Reconstructing Spacetime from Entanglement

Size: px
Start display at page:

Download "Reconstructing Spacetime from Entanglement"

Transcription

1 Reconstructing Spacetime from Entanglement Hal Haggard in collaboration with Eugenio Bianchi October 29th, 2013 High Energy Physics Seminar Radboud University, Nijmegen

2 Finite region quantum gravity What is the physics of a finite region of a quantum spacetime? Finite regions can incorporate diffeos of GR into a quantum context avoid notorious difficulties, e.g. [Arkani-Hamed et al]. 1

3 Entanglement thermality Entanglement leads to even finite regions of spacetime being hot. We illustrate this claim with a spherical entangling surface. 2

4 Entanglement insights Casini, Huerta & Myers have extensively studied the entanglement entropy of spherical causal domains. [Casini, Huerta & Myers 11] Bianchi has been shedding interesting light on black holes through entanglement. [Bianchi 1-12, 2-12] Disappearance of distinction between statistical and quantum fluctuations. [Bianchi, HMH, Rovelli 13] Focus on QFT while aiming for spin networks and loop gravity. 3

5 Outline 1 Introduction to loop gravity and the discreteness of space 2 What kind of entanglement? 3 Where (and when) is the region? 4 Why the entanglement spectrum? 4

6 Loop Quantum Gravity Briefly construct Hilbert space of loop gravity: H. Similarities to Fock space of QED and to lattice gauge theory (e.g. QCD). Built on graphs: L links l N nodes n source and target: s : l s(l) and t : l t(l) Graph Γ 5

7 Fock Space Massive scalar field: One particle: H 1 = L 2 (M ), M the Lorentz hyperboloid. n particles, H n = L 2 (M n )/ with permutations. Factorization symmetrizes states. All states up to N particles N H N = H n. n=0 Fock space H Fock = lim N H N. 6

8 Lattice Gauge Theory Lattice Γ with L links l, N nodes n and gauge group G H Γ = L 2 (G L ). States ψ(h l ) H Γ acted on by gauge transformations ψ(h l ) ψ(g s(l) h l g 1 t(l) ), g n G. Gauge invariant Hilbert space is H Γ = L 2 (G L /G N ). 7

9 Loop Quantum Gravity General graph Γ, called a spin network, an SU (2) lattice gauge theory. If Γ Γ then H Γ H Γ. H Γ = L 2 (SU (2) L /SU (2) N ), H Γ = H Γ / H = lim Γ H Γ 8

10 Loop Quantum Gravity General graph Γ, called a spin network, an SU (2) lattice gauge theory. If Γ Γ then H Γ H Γ. H Γ = L 2 (SU (2) L /SU (2) N ), H Γ = H Γ / H = lim Γ H Γ 9

11 Physical Picture Quanta of gravity are grains or chunks of space 10

12 Volume Polyhedral Volume: [Bianchi, Doná and Speziale] ˆV Pol = The volume of a quantum polyhedron 11

13 Minkowski s theorem: polyhedra The area vectors of a convex polyhedron determine its shape: A A n = 0. 12

14 Minkowski s theorem: polyhedra The area vectors of a convex polyhedron determine its shape: A A n = 0. Only an existence and uniqueness theorem. 13

15 Minkowski s theorem: a tetrahdedron Interpret the area vectors of tetrahedron as angular momenta: A 1 + A 2 + A 3 + A 4 = 0 For fixed areas A 1,..., A 4 each area vector lives in S 2. Symplectic reduction of (S 2 ) 4 gives rise to the Poisson brackets: {f, g} = 4 A l l=1 ( f A g ) l A l 14

16 Minkowski s theorem: a tetrahdedron For fixed areas A 1,..., A 4 p = A 1 + A 2 q = Angle of rotation generated by p: {q, p} = 1 15

17 Bohr-Sommerfeld Quantization of Harmonic Osc. Require: J = pdq = (n + 1 γ 2 )2π. 16

18 Dynamics Take as Hamiltonian the Volume: H = V 2 = 2 9 A 1 ( A 2 A 3 ) Area of orbits given in terms of complete elliptic integrals, ( 4 ) 4 J(E) = a i K(m) + b i Π(αi 2, m) E i=1 i=1 17

19 V Tet = A 1 ( A 2 A 3 ) A 1 = j + 1/2 A 2 = j + 1/2 A 3 = j + 1/2 A 4 = j + 3/2 4 2 = Numerical = Bohr-Som [PRL 107, ]

20 Table j 1 j 2 j 3 j 4 Loop gravity Bohr- Accuracy Sommerfeld % % % % % % % % % % % %

21 Outstanding challenge How to identify the ground state of a general relativistic theory? Want to coordinate individual grains of space to recover Minkowski space from this quantum theory. Use entanglement 20

22 Outline 1 Introduction to loop gravity and the discreteness of space 2 What kind of entanglement? 3 Where (and when) is the region? 4 Why the entanglement spectrum? 21

23 Boundary conditions for the remainder For simplicity I restrict to: Scalar field ϕ(x), with m = 0 on flat D = spacetime unless otherwise stated. Metric signature (, +, +, +). Results apply to any conformal field theory. 22

24 Entanglement Pure state Ψ H A H B. Schmidt decomposition: Ψ = i λ i i A i B with i A and i B orthonormal bases in H A and H B respectively. Leads to the reduced density matrix ρ B = Tr A Ψ Ψ = λ 2 i i B i B i 23

25 Entanglement entropy S E Tr ρ B log ρ B = i λ 2 i log λ 2 i For example, Ψ = D i 1 D i A i B = S E = log D Interested in bipartite entanglement of pure states. But, S E is a single number encodes limited information... 24

26 Entanglement spectrum Can always write ρ B = e H E, i.e. H E log ρ B, the entanglement Hamiltonian". Already diagonalized H E : ρ B = i e ɛ i i B i B with ɛ i (i = 1, 2,... ) [λ 2 i = e ɛ i ] the entanglement spectrum. Provides thorough understanding of entanglement. Study for spacetime fields. [Li & Haldane 08] 25

