Multiobjective H 2 /H /impulse-to-peak synthesis: Application to the control of an aerospace launcher

Size: px
Start display at page:

Download "Multiobjective H 2 /H /impulse-to-peak synthesis: Application to the control of an aerospace launcher"

Transcription

1 Multiobjective H /H /impulse-to-peak synthesis: Application to the control of an aerospace launcher D. Arzelier, D. Peaucelle LAAS-CNRS, 7 Avenue du Colonel Roche, 3 77 Toulouse, Cedex 4, France s: arzelier@laas.fr, peaucell@laas.fr October 3, 3 Keywords: Impulse-to-peak performance, Multiobjective control, LMI optimization, Aerospace launcher. Problem formulation Let the LTI discrete plant Σ be given by its state-space imal realization: x k+ A B B x k z k = C D D w k () y k C D u k where x R n is the state vector, w R mw is the disturbance vector, u R mu is the input vector, z R rz is the controlled output vector and y R ry is the measured output vector. The z and w vectors are partitioned woo wip w Σ zoo zip z u y K as indicated in figure. Figure : Standard model for multiobjective control z = z z ip z w = w w ip w () The associated matrices are therefore consequently partitioned. B = D D ip D B B ip B D = D ip D ip D ip D D ip D D = [ D y D yip D y ] C = C C ip C D = D u D ipu D u The controller K is given by its imal state-space realization: η k+ = A K η k + B K y k (4) u k = C K η k + D K y k The closed-loop system Σ K is given by its state-space matrices: A + BDK C BC A cl = K B + BD B B K C A cl = K D K B K D C cl = [ (5) ] C + DD K C DC K D cl =[D + DD K D ] (3)

2 Problem (multiobjective H /H /ip control problem) Find a controller K in the set of internally stabilizing controllers K such that: K K α ip γ ip + α γ Σ K γ Σ ip K ip γ ip Σ K γ (6) LMI formulation of the impulse-to-peak synthesis problem. The impulse-to-peak performance Let the closed-loop discrete-time plant be given by its imal realization: x k+ = A cl x k + B cl w k x() = (7) z k = C cl x k + D cl w k Problem (worst-case ipk synthesis) Find a controller K in the set of internally stabilizing controllers K. K K sup w i i m w z L (8) where z is the performance output response to the impulsive input w i k = wi δ k, w l k =(l i) andδ k is the unit pulse. Theorem If there exists a matrix P S + satisfying: then z k L ξ k. A cl PA cl P< B clb cl <P C cl PC cl ξ < D cl D cl <ξ (9) Proof The solutions of (7) may be written as (k : x = z = D cl x = B cl z = C cl x = C cl B cl () x k = A k cl B cl z k = C cl A k cl B cl = C cl x k Then working on the dual of (7) (A cl,c cl,b cl,d cl ), we get x k+px k+ <x k Px k < <x Px = C cl PC cl So, k x k Px k C cl PC cl and k x k Px k <ξ. Finally, from z k z k = x k B clb cl x k,weget k z k z k <ξ. Using the last inequality leads to z k <ξ k As in continuous-time case [], [], the conservative LMI characterization (9) may be used to compute a bound on the peak of the impulse response of (7). γ = γ P cl,γ A cl P cl A cl P cl < B ipcl B ipcl P cl < () C ipcl P cl C ipcl γ < D ipcl D ipcl γ < Here, we are interested in an equivalent alternative LMI characterization of a bound on the impulse-to-peak performance of the closed-loop system (7. A generalization of the method in [8] where an extra matrix G is introduced for the test of H and H performances leads to the equivalent LMI optimization problem.

3 Theorem Let the following semidefinite programg problem be given: γg = P cl,γ,g γ Pcl A cl G G A cl P cl G G < Pcl B ipcl B ipcl < [ ] γ C ipcl G G C ipcl P cl G G < γ Dipcl < D ipcl () then γ γ G Proof Any feasible solution to (9) is a feasible solution of (). Indeed, using adequate Schur complement on all inequalities, if there exists a feasible pair (P cl, γ) S n + R + for (9) then the triplet (P cl, G = P cl, γ) is a feasible triplet for (). We are now in position to address the impulse-to-peak performance synthesis problem. Theorem 3 If there exist X R n n, Y R n n, Â R n n, ˆB R n r, Ĉ R m n, ˆD R m r, Q S n +, H S n +, J R n n, and a scalar γ G R+ such that: γ G = X, Y, γ G J, H, Q, S γ then a full-order controller reconstructed as follows: V U = S YX D K = ˆD C K =(Ĉ ˆDCX)U B K = V T (ˆB YB ˆD) A K = V T Q J AX + BĈ A + B ˆDC H Â YA + ˆBC Q X X J S H Y Y Q J B ip + B ˆDD ipy H YB ip + ˆBD ipy γ C ipx + D ipu Ĉ C ip + D ipu ˆDC Q X X J S H Y Y γ Dip + D ipu ˆDD ipy < [Â Y(A + B ˆDC)X V B K CX YBC K U ] leads to bound the peak value of impulse response of the system: U (3) (4) z L < γg 3

4 Proof 3 From (), it is easy to see that the matrix G is invertible and may be partitioned as follows: X U Y G = G U V = (5) V Then applying the following similarity transformation on the closed-loop Lyapunov matrix, we get: Y Q J Y V P cl = V J (6) H Y Multiplying the first three terms in () by and by its transpose, we get the final result by applying V the change of variables (4). The same technique may be applied to the H and H performance criteria as originally proposed in [8]. A full-order output-feedback controller imizing an upper bound for the multiobjective H /H /ip synthesis problem may be computed using semidefinite programg and LMI formulation. Theorem 4 If the following semidefinite programg problem has a solution X, Y, γ G, T, S J i, H i, Q i,i=,ip, α γ + α ip γ ip Q J AX + BĈ A + B ˆDC B + B ˆDD y H  YA + ˆBC YB + ˆBD y Q X X S + J X C + Ĉ D u H Y Y C + C ˆD D u D + D y ˆD D u γ Q ip J ip AX + BĈ A + B ˆDC H ip  YA + ˆBC Q ip X X J ip S H ip Y Y Q ip J ip B ip + B ˆDD ipy H ip YB ip + ˆBD ipy γ ip C ip X + D ipu Ĉ C ip + D ipu ˆDC Q ip X X J ip S H ip Y Y γ Dip + D ipu ˆDD ipy < Trace(T) < γ T C X + D u Ĉ C + D u ˆDC D + D u ˆDD y Q X X S + J H Y Y Q J AX + BĈ A + B ˆDC B + B ˆDD y H  YA + ˆBC YB + ˆBD y Q X X S + J H Y Y < then a controller K constructed from (4) is a suboptimal solution to the multiobjective synthesis problem (6). Proof 4 The proof is very simple and consists in creating a particular G i matrix for each performance constraint. Applying a generalized shaping paradigm G = G ip = G and the linearizing change of variables leads to the result. (7) 4

