Dynamical Economic model in a finite world Christophe Goupil 1, Eric Herbert 1, Yves D'Angelo 1, Quentin Couix 2 1

Size: px
Start display at page:

Download "Dynamical Economic model in a finite world Christophe Goupil 1, Eric Herbert 1, Yves D'Angelo 1, Quentin Couix 2 1"

Transcription

1 Dynamical Economic model in a finite world Christophe Goupil 1, Eric Herbert 1, Yves D'Angelo 1, Quentin Couix 2 1 DyCoE Team, Laboratoire des Energies de Demain, LIED, UMR 8236, Université Paris Diderot 2 Université Paris Sorbonne Ecoles des Houches 10 mars 2016 christophe.goupil@univ-paris-diderot.fr

2 Including, or not, the ressources Perpetual motion et al... Glucina et al Hall et al Berg et al. 2015

3 Economics What do we learn from mechanics? What do we learn from equilibrium thermodynamics? What do we learn from out of equilibrium thermodynamics? Does economics have something to do with thermodynamics? A model where few things matter: (conservation, friction, rate )

4 Economics IS Mechanics!...? and Herman Laurent wrote to Léon Walras. (about the integrability of the model)

5 Economics ARE Thermodynamics!...?

6 Equilibrium thermodynamics: Callen approach

7 General structure

8 Thermodynamics

9 Economics

10 Thermoelastic coefficients & Elasticities Is there an Economic material?

11 Debreu: Job is done.really? So, in other words: The economics "material" is defined by the laws acting on...the economic "material The economics laws are derived from the measurements made on the economics material which is defined by the same laws that define.

12 Partial conclusion 1. Economics do not have the structure of thermodynamics. 2. There is no problem with doing local optimization until we don t claim it is GENERAL. 3. There is no fundamental equation for the economy, nor variational principle (hopefully) 4. There is no ergodicity. 5. T, P are emerging properties, are there any in economics? Commodity space GENERAL EQUILIBRIUM And.Economic systems are not equilibrium systems!

13 Out of equilibrium: Schumpeter

14 The Roegen assumption: «matter matters too» The far out of equilibrium assumption is ok, but there is no need of a fourth thermodynamics principle for matter.

15 Money temperature (Yakovenko 2009) There is no problem with such a definition, but why should we call it temperature and not simply the average value of the money carried by agents? AND! There is no emerging quantity

16 «Well-lit roads and burned bridges» (Glucina & Mayumi 2010) "The fact that there are no known exceptions to the laws of thermodynamics should be incorporated into the axiomatic foundation of economics."(underwood 1989) "Real financial markets cannot behave thermodynamically" because "financial markets are unstable, they do not approach statistical equilibrium, nor are there any available topological invariants on which to base a purely formal statistical mechanics." (Mc Caulley 2003) "If economics is to be considered as a science-based discipline, the principles of physical science, including the laws of thermodynamics, must be appropriately applied." (Wallace 2009) "We need to begin to incorporate energy and entropy thinking into economics."(kummel 2011)

17 The use of thermodynamics in Economics Conservative laws (no full substitutability) Non conservation of some physical quantities (utility...) Difference between extensive and intensive physical quantities Intensive physical quantities are the potentials from which we can derive forces Intensive physical quantities are the potentials that give a possible measurement of the quality There is no economic entropy but we can consider quantity and quality approach (general exergy) Give up the full thermodynamic paradigm (Integrability, Equation of state...) Time does matter BUT, there is no variational principle in out-of-equilibrium systems

18 Time does matter: a mechanical description (Odum & Pinkerton 1955) (Hall 1994) Efficiency is not restricted to pure thermodynamic description.

19 Odum-Pinkerton, Yvon, Chambadal, Novikov, Curzon & Ahlborn T hot Work Finite Time Thermodynamics FTT T hot Power Endoreversible T cold T cold C W 1 Q in T T cold hot P P max η CA η Carnot η CA W Q in 1 T T cold hot J. Yvon, The saclay Reactor: Two Years of Experience in the Use of a Compresed gas as a Heat Transfer Agent, Proceedings of the International Conference on the Peaceful Uses of Atomic Energy (1955) P. Chambadal Les centrales nucléaires. Armand Colin, Paris, France, , (1957) I.I. Novikov, Efficiency of an Atomic Power Generation Installation, Atomic Energy 3 (1957) F.L. Curzon & B. Ahlborn, Efficiency of a Carnot Engine at Maximum Power Output, Am. J. Phys. 43 (1975) For a review, see Ouerdane et al.., Eur. Phys. J. Special Topics 224, (2015) The position of the point on the curve is defined by the intensity parameter which governs the output.

20 Efficiency or Power? Irreversibilities included Friction Leak: natural degradation Low friction Source P R High friction DP P PH Production F PH Output Carnot P PL F PH «More is not always better» P S Sink Goupil et al. 2012

21 Efficiency or power : (small DP change) friction leak friction + leak restricted access to ressources friction + leak+ restricted access to ressources

22 Hall et al The Lego brick

23 The Lego brick description Internal parameters: Total ressource X T Frictions: R Coupling terms: a Natural recycling: F NR M=R in /R load Inputs: demands Production (Leontief PC) Recycling (Leontief PR) Outputs: Prod output: W PCout Recycling flux Safe: M>>1 2 Max Eff: M=(1+Z) 0.5 Max Prod: M=1 3 Unsafe: M<1 4 Healt parameter: M

24 Complete system

25 Complete system (small DP change) M 2 M 1 K

26 Smell test

27 Smell test: recycling increased

28 Conclusions 1. Economics do not have the structure of thermodynamics. 2. There is no economic entropy but quantity and quality approaches are possible 3. There is no fundamental equation for economy (hopefully) 4. There is no ergodicity. 5. Economic system are not equilibrium systems. There is no problem with doing local optimization until we don t claim it is GENERAL. 1. Conservative laws (non full substitutable) 2. Non conservation of some physical quantities (utility...) 3. Difference between extensive and intensive physical quantities 4. Intensive physical quantities are the potentials from which we can derive forces 5. Give up the full thermodynamic paradigm (Integrability, Equation of state...) 6. Time does matter BUT, there is no variational principle in out of equilibrium systems