27 Outline 1 Introduction to loop gravity and the discreteness of space 2 What kind of entanglement? 3 Where (and when) is the region? 4 Why the entanglement spectrum? 26

28 Spherical causal domain Cauchy development of 3-ball with boundary 2-sphere of radius R: Spatial 3-ball B Cauchy development D(B). Entangling surface the boundary 2-sphere B = S 2. Choose adapted coordinates that preserve S 2 : similar to how polar coords fix (0, 0)... 27

29 Diamond coordinates Use hyperbolas Diamond coords (λ, σ, θ, φ): sh λ t = R ch λ + ch σ sh σ r = R ch λ + ch σ with λ (, ), σ [0, ). The Minkowski metric becomes ds 2 R 2 = (ch λ + ch σ) 2 [ dλ2 + dσ 2 + sh 2 σdω 2 ], a conformal rescaling of static κ = 1 FRW. 28

30 Conformal completion Diamond coordinates can be extended to all of Minkowski space E.g. region II: sh t = R λ ch σ ch λ, sh σ r = R ch σ ch λ λ σ. 29

31 Rindler Limit Large σ limit: t = 2Re σ sh λ = l sh λ R r = 2Re σ ch λ = l ch λ coord transformation to (left) Rindler wedge. The proper distance from right corner is l = 2Re σ. 30

32 Current Congruence ξ µ = ( λ) µ with current J µ = T µν ξ ν, µ J µ = 0 ( µ T µν )ξ ν + T µν µ ξ ν = T µν (µ ξ ν). ξ µ is a conformal Killing = µ J µ = 1 2 θt µ µ (θ = ρ ξ ρ ). For dilatation invariant field theory T µ µ = 0 (on shell) so and J µ is a Nöther current. µ J µ = 0, 31

33 Entanglement (or foliation) Hamiltonian The conserved charge is C = R Tµν ξ µ dσν with Tµν the stress-tensor. It generates the spatial foliation discussed above: Explicitly this charge is, Cin = 1 2R Z B r 2 dr d Ω 1 2 ~ ϕ) ~ (R2 r 2 )(ϕ 2 + ϕ + ϕ2 32

34 Outline 1 Introduction to loop gravity and the discreteness of space 2 What kind of entanglement? 3 Where (and when) is the region? 4 Why the entanglement spectrum? 33

35 Density matrix from Euclidean path integral Minkowski vacuum: Spherical density matrix: Rindler density matrix: sin λe cos λe + ch σ Bipolar sh σ coords r =R cos λe + ch σ te = R Z ρb = Dϕe SE = e 2πCin 34

36 Temperatures ρ B = e 2πC in /Z: thermal density matrix satisfying KMS condition. 2) Martinetti-Rovelli temperature T MR = 1 dλ 2π dτ = 1 (ch λ+ch σ) 2π R ) Geometric temperature T G = 1 2π ds 2 = R 2 (ch λ+ch σ) 2 [ dλ 2 + dσ 2 + sh 2 σdω 2 ] 3) Thermometer (Unruh) temp. T U = a 2π = 1 sh σ 2π R [M & R 02, Wong et al 13] Thermometer measures T µν ξ µ u ν The region is not clearly in equilibrium. [Chirco, HMH & Rovelli 13] 35

37 Conformal symmetry Curved spacetime Lagrangian density (D=4 spacetime dimensions) L = 1 2 g[g µν µ ϕ ν ϕ + (m R(x))ϕ2 ]. For ḡ µν = Ω 2 (x)g µν and ϕ = Ω(x) 1 ϕ the m = 0 action is invariant. With ḡ µν = η µν the EOM transform as ϕ = Ω 3 [ 1 6 R]ϕ, with = g µν µ ν. Using this, sphere modes are ū I k(x) = (2k) 1 2 R (ch λ + ch σ)π kj (σ)y M J (θ, φ)e ikλ. 36

38 Sphere vacuum and spherons Minkowski case: ϕ(x) = d D 1 k[a k u k (x) + a k u k (x)] The vacuum satisfies a k 0 M = 0. Cut out all in-out entanglement to get sphere vacuum Sphere case: ϕ(x) = k [si k ui k + si k ui k The sphere vacuum satisfies sk I 0 S = s II + sii k uii k + sii k k 0 S = 0. s I k creates spherons, excitations localized within the spherical entangling surface. uii k ] 37

39 Two-point functions Leveraging conformal symmetry we can achieve a more substantial characterization of the vacuum, finding its two-point functions: D + (x, x ) = Ω D 2 2 (x) D+ (x, x )Ω D 2 2 (x ) 1+1 spacetime: D + (x, x ) = 1 4π log λ2 + σ spacetime: D + (x, x ) = (ch λ + ch σ) σ(ch λ + ch σ ) 4π 2 R 2 sh ( σ) [ λ 2 + σ 2 ] 38

40 Sorkin-Johnston vacuum Recently researchers working on causal sets have been investigating a remarkable state, the Sorkin-Johnston vacuum: [Johnston 09, Sorkin 11] proposed vacuum for a causal set within a causal diamond. It is defined only through referencing the diamond s interior has no entanglement with outside and so does not satisfy the Reeh-Schlieder theorem. Afshordi et al have just investigated the Sorkin-Johnston vacuum in 2D analytically and numerically... [Afshordi et al 12] 39

41 Comparison... and amongst many other things they found a surprise: near the L and R diamond corners the Sorkin-Johnston two-point function is that of a static mirror in Minkowski spacetime. How does the sphere vacuum compare? In the limit λ = λ = 0, σ, σ : D + 2D 1 4π log (log l l ) D + 4D 1 2π(l 2 l 2 ) log l l The Rindler two-point functions. [Troost & Van Dam 79] (Recall l = 2Re σ is the proper distance from the right corner.) = the sphere and Sorkin-Johnston vacuums differ in 2D. Is this still true in 4D? 40