5 3 Application to the multiobjective control of an aerospace launcher 3. Model of the launcher and specifications The description of the application is mainly borrowed from [3]. The yaw axis of the space launcher with the associated variables is presented in figure. G is the center of gravity, V and V r are the absolute and relative velocity and W is the wind velocity. i is the angle of attack and Ψ is the deviation of the launcher from the yaw axis with respect to the guidance attitude reference. One has to design an automatic controller keeping the launcher around its center of gravity which follows the guidance reference trajectory where the control variable is the thruster angle of deflection β. The linearized dynamics of the launcher include seven rigid modes with mode for sensors and mode for actuator and 5 bending modes. During the atmospheric W Vr V x θ ψ X i Pc G Z β flight phase, the specifications for the controller are: Figure : Model of the launcher - to insure closed-loop stability with sufficient stability margins - to insure good attenuation of bending modes - to reject disturbance due to wind and gusts - to insure robustness with respect to uncertainties on the rigid and bending modes 3. Performance specifications and structure of the controller Our approach consists in choosing a particular model (including sensors dynamics but without bending modes and actuator dynamics) of the yaw axis of the launcher. The specifications are then translated into control objectives involving adequate system norms as follows: - a bound on the impulse-to-peak performance of the closed-loop transfer W i with an additional filter modelling a typical wind profile to limit the angle of attack - a bound on the H performance of the sensitivity S to get a imum modulus margin and therefore good gain margins - a bound on the H performance of the transfer between measurement noises and β to reduce the consumption - a mixed roll-off and lead filter to attenuate the bending modes and control in phase the first one The control problem for the launcher is naturally set as a multiobjective control problem of the form (6). K K α i γ W i + α c γ cons Σ mod K γ mod Σ W i K ip γ ip Σ cons K γ cons (8) 5

6 A conservative solution for this problem is given in the previous section. problem: It amounts to solve the LMI (α i γ W i + α c γ cons ) L m (Q m, J m, H m, X, Y, S, Â, ˆB, Ĉ, ˆD,γ mod ) < L ip (Q i, J i, H i, X, Y, S, Â, ˆB, Ĉ, ˆD) < L c (Q c, J c, H c, T c, X, Y, S, Â, ˆB, Ĉ, ˆD) < (9) where L ( ) are LMIs defined in (4) with respect to the decision variables in boldface. Of course, we need to design a particular structure for the controller which is detailed in figure 3. and defining the particular models Σ i. One part of the controller is tuned (mixed filter) and the other part is computed via multiobjective optimization. Note also that the wind gust model acts like a weighting function which has to be tuned in the controller synthesis. w w 3 3 z = z = β w w 3 Σ aug Wind gust model + Actuator Mixed Filter Rigid Launcher with sensors ψ ψ. Controller Multiobjective Controller delay delay z = i Figure 3: Structure of the multiobjective controller 3.3 Synthesis procedure and tuning parameters As seen before, the whole controller is then composed of the mixed filter in series with a multiobjective controller. We have therefore two different sets of tuning parameters. The first set is formed with the parameters defining the wind gust model and the mixed filter. The wind gust model is a second order with two tuning parameters while the mixed filter is composed of a low-pass filter multiplied by a lead filter: K W W W (p) = p +T W p + TW W m = +aτp +τp K ro +T ro p () We have therefore 6 synthesis parameters: K W, T W, K ro, T ro, a and τ. The other set of tuning parameters is formed with the optimization parameters α i /α c and γ mod of the LMI optimization. Algorithm - Choose the tuning parameters and form the augmented plant Σ. Extract Σ W i,σ cons and Σ mod. 3- Solve the convex optimization problem via LMI optimization and get the decision variables. 4- Reconstruct the controller with formulae (4). 3.4 Simulation results The previous algorithm has been used to design a robust autopilot for the atmospheric flight of a space launcher. The synthesis has been performed considering an LTI worst-case configuration of the launcher. During the atmospheric flight phase, the time-variant behavior of the launcher is simulated with SIMULINK c where information about specifications is provided to the user. The typical wind profile is presented in figure 3.4. More details about the application are presented in the companion and collective paper [?] and in [5]. 6

7 Wind velocity W s t/t = 95 Figure 4: Wind profile The Bode plot of the multiobjective controller is first presented in figure 3.4 where the effect of the lead filter is obvious. 4 3 Ψ. u Bode Diagram Magnitude (db) 3 Ψ u 4 9 Phase (deg) Frequency (rad/sec) f/f s Figure 5: Bode diagram of the pilot The open-loop frequency responses of the worst-cases are given in Nichols charts in figure 3.4. This plot is obtained by freezing the model of the launcher when the wind gust is applied. The roll-off specification on bending modes is indicated by the red horizontal line. A zoom on a specific range of frequencies allows to verify gain margins imposed on the rigid model. X db M db l M db h

8 Various time responses are then proposed. Note that all scales have been normalized with respect to the sample period T s. The left figure shows the variation of the angle of attack when the typical wind T end profile is applied. The consumption C = β(k +) β(k) is computed and plotted with respect k=t init to the maximum allowed consumption. The right plot shows that the consumption is very good since the multiobjective controller needs only 5 % of the maximum allowable consumption to tackle the specifications. 9 8 C max Angle of attack i Consumption (C/C max ) i max T f T f Finally, the angle of deflection and its velocity are plotted below. They are far from the specified maxima β max β. max Angle of deflection β Control velocity β β max. β max T f 4 Conclusions The simulations have shown that this approach leads to controllers verifying all the specifications imposed on the launcher during the atmospheric flight. This black box-like method allows a great flexibility in the synthesis process. The tuning parameters are clearly identified with respect to the fundamental trade-off proposed by the performance specifications. The definition of easy-to-use macros of MATLAB based on convex semidefinite optimization solvers allows the designer to tune adequately the synthesis parameters. On the contrary, the main drawback of the proposed method relies on the fact that it can be used only with a simplified synthesis model (without bending modes) due to numerical considerations. Indeed, the parametric uncertainty of the model is not directly dealt with. In fact, parametric robustness concerns comes from the inherent time-varying nature of the model which is not taken into account here. References [] S.P. Boyd, L.E. El Ghaoui, E. Feron, V. Balakrishnan, Linear matrix inequalities in system and control theory, SIAM Studies, 994. [] B. Clement, G. Duc, S. Mauffrey, A. Biard, Aerospace launch vehicle control: a gain scheduing approach, 5th triennial World Congress, Barcelona,. [3] B. Clement, G. Duc, A multiobjective control algorithm: Application to a launcher with bending modes, Proceedings of the 8th IEEE Mediterranean Conference on Control and Automation, Rio Patras, Greece,. [4] J.C. Geromel, M.C. de Oliveira, L. Hsu, LMI Characterization of structural and robust stability, Linear Algebra and its Applications, vol. 85, -3, pp. 69-8, December

9 [5] S. Mauffrey, M. Schoeller, Non-stationnary H control for launcher with bending modes, 4th IFAC Symposium on Automatic Control in Aerospace, Seoul, Korea, 998. [6] M.C. de Oliveira, J. Bernussou, J.C. Geromel, A new discrete-time robust stability condition, Systems & Control Letters, Vol. 37, No. 4, July 999. [7] M.C. de Oliveira, J.C. Geromel, L. Hsu, LMI Characterization of structural and robust stability: the discrete-time case, Linear Algebra and its Applications, Vol. 96, -3, pp.7-38, July 999. [8] M.C. Oliveira, J. Bernussou, J.C. Geromel, Extended H and H norm characterizations and controller parametrizations for discrete-time systems, International Journal of Control, Vol. 75, pp ,. [9] D. Peaucelle, D. Arzelier, O. Bachelier, J. Bernussou, A new robust D-stability condition for real convex polytopic uncertainty, Systems & Control Letters, vol. 4,, may. [] C.W. Scherer, P. Gahinet, M. Chilali, Multiobjective output-feedback control via LMI optimization, IEEE Transactions on Automatic Control, Vol. 4, No. 7, pp , 997. [] R.E. Skelton, T. Iwasaki, K. Grigoriadis, A unified algebraic approach to linear control design, Taylor and Francis,