29 References Walras 1909: Walras Léon Économique et Mécanique, Bulletin de la Société Vaudoise de Sciences Naturelles Vol. 45, p Soddy 1911: Soddy, Frederick. (1911). Matter and Energy (pgs ). H. Holt and Co. Soddy 1920: Soddy, Frederick. (1920). Science and Life, New York: Dutton. Soddy 1921: Soddy, Frederick. (1921). "Cartesian Economics: the Bearing of Physical Science upon Start Stewardship. Wilson 1938: Wilson, Edwin. (1938). "Letter to Paul Samuelson", Dec 30. Gibbs 1876: Willard Gibbs, (1876): "Internal Stability of Homogeneous Fluids as indicated by Fundamental Equations Samuelson 1947: Samuelson P. A. (1947), Foundation of Economic Analysis (Cambridge, MA, Harvard University Press) Samuelson 1960: Samuelson, Paul A. (1960). "Structure of a minimum equilibrium system Debreu 1984: G. Debreu, Théorie de la valeur. Une analyse axiomatique de l'équilibre économique, Paris, Dunod, 1984 Schumpeter 1939: Business Cycles: A Theoretical, Historical and Statistical Analysis of the Capitalist Process, 1939 Yakovenko 2009: Victor M. Yakovenko and J. Barkley Rosser, Jour. Rev. Mod. Phys. 81, Roegen 1971: Georgescu-Roegen, Nicholas. (1971). The Entropy Law and the Economic Process. Cambridge, Massachusetts. Ayres 1999: Robert Ayres, The second law, the fourth law, recycling and limits to growth, Ecological Economics, vol. 29, n 3, p Underwood 1989: Underwood, D. A. and King, P. G. (1989). "On the Ideological Found. of Environ. Policy", Ecological Economics 1: 324 Mc Cauley 2003: McCauley, Joseph L. (2003). "Thermo. Analogies in Eco. and Finance " Physica A, 329 (2003): Wallace 2009: Wallace, Thomas P. (2009). the Dynamics of Decaying Civilizations from Ancient Greece to America (pg. 31). AuthorHouse. Kummel 2011: Kummel, Reiner. (2011). The Second Law of Economics: Energy, Entropy, and the Origins of Wealth. Lotka 1922: A.J.Lotka (1922) 'Contribution to the energetics of evolution'. Proc Natl Acad Sci, 8. Odum 1955: H.T.Odum and R.C.Pinkerton (1955) 'Time's speed regulator., Am. Sci., 43 pp

30 Out of equilibrium thermodynamics references H. Ouerdane, Y. Apertet, C. Goupil, and Ph. Lecoeur, Continuity and boundary conditions in thermodynamics: From Carnot s efficiency to efficiencies at maximum power,eur. Phys. J. Special Topics 224, (2015) H. Ouerdane, A. A. Varlamov, A. V. Kavokin, C. Goupil, and C. B. Vining, Enhanced thermoelectric coupling near electronic phase transition: the rôle of fluctuation Cooper pairs, Physical Review B 91, (R) (2015) Y. Apertet, H. Ouerdane, C. Goupil, and Ph. Lecoeur, Influence of thermal environment on optimal working conditions of thermoelectric generators, J. Appl. Phys. 116, (2014) Y. Apertet, H. Ouerdane, C. Goupil, and Ph. Lecoeur, On the distinction between maximum power and maximum efficiency working conditions for thermoelectric generators, Journal of Applied Physics 116, (2014) Y. Apertet, H. Ouerdane, C. Goupil, and Ph. Lecoeur, Efficiency at maximum power of thermally coupled heat engines, Physical Review E vol. 85, (2012) Y. Apertet, H. Ouerdane, C. Goupil, and Ph. Lecoeur, Irreversibilities and efficiency at maximum power of heat engines: The illustrative case of a thermoelectric generator, Physical Review E vol. 85, (2012) Y. Apertet, H. Ouerdane, C. Goupil, and Ph. Lecoeur, Thermoelectric internal current loops inside inhomogeneous systems, Physical Review B vol. 85, (2012). Y. Apertet, H. Ouerdane, O. Glavatskaya, C. Goupil and Ph. Lecoeur, Optimal working conditions for thermoelectric generators with realistic thermal coupling, Europhysics Letters vol. 97, (2012)

31 Utility: Locally ok but is global optimization possible? U t The integrability question

32 Neoclassical Economy According to the feasibility study, it is feasible, but, According to the idiotability studies it is absolutely idiot.

What Thermodynamics can teach us about Economy : theory and practice

What Thermodynamics can teach us about Economy : theory and practice What Thermodynamics can teach us about Economy : theory and practice Christophe Goupil, Éric Herbert, Yves D'Angelo, Aurélie-Louis Napoléon, Gael Giraud École des Houches Science & Énergie mars 2018 eric.herbert@univ-paris-diderot.fr

More information

Ecole Thématique du CNRS en Thermoélectricité Approche Thermodynamique de la Thermoélectricité

Ecole Thématique du CNRS en Thermoélectricité Approche Thermodynamique de la Thermoélectricité Ecole Thématique du CNRS en Thermoélectricité Approche Thermodynamique de la Thermoélectricité Christophe Goupil Laboratoire Interdisciplinaire des Energies de Demain, LIED Université Paris Diderot Part

More information

Efficiency at maximum power of thermally coupled heat engines

Efficiency at maximum power of thermally coupled heat engines PHYSICAL REVIEW E 85, 041144 (2012) Efficiency at maximum power of thermally coupled heat engines Y. Apertet, 1,* H. Ouerdane, 2 C. Goupil, 3 and Ph. Lecoeur 1 1 Institut d Electronique Fondamentale, Université

More information

PERFORMANCE ANALYSIS OF SOLAR DRIVEN HEAT ENGINE WITH INTERNAL IRREVERSIBILITIES UNDER MAXIMUM POWER AND POWER DENSITY CONDITION