42 Entanglement spectrum Let us return to considering the Minkowski vacuum 0 M. Explicitly constructed the entanglement Hamiltonian diagonalize it to recover the entanglement spectrum λ i = e ɛ i/2 and 0 M = i λ i i in S i out S. This shows that despite the absence of in-out entanglement you can recover the Minkowski vacuum through a well-tuned superposition of sphere states. 41

43 Spin network entanglement This suggests an intriguing perspective on spin networks. Individual nodes are like the interior of the sphere with no entanglement between a given node and its neighbors. Can we choreograph entanglement to yield the Minkowski vacuum? A wealth of condensed matter research on entanglement to draw from (MPS, PEPs, etc). 42

44 Conclusions Interesting connections to causal sets. What is the nature of the Sorkin-Johnston vacuum in 4D? Exhibited an example outside the hypotheses of the Reeh-Schlieder theorem. Looking to engineer the Minkowski vacuum and its entanglement from spin network superposition. Numerous possibilities More general entangling surfaces Deeper insights from condensed matter Anomalies 43

45 Credits Burning orb image: Spherical spin network: Z. Merali, The origins of space and time, Nature News, Aug. 28, 2013 Special thanks to the Cracow School of Theoretical Physics, LIII Course, 2013 for a lovely school and setting while this work was begun. And to the Perimeter Institute for their gracious hosting of visitors and support during the continuation of this work. 44

Thermality of Spherical Causal Domains & the Entanglement Spectrum

Thermality of Spherical Causal Domains & the Entanglement Spectrum Thermality of Spherical Causal Domains & the Entanglement Spectrum Hal Haggard in collaboration with Eugenio Bianchi September 17th, 2013 International Loop Quantum Gravity Seminar relativity.phys.lsu.edu/ilqgs/

More information

Finite regions, spherical entanglement, and quantum gravity

Finite regions, spherical entanglement, and quantum gravity Finite regions, spherical entanglement, and quantum gravity Hal Haggard in collaboration with Eugenio Bianchi November 14th, 2013 Quantum Gravity Seminar Perimeter Institute Finite region quantum gravity

More information

Pentahedral Volume, Chaos, and Quantum Gravity

Pentahedral Volume, Chaos, and Quantum Gravity Pentahedral Volume, Chaos, and Quantum Gravity Hal Haggard May 30, 2012 Volume Polyhedral Volume (Bianchi, Doná and Speziale): ˆV Pol = The volume of a quantum polyhedron Outline 1 Pentahedral Volume 2

More information

Entanglement and the Bekenstein-Hawking entropy

Entanglement and the Bekenstein-Hawking entropy Entanglement and the Bekenstein-Hawking entropy Eugenio Bianchi relativity.phys.lsu.edu/ilqgs International Loop Quantum Gravity Seminar Black hole entropy Bekenstein-Hawking 1974 Process: matter falling

More information

General boundary field theory, thermality, and entanglement

General boundary field theory, thermality, and entanglement General boundary field theory, thermality, and entanglement Hal Haggard In collaboration with: Eugenio Bianchi and Carlo Rovelli July 23rd, 2013 Loops 13, Perimeter Institute gr-qc/1306.5206 Questions

More information

31st Jerusalem Winter School in Theoretical Physics: Problem Set 2

31st Jerusalem Winter School in Theoretical Physics: Problem Set 2 31st Jerusalem Winter School in Theoretical Physics: Problem Set Contents Frank Verstraete: Quantum Information and Quantum Matter : 3 : Solution to Problem 9 7 Daniel Harlow: Black Holes and Quantum Information

More information

SPACETIME FROM ENTANGLEMENT - journal club notes -

SPACETIME FROM ENTANGLEMENT - journal club notes - SPACETIME FROM ENTANGLEMENT - journal club notes - Chris Heinrich 1 Outline 1. Introduction Big picture: Want a quantum theory of gravity Best understanding of quantum gravity so far arises through AdS/CFT

More information

Loop Quantum Gravity a general-covariant lattice gauge theory. Francesca Vidotto UNIVERSITY OF THE BASQUE COUNTRY

Loop Quantum Gravity a general-covariant lattice gauge theory. Francesca Vidotto UNIVERSITY OF THE BASQUE COUNTRY a general-covariant lattice gauge theory UNIVERSITY OF THE BASQUE COUNTRY Bad Honnef - August 2 nd, 2018 THE GRAVITATIONAL FIELD GENERAL RELATIVITY: background independence! U(1) SU(2) SU(3) SL(2,C) l

More information

8.821 String Theory Fall 2008

8.821 String Theory Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 8.8 String Theory Fall 008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 8.8 F008 Lecture 0: CFTs in D > Lecturer:

More information

Mutual Information in Conformal Field Theories in Higher Dimensions

Mutual Information in Conformal Field Theories in Higher Dimensions Mutual Information in Conformal Field Theories in Higher Dimensions John Cardy University of Oxford Conference on Mathematical Statistical Physics Kyoto 2013 arxiv:1304.7985; J. Phys. : Math. Theor. 46

More information

Exercise 1 Classical Bosonic String

Exercise 1 Classical Bosonic String Exercise 1 Classical Bosonic String 1. The Relativistic Particle The action describing a free relativistic point particle of mass m moving in a D- dimensional Minkowski spacetime is described by ) 1 S

More information

D.Blanco, H.C., L.Y.Hung, R. Myers (2013)

D.Blanco, H.C., L.Y.Hung, R. Myers (2013) D.Blanco, H.C., L.Y.Hung, R. Myers (2013) Renormalization group flow in the space of QFT Change in the physics with scale through the change of coupling constants with the RG flow. At fixed points there

More information

κ = f (r 0 ) k µ µ k ν = κk ν (5)

κ = f (r 0 ) k µ µ k ν = κk ν (5) 1. Horizon regularity and surface gravity Consider a static, spherically symmetric metric of the form where f(r) vanishes at r = r 0 linearly, and g(r 0 ) 0. Show that near r = r 0 the metric is approximately