Research Article An Equivalent LMI Representation of Bounded Real Lemma for Continuous-Time Systems

Research Article An Equivalent LMI Representation of Bounded Real Lemma for Continuous-Time Systems Hindawi Publishing Corporation Journal of Inequalities and Applications Volume 28, Article ID 67295, 8 pages doi:1.1155/28/67295 Research Article An Equivalent LMI Representation of Bounded Real Lemma

More information

Marcus Pantoja da Silva 1 and Celso Pascoli Bottura 2. Abstract: Nonlinear systems with time-varying uncertainties

Marcus Pantoja da Silva 1 and Celso Pascoli Bottura 2. Abstract: Nonlinear systems with time-varying uncertainties A NEW PROPOSAL FOR H NORM CHARACTERIZATION AND THE OPTIMAL H CONTROL OF NONLINEAR SSTEMS WITH TIME-VARING UNCERTAINTIES WITH KNOWN NORM BOUND AND EXOGENOUS DISTURBANCES Marcus Pantoja da Silva 1 and Celso

More information

On Bounded Real Matrix Inequality Dilation

On Bounded Real Matrix Inequality Dilation On Bounded Real Matrix Inequality Dilation Solmaz Sajjadi-Kia and Faryar Jabbari Abstract We discuss a variation of dilated matrix inequalities for the conventional Bounded Real matrix inequality, and

More information

Static Output Feedback Stabilisation with H Performance for a Class of Plants

Static Output Feedback Stabilisation with H Performance for a Class of Plants Static Output Feedback Stabilisation with H Performance for a Class of Plants E. Prempain and I. Postlethwaite Control and Instrumentation Research, Department of Engineering, University of Leicester,

More information

ROBUST CONTROLLER DESIGN: POLYNOMIALLY PARAMETER DEPENDENT LYAPUNOV FUNCTION APPROACH

ROBUST CONTROLLER DESIGN: POLYNOMIALLY PARAMETER DEPENDENT LYAPUNOV FUNCTION APPROACH Journal of ELECTRICAL ENGINEERING, VOL 58, NO 6, 2007, 313 317 ROBUST CONTROLLER DESIGN: POLYNOMIALLY PARAMETER DEPENDENT LYAPUNOV FUNCTION APPROACH Vojtech Veselý The paper addresses the problem of robust

More information

LMI based output-feedback controllers: γ-optimal versus linear quadratic.

LMI based output-feedback controllers: γ-optimal versus linear quadratic. Proceedings of the 17th World Congress he International Federation of Automatic Control Seoul Korea July 6-11 28 LMI based output-feedback controllers: γ-optimal versus linear quadratic. Dmitry V. Balandin

More information

Fixed-Order Robust H Controller Design with Regional Pole Assignment

Fixed-Order Robust H Controller Design with Regional Pole Assignment SUBMITTED 1 Fixed-Order Robust H Controller Design with Regional Pole Assignment Fuwen Yang, Mahbub Gani, and Didier Henrion Abstract In this paper, the problem of designing fixed-order robust H controllers

More information

An LMI Optimization Approach for Structured Linear Controllers

An LMI Optimization Approach for Structured Linear Controllers An LMI Optimization Approach for Structured Linear Controllers Jeongheon Han* and Robert E. Skelton Structural Systems and Control Laboratory Department of Mechanical & Aerospace Engineering University

More information

Robust Anti-Windup Compensation for PID Controllers

Robust Anti-Windup Compensation for PID Controllers Robust Anti-Windup Compensation for PID Controllers ADDISON RIOS-BOLIVAR Universidad de Los Andes Av. Tulio Febres, Mérida 511 VENEZUELA FRANCKLIN RIVAS-ECHEVERRIA Universidad de Los Andes Av. Tulio Febres,

More information

OBSERVER DESIGN WITH GUARANTEED BOUND FOR LPV SYSTEMS. Jamal Daafouz Gilles Millerioux Lionel Rosier

OBSERVER DESIGN WITH GUARANTEED BOUND FOR LPV SYSTEMS. Jamal Daafouz Gilles Millerioux Lionel Rosier OBSERVER DESIGN WITH GUARANTEED BOUND FOR LPV SYSTEMS Jamal Daafouz Gilles Millerioux Lionel Rosier CRAN UMR 739 ENSEM 2, Avenue de la Forêt de Haye 54516 Vandoeuvre-lès-Nancy Cedex France, Email: Jamal.Daafouz@ensem.inpl-nancy.fr

More information

Slack variable approach for robust stability analysis of switching discrete-time systems

Slack variable approach for robust stability analysis of switching discrete-time systems Slack variable approach for robust stability analysis of switching discrete-time systems Dimitri Peaucelle CNRS, LAAS, 7 avenue du colonel Roche, F-34 Toulouse, France Univ de Toulouse, LAAS, F-34 Toulouse,

More information

LOW ORDER H CONTROLLER DESIGN: AN LMI APPROACH

LOW ORDER H CONTROLLER DESIGN: AN LMI APPROACH LOW ORDER H CONROLLER DESIGN: AN LMI APPROACH Guisheng Zhai, Shinichi Murao, Naoki Koyama, Masaharu Yoshida Faculty of Systems Engineering, Wakayama University, Wakayama 640-8510, Japan Email: zhai@sys.wakayama-u.ac.jp

More information

Multiobjective Optimization Applied to Robust H 2 /H State-feedback Control Synthesis

Multiobjective Optimization Applied to Robust H 2 /H State-feedback Control Synthesis Multiobjective Optimization Applied to Robust H 2 /H State-feedback Control Synthesis Eduardo N. Gonçalves, Reinaldo M. Palhares, and Ricardo H. C. Takahashi Abstract This paper presents an algorithm for

More information

Convex Optimization Approach to Dynamic Output Feedback Control for Delay Differential Systems of Neutral Type 1,2

Convex Optimization Approach to Dynamic Output Feedback Control for Delay Differential Systems of Neutral Type 1,2 journal of optimization theory and applications: Vol. 127 No. 2 pp. 411 423 November 2005 ( 2005) DOI: 10.1007/s10957-005-6552-7 Convex Optimization Approach to Dynamic Output Feedback Control for Delay

More information

Optimization based robust control

Optimization based robust control Optimization based robust control Didier Henrion 1,2 Draft of March 27, 2014 Prepared for possible inclusion into The Encyclopedia of Systems and Control edited by John Baillieul and Tariq Samad and published