PERFORMANCE ANALYSIS OF SOLAR DRIVEN HEAT ENGINE WITH INTERNAL IRREVERSIBILITIES UNDER MAXIMUM POWER AND POWER DENSITY CONDITION VO.1, NO.3, OCTOBER 2006 ISSN 1819-6608 PERFORMANCE ANASIS OF SOAR DRIVEN EAT ENGINE WIT INTERNA IRREVERSIBIITIES UNDER MAIMUM POWER AND POWER DENSIT CONDITION A. Biswas, K. M. Pandey and R. Deb Department

More information

PHYSICAL REVIEW E 88, (2013)

PHYSICAL REVIEW E 88, (2013) PHYSICAL REVIEW E 88, 037 03) From local force-flux relationships to internal dissipations and their impact on heat engine performance: The illustrative case of a thermoelectric generator Y. Apertet,,*

More information

Thermo-economics of an irreversible solar driven heat engine

Thermo-economics of an irreversible solar driven heat engine Advanced Computational Methods in eat Transfer I 2 Thermo-economics of an irreversible solar driven heat engine K. M. Pandey & R. Deb Department of Mechanical Engineering, National Institute of Technology,

More information

Thermal energy harvesting: thermomagnetic versus thermoelectric generator

Thermal energy harvesting: thermomagnetic versus thermoelectric generator Thermal energy harvesting: thermomagnetic versus thermoelectric generator Morgan Almanza, Alexandre Pasko, A. Bartok, Frédéric Mazaleyrat, Martino Lobue To cite this version: Morgan Almanza, Alexandre

More information

Introduction to Stochastic Thermodynamics: Application to Thermo- and Photo-electricity in small devices

Introduction to Stochastic Thermodynamics: Application to Thermo- and Photo-electricity in small devices Université Libre de Bruxelles Center for Nonlinear Phenomena and Complex Systems Introduction to Stochastic Thermodynamics: Application to Thermo- and Photo-electricity in small devices Massimiliano Esposito

More information

Notes on Thermodynamics of Thermoelectricity - Collège de France - Spring 2013

Notes on Thermodynamics of Thermoelectricity - Collège de France - Spring 2013 Notes on hermodynamics of hermoelectricity - Collège de France - Spring 2013 Antoine Georges (Dated: March 26, 2013) I. BASIC RANSPOR EQUAIONS General references on this section: books by Ashcroft-Mermin,

More information

SUSTAINABLE EFFICIENCY OF FAR-FROM-EQUILIBRIUM SYSTEMS

SUSTAINABLE EFFICIENCY OF FAR-FROM-EQUILIBRIUM SYSTEMS Interdisciplinary Description of Complex Systems 0() 57-65 0 SUSAINABLE EFFICIENCY OF FAR-FROM-EQUILIBRIUM SYSEMS Michel Moreau * Bernard Gaveau and Leonard S. Schulman 3 Laboratory for heoretical and

More information

Quantifying Dissipation

Quantifying Dissipation Communications to SIMAI Congress, ISSN 1827-915, Vol 2 (27) DOI: 11685/CSC6171 1 Quantifying Dissipation Karl Heinz Hoffmann Institut für Physik Technische Universität Chemnitz D-917 Chemnitz Germany Reversible

More information

Received: 4 December 2005 / Accepted: 30 January 2006 / Published: 31 January 2006

Received: 4 December 2005 / Accepted: 30 January 2006 / Published: 31 January 2006 Entropy 2006, 8[1], 18-24 Entropy ISSN 1099-4300 www.mdpi.org/entropy/ Full paper Utility Function from Maximum Entropy Principle Amir H. Darooneh Sufi Institute, P.O.Box 45195-1547, Zanjan, Iran and Department

More information

Macroeconomic models with physical and monetary dimension based on constrained dynamics

Macroeconomic models with physical and monetary dimension based on constrained dynamics Macroeconomic models with physical and monetary dimension based on constrained dynamics Oliver Richters Carl von Ossietzky University of Oldenburg with Jonathan Barth, Erhard Glötzl, Florentin Glötzl &

More information

Energy management at micro scales

Energy management at micro scales Corso di Laurea in FISICA Energy management at micro scales Luca Gammaitoni ICT- Energy Training Day, Bristol 14 Sept. 2015 Corso di Laurea in FISICA Content IntroducCon to the nocon of energy. Laws of

More information

Application of Finite-time Thermodynamics for Evaluation Method of Heat Engines

Application of Finite-time Thermodynamics for Evaluation Method of Heat Engines Application of Finite-time Thermodynamics for Evaluation Method of Heat Engines IV International Seminar on ORC Power Systems, ORC2017 13-15 September 2017, Milano, Italy Takeshi Yasunaga and Yasuyuki

More information

Econoengineering and Economic Behavior: Particle, Atom, Molecule, or Agent Models?

Econoengineering and Economic Behavior: Particle, Atom, Molecule, or Agent Models? Econoengineering and Economic Behavior: Particle, Atom, Molecule, or Agent Models? Libb Thims 29 Jan 2013 University of Pitesti Econophysics and Sociophysics Workshop / Exploratory Domains of Econophysics

More information

Quantum. Thermodynamic. Processes. Energy and Information Flow at the Nanoscale. Gunter Mahler. Pan Stanford J [f I Publishing

Quantum. Thermodynamic. Processes. Energy and Information Flow at the Nanoscale. Gunter Mahler. Pan Stanford J [f I Publishing Quantum Thermodynamic Processes Energy and Information Flow at the Nanoscale Gunter Mahler Pan Stanford J [f I Publishing Preface Acknowledgments xiii xv 1 Introduction 1 1.1 Effective Theories 2 1.2 Partitions

More information

arxiv: v1 [cond-mat.stat-mech] 6 Nov 2015

arxiv: v1 [cond-mat.stat-mech] 6 Nov 2015 Retainability of canonical distributions for a Brownian particle controlled by a time-dependent harmonic potential arxiv:1511.01993v1 [cond-mat.stat-mech] 6 Nov 015 Geng Li and Z. C. Tu Department of Physics,

More information

Chapter 16 The Second Law of Thermodynamics

Chapter 16 The Second Law of Thermodynamics Chapter 16 The Second Law of Thermodynamics To examine the directions of thermodynamic processes. To study heat engines. To understand internal combustion engines and refrigerators. To learn and apply

More information

Thermodynamics for small devices: From fluctuation relations to stochastic efficiencies. Massimiliano Esposito

Thermodynamics for small devices: From fluctuation relations to stochastic efficiencies. Massimiliano Esposito Thermodynamics for small devices: From fluctuation relations to stochastic efficiencies Massimiliano Esposito Beijing, August 15, 2016 Introduction Thermodynamics in the 19th century: Thermodynamics in

More information

A Brief Review of Econophysics

A Brief Review of Econophysics J. Pure Appl. & Ind. Phys. Vol.2 (3A), 286-291 (2012) A Brief Review of Econophysics B. G. SHARMA Department of Physics and Computer Science, Govt. Nagarjuna P.G. College of Science Raipur, C. G., INDIA.