More information

Black hole entropy of gauge fields

Black hole entropy of gauge fields Black hole entropy of gauge fields William Donnelly (University of Waterloo) with Aron Wall (UC Santa Barbara) September 29 th, 2012 William Donnelly (UW) Black hole entropy of gauge fields September 29

More information

Entanglement in Quantum Field Theory

Entanglement in Quantum Field Theory Entanglement in Quantum Field Theory John Cardy University of Oxford DAMTP, December 2013 Outline Quantum entanglement in general and its quantification Path integral approach Entanglement entropy in 1+1-dimensional

More information

Entanglement in loop quantum gravity

Entanglement in loop quantum gravity Entanglement in loop quantum gravity Eugenio Bianchi Penn State, Institute for Gravitation and the Cosmos [soap foam - microphotography by Pyanek] International Loop Quantum Gravity Seminar Tuesday, Nov

More information

LECTURE 3: Quantization and QFT

LECTURE 3: Quantization and QFT LECTURE 3: Quantization and QFT Robert Oeckl IQG-FAU & CCM-UNAM IQG FAU Erlangen-Nürnberg 14 November 2013 Outline 1 Classical field theory 2 Schrödinger-Feynman quantization 3 Klein-Gordon Theory Classical

More information

(Quantum) Fields on Causal Sets

(Quantum) Fields on Causal Sets (Quantum) Fields on Causal Sets Michel Buck Imperial College London July 31, 2013 1 / 32 Outline 1. Causal Sets: discrete gravity 2. Continuum-Discrete correspondence: sprinklings 3. Relativistic fields

More information

Lecture: Lorentz Invariant Dynamics

Lecture: Lorentz Invariant Dynamics Chapter 5 Lecture: Lorentz Invariant Dynamics In the preceding chapter we introduced the Minkowski metric and covariance with respect to Lorentz transformations between inertial systems. This was shown

More information

BLACK HOLES (ADVANCED GENERAL RELATIV- ITY)

BLACK HOLES (ADVANCED GENERAL RELATIV- ITY) Imperial College London MSc EXAMINATION May 2015 BLACK HOLES (ADVANCED GENERAL RELATIV- ITY) For MSc students, including QFFF students Wednesday, 13th May 2015: 14:00 17:00 Answer Question 1 (40%) and

More information

Encoding Curved Tetrahedra in Face Holonomies

Encoding Curved Tetrahedra in Face Holonomies Encoding Curved Tetrahedra in Face Holonomies Hal Haggard Bard College Collaborations with Eugenio Bianchi, Muxin Han, Wojciech Kamiński, and Aldo Riello June 15th, 2015 Quantum Gravity Seminar Nottingham

More information

On the calculation of entanglement entropy in quantum field theory

On the calculation of entanglement entropy in quantum field theory On the calculation of entanglement entropy in quantum field theory Nakwoo Kim Physics Department Kyung Hee University July 5, 2017 RQIN 2017, YITP Kyoto Nakwoo Kim ( Physics Department Kyung Hee University

More information

Introduction to Modern Quantum Field Theory

Introduction to Modern Quantum Field Theory Department of Mathematics University of Texas at Arlington Arlington, TX USA Febuary, 2016 Recall Einstein s famous equation, E 2 = (Mc 2 ) 2 + (c p) 2, where c is the speed of light, M is the classical

More information

Holography and (Lorentzian) black holes

Holography and (Lorentzian) black holes Holography and (Lorentzian) black holes Simon Ross Centre for Particle Theory The State of the Universe, Cambridge, January 2012 Simon Ross (Durham) Holography and black holes Cambridge 7 January 2012

More information

Curved spacetime and general covariance

Curved spacetime and general covariance Chapter 7 Curved spacetime and general covariance In this chapter we generalize the discussion of preceding chapters to extend covariance to more general curved spacetimes. 219 220 CHAPTER 7. CURVED SPACETIME

More information

Dynamical polyhedra and the atoms of space in quantum gravity

Dynamical polyhedra and the atoms of space in quantum gravity Dynamical polyhedra and the atoms of space in quantum gravity Hal Haggard Bard College June 2 nd, 2016 Helsinki Workshop Helsinki, Finland A quite revolution in the study of polyhedra is brewing along

More information

Holographic Entanglement Entropy for Surface Operators and Defects

Holographic Entanglement Entropy for Surface Operators and Defects Holographic Entanglement Entropy for Surface Operators and Defects Michael Gutperle UCLA) UCSB, January 14th 016 Based on arxiv:1407.569, 1506.0005, 151.04953 with Simon Gentle and Chrysostomos Marasinou

More information

New Model of massive spin-2 particle

New Model of massive spin-2 particle New Model of massive spin-2 particle Based on Phys.Rev. D90 (2014) 043006, Y.O, S. Akagi, S. Nojiri Phys.Rev. D90 (2014) 123013, S. Akagi, Y.O, S. Nojiri Yuichi Ohara QG lab. Nagoya univ. Introduction

More information

Übungen zu RT2 SS (4) Show that (any) contraction of a (p, q) - tensor results in a (p 1, q 1) - tensor.

Übungen zu RT2 SS (4) Show that (any) contraction of a (p, q) - tensor results in a (p 1, q 1) - tensor. Übungen zu RT2 SS 2010 (1) Show that the tensor field g µν (x) = η µν is invariant under Poincaré transformations, i.e. x µ x µ = L µ νx ν + c µ, where L µ ν is a constant matrix subject to L µ ρl ν ση

More information

Universal entanglement of non-smooth surfaces

Universal entanglement of non-smooth surfaces Universal entanglement of non-smooth surfaces Pablo Bueno IFT, Madrid Based on P.B., R. C. Myers and W. Witczak-Krempa, PRL 115, 021602 (2015); P.B. and R. C. Myers arxiv:1505.07842; + work in progress

More information

Quantum gravity, probabilities and general boundaries

Quantum gravity, probabilities and general boundaries Quantum gravity, probabilities and general boundaries Robert Oeckl Instituto de Matemáticas UNAM, Morelia International Loop Quantum Gravity Seminar 17 October 2006 Outline 1 Interpretational problems