More information

ON THE ROBUST STABILITY OF NEUTRAL SYSTEMS WITH TIME-VARYING DELAYS

ON THE ROBUST STABILITY OF NEUTRAL SYSTEMS WITH TIME-VARYING DELAYS ON THE ROBUST STABILITY OF NEUTRAL SYSTEMS WITH TIME-VARYING DELAYS V. J. S. Leite P. L. D. Peres E. B. Castelan S. Tarbouriech UnED Divinópolis CEFET-MG R. Monte Santo, 319 35502-036, Divinópolis - MG

More information

A New Strategy to the Multi-Objective Control of Linear Systems

A New Strategy to the Multi-Objective Control of Linear Systems Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference 25 Seville, Spain, December 12-15, 25 TuC8.6 A New Strategy to the Multi-Objective Control of Linear

More information

ROBUST STABILITY TEST FOR UNCERTAIN DISCRETE-TIME SYSTEMS: A DESCRIPTOR SYSTEM APPROACH

ROBUST STABILITY TEST FOR UNCERTAIN DISCRETE-TIME SYSTEMS: A DESCRIPTOR SYSTEM APPROACH Latin American Applied Research 41: 359-364(211) ROBUS SABILIY ES FOR UNCERAIN DISCREE-IME SYSEMS: A DESCRIPOR SYSEM APPROACH W. ZHANG,, H. SU, Y. LIANG, and Z. HAN Engineering raining Center, Shanghai

More information

Multi-Model Adaptive Regulation for a Family of Systems Containing Different Zero Structures

Multi-Model Adaptive Regulation for a Family of Systems Containing Different Zero Structures Preprints of the 19th World Congress The International Federation of Automatic Control Multi-Model Adaptive Regulation for a Family of Systems Containing Different Zero Structures Eric Peterson Harry G.

More information

José C. Geromel. Australian National University Canberra, December 7-8, 2017

José C. Geromel. Australian National University Canberra, December 7-8, 2017 5 1 15 2 25 3 35 4 45 5 1 15 2 25 3 35 4 45 5 55 Differential LMI in Optimal Sampled-data Control José C. Geromel School of Electrical and Computer Engineering University of Campinas - Brazil Australian

More information

Robust Output Feedback Controller Design via Genetic Algorithms and LMIs: The Mixed H 2 /H Problem

Robust Output Feedback Controller Design via Genetic Algorithms and LMIs: The Mixed H 2 /H Problem Robust Output Feedback Controller Design via Genetic Algorithms and LMIs: The Mixed H 2 /H Problem Gustavo J. Pereira and Humberto X. de Araújo Abstract This paper deals with the mixed H 2/H control problem

More information

Research Article Partial Pole Placement in LMI Region

Research Article Partial Pole Placement in LMI Region Control Science and Engineering Article ID 84128 5 pages http://dxdoiorg/11155/214/84128 Research Article Partial Pole Placement in LMI Region Liuli Ou 1 Shaobo Han 2 Yongji Wang 1 Shuai Dong 1 and Lei

More information

INTEGRATED DAMPING PARAMETERS AND SERVO CONTROLLER DESIGN FOR OPTIMAL H 2 PERFORMANCE IN HARD DISK DRIVES

INTEGRATED DAMPING PARAMETERS AND SERVO CONTROLLER DESIGN FOR OPTIMAL H 2 PERFORMANCE IN HARD DISK DRIVES INTEGRATED DAMPING PARAMETERS AND SERVO CONTROLLER DESIGN FOR OPTIMAL H 2 PERFORMANCE IN HARD DISK DRIVES Tingting Gao (a,b), Weijie Sun (a), Chunling Du (b), Lihua Xie (a) (a) School of EEE, Nanyang Technological

More information

On Computing the Worst-case Performance of Lur'e Systems with Uncertain Time-invariant Delays

On Computing the Worst-case Performance of Lur'e Systems with Uncertain Time-invariant Delays Article On Computing the Worst-case Performance of Lur'e Systems with Uncertain Time-invariant Delays Thapana Nampradit and David Banjerdpongchai* Department of Electrical Engineering, Faculty of Engineering,

More information

A Riccati-Genetic Algorithms Approach To Fixed-Structure Controller Synthesis

A Riccati-Genetic Algorithms Approach To Fixed-Structure Controller Synthesis A Riccati-Genetic Algorithms Approach To Fixed-Structure Controller Synthesis A Farag and H Werner Technical University Hamburg-Harburg, Institute of Control Engineering afarag@tu-harburgde, hwerner@tu-harburgde

More information

Graph and Controller Design for Disturbance Attenuation in Consensus Networks

Graph and Controller Design for Disturbance Attenuation in Consensus Networks 203 3th International Conference on Control, Automation and Systems (ICCAS 203) Oct. 20-23, 203 in Kimdaejung Convention Center, Gwangju, Korea Graph and Controller Design for Disturbance Attenuation in

More information

ON POLE PLACEMENT IN LMI REGION FOR DESCRIPTOR LINEAR SYSTEMS. Received January 2011; revised May 2011

ON POLE PLACEMENT IN LMI REGION FOR DESCRIPTOR LINEAR SYSTEMS. Received January 2011; revised May 2011 International Journal of Innovative Computing, Information and Control ICIC International c 2012 ISSN 1349-4198 Volume 8, Number 4, April 2012 pp. 2613 2624 ON POLE PLACEMENT IN LMI REGION FOR DESCRIPTOR

More information

Parameterized Linear Matrix Inequality Techniques in Fuzzy Control System Design

Parameterized Linear Matrix Inequality Techniques in Fuzzy Control System Design 324 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 9, NO. 2, APRIL 2001 Parameterized Linear Matrix Inequality Techniques in Fuzzy Control System Design H. D. Tuan, P. Apkarian, T. Narikiyo, and Y. Yamamoto

More information

STATE ESTIMATION IN COORDINATED CONTROL WITH A NON-STANDARD INFORMATION ARCHITECTURE. Jun Yan, Keunmo Kang, and Robert Bitmead

STATE ESTIMATION IN COORDINATED CONTROL WITH A NON-STANDARD INFORMATION ARCHITECTURE. Jun Yan, Keunmo Kang, and Robert Bitmead STATE ESTIMATION IN COORDINATED CONTROL WITH A NON-STANDARD INFORMATION ARCHITECTURE Jun Yan, Keunmo Kang, and Robert Bitmead Department of Mechanical & Aerospace Engineering University of California San

More information

and Mixed / Control of Dual-Actuator Hard Disk Drive via LMIs

and Mixed / Control of Dual-Actuator Hard Disk Drive via LMIs and Mixed / Control of Dual-Actuator Hard Disk Drive via LMIs Nasser Mohamad Zadeh Electrical Engineering Department Tarbiat Modares University Tehran, Iran mohamadzadeh@ieee.org Ramin Amirifar Electrical

More information

Robust Anti-Windup Controller Synthesis: A Mixed H 2 /H Setting

Robust Anti-Windup Controller Synthesis: A Mixed H 2 /H Setting Robust Anti-Windup Controller Synthesis: A Mixed H /H Setting ADDISON RIOS-BOLIVAR Departamento de Sistemas de Control Universidad de Los Andes Av. ulio Febres, Mérida 511 VENEZUELA SOLBEN GODOY Postgrado

More information

Optimal Finite-precision Implementations of Linear Parameter Varying Controllers

Optimal Finite-precision Implementations of Linear Parameter Varying Controllers IFAC World Congress 2008 p. 1/20 Optimal Finite-precision Implementations of Linear Parameter Varying Controllers James F Whidborne Department of Aerospace Sciences, Cranfield University, UK Philippe Chevrel

More information

June Engineering Department, Stanford University. System Analysis and Synthesis. Linear Matrix Inequalities. Stephen Boyd (E.