More information

Bounds on thermal efficiency from inference

Bounds on thermal efficiency from inference Bounds on thermal efficiency from inference Ramandeep S. Johal, Renuka Rai and Günter Mahler Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, S.A.S.

More information

AC : MAPPING THE FOREST OF DATA IN THERMODYNAM- ICS

AC : MAPPING THE FOREST OF DATA IN THERMODYNAM- ICS AC 2011-234: MAPPING THE FOREST OF DATA IN THERMODYNAM- ICS Yumin Zhang, Southeast Missouri State University Yumin Zhang Assistant Professor Department of Physics and Engineering Physics Southeast Missouri

More information

arxiv: v2 [cond-mat.mtrl-sci] 2 Jul 2012

arxiv: v2 [cond-mat.mtrl-sci] 2 Jul 2012 arxiv:1204.0737v2 [cond-mat.mtrl-sci] 2 Jul 2012 Internal convection in thermoelectric generator models Y Apertet 1, H Ouerdane 2, C Goupil 3,4 and Ph Lecœur 1 1 Institut d Electronique Fondamentale, Université

More information

12 The Laws of Thermodynamics

12 The Laws of Thermodynamics June 14, 1998 12 The Laws of Thermodynamics Using Thermal Energy to do Work Understanding the laws of thermodynamics allows us to use thermal energy in a practical way. The first law of thermodynamics

More information

Chap. 3 The Second Law. Spontaneous change

Chap. 3 The Second Law. Spontaneous change Chap. 3 The Second Law Spontaneous change Some things happen naturally; some things don t. the spontaneous direction of change, the direction of change that does not require work to be done to bring it

More information

Lagrange Principle and the Distribution of Wealth

Lagrange Principle and the Distribution of Wealth Lagrange Principle and the Distribution of Wealth J. Mimkes, G. Willis*, Physics Department, University of Paderborn, 3396 Paderborn, Germany mimkes@zitmail.uni-paderborn.de, *South Elmsall, W. Yorkshire,

More information

Spring_#7. Thermodynamics. Youngsuk Nam.

Spring_#7. Thermodynamics. Youngsuk Nam. Spring_#7 Thermodynamics Youngsuk Nam ysnam1@khu.ac.kr You can t connect the dots looking forward; you can only connect them looking backwards. So you have to trust that the dots will somehow connect in

More information

On Clean Cooling Systems for Wind Turbine Nacelle operating in Hot Climate

On Clean Cooling Systems for Wind Turbine Nacelle operating in Hot Climate International Conférence en Clean Cooling Technologiesin the ME NA Regions ICT3_MENA 201 Bou Smail, W. Tipaza, 5-6 October 2015 On Clean Cooling Systems for Wind Turbine Nacelle operating in Hot Climate

More information

Introduction to a few basic concepts in thermoelectricity

Introduction to a few basic concepts in thermoelectricity Introduction to a few basic concepts in thermoelectricity Giuliano Benenti Center for Nonlinear and Complex Systems Univ. Insubria, Como, Italy 1 Irreversible thermodynamic Irreversible thermodynamics

More information

ECOLOGICAL ECONOMICS. (Year 3)

ECOLOGICAL ECONOMICS. (Year 3) ECOLOGICAL ECONOMICS (Year 3) Aims of the Course This course aims to give students an insight into the new and rapidly developing subject of Ecological Economics. It is particularly suited to those who

More information

Affiliation: The Australian National University, Canberra, Australia. Keywords: Economics, social science, interdisciplinarity, policy, sustainability

Affiliation: The Australian National University, Canberra, Australia. Keywords: Economics, social science, interdisciplinarity, policy, sustainability Ecological Economics David I. Stern Crawford School of Economics and Government, The Australian National University, Canberra, ACT 0200, Australia. E-mail: david.stern@anu.edu.au. Phone: +61-2-6125-0176.

More information

On Economics and Energy

On Economics and Energy Les Houches, 5. 9. 3.2018 On Economics and Energy Jürgen Mimkes, Physics Department Paderborn University, Germany Content Future Model Differential Forms and Line Integrals Accounting The Laws of Economics

More information

arxiv:physics/ v1 [physics.class-ph] 20 Dec 2005

arxiv:physics/ v1 [physics.class-ph] 20 Dec 2005 Thermoeconomic analysis of an irreversible Stirling heat pump cycle arxiv:physics/0512182v1 [physics.class-ph] 20 Dec 2005 Umberto Lucia I.T.I.S. A. Volta, Spalto Marengo 42, 15100 Alessandria, Italy Gianpiero

More information

The efficiency at maximum power output of endoreversible engines under combined heat transfer modes

The efficiency at maximum power output of endoreversible engines under combined heat transfer modes The efficiency at maximum power output of endoreversible engines under combined heat transfer modes F. MOUKALLED, Faculty of Engineering and Architecture, Mechanical Engineering Department, American University

More information

Optimal quantum driving of a thermal machine

Optimal quantum driving of a thermal machine Optimal quantum driving of a thermal machine Andrea Mari Vasco Cavina Vittorio Giovannetti Alberto Carlini Workshop on Quantum Science and Quantum Technologies ICTP, Trieste, 12-09-2017 Outline 1. Slow

More information

Core equivalence and welfare properties without divisible goods

Core equivalence and welfare properties without divisible goods Core equivalence and welfare properties without divisible goods Michael Florig Jorge Rivera Cayupi First version November 2001, this version May 2005 Abstract We study an economy where all goods entering

More information

Distributive Social Justice:

Distributive Social Justice: Distributive Social Justice: Insights from a Doubly-Bounded Capital Exchange Model By: G.H. Boyle 20 th March ACS 2018 Screen shot from EiLab 1.40 at OpenABM A01 Taxonomy of Concerns 1. Sustainable Society

More information

Increasingly, economists are asked not just to study or explain or interpret markets, but to design them.