More information

Quantum Field Theory on a Causal Set

Quantum Field Theory on a Causal Set Quantum Field Theory on a Causal Set Fay Dowker Imperial College, London York April 2017 QFT in curved spacetime I A stepping stone to quantum gravity I Furnishes us with a quantum gravity result: the

More information

Bohr-Sommerfeld Quantization of Space

Bohr-Sommerfeld Quantization of Space Bohr-Sommerfeld Quantization of Space Eugenio Bianchi and Hal M. Haggard Perimeter Institute for Theoretical Physics, Caroline St.N., Waterloo ON, NJ Y5, Canada Department of Physics, University of California,

More information

8.821 String Theory Fall 2008

8.821 String Theory Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 8.81 String Theory Fall 008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 8.81 F008 Lecture 1: Boundary of AdS;

More information

Black hole thermodynamics under the microscope

Black hole thermodynamics under the microscope DELTA 2013 January 11, 2013 Outline Introduction Main Ideas 1 : Understanding black hole (BH) thermodynamics as arising from an averaging of degrees of freedom via the renormalisation group. Go beyond

More information

8.821 F2008 Lecture 12: Boundary of AdS; Poincaré patch; wave equation in AdS

8.821 F2008 Lecture 12: Boundary of AdS; Poincaré patch; wave equation in AdS 8.821 F2008 Lecture 12: Boundary of AdS; Poincaré patch; wave equation in AdS Lecturer: McGreevy Scribe: Francesco D Eramo October 16, 2008 Today: 1. the boundary of AdS 2. Poincaré patch 3. motivate boundary

More information

The Klein-Gordon Equation Meets the Cauchy Horizon

The Klein-Gordon Equation Meets the Cauchy Horizon Enrico Fermi Institute and Department of Physics University of Chicago University of Mississippi May 10, 2005 Relativistic Wave Equations At the present time, our best theory for describing nature is Quantum

More information

What is a particle? Carlo Rovelli. Daniele Colosi and C.R., Class. and Quantum Grav. 2009, gr-qc/

What is a particle? Carlo Rovelli. Daniele Colosi and C.R., Class. and Quantum Grav. 2009, gr-qc/ What is a particle? Carlo Rovelli Daniele Colosi and C.R., Class. and Quantum Grav. 2009, gr-qc/0409054 Happy birthday Abhay!! It is a very exciting time for Loop Quantum Gravity Applications Loop Quantum

More information

Quantum Gravity and Black Holes

Quantum Gravity and Black Holes Quantum Gravity and Black Holes Viqar Husain March 30, 2007 Outline Classical setting Quantum theory Gravitational collapse in quantum gravity Summary/Outlook Role of metrics In conventional theories the

More information

Death and Resurrection of the Zeroth Principle of Thermodynamics

Death and Resurrection of the Zeroth Principle of Thermodynamics Death and Resurrection of the Zeroth Principle of Thermodynamics Hal Haggard In collaboration with: Carlo Rovelli April 3rd, 2013 Quantum Fields, Gravity and Information [PRD 87, 084001], gr-qc/1302.0724

More information

Modular theory and Bekenstein s bound

Modular theory and Bekenstein s bound Modular theory and Bekenstein s bound Roberto Longo Okinawa, OIST, Strings 2018, June 2018 Partly based on a joint work with Feng Xu Thermal equilibrium states A primary role in thermodynamics is played

More information

Black Hole Entropy in the presence of Chern-Simons terms

Black Hole Entropy in the presence of Chern-Simons terms Black Hole Entropy in the presence of Chern-Simons terms Yuji Tachikawa School of Natural Sciences, Institute for Advanced Study Dec 25, 2006, Yukawa Inst. based on hep-th/0611141, to appear in Class.

More information

An Inverse Mass Expansion for Entanglement Entropy. Free Massive Scalar Field Theory

An Inverse Mass Expansion for Entanglement Entropy. Free Massive Scalar Field Theory in Free Massive Scalar Field Theory NCSR Demokritos National Technical University of Athens based on arxiv:1711.02618 [hep-th] in collaboration with Dimitris Katsinis March 28 2018 Entanglement and Entanglement

More information

Quantum Gravity Inside and Outside Black Holes. Hal Haggard International Loop Quantum Gravity Seminar

Quantum Gravity Inside and Outside Black Holes. Hal Haggard International Loop Quantum Gravity Seminar Quantum Gravity Inside and Outside Black Holes Hal Haggard International Loop Quantum Gravity Seminar April 3rd, 2018 1 If spacetime is quantum then it fluctuates, and a Schwarzschild black hole is an

More information

Exact Solutions of the Einstein Equations

Exact Solutions of the Einstein Equations Notes from phz 6607, Special and General Relativity University of Florida, Fall 2004, Detweiler Exact Solutions of the Einstein Equations These notes are not a substitute in any manner for class lectures.

More information

The Apparent Universe

The Apparent Universe The Apparent Universe Alexis HELOU APC - AstroParticule et Cosmologie, Paris, France alexis.helou@apc.univ-paris7.fr 11 th June 2014 Reference This presentation is based on a work by P. Binétruy & A. Helou:

More information

Inverse square potential, scale anomaly, and complex extension

Inverse square potential, scale anomaly, and complex extension Inverse square potential, scale anomaly, and complex extension Sergej Moroz Seattle, February 2010 Work in collaboration with Richard Schmidt ITP, Heidelberg Outline Introduction and motivation Functional

More information

Lorentzian Geometry from Discrete Causal Structure

Lorentzian Geometry from Discrete Causal Structure Lorentzian Geometry from Discrete Causal Structure Sumati Surya Raman Research Institute FTAG Sept 2013 (RRI) March 2013 1 / 25 Outline An Introduction to the Causal Set Approach to Quantum Gravity LBombelli,

More information

General Relativity in a Nutshell

General Relativity in a Nutshell General Relativity in a Nutshell (And Beyond) Federico Faldino Dipartimento di Matematica Università degli Studi di Genova 27/04/2016 1 Gravity and General Relativity 2 Quantum Mechanics, Quantum Field

More information

In deriving this we ve used the fact that the specific angular momentum

In deriving this we ve used the fact that the specific angular momentum Equation of Motion and Geodesics So far we ve talked about how to represent curved spacetime using a metric, and what quantities are conserved. Now let s see how test particles move in such a spacetime.

