd Edition by Tan, Steinbach, Karpatne, Kumar

Support Vector Machines. Introduction to Data Mining, 2 nd Edition by Tan, Steinbach, Karpatne, Kumar Data Mining Support Vector Machines Introduction to Data Mining, 2 nd Edition by Tan, Steinbach, Karpatne, Kumar 02/03/2018 Introduction to Data Mining 1 Support Vector Machines Find a linear hyperplane

More information

arxiv: v3 [cs.lg] 6 Nov 2015

arxiv: v3 [cs.lg] 6 Nov 2015 Bayesian Dark Knowledge Anoop Korattikara, Vivek Rathod, Kevin Murphy Google Research {kbanoop, rathodv, kpmurphy}@google.com Max Welling University of Amsterdam m.welling@uva.nl arxiv:1506.04416v3 [cs.lg]

More information

Optimization geometry and implicit regularization

Optimization geometry and implicit regularization Optimization geometry and implicit regularization Suriya Gunasekar Joint work with N. Srebro (TTIC), J. Lee (USC), D. Soudry (Technion), M.S. Nacson (Technion), B. Woodworth (TTIC), S. Bhojanapalli (TTIC),

More information

Optimization and Gradient Descent

Optimization and Gradient Descent Optimization and Gradient Descent INFO-4604, Applied Machine Learning University of Colorado Boulder September 12, 2017 Prof. Michael Paul Prediction Functions Remember: a prediction function is the function

More information

Estimation and Optimization: Gaps and Bridges. MURI Meeting June 20, Laurent El Ghaoui. UC Berkeley EECS

Estimation and Optimization: Gaps and Bridges. MURI Meeting June 20, Laurent El Ghaoui. UC Berkeley EECS MURI Meeting June 20, 2001 Estimation and Optimization: Gaps and Bridges Laurent El Ghaoui EECS UC Berkeley 1 goals currently, estimation (of model parameters) and optimization (of decision variables)

More information

OPTIMIZATION METHODS IN DEEP LEARNING

OPTIMIZATION METHODS IN DEEP LEARNING Tutorial outline OPTIMIZATION METHODS IN DEEP LEARNING Based on Deep Learning, chapter 8 by Ian Goodfellow, Yoshua Bengio and Aaron Courville Presented By Nadav Bhonker Optimization vs Learning Surrogate

More information

arxiv: v1 [cs.lg] 14 Jun 2015

arxiv: v1 [cs.lg] 14 Jun 2015 Bayesian Dark Knowledge Anoop Korattikara, Vivek Rathod, Kevin Murphy Google Inc. {kbanoop, rathodv, kpmurphy}@google.com Max Welling University of Amsterdam m.welling@uva.nl arxiv:1506.04416v1 [cs.lg]

More information

Robustness in GANs and in Black-box Optimization

Robustness in GANs and in Black-box Optimization Robustness in GANs and in Black-box Optimization Stefanie Jegelka MIT CSAIL joint work with Zhi Xu, Chengtao Li, Ilija Bogunovic, Jonathan Scarlett and Volkan Cevher Robustness in ML noise Generator Critic

More information

Logistic Regression Introduction to Machine Learning. Matt Gormley Lecture 8 Feb. 12, 2018

Logistic Regression Introduction to Machine Learning. Matt Gormley Lecture 8 Feb. 12, 2018 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Logistic Regression Matt Gormley Lecture 8 Feb. 12, 2018 1 10-601 Introduction

More information

Characterizing and evaluating adversarial examples for Offline Handwritten Signature Verification

Characterizing and evaluating adversarial examples for Offline Handwritten Signature Verification 1 Characterizing and evaluating adversarial examples for Offline Handwritten Signature Verification Luiz G. Hafemann, Robert Sabourin, Member, IEEE, and Luiz S. Oliveira. arxiv:1901.03398v1 [cs.cv] 10

More information

Lipschitz Properties of General Convolutional Neural Networks

Lipschitz Properties of General Convolutional Neural Networks Lipschitz Properties of General Convolutional Neural Networks Radu Balan Department of Mathematics, AMSC, CSCAMM and NWC University of Maryland, College Park, MD Joint work with Dongmian Zou (UMD), Maneesh

More information

Warm up: risk prediction with logistic regression

Warm up: risk prediction with logistic regression Warm up: risk prediction with logistic regression Boss gives you a bunch of data on loans defaulting or not: {(x i,y i )} n i= x i 2 R d, y i 2 {, } You model the data as: P (Y = y x, w) = + exp( yw T

More information

Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima

Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima J. Nocedal with N. Keskar Northwestern University D. Mudigere INTEL P. Tang INTEL M. Smelyanskiy INTEL 1 Initial Remarks SGD

More information

Lecture 7 Convolutional Neural Networks

Lecture 7 Convolutional Neural Networks Lecture 7 Convolutional Neural Networks CMSC 35246: Deep Learning Shubhendu Trivedi & Risi Kondor University of Chicago April 17, 2017 We saw before: ŷ x 1 x 2 x 3 x 4 A series of matrix multiplications:

More information