Increasingly, economists are asked not just to study or explain or interpret markets, but to design them. What is market design? Increasingly, economists are asked not just to study or explain or interpret markets, but to design them. This requires different tools and ideas than neoclassical economics, which

More information

FINITE TIME THERMODYNAMIC EVALUATION OF IRREVERSIBLE ERICSSON AND STIRLING HEAT PUMP CYCLES

FINITE TIME THERMODYNAMIC EVALUATION OF IRREVERSIBLE ERICSSON AND STIRLING HEAT PUMP CYCLES IV Minsk International Seminar eat Pipes, eat Pumps, Refrigerators Minsk, Belarus, September 47, 2000 FINIE IME ERMODYNAMIC EVAUAION OF IRREVERSIBE ERICSSON AND SIRING EA PUMP CYCES S. C. Kaushik, S. Kumar

More information

Mathematical models in economy. Short descriptions

Mathematical models in economy. Short descriptions Chapter 1 Mathematical models in economy. Short descriptions 1.1 Arrow-Debreu model of an economy via Walras equilibrium problem. Let us consider first the so-called Arrow-Debreu model. The presentation

More information

Statistical Mechanics of Money, Income, and Wealth

Statistical Mechanics of Money, Income, and Wealth Statistical Mechanics of Money, Income, and Wealth Victor M. Yakovenko Adrian A. Dragulescu and A. Christian Silva Department of Physics, University of Maryland, College Park, USA http://www2.physics.umd.edu/~yakovenk/econophysics.html

More information

Thermodynamic Modeling and Performance Analysis of an Atkinson cycle under Efficient Power Density Condition

Thermodynamic Modeling and Performance Analysis of an Atkinson cycle under Efficient Power Density Condition International Journal of Thermal Technologies E-ISSN 2277 4114 2015 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijtt/ Research Article Thermodynamic Modeling and Performance

More information

Entropy in Macroscopic Systems

Entropy in Macroscopic Systems Lecture 15 Heat Engines Review & Examples p p b b Hot reservoir at T h p a a c adiabats Heat leak Heat pump Q h Q c W d V 1 V 2 V Cold reservoir at T c Lecture 15, p 1 Review Entropy in Macroscopic Systems

More information

Halesworth U3A Science Group

Halesworth U3A Science Group Halesworth U3A Science Group Thermodynamics Or Why Things are How They Are Or Why You Can t Get Something For Nothing Ken Derham Includes quotations from publicly available internet sources Halesworth

More information

Received: 16 December 2002 / Accepted: 18 June 2003 / Published: 31 December 2003

Received: 16 December 2002 / Accepted: 18 June 2003 / Published: 31 December 2003 Entropy 2003, 5, 377-390 377 Entropy ISSN 1099-4300 www.mdpi.org/entropy/ Full Paper Ecological Optimization and Parametric Study of an Irreversible Regenerative Modified Brayton Cycle with Isothermal

More information

Efficiency at Maximum Power in Weak Dissipation Regimes

Efficiency at Maximum Power in Weak Dissipation Regimes Efficiency at Maximum Power in Weak Dissipation Regimes R. Kawai University of Alabama at Birmingham M. Esposito (Brussels) C. Van den Broeck (Hasselt) Delmenhorst, Germany (October 10-13, 2010) Contents

More information

Elements of Economic Analysis II Lecture VII: Equilibrium in a Competitive Market

Elements of Economic Analysis II Lecture VII: Equilibrium in a Competitive Market Elements of Economic Analysis II Lecture VII: Equilibrium in a Competitive Market Kai Hao Yang 10/31/2017 1 Partial Equilibrium in a Competitive Market In the previous lecture, e derived the aggregate

More information

Trade with differences in technologies

Trade with differences in technologies 4D INTERNATIONAL JOURNAL OF IT AND COMMERCE ISSN-2319-104X @4dcrossconnect.com.Inc2013 www.4dinternationaljournal.com Volume3,Issue-2-2013 Trade with differences in technologies Abstract Ramarcha Kumar

More information

Question 1. (p p) (x(p, w ) x(p, w)) 0. with strict inequality if x(p, w) x(p, w ).

Question 1. (p p) (x(p, w ) x(p, w)) 0. with strict inequality if x(p, w) x(p, w ). University of California, Davis Date: August 24, 2017 Department of Economics Time: 5 hours Microeconomics Reading Time: 20 minutes PRELIMINARY EXAMINATION FOR THE Ph.D. DEGREE Please answer any three

More information

1. Second Law of Thermodynamics

1. Second Law of Thermodynamics 1. Second Law of hermodynamics he first law describes how the state of a system changes in response to work it performs and heat absorbed. However, the first law cannot explain certain facts about thermal

More information

Local Stability Analysis of a Thermo-Economic Model of a Chambadal-Novikov-Curzon-Ahlborn Heat Engine

Local Stability Analysis of a Thermo-Economic Model of a Chambadal-Novikov-Curzon-Ahlborn Heat Engine Entropy 011, 13, 1584-1594; doi:10.3390/e13091584 OPEN ACCESS entropy ISSN 1099-4300 www.mdpi.com/journal/entropy Article Local Stability Analysis of a Thermo-Economic Model of a Chambadal-Novikov-Curzon-Ahlborn

More information

Uncertainty Per Krusell & D. Krueger Lecture Notes Chapter 6

Uncertainty Per Krusell & D. Krueger Lecture Notes Chapter 6 1 Uncertainty Per Krusell & D. Krueger Lecture Notes Chapter 6 1 A Two-Period Example Suppose the economy lasts only two periods, t =0, 1. The uncertainty arises in the income (wage) of period 1. Not that

More information

Gechstudentszone.wordpress.com. Chapter 6. Vittal.K

Gechstudentszone.wordpress.com. Chapter 6. Vittal.K Chapter 6 Vittal.K Leads Up To Second Law Of Thermodynamics Heat source T 1 Q +ve w possible. It is now clear that we can t construct a heat engine with just one +ve heat interaction. The above engine