June Engineering Department, Stanford University. System Analysis and Synthesis. Linear Matrix Inequalities. Stephen Boyd (E. Stephen Boyd (E. Feron :::) System Analysis and Synthesis Control Linear Matrix Inequalities via Engineering Department, Stanford University Electrical June 1993 ACC, 1 linear matrix inequalities (LMIs)

More information

Stability of linear time-varying systems through quadratically parameter-dependent Lyapunov functions

Stability of linear time-varying systems through quadratically parameter-dependent Lyapunov functions Stability of linear time-varying systems through quadratically parameter-dependent Lyapunov functions Vinícius F. Montagner Department of Telematics Pedro L. D. Peres School of Electrical and Computer

More information

Robust Observer for Uncertain T S model of a Synchronous Machine

Robust Observer for Uncertain T S model of a Synchronous Machine Recent Advances in Circuits Communications Signal Processing Robust Observer for Uncertain T S model of a Synchronous Machine OUAALINE Najat ELALAMI Noureddine Laboratory of Automation Computer Engineering

More information

ON STABILITY TESTS FOR LINEAR SYSTEMS

ON STABILITY TESTS FOR LINEAR SYSTEMS Copyright 22 IFAC 15th Triennial World Congress Barcelona Spain ON STABILITY TESTS FOR LINEAR SYSTEMS Maurício C. de Oliveira 1 Robert E. Skelton Department of Telematics School of Electrical and Computer

More information

Stability and performance analysis for linear systems with actuator and sensor saturations subject to unmodeled dynamics

Stability and performance analysis for linear systems with actuator and sensor saturations subject to unmodeled dynamics 28 American Control Conference Westin Seattle Hotel, Seattle, Washington, USA June 11-13, 28 WeA12.1 Stability and performance analysis for linear systems actuator and sensor saturations subject to unmodeled

More information

Linear Systems with Saturating Controls: An LMI Approach. subject to control saturation. No assumption is made concerning open-loop stability and no

Linear Systems with Saturating Controls: An LMI Approach. subject to control saturation. No assumption is made concerning open-loop stability and no Output Feedback Robust Stabilization of Uncertain Linear Systems with Saturating Controls: An LMI Approach Didier Henrion 1 Sophie Tarbouriech 1; Germain Garcia 1; Abstract : The problem of robust controller

More information

State estimation of uncertain multiple model with unknown inputs

State estimation of uncertain multiple model with unknown inputs State estimation of uncertain multiple model with unknown inputs Abdelkader Akhenak, Mohammed Chadli, Didier Maquin and José Ragot Centre de Recherche en Automatique de Nancy, CNRS UMR 79 Institut National

More information

H 2 and H 1 cost estimates for time-invariant uncertain

H 2 and H 1 cost estimates for time-invariant uncertain INT. J. CONTROL, 00, VOL. 75, NO. 9, ±79 Extended H and H systems norm characterizations and controller parametrizations for discrete-time M. C. DE OLIVEIRAy*, J. C. GEROMELy and J. BERNUSSOUz This paper

More information

Robust H Filter Design Using Frequency Gridding

Robust H Filter Design Using Frequency Gridding Robust H Filter Design Using Frequency Gridding Peter Seiler, Balint Vanek, József Bokor, and Gary J. Balas Abstract This paper considers the design of robust H filters for continuous-time linear systems

More information

Appendix A Solving Linear Matrix Inequality (LMI) Problems

Appendix A Solving Linear Matrix Inequality (LMI) Problems Appendix A Solving Linear Matrix Inequality (LMI) Problems In this section, we present a brief introduction about linear matrix inequalities which have been used extensively to solve the FDI problems described

More information

Linear Matrix Inequality (LMI)

Linear Matrix Inequality (LMI) Linear Matrix Inequality (LMI) A linear matrix inequality is an expression of the form where F (x) F 0 + x 1 F 1 + + x m F m > 0 (1) x = (x 1,, x m ) R m, F 0,, F m are real symmetric matrices, and the

More information

ROBUST CONSTRAINED REGULATORS FOR UNCERTAIN LINEAR SYSTEMS

ROBUST CONSTRAINED REGULATORS FOR UNCERTAIN LINEAR SYSTEMS ROBUST CONSTRAINED REGULATORS FOR UNCERTAIN LINEAR SYSTEMS Jean-Claude HENNET Eugênio B. CASTELAN Abstract The purpose of this paper is to combine several control requirements in the same regulator design

More information

A frequency weighted approach to robust fault reconstruction

A frequency weighted approach to robust fault reconstruction A frequency weighted approach to robust fault reconstruction C.P. Tan and F. Crusca and M. Aldeen School of Engineering Monash University Malaysia 2 Jalan Kolej 4615 Petaling Jaya, Malaysia Email: tan.chee.pin@eng.monash.edu.my

More information

SYNTHESIS OF LOW ORDER MULTI-OBJECTIVE CONTROLLERS FOR A VSC HVDC TERMINAL USING LMIs

SYNTHESIS OF LOW ORDER MULTI-OBJECTIVE CONTROLLERS FOR A VSC HVDC TERMINAL USING LMIs SYNTHESIS OF LOW ORDER MULTI-OBJECTIVE CONTROLLERS FOR A VSC HVDC TERMINAL USING LMIs Martyn Durrant, Herbert Werner, Keith Abbott Control Institute, TUHH, Hamburg Germany; m.durrant@tu-harburg.de; Fax:

More information

LMI optimization for fixed-order H controller design

LMI optimization for fixed-order H controller design LMI optimization for fixed-order H controller design Didier Henrion 1,2,3 February 13, 2003 Abstract A general H controller design technique is proposed for scalar linear systems, based on properties of

More information

On parameter-dependent Lyapunov functions for robust stability of linear systems

On parameter-dependent Lyapunov functions for robust stability of linear systems On parameter-dependent Lyapunov functions for robust stability of linear systems Didier Henrion, Denis Arzelier, Dimitri Peaucelle, Jean-Bernard Lasserre Abstract For a linear system affected by real parametric

More information

Feedback Control CONTROL THEORY FUNDAMENTALS. Feedback Control: A History. Feedback Control: A History (contd.) Anuradha Annaswamy

Feedback Control CONTROL THEORY FUNDAMENTALS. Feedback Control: A History. Feedback Control: A History (contd.) Anuradha Annaswamy Feedback Control CONTROL THEORY FUNDAMENTALS Actuator Sensor + Anuradha Annaswamy Active adaptive Control Laboratory Massachusetts Institute of Technology must follow with» Speed» Accuracy Feeback: Measure

More information

Simultaneous State and Fault Estimation for Descriptor Systems using an Augmented PD Observer

Simultaneous State and Fault Estimation for Descriptor Systems using an Augmented PD Observer Preprints of the 19th World Congress The International Federation of Automatic Control Simultaneous State and Fault Estimation for Descriptor Systems using an Augmented PD Observer Fengming Shi*, Ron J.