More information

carroll/notes/ has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general

carroll/notes/ has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general http://pancake.uchicago.edu/ carroll/notes/ has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general relativity. As with any major theory in physics, GR has been

More information

Holographic Space Time

Holographic Space Time Holographic Space Time Tom Banks (work with W.Fischler) April 1, 2015 The Key Points General Relativity as Hydrodynamics of the Area Law - Jacobson The Covariant Entropy/Holographic Principle - t Hooft,

More information

HOMEWORK 10. Applications: special relativity, Newtonian limit, gravitational waves, gravitational lensing, cosmology, 1 black holes

HOMEWORK 10. Applications: special relativity, Newtonian limit, gravitational waves, gravitational lensing, cosmology, 1 black holes General Relativity 8.96 (Petters, spring 003) HOMEWORK 10. Applications: special relativity, Newtonian limit, gravitational waves, gravitational lensing, cosmology, 1 black holes 1. Special Relativity

More information

Reconstructing Bulk from Boundary: clues and challenges

Reconstructing Bulk from Boundary: clues and challenges Reconstructing Bulk from Boundary: clues and challenges Ben Freivogel GRAPPA and ITFA Universiteit van Amsterdam Ben Freivogel () Reconstructing Bulk from Boundary May 24, 2013 1 / 28 Need quantum gravity

More information

General Relativity and Cosmology Mock exam

General Relativity and Cosmology Mock exam Physikalisches Institut Mock Exam Universität Bonn 29. June 2011 Theoretische Physik SS 2011 General Relativity and Cosmology Mock exam Priv. Doz. Dr. S. Förste Exercise 1: Overview Give short answers

More information

Approaches to Quantum Gravity A conceptual overview

Approaches to Quantum Gravity A conceptual overview Approaches to Quantum Gravity A conceptual overview Robert Oeckl Instituto de Matemáticas UNAM, Morelia Centro de Radioastronomía y Astrofísica UNAM, Morelia 14 February 2008 Outline 1 Introduction 2 Different

More information

Holography and Unitarity in Gravitational Physics

Holography and Unitarity in Gravitational Physics Holography and Unitarity in Gravitational Physics Don Marolf 01/13/09 UCSB ILQG Seminar arxiv: 0808.2842 & 0808.2845 This talk is about: Diffeomorphism Invariance and observables in quantum gravity The

More information

Review and Notation (Special relativity)

Review and Notation (Special relativity) Review and Notation (Special relativity) December 30, 2016 7:35 PM Special Relativity: i) The principle of special relativity: The laws of physics must be the same in any inertial reference frame. In particular,

More information

Topics in Relativistic Astrophysics

Topics in Relativistic Astrophysics Topics in Relativistic Astrophysics John Friedman ICTP/SAIFR Advanced School in General Relativity Parker Center for Gravitation, Cosmology, and Astrophysics Part I: General relativistic perfect fluids

More information

EMERGENT GEOMETRY FROM QUANTISED SPACETIME

EMERGENT GEOMETRY FROM QUANTISED SPACETIME EMERGENT GEOMETRY FROM QUANTISED SPACETIME M.SIVAKUMAR UNIVERSITY OF HYDERABAD February 24, 2011 H.S.Yang and MS - (Phys Rev D 82-2010) Quantum Field Theory -IISER-Pune Organisation Quantised space time

More information

Gravitation: Tensor Calculus

Gravitation: Tensor Calculus An Introduction to General Relativity Center for Relativistic Astrophysics School of Physics Georgia Institute of Technology Notes based on textbook: Spacetime and Geometry by S.M. Carroll Spring 2013

More information

ds/cft Contents Lecturer: Prof. Juan Maldacena Transcriber: Alexander Chen August 7, Lecture Lecture 2 5

ds/cft Contents Lecturer: Prof. Juan Maldacena Transcriber: Alexander Chen August 7, Lecture Lecture 2 5 ds/cft Lecturer: Prof. Juan Maldacena Transcriber: Alexander Chen August 7, 2011 Contents 1 Lecture 1 2 2 Lecture 2 5 1 ds/cft Lecture 1 1 Lecture 1 We will first review calculation of quantum field theory

More information

Unruh effect and Holography

Unruh effect and Holography nd Mini Workshop on String Theory @ KEK Unruh effect and Holography Shoichi Kawamoto (National Taiwan Normal University) with Feng-Li Lin(NTNU), Takayuki Hirayama(NCTS) and Pei-Wen Kao (Keio, Dept. of

More information

Quantum field theory on curved Spacetime

Quantum field theory on curved Spacetime Quantum field theory on curved Spacetime YOUSSEF Ahmed Director : J. Iliopoulos LPTENS Paris Laboratoire de physique théorique de l école normale supérieure Why QFT on curved In its usual formulation QFT

More information

8.821 F2008 Lecture 09: Preview of Strings in N = 4 SYM; Hierarchy of Scaling dimensions; Conformal Symmetry in QFT

8.821 F2008 Lecture 09: Preview of Strings in N = 4 SYM; Hierarchy of Scaling dimensions; Conformal Symmetry in QFT 8.821 F2008 Lecture 09: Preview of Strings in N = 4 SYM; Hierarchy of Scaling dimensions; Conformal Symmetry in QFT Lecturer: McGreevy Scribe: Tarun Grover October 8, 2008 1 Emergence of Strings from Gauge