More information

arxiv: v3 [cond-mat.stat-mech] 29 Jan 2019

arxiv: v3 [cond-mat.stat-mech] 29 Jan 2019 arxiv:1708.03254v3 [cond-mat.stat-mech] 29 Jan 2019 Thermodynamics of metabolic energy conversion under muscle load Christophe Goupil Laboratoire Interdisciplinaire des Energies de Demain (LIED), CNRS

More information

Computational procedure for a time-dependent Walrasian price equilibrium problem

Computational procedure for a time-dependent Walrasian price equilibrium problem Communications to SIMAI Congress, ISSN 1827-9015, Vol. 2 2007 DOI: 10.1685/CSC06159 Computational procedure for a time-dependent Walrasian price equilibrium problem M. B. DONATO 1 and M. MILASI 2 Department

More information

International Journal of Physics Research and Applications. Tsirlin AM* and Sukin IA. Abstract. Introduction. Review Article

International Journal of Physics Research and Applications. Tsirlin AM* and Sukin IA. Abstract. Introduction. Review Article Open Access International Journal of Physics Research and Applications Review Article Finite-time thermodynamics: Realizability domains of thermodynamic systems and P Salamon s problem of efficiency corresponding

More information

DOES MINIMUM ENTROPY GENERATION RATE CORRESPOND TO MAXIMUM POWER OR OTHER OBJECTIVES?

DOES MINIMUM ENTROPY GENERATION RATE CORRESPOND TO MAXIMUM POWER OR OTHER OBJECTIVES? th Joint European hermodynamics onference Brescia, July -5, 3 DOES MINIMUM ENROPY GENERAION RAE ORRESPOND O MAXIMUM POWER OR OER OBJEIVES? FEID Michel Professeur, Université de orraine EMA, avenue de la

More information

Efficiency of Inefficient Endoreversible Thermal Machines

Efficiency of Inefficient Endoreversible Thermal Machines DOI 10.1007/s13538-015-0396-x STATISTICAL Efficiency of Inefficient Endoreversible Thermal Machines José P. Palao 1 Luis A. Correa 2 Gerardo Adesso 3 Daniel Alonso 1 Received: 30 July 2015 Sociedade Brasileira

More information

Energy, Exergy and Thermodynamics. Thermodynamics, Maximum power, Hierarchies, and Material cycles

Energy, Exergy and Thermodynamics. Thermodynamics, Maximum power, Hierarchies, and Material cycles Energy, Exergy and Thermodynamics Thermodynamics, Maximum power, Hierarchies, and Material cycles Energy The joule is named after James Prescott Joule. As with all SI units whose names are derived from

More information

1. Second Law of Thermodynamics

1. Second Law of Thermodynamics 1. Second Law of hermodynamics he first law describes how the state of a system changes in response to work it performs and heat absorbed. he second law deals with direction of thermodynamic processes

More information

OPTIMUM COEFFICIENT OF PERFORMANCE OF IRREVERSIBLE CARNOT MAGNETIC REFRIGERATOR

OPTIMUM COEFFICIENT OF PERFORMANCE OF IRREVERSIBLE CARNOT MAGNETIC REFRIGERATOR OPTIMUM COEFFICIENT OF PERFORMANCE OF IRREVERSIBLE CARNOT MAGNETIC REFRIGERATOR Aaditya Mishra 1, Govind Maheshwari 2 1 Department of Mechanical Engineering, Institute of engineering & Technology, Devi

More information

On entropy generation in thermoelectric devices

On entropy generation in thermoelectric devices Energy Conversion & Management 41 (2000) 891±914 www.elsevier.com/locate/enconman On entropy generation in thermoelectric devices R.Y. Nuwayhid a, *, F. Moukalled a, N. Noueihed b a Department of Mechanical

More information

arxiv: v1 [physics.app-ph] 16 Jan 2018

arxiv: v1 [physics.app-ph] 16 Jan 2018 Maximization of the thermoelectric cooling of graded Peltier by analytical heat equation resolution. arxiv:181.5175v1 [physics.app-ph] 16 Jan 218 E. Thiébaut 1, C. Goupil 2, F. Pesty 1, Y. D Angelo 3,

More information

Study of Causal Relationships in Macroeconomics

Study of Causal Relationships in Macroeconomics Study of Causal Relationships in Macroeconomics Contributions of Thomas Sargent and Christopher Sims, Nobel Laureates in Economics 2011. 1 1. Personal Background Thomas J. Sargent: PhD Harvard University

More information

10.2 PROCESSES 10.3 THE SECOND LAW OF THERMO/ENTROPY Student Notes

10.2 PROCESSES 10.3 THE SECOND LAW OF THERMO/ENTROPY Student Notes 10.2 PROCESSES 10.3 THE SECOND LAW OF THERMO/ENTROPY Student Notes I. THE FIRST LAW OF THERMODYNAMICS A. SYSTEMS AND SURROUNDING B. PV DIAGRAMS AND WORK DONE V -1 Source: Physics for the IB Diploma Study

More information

Scarf Instability and Production: A Simulation

Scarf Instability and Production: A Simulation 18 th World IMACS / MODSIM Congress, Cairns, Australia 13-17 July 009 http://mssanz.org.au/modsim09 Scarf Instability and Production: A Simulation Fukiharu, T., K.Imamura Faculty of Economics, Hiroshima

More information

Macroeconomics Theory II

Macroeconomics Theory II Macroeconomics Theory II Francesco Franco FEUNL February 2016 Francesco Franco Macroeconomics Theory II 1/23 Housekeeping. Class organization. Website with notes and papers as no "Mas-Collel" in macro

More information

STUDY OF HANOI AND HOCHIMINH STOCK EXCHANGE BY ECONOPHYSICS METHODS

STUDY OF HANOI AND HOCHIMINH STOCK EXCHANGE BY ECONOPHYSICS METHODS Communications in Physics, Vol. 24, No. 3S2 (2014), pp. 151-156 DOI:10.15625/0868-3166/24/3S2/5011 STUDY OF HANOI AND HOCHIMINH STOCK EXCHANGE BY ECONOPHYSICS METHODS CHU THUY ANH, DAO HONG LIEN, NGUYEN