More information

H State-Feedback Controller Design for Discrete-Time Fuzzy Systems Using Fuzzy Weighting-Dependent Lyapunov Functions

H State-Feedback Controller Design for Discrete-Time Fuzzy Systems Using Fuzzy Weighting-Dependent Lyapunov Functions IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL 11, NO 2, APRIL 2003 271 H State-Feedback Controller Design for Discrete-Time Fuzzy Systems Using Fuzzy Weighting-Dependent Lyapunov Functions Doo Jin Choi and PooGyeon

More information

Synthesis of output feedback controllers for a class of nonlinear parameter-varying discrete-time systems subject to actuators limitations

Synthesis of output feedback controllers for a class of nonlinear parameter-varying discrete-time systems subject to actuators limitations 21 American Control Conference Marriott Waterfront Baltimore MD USA June 3-July 2 21 ThC9.5 Synthesis of output feedback controllers for a class of nonlinear parameter-varying discrete-time systems subject

More information

STABILITY AND STABILIZATION OF A CLASS OF NONLINEAR SYSTEMS WITH SATURATING ACTUATORS. Eugênio B. Castelan,1 Sophie Tarbouriech Isabelle Queinnec

STABILITY AND STABILIZATION OF A CLASS OF NONLINEAR SYSTEMS WITH SATURATING ACTUATORS. Eugênio B. Castelan,1 Sophie Tarbouriech Isabelle Queinnec STABILITY AND STABILIZATION OF A CLASS OF NONLINEAR SYSTEMS WITH SATURATING ACTUATORS Eugênio B. Castelan,1 Sophie Tarbouriech Isabelle Queinnec DAS-CTC-UFSC P.O. Box 476, 88040-900 Florianópolis, SC,

More information

Multiobjective Robust Dynamic Output-feeback Control Synthesis based on Reference Model

Multiobjective Robust Dynamic Output-feeback Control Synthesis based on Reference Model 49th IEEE Conference on Decision and Control December 5-7, 2 Hilton Atlanta Hotel, Atlanta, GA, USA Multiobjective Robust Dynamic Output-feeback Control Synthesis based on Reference Model Wagner Eustáquio

More information

The norms can also be characterized in terms of Riccati inequalities.

The norms can also be characterized in terms of Riccati inequalities. 9 Analysis of stability and H norms Consider the causal, linear, time-invariant system ẋ(t = Ax(t + Bu(t y(t = Cx(t Denote the transfer function G(s := C (si A 1 B. Theorem 85 The following statements

More information

CDS 101/110a: Lecture 8-1 Frequency Domain Design

CDS 101/110a: Lecture 8-1 Frequency Domain Design CDS 11/11a: Lecture 8-1 Frequency Domain Design Richard M. Murray 17 November 28 Goals: Describe canonical control design problem and standard performance measures Show how to use loop shaping to achieve

More information

Actuator Fault diagnosis: H framework with relative degree notion

Actuator Fault diagnosis: H framework with relative degree notion Actuator Fault diagnosis: H framework with relative degree notion D Ichalal B Marx D Maquin J Ragot Evry Val d Essonne University, IBISC-Lab, 4, rue de Pevoux, 92, Evry Courcouronnes, France (email: dalilichalal@ibiscuniv-evryfr

More information

An Exact Stability Analysis Test for Single-Parameter. Polynomially-Dependent Linear Systems

An Exact Stability Analysis Test for Single-Parameter. Polynomially-Dependent Linear Systems An Exact Stability Analysis Test for Single-Parameter Polynomially-Dependent Linear Systems P. Tsiotras and P.-A. Bliman Abstract We provide a new condition for testing the stability of a single-parameter,

More information

Design of hybrid control systems for continuous-time plants: from the Clegg integrator to the hybrid H controller

Design of hybrid control systems for continuous-time plants: from the Clegg integrator to the hybrid H controller Design of hybrid control systems for continuous-time plants: from the Clegg integrator to the hybrid H controller Luca Zaccarian LAAS-CNRS, Toulouse and University of Trento University of Oxford November

More information

OVER the past one decade, Takagi Sugeno (T-S) fuzzy

OVER the past one decade, Takagi Sugeno (T-S) fuzzy 2838 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. 53, NO. 12, DECEMBER 2006 Discrete H 2 =H Nonlinear Controller Design Based on Fuzzy Region Concept and Takagi Sugeno Fuzzy Framework

More information

CDS 101/110a: Lecture 10-1 Robust Performance

CDS 101/110a: Lecture 10-1 Robust Performance CDS 11/11a: Lecture 1-1 Robust Performance Richard M. Murray 1 December 28 Goals: Describe how to represent uncertainty in process dynamics Describe how to analyze a system in the presence of uncertainty

More information

A 2D Systems Approach to Iterative Learning Control with Experimental Validation

A 2D Systems Approach to Iterative Learning Control with Experimental Validation Proceedings of the 17th World Congress The International Federation of Automatic Control Seoul, Korea, July 6-11, 28 A 2D Systems Approach to Iterative Learning Control with Experimental Validation Lukasz

More information

Robust Track-Following Controller Design in Hard Disk Drives based on Parameter Dependent Lyapunov Functions

Robust Track-Following Controller Design in Hard Disk Drives based on Parameter Dependent Lyapunov Functions 1 Robust Track-Following Controller Design in Hard Disk Drives based on Parameter Dependent Lyapunov Functions Richard Conway, Jongeun Choi, Ryozo Nagamune, and Roberto Horowitz Abstract This paper presents

More information

Robust Multi-Objective Control for Linear Systems

Robust Multi-Objective Control for Linear Systems Robust Multi-Objective Control for Linear Systems Elements of theory and ROMULOC toolbox Dimitri PEAUCELLE & Denis ARZELIER LAAS-CNRS, Toulouse, FRANCE Part of the OLOCEP project (includes GloptiPoly)

More information

DISTURBANCES MONITORING FROM CONTROLLER STATES

DISTURBANCES MONITORING FROM CONTROLLER STATES DISTURBANCES MONITORING FROM CONTROLLER STATES Daniel Alazard Pierre Apkarian SUPAERO, av. Edouard Belin, 3 Toulouse, France - Email : alazard@supaero.fr Mathmatiques pour l Industrie et la Physique, Université

More information

State feedback gain scheduling for linear systems with time-varying parameters

State feedback gain scheduling for linear systems with time-varying parameters State feedback gain scheduling for linear systems with time-varying parameters Vinícius F. Montagner and Pedro L. D. Peres Abstract This paper addresses the problem of parameter dependent state feedback

More information

I. D. Landau, A. Karimi: A Course on Adaptive Control Adaptive Control. Part 9: Adaptive Control with Multiple Models and Switching

I. D. Landau, A. Karimi: A Course on Adaptive Control Adaptive Control. Part 9: Adaptive Control with Multiple Models and Switching I. D. Landau, A. Karimi: A Course on Adaptive Control - 5 1 Adaptive Control Part 9: Adaptive Control with Multiple Models and Switching I. D. Landau, A. Karimi: A Course on Adaptive Control - 5 2 Outline

More information

State Estimation with Finite Signal-to-Noise Models

State Estimation with Finite Signal-to-Noise Models State Estimation with Finite Signal-to-Noise Models Weiwei Li and Robert E. Skelton Department of Mechanical and Aerospace Engineering University of California San Diego, La Jolla, CA 9293-411 wwli@mechanics.ucsd.edu