More information

PAPER 311 BLACK HOLES

PAPER 311 BLACK HOLES MATHEMATICAL TRIPOS Part III Friday, 8 June, 018 9:00 am to 1:00 pm PAPER 311 BLACK HOLES Attempt no more than THREE questions. There are FOUR questions in total. The questions carry equal weight. STATIONERY

More information

Ask class: what is the Minkowski spacetime in spherical coordinates? ds 2 = dt 2 +dr 2 +r 2 (dθ 2 +sin 2 θdφ 2 ). (1)

Ask class: what is the Minkowski spacetime in spherical coordinates? ds 2 = dt 2 +dr 2 +r 2 (dθ 2 +sin 2 θdφ 2 ). (1) 1 Tensor manipulations One final thing to learn about tensor manipulation is that the metric tensor is what allows you to raise and lower indices. That is, for example, v α = g αβ v β, where again we use

More information

arxiv: v2 [hep-th] 30 Jan 2018

arxiv: v2 [hep-th] 30 Jan 2018 Accelerated quantum fields: quantization of spacetime due to acceleration Lucas C. Celeri, and Vasileios I. Kiosses, Instituto de Física, Universidade Federal de Goiás, Caixa Postal 3, 74-97, Goiânia,

More information

Holographic construction of CFT excited states. Kostas Skenderis

Holographic construction of CFT excited states. Kostas Skenderis Holographic construction of CFT excited states STAG CH RESEARCH ER C TE CENTER Aspects of Conformal Field Theories Thessaloniki, Greece 24 September 2015 Introduction According to holography, gravity in

More information

Thermodynamics of spacetime in generally covariant theories of gravitation

Thermodynamics of spacetime in generally covariant theories of gravitation Thermodynamics of spacetime in generally covariant theories of gravitation Christopher Eling Department of Physics, University of Maryland, College Park, MD 20742-4111, USA draft of a paper for publication

More information

Attempts at relativistic QM

Attempts at relativistic QM Attempts at relativistic QM based on S-1 A proper description of particle physics should incorporate both quantum mechanics and special relativity. However historically combining quantum mechanics and

More information

Null Cones to Infinity, Curvature Flux, and Bondi Mass

Null Cones to Infinity, Curvature Flux, and Bondi Mass Null Cones to Infinity, Curvature Flux, and Bondi Mass Arick Shao (joint work with Spyros Alexakis) University of Toronto May 22, 2013 Arick Shao (University of Toronto) Null Cones to Infinity May 22,

More information

The Role of Black Holes in the AdS/CFT Correspondence

The Role of Black Holes in the AdS/CFT Correspondence The Role of Black Holes in the AdS/CFT Correspondence Mario Flory 23.07.2013 Mario Flory BHs in AdS/CFT 1 / 30 GR and BHs Part I: General Relativity and Black Holes Einstein Field Equations Lightcones

More information

The Conformal Algebra

The Conformal Algebra The Conformal Algebra Dana Faiez June 14, 2017 Outline... Conformal Transformation/Generators 2D Conformal Algebra Global Conformal Algebra and Mobius Group Conformal Field Theory 2D Conformal Field Theory

More information

Quantum Metric and Entanglement on Spin Networks

Quantum Metric and Entanglement on Spin Networks Quantum Metric and Entanglement on Spin Networks Fabio Maria Mele Dipartimento di Fisica Ettore Pancini Universitá degli Studi di Napoli Federico II COST Training School Quantum Spacetime and Physics Models

More information

En búsqueda del mundo cuántico de la gravedad

En búsqueda del mundo cuántico de la gravedad En búsqueda del mundo cuántico de la gravedad Escuela de Verano 2015 Gustavo Niz Grupo de Gravitación y Física Matemática Grupo de Gravitación y Física Matemática Hoy y Viernes Mayor información Quantum

More information

Lecture 8: 1-loop closed string vacuum amplitude

Lecture 8: 1-loop closed string vacuum amplitude Lecture 8: 1-loop closed string vacuum amplitude José D. Edelstein University of Santiago de Compostela STRING THEORY Santiago de Compostela, March 5, 2013 José D. Edelstein (USC) Lecture 8: 1-loop vacuum

More information

Holographic renormalization and reconstruction of space-time. Kostas Skenderis Southampton Theory Astrophysics and Gravity research centre

Holographic renormalization and reconstruction of space-time. Kostas Skenderis Southampton Theory Astrophysics and Gravity research centre Holographic renormalization and reconstruction of space-time Southampton Theory Astrophysics and Gravity research centre STAG CH RESEARCH ER C TE CENTER Holographic Renormalization and Entanglement Paris,

More information

th Aegean Summer School / Paros Minás Tsoukalás (CECs-Valdivia)

th Aegean Summer School / Paros Minás Tsoukalás (CECs-Valdivia) 013-09-4 7th Aegean Summer School / Paros Minás Tsoukalás (CECs-Valdivia Higher Dimensional Conformally Invariant theories (work in progress with Ricardo Troncoso 1 Modifying gravity Extra dimensions (string-theory,

More information

Geometric inequalities for black holes

Geometric inequalities for black holes Geometric inequalities for black holes Sergio Dain FaMAF-Universidad Nacional de Córdoba, CONICET, Argentina. 3 August, 2012 Einstein equations (vacuum) The spacetime is a four dimensional manifold M with

More information

Stability and Instability of Black Holes

Stability and Instability of Black Holes Stability and Instability of Black Holes Stefanos Aretakis September 24, 2013 General relativity is a successful theory of gravitation. Objects of study: (4-dimensional) Lorentzian manifolds (M, g) which

More information

Hawking radiation and universal horizons

Hawking radiation and universal horizons LPT Orsay, France June 23, 2015 Florent Michel and Renaud Parentani. Black hole radiation in the presence of a universal horizon. In: Phys. Rev. D 91 (12 2015), p. 124049 Hawking radiation in Lorentz-invariant

More information

Loop Quantum Gravity 2. The quantization : discreteness of space

Loop Quantum Gravity 2. The quantization : discreteness of space Loop Quantum Gravity 2. The quantization : discreteness of space Karim NOUI Laboratoire de Mathématiques et de Physique Théorique, TOURS Astro Particules et Cosmologie, PARIS Clermont - Ferrand ; january

More information

Curved Spacetime I. Dr. Naylor

Curved Spacetime I. Dr. Naylor Curved Spacetime I Dr. Naylor Last Week Einstein's principle of equivalence We discussed how in the frame of reference of a freely falling object we can construct a locally inertial frame (LIF) Space tells

More information

Casimir effect on a quantum geometry

Casimir effect on a quantum geometry Casimir effect on a quantum geometry Javier Olmedo Horace Hearne Institute for Theoretical Physics, Louisiana State University, & Institute of Physics, Science Faculty, University of the Republic of Uruguay.