More information

Advanced Microeconomics

Advanced Microeconomics Advanced Microeconomics Partial and General Equilibrium Giorgio Fagiolo giorgio.fagiolo@sssup.it http://www.lem.sssup.it/fagiolo/welcome.html LEM, Sant Anna School of Advanced Studies, Pisa (Italy) Part

More information

Statistical Mechanics of Money, Income, Debt, and Energy Consumption

Statistical Mechanics of Money, Income, Debt, and Energy Consumption Statistical Mechanics of Money, Income, Debt, and Energy Consumption Victor M. Yakovenko Department of Physics, University of Maryland, College Park, USA! http://physics.umd.edu/~yakovenk/econophysics/

More information

, an adiabatic expansion machine, an isothermal compression machine at T L

, an adiabatic expansion machine, an isothermal compression machine at T L The Direct Method from Thermodynamics with Finite Speed used for Performance Computation of quasi-carnot Irreversible Cycles IEvaluation of coefficient of performance and power for refrigeration machines

More information

Discussion Papers In Economics And Business

Discussion Papers In Economics And Business Discussion Papers In Economics And Business An Axiomatic Characterization of the Price-Money Message Mechanism Ken Urai Hiromi Murakami Discussion Paper 15-31-Rev. Graduate School of Economics and Osaka

More information

Finite-Time Thermodynamics of Port-Hamiltonian Systems

Finite-Time Thermodynamics of Port-Hamiltonian Systems Finite-Time Thermodynamics of Port-Hamiltonian Systems Henrik Sandberg Automatic Control Lab, ACCESS Linnaeus Centre, KTH (Currently on sabbatical leave at LIDS, MIT) Jean-Charles Delvenne CORE, UC Louvain

More information

Handout 12: Thermodynamics. Zeroth law of thermodynamics

Handout 12: Thermodynamics. Zeroth law of thermodynamics 1 Handout 12: Thermodynamics Zeroth law of thermodynamics When two objects with different temperature are brought into contact, heat flows from the hotter body to a cooler one Heat flows until the temperatures

More information

Physics 207 Lecture 27. Lecture 26. Chapters 18, entropy and second law of thermodynamics Chapter 19, heat engines and refrigerators

Physics 207 Lecture 27. Lecture 26. Chapters 18, entropy and second law of thermodynamics Chapter 19, heat engines and refrigerators Goals: Lecture 26 Chapters 18, entropy and second law of thermodynamics Chapter 19, heat engines and refrigerators Reading assignment for Wednesday: Chapter 20. Physics 207: Lecture 27, Pg 1 Entropy A

More information

arxiv: v3 [quant-ph] 24 Nov 2014

arxiv: v3 [quant-ph] 24 Nov 2014 Optimal Performance of Endoreversible Quantum Refrigerators arxiv:108073v3 quant-ph] Nov 01 Luis A Correa, 1,, José P Palao,, 3 Gerardo Adesso, 1 and Daniel Alonso, 3 1 School of Mathematical Sciences,

More information

8.044 Lecture Notes Chapter 5: Thermodynamcs, Part 2

8.044 Lecture Notes Chapter 5: Thermodynamcs, Part 2 8.044 Lecture Notes Chapter 5: hermodynamcs, Part 2 Lecturer: McGreevy 5.1 Entropy is a state function............................ 5-2 5.2 Efficiency of heat engines............................. 5-6 5.3

More information

THERMODYNAMICS THERMOSTATISTICS AND AN INTRODUCTION TO SECOND EDITION. University of Pennsylvania

THERMODYNAMICS THERMOSTATISTICS AND AN INTRODUCTION TO SECOND EDITION. University of Pennsylvania THERMODYNAMICS AND AN INTRODUCTION TO THERMOSTATISTICS SECOND EDITION HERBERT B. University of Pennsylvania CALLEN JOHN WILEY & SONS New York Chichester Brisbane Toronto Singapore CONTENTS PART I GENERAL

More information

DRIVING FORCE IN SIMULATION OF PHASE TRANSITION FRONT PROPAGATION

DRIVING FORCE IN SIMULATION OF PHASE TRANSITION FRONT PROPAGATION Chapter 1 DRIVING FORCE IN SIMULATION OF PHASE TRANSITION FRONT PROPAGATION A. Berezovski Institute of Cybernetics at Tallinn Technical University, Centre for Nonlinear Studies, Akadeemia tee 21, 12618

More information

Vol. 119 (2011) ACTA PHYSICA POLONICA A No. 6

Vol. 119 (2011) ACTA PHYSICA POLONICA A No. 6 Vol. 119 011) ACA PHYSICA POLONICA A No. 6 Endoreversible Modeling and Optimization of a Multistage Heat Engine System with a Generalized Heat ransfer Law via Hamilton Jacobi Bellman Equations and Dynamic

More information

Newtonian and Lagrangian Mechanics of a Production System

Newtonian and Lagrangian Mechanics of a Production System Newtonian and Lagrangian Mechanics of a Production System Matti Estola 1 University of Eastern Finland, Department of Health and Social Management, P.O. Box 111, 80101 Joensuu Campus, Tel.: +358 50 4422068,

More information

Indeterminacy and Sunspots in Macroeconomics

Indeterminacy and Sunspots in Macroeconomics Indeterminacy and Sunspots in Macroeconomics Wednesday September 6 th : Lecture 5 Gerzensee, September 2017 Roger E. A. Farmer Warwick University and NIESR Topics for Lecture 5 Sunspots (Cass-Shell paper)

More information

3.20 Exam 1 Fall 2003 SOLUTIONS

3.20 Exam 1 Fall 2003 SOLUTIONS 3.0 Exam 1 Fall 003 SOLUIONS Question 1 You need to decide whether to work at constant volume or constant pressure. Since F is given, a natural choice is constant volume. Option 1: At constant and V :

More information

OPTIMIZATION OF AN IRREVERSIBLE OTTO AND DIESEL CYCLES BASED ON ECOLOGICAL FUNCTION. Paraná Federal Institute, Jacarezinho, Paraná, Brasil.