More information

Aalborg Universitet. Robust Structured Control Design via LMI Optimization Adegas, Fabiano Daher; Stoustrup, Jakob

Aalborg Universitet. Robust Structured Control Design via LMI Optimization Adegas, Fabiano Daher; Stoustrup, Jakob Aalborg Universitet Robust Structured Control Design via LMI Optimization Adegas, Fabiano Daher; Stoustrup, Jakob Published in: Proceedings of the 18th IFAC World Congress, 211 Publication date: 211 Document

More information

Stability and performance analysis for input and output-constrained linear systems subject to multiplicative neglected dynamics

Stability and performance analysis for input and output-constrained linear systems subject to multiplicative neglected dynamics 29 American Control Conference Hyatt Regency Riverfront, St. Louis, MO, USA June 1-12, 29 WeB17.3 Stability and performance analysis for input and output-constrained linear systems subject to multiplicative

More information

Robust Variance Constrained Filter Design for Systems with Non-Gaussian Noises

Robust Variance Constrained Filter Design for Systems with Non-Gaussian Noises Robust Variance Constrained Filter Design for Systems with Non-Gaussian Noises Fuwen Yang, Yongmin Li, and Xiaohui Liu Abstract- In this paper, a variance constrained filtering problem is considered for

More information

H controller design on the COMPLIB problems with the Robust Control Toolbox for Matlab

H controller design on the COMPLIB problems with the Robust Control Toolbox for Matlab H controller design on the COMPLIB problems with the Robust Control Toolbox for Matlab Didier Henrion 1,2 Draft of August 30, 2005 1 Introduction The COMPLIB library is a freely available Matlab package

More information

PARAMETER DEPENDENT H CONTROLLER DESIGN BY FINITE DIMENSIONAL LMI OPTIMIZATION: APPLICATION TO TRADE-OFF DEPENDENT CONTROL

PARAMETER DEPENDENT H CONTROLLER DESIGN BY FINITE DIMENSIONAL LMI OPTIMIZATION: APPLICATION TO TRADE-OFF DEPENDENT CONTROL PARAMETER DEPEDET H COTROLLER DESIG BY FIITE DIMESIOAL LMI OPTIMIZATIO: APPLICATIO TO TRADE-OFF DEPEDET COTROL M Dinh, G Scorletti V Fromion E Magarotto GREYC Equipe Automatique, ISMRA 6 boulevard du Maréchal

More information

Homogeneous polynomially parameter-dependent state feedback controllers for finite time stabilization of linear time-varying systems

Homogeneous polynomially parameter-dependent state feedback controllers for finite time stabilization of linear time-varying systems 23 European Control Conference (ECC) July 7-9, 23, Zürich, Switzerland. Homogeneous polynomially parameter-dependent state feedback controllers for finite time stabilization of linear time-varying systems

More information

Rank-one LMIs and Lyapunov's Inequality. Gjerrit Meinsma 4. Abstract. We describe a new proof of the well-known Lyapunov's matrix inequality about

Rank-one LMIs and Lyapunov's Inequality. Gjerrit Meinsma 4. Abstract. We describe a new proof of the well-known Lyapunov's matrix inequality about Rank-one LMIs and Lyapunov's Inequality Didier Henrion 1;; Gjerrit Meinsma Abstract We describe a new proof of the well-known Lyapunov's matrix inequality about the location of the eigenvalues of a matrix

More information

PLEASE SCROLL DOWN FOR ARTICLE

PLEASE SCROLL DOWN FOR ARTICLE This article was downloaded by: [EBSCOHost EJS Content Distribution] On: 0 June 009 Access details: Access Details: [subscription number 911499] Publisher Taylor & Francis Informa Ltd Registered in England

More information

Switching H 2/H Control of Singular Perturbation Systems

Switching H 2/H Control of Singular Perturbation Systems Australian Journal of Basic and Applied Sciences, 3(4): 443-45, 009 ISSN 1991-8178 Switching H /H Control of Singular Perturbation Systems Ahmad Fakharian, Fatemeh Jamshidi, Mohammad aghi Hamidi Beheshti

More information

ROBUST CONTROL OF AN A-DOUBLE WITH ACTIVE DOLLY BASED ON STATIC OUTPUT FEEDBACK AND DYNAMIC FEED-FORWARD

ROBUST CONTROL OF AN A-DOUBLE WITH ACTIVE DOLLY BASED ON STATIC OUTPUT FEEDBACK AND DYNAMIC FEED-FORWARD ROBUST CONTROL OF AN A-DOUBLE WITH ACTIVE DOLLY BASED ON STATIC OUTPUT FEEDBACK AND DYNAMIC FEED-FORWARD Maliheh Sadeghi Kati Hakan Köroğlu Jonas Fredriksson Chalmers University of Technology, Dept. Signals

More information

Global Optimization of H problems: Application to robust control synthesis under structural constraints

Global Optimization of H problems: Application to robust control synthesis under structural constraints Global Optimization of H problems: Application to robust control synthesis under structural constraints Dominique Monnet 1, Jordan Ninin 1, and Benoit Clement 1 ENSTA-Bretagne, LabSTIC, IHSEV team, 2 rue

More information

Fixed Order H Controller for Quarter Car Active Suspension System

Fixed Order H Controller for Quarter Car Active Suspension System Fixed Order H Controller for Quarter Car Active Suspension System B. Erol, A. Delibaşı Abstract This paper presents an LMI based fixed-order controller design for quarter car active suspension system in

More information

A new robust delay-dependent stability criterion for a class of uncertain systems with delay

A new robust delay-dependent stability criterion for a class of uncertain systems with delay A new robust delay-dependent stability criterion for a class of uncertain systems with delay Fei Hao Long Wang and Tianguang Chu Abstract A new robust delay-dependent stability criterion for a class of

More information

Anti-windup Design for a Class of Nonlinear Control Systems

Anti-windup Design for a Class of Nonlinear Control Systems Anti-windup Design for a Class of Nonlinear Control Systems M Z Oliveira J M Gomes da Silva Jr D F Coutinho S Tarbouriech Department of Electrical Engineering, UFRGS, Av Osvaldo Aranha 13, 935-19 Porto

More information

Research Article Delay-Range-Dependent Stability Criteria for Takagi-Sugeno Fuzzy Systems with Fast Time-Varying Delays

Research Article Delay-Range-Dependent Stability Criteria for Takagi-Sugeno Fuzzy Systems with Fast Time-Varying Delays Journal of Applied Mathematics Volume 2012rticle ID 475728, 20 pages doi:10.1155/2012/475728 Research Article Delay-Range-Dependent Stability Criteria for Takagi-Sugeno Fuzzy Systems with Fast Time-Varying

More information

Output-Feedback H Control of a Class of Networked Fault Tolerant Control Systems

Output-Feedback H Control of a Class of Networked Fault Tolerant Control Systems Control & Automation, July 27-29, 27, Athens - Greece T14-7 Output-Feedback H Control of a Class of Networked Fault Tolerant Control Systems Samir Aberkane, Dominique Sauter and Jean Christophe Ponsart