More information

ν ηˆαˆβ The inverse transformation matrices are computed similarly:

ν ηˆαˆβ The inverse transformation matrices are computed similarly: Orthonormal Tetrads Let s now return to a subject we ve mentioned a few times: shifting to a locally Minkowski frame. In general, you want to take a metric that looks like g αβ and shift into a frame such

More information

Konstantin E. Osetrin. Tomsk State Pedagogical University

Konstantin E. Osetrin. Tomsk State Pedagogical University Space-time models with dust and cosmological constant, that allow integrating the Hamilton-Jacobi test particle equation by separation of variables method. Konstantin E. Osetrin Tomsk State Pedagogical

More information

Class Meeting # 12: Kirchhoff s Formula and Minkowskian Geometry

Class Meeting # 12: Kirchhoff s Formula and Minkowskian Geometry MATH 8.52 COURSE NOTES - CLASS MEETING # 2 8.52 Introduction to PDEs, Spring 207 Professor: Jared Speck Class Meeting # 2: Kirchhoff s Formula and Minkowskian Geometry. Kirchhoff s Formula We are now ready

More information

Geometry and Physics. Amer Iqbal. March 4, 2010

Geometry and Physics. Amer Iqbal. March 4, 2010 March 4, 2010 Many uses of Mathematics in Physics The language of the physical world is mathematics. Quantitative understanding of the world around us requires the precise language of mathematics. Symmetries

More information

Condensed Matter Physics and the Nature of Spacetime

Condensed Matter Physics and the Nature of Spacetime Condensed Matter Physics and the Nature of Spacetime Jonathan Bain Polytechnic University Prospects for modeling spacetime as a phenomenon that emerges in the low-energy limit of a quantum liquid. 1. EFTs

More information

Applications of AdS/CFT correspondence to cold atom physics

Applications of AdS/CFT correspondence to cold atom physics Applications of AdS/CFT correspondence to cold atom physics Sergej Moroz in collaboration with Carlos Fuertes ITP, Heidelberg Outline Basics of AdS/CFT correspondence Schrödinger group and correlation

More information

Fourth Aegean Summer School: Black Holes Mytilene, Island of Lesvos September 18, 2007

Fourth Aegean Summer School: Black Holes Mytilene, Island of Lesvos September 18, 2007 Fourth Aegean Summer School: Black Holes Mytilene, Island of Lesvos September 18, 2007 Central extensions in flat spacetimes Duality & Thermodynamics of BH dyons New classical central extension in asymptotically

More information

The Effective Equations for Bianchi IX Loop Quantum Cosmology

The Effective Equations for Bianchi IX Loop Quantum Cosmology The Effective Equations for Bianchi IX Loop Quantum Cosmology Asieh Karami 1,2 with Alejandro Corichi 2,3 1 IFM-UMICH, 2 CCM-UNAM, 3 IGC-PSU Mexi Lazos 2012 Asieh Karami Bianchi IX LQC Mexi Lazos 2012

More information

Initial-Value Problems in General Relativity

Initial-Value Problems in General Relativity Initial-Value Problems in General Relativity Michael Horbatsch March 30, 2006 1 Introduction In this paper the initial-value formulation of general relativity is reviewed. In section (2) domains of dependence,

More information

Observables in the GBF

Observables in the GBF Observables in the GBF Max Dohse Centro de Ciencias Matematicas (CCM) UNAM Campus Morelia M. Dohse (CCM-UNAM Morelia) GBF: Observables GBF Seminar (14.Mar.2013) 1 / 36 References:. [RO2011] R. Oeckl: Observables

More information

Week 1. 1 The relativistic point particle. 1.1 Classical dynamics. Reading material from the books. Zwiebach, Chapter 5 and chapter 11

Week 1. 1 The relativistic point particle. 1.1 Classical dynamics. Reading material from the books. Zwiebach, Chapter 5 and chapter 11 Week 1 1 The relativistic point particle Reading material from the books Zwiebach, Chapter 5 and chapter 11 Polchinski, Chapter 1 Becker, Becker, Schwartz, Chapter 2 1.1 Classical dynamics The first thing

More information

On the Hawking Wormhole Horizon Entropy

On the Hawking Wormhole Horizon Entropy ESI The Erwin Schrödinger International Boltzmanngasse 9 Institute for Mathematical Physics A-1090 Wien, Austria On the Hawking Wormhole Horizon Entropy Hristu Culetu Vienna, Preprint ESI 1760 (2005) December

More information

Spectral action, scale anomaly. and the Higgs-Dilaton potential

Spectral action, scale anomaly. and the Higgs-Dilaton potential Spectral action, scale anomaly and the Higgs-Dilaton potential Fedele Lizzi Università di Napoli Federico II Work in collaboration with A.A. Andrianov (St. Petersburg) and M.A. Kurkov (Napoli) JHEP 1005:057,2010

More information

8.821 String Theory Fall 2008

8.821 String Theory Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 8.81 String Theory Fall 008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 8.81 F008 Lecture 11: CFT continued;

More information

Lectures on gauge-gravity duality

Lectures on gauge-gravity duality Lectures on gauge-gravity duality Annamaria Sinkovics Department of Applied Mathematics and Theoretical Physics Cambridge University Tihany, 25 August 2009 1. Review of AdS/CFT i. D-branes: open and closed

More information