OPTIMIZATION OF AN IRREVERSIBLE OTTO AND DIESEL CYCLES BASED ON ECOLOGICAL FUNCTION. Paraná Federal Institute, Jacarezinho, Paraná, Brasil. OPIMIZAION OF AN IRREVERSIBE OO AND DIESE CYCES BASED ON ECOOGICA FUNCION André. S. MOSCAO *, Santiago D. R. OIVEIRA, Vicente. SCAON, Alcides PADIA * Paraná Federal Institute, Jacarezinho, Paraná, Brasil.

More information

Statistical Mechanics of Money, Income, Debt, and Energy Consumption

Statistical Mechanics of Money, Income, Debt, and Energy Consumption Statistical Mechanics of Money, Income, Debt, and Energy Consumption Victor M. Yakovenko Department of Physics, University of Maryland, College Park, USA http://physics.umd.edu/~yakovenk/econophysics/

More information

The Ramsey Model. (Lecture Note, Advanced Macroeconomics, Thomas Steger, SS 2013)

The Ramsey Model. (Lecture Note, Advanced Macroeconomics, Thomas Steger, SS 2013) The Ramsey Model (Lecture Note, Advanced Macroeconomics, Thomas Steger, SS 213) 1 Introduction The Ramsey model (or neoclassical growth model) is one of the prototype models in dynamic macroeconomics.

More information

Price Index Basics* (pg. 146 of Foundations of Economic Analysis)

Price Index Basics* (pg. 146 of Foundations of Economic Analysis) Price Index Basics* The fundamental problem upon which all the analysis rests is that of determining merely from price and quantity data which of two situations is higher up on an individual s preference

More information

Physics 1501 Lecture 37

Physics 1501 Lecture 37 Physics 1501: Lecture 37 Todays Agenda Announcements Homework #12 (Dec. 9): 2 lowest dropped Midterm 2 in class Wednesday Friday: review session bring your questions Todays topics Chap.18: Heat and Work»

More information

Statistical Mechanics of Money, Income, Debt, and Energy Consumption

Statistical Mechanics of Money, Income, Debt, and Energy Consumption Statistical Mechanics of Money, Income, Debt, and Energy Consumption Victor M. Yakovenko Department of Physics, University of Maryland, College Park, USA http://physics.umd.edu/~yakovenk/econophysics/

More information

Lecture 12 The Spatial Price Equilibrium Problem

Lecture 12 The Spatial Price Equilibrium Problem Lecture 12 The Spatial Price Equilibrium Problem Dr. Anna Nagurney John F. Smith Memorial Professor Isenberg School of Management University of Massachusetts Amherst, Massachusetts 01003 c 2009 Parallel

More information

arxiv:physics/ v1 [physics.soc-ph] 26 Jul 2006

arxiv:physics/ v1 [physics.soc-ph] 26 Jul 2006 Geometry of Financial Markets Towards Information Theory Model of Markets Edward W. Piotrowski arxiv:physics/0607236v1 [physics.soc-ph] 26 Jul 2006 Institute of Mathematics, University of Bia lystok Lipowa

More information

Laws of Thermodynamics

Laws of Thermodynamics Laws of Thermodynamics The Three Laws of Thermodynamics - The first lawof thermodynamics, also called conservation of energy. We can use this knowledge to determine the amount of energy in a system, the

More information

Performance Optimization of Generalized Irreversible Refrigerator Based on a New Ecological Criterion

Performance Optimization of Generalized Irreversible Refrigerator Based on a New Ecological Criterion Entropy 213, 15, 5277-5291; doi:1.339/e15125277 Article OPEN ACCESS entropy ISSN 199-43 www.mdpi.com/journal/entropy Performance Optimization of Generalized Irreversible Refrigerator Based on a New Ecological

More information

Lecture Notes Set 4c: Heat engines and the Carnot cycle

Lecture Notes Set 4c: Heat engines and the Carnot cycle ecture Notes Set 4c: eat engines and the Carnot cycle Introduction to heat engines In the following sections the fundamental operating principles of the ideal heat engine, the Carnot engine, will be discussed.

More information

The Core of a coalitional exchange economy

The Core of a coalitional exchange economy The Core of a coalitional exchange economy Elena L. Del Mercato To cite this version: Elena L. Del Mercato. The Core of a coalitional exchange economy. Cahiers de la Maison des Sciences Economiques 2006.47

More information

Govind Maheshwari *, Roshan Raman

Govind Maheshwari *, Roshan Raman IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY THERMODYNAMIC ANALYSIS OF AN ATKINSON CYCLE UNDER EFFICIENT POWER DENSITY CONDITION Govind Maheshwari *, Roshan Raman Associate

More information

ΔU = Q W. Tue Dec 1. Assign 13/14 Friday Final: Fri Dec 11 2:30PM WALTER 145. Thermodynamics 1st Law. 2 nd Law. Heat Engines and Refrigerators

ΔU = Q W. Tue Dec 1. Assign 13/14 Friday Final: Fri Dec 11 2:30PM WALTER 145. Thermodynamics 1st Law. 2 nd Law. Heat Engines and Refrigerators Tue Dec 1 Thermodynamics 1st Law ΔU = Q W 2 nd Law SYS Heat Engines and Refrigerators Isobaric: W = PΔV Isochoric: W = 0 Isothermal: ΔU = 0 Adiabatic: Q = 0 Assign 13/14 Friday Final: Fri Dec 11 2:30PM

More information

Lecture 1: Introduction to IO Tom Holden

Lecture 1: Introduction to IO Tom Holden Lecture 1: Introduction to IO Tom Holden http://io.tholden.org/ Email: t.holden@surrey.ac.uk Standard office hours: Thursday, 12-1PM + 3-4PM, 29AD00 However, during term: CLASSES will be run in the first

More information

Chapter 11 Heat Engines and The Second Law of Thermodynamics

Chapter 11 Heat Engines and The Second Law of Thermodynamics Chapter 11 Heat Engines and The Second Law of Thermodynamics Heat Engines Heat engines use a temperature difference involving a high temperature (T H ) and a low temperature (T C ) to do mechanical work.

More information