More information

The model reduction algorithm proposed is based on an iterative two-step LMI scheme. The convergence of the algorithm is not analyzed but examples sho

The model reduction algorithm proposed is based on an iterative two-step LMI scheme. The convergence of the algorithm is not analyzed but examples sho Model Reduction from an H 1 /LMI perspective A. Helmersson Department of Electrical Engineering Linkoping University S-581 8 Linkoping, Sweden tel: +6 1 816 fax: +6 1 86 email: andersh@isy.liu.se September

More information

Robust Filtering for Discrete Nonlinear Fractional Transformation Systems

Robust Filtering for Discrete Nonlinear Fractional Transformation Systems Robust Filtering for Discrete Nonlinear Fractional Transformation Systems N.T. Hoang H.D. Tuan P. Aparian + and S. Hosoe Department of Electronic-Mechanical Engineering Nagoya University Furo-cho Chiusau

More information

Constrained interpolation-based control for polytopic uncertain systems

Constrained interpolation-based control for polytopic uncertain systems 2011 50th IEEE Conference on Decision and Control and European Control Conference CDC-ECC Orlando FL USA December 12-15 2011 Constrained interpolation-based control for polytopic uncertain systems H.-N.

More information

Denis ARZELIER arzelier

Denis ARZELIER   arzelier COURSE ON LMI OPTIMIZATION WITH APPLICATIONS IN CONTROL PART II.2 LMIs IN SYSTEMS CONTROL STATE-SPACE METHODS PERFORMANCE ANALYSIS and SYNTHESIS Denis ARZELIER www.laas.fr/ arzelier arzelier@laas.fr 15

More information

NDI-BASED STRUCTURED LPV CONTROL A PROMISING APPROACH FOR AERIAL ROBOTICS

NDI-BASED STRUCTURED LPV CONTROL A PROMISING APPROACH FOR AERIAL ROBOTICS NDI-BASED STRUCTURED LPV CONTROL A PROMISING APPROACH FOR AERIAL ROBOTICS J-M. Biannic AERIAL ROBOTICS WORKSHOP OCTOBER 2014 CONTENT 1 Introduction 2 Proposed LPV design methodology 3 Applications to Aerospace

More information

LMI-based control of vehicle platoons for robust longitudinal guidance

LMI-based control of vehicle platoons for robust longitudinal guidance Proceedings of the 7th World Congress The International Federation of Automatic Control Seoul, Korea, July 6-, 8 LMI-based control of vehicle platoons for robust longitudinal guidance Jan P. Maschuw Günter

More information

Proc. 9th IFAC/IFORS/IMACS/IFIP/ Symposium on Large Scale Systems: Theory and Applications (LSS 2001), 2001, pp

Proc. 9th IFAC/IFORS/IMACS/IFIP/ Symposium on Large Scale Systems: Theory and Applications (LSS 2001), 2001, pp INVARIANT POLYHEDRA AND CONTROL OF LARGE SCALE SYSTEMS Jean-Claude Hennet LAAS - CNRS 7, Avenue du Colonel Roche, 31077 Toulouse Cedex 4, FRANCE PHONE: (+33) 5 61 33 63 13, FAX: (+33) 5 61 33 69 36, e-mail:

More information

FINITE HORIZON ROBUST MODEL PREDICTIVE CONTROL USING LINEAR MATRIX INEQUALITIES. Danlei Chu, Tongwen Chen, Horacio J. Marquez

FINITE HORIZON ROBUST MODEL PREDICTIVE CONTROL USING LINEAR MATRIX INEQUALITIES. Danlei Chu, Tongwen Chen, Horacio J. Marquez FINITE HORIZON ROBUST MODEL PREDICTIVE CONTROL USING LINEAR MATRIX INEQUALITIES Danlei Chu Tongwen Chen Horacio J Marquez Department of Electrical and Computer Engineering University of Alberta Edmonton

More information

Robust H 2 Filtering for Discrete LTI Systems with Linear Fractional Representation

Robust H 2 Filtering for Discrete LTI Systems with Linear Fractional Representation Proceedings of the 47th IEEE Conference on Decision and Control Cancun, Mexico, Dec. 9-11, 28 Robust H 2 Filtering for Discrete LTI Systems with Linear Fractional Representation Rubens H. Korogui and José

More information

Germain Garcia. LAAS CNRS University of Toulouse : INSA. 40th Anniversary of LAAS CNRS

Germain Garcia. LAAS CNRS University of Toulouse : INSA. 40th Anniversary of LAAS CNRS Germain Garcia LAAS CNRS University of Toulouse : INSA OUTLINE Objective : Give an overview of some works developed in LAAS CNRS in Control design. The presentation is non exhaustive and presents only

More information

ThM06-2. Coprime Factor Based Closed-Loop Model Validation Applied to a Flexible Structure

ThM06-2. Coprime Factor Based Closed-Loop Model Validation Applied to a Flexible Structure Proceedings of the 42nd IEEE Conference on Decision and Control Maui, Hawaii USA, December 2003 ThM06-2 Coprime Factor Based Closed-Loop Model Validation Applied to a Flexible Structure Marianne Crowder

More information

Stabilization of 2-D Linear Parameter-Varying Systems using Parameter-Dependent Lyapunov Function: An LMI Approach

Stabilization of 2-D Linear Parameter-Varying Systems using Parameter-Dependent Lyapunov Function: An LMI Approach Proceedings of the 17th World Congress The International Federation of Automatic Control Seoul Korea July 6-11 28 Stabilization of 2-D Linear Parameter-Varying Systems using Parameter-Dependent Lyapunov

More information

A Comparative Study on Automatic Flight Control for small UAV

A Comparative Study on Automatic Flight Control for small UAV Proceedings of the 5 th International Conference of Control, Dynamic Systems, and Robotics (CDSR'18) Niagara Falls, Canada June 7 9, 18 Paper No. 13 DOI: 1.11159/cdsr18.13 A Comparative Study on Automatic

More information

Research Article Robust Admissibilization of Descriptor Systems by Static Output-Feedback: An LMI Approach

Research Article Robust Admissibilization of Descriptor Systems by Static Output-Feedback: An LMI Approach Mathematical Problems in Engineering Volume 2011, Article ID 960981, 10 pages doi:10.1155/2011/960981 Research Article Robust Admissibilization of Descriptor Systems by Static Output-Feedback: An LMI Approach

More information

On Design of Reduced-Order H Filters for Discrete-Time Systems from Incomplete Measurements

On Design of Reduced-Order H Filters for Discrete-Time Systems from Incomplete Measurements Proceedings of the 47th IEEE Conference on Decision and Control Cancun, Mexico, Dec. 9-11, 2008 On Design of Reduced-Order H Filters for Discrete-Time Systems from Incomplete Measurements Shaosheng Zhou

More information

MATHEMATICAL ENGINEERING TECHNICAL REPORTS. Static Gain Feedback Control Synthesis with General Frequency Domain Specifications

MATHEMATICAL ENGINEERING TECHNICAL REPORTS. Static Gain Feedback Control Synthesis with General Frequency Domain Specifications MATHEMATICAL ENGINEERING TECHNICAL REPORTS Static Gain Feedback Control Synthesis with General Frequency Domain Specifications Tetsuya IWASAKI and Shinji HARA (Communicated by Kazuo Murota) METR 23 37

More information