Marcus Pantoja da Silva 1 and Celso Pascoli Bottura 2. Abstract: Nonlinear systems with time-varying uncertainties

Size: px
Start display at page:

Download "Marcus Pantoja da Silva 1 and Celso Pascoli Bottura 2. Abstract: Nonlinear systems with time-varying uncertainties"

Transcription

1 A NEW PROPOSAL FOR H NORM CHARACTERIZATION AND THE OPTIMAL H CONTROL OF NONLINEAR SSTEMS WITH TIME-VARING UNCERTAINTIES WITH KNOWN NORM BOUND AND EXOGENOUS DISTURBANCES Marcus Pantoja da Silva 1 and Celso Pascoli Bottura 2 1 UNICAMP, CAMPINAS, BRAZIL, marcuspantoja@yahoo.com.br 2 UNICAMP, CAMPINAS, BRAZIL, bottura@dmcsi.fee Abstract: Nonlinear systems with time-varying uncertainties with known norm bound and exogenous disturbances are investigated in this work. Conditions for the determination of the H norm of this class of systems are obtained in the form of a convex optimization problem in terms of LMIs. It is also proposed a H optimal control design that aims to stabilize a class of nonlinear systems with time-varying uncertainties with known norm bound and exogenous disturbances and minimize its H norm. The optimal gain matrix is obtained by solving a convex optimization problem in terms of LMIs such as its H norm is minimized. Numerical examples are proposed for both methods. Keywords: Nonlinear Systems, Optimal Control, H norm. 1. INTRODUCTION During the last decades, many authors [2, [5, paid attention to the problem of optimal control for linear systems with norm bounded time varying uncertainties, where the goal is to design a controller that stabilizes the system. However, the modeling of a real process often results in a nonlinear model with time-varying uncertainties and exogenous disturbances associated. The time-varying uncertainties addressed in this work are modeled as being norm bounded with known limits. Several problems can be included in this class of systems like power systems, design of spacecraft, vehicle control, etc [8. In this work we treat the problem of H performance of nonlinear systems with time-varying uncertainties with known norm bound and exogenous disturbances. A new characterization of H norm is proposed in terms of Linear Matrix Inequalities (LMIs) for this class of systems. We also develope a method for the H optimal control of nonlinear systems with time-varying uncertainties and norm bounded with known limits of uncertainty. For the controller design, we use the Lyapunov second method with which we characterize the H control problem and thus construct a convex optimization problem in terms of LMIs which results in a controller that stabilizes the system and at the same time minimizes its H norm. For having the optimal H in a LMI format we utilize a similarity transformation as well as the Schur complement [9. The LMI conditions obtained are used to obtain the optimal gain matrix. Since the proposed method does not involve any non-convex restrictions, we can guarantee that the method has a global optimum solution in the set of feasible solutions. The proposed method has several advantages, among which we highlight the fact that the methodology is flexible because it allows the inclusion of additional design parameters such as structure and gain matrix limiting, and in addition the controller obtained is linear, which makes its implementation simpler. The paper is organized as follows: in the next section, we develop a method for characterizing the H norm of nonlinear systems with time-varying uncertainties with known norm bound and exogenous disturbances in terms of LMIs. We also present numerical examples that illustrate its application. In section III we develop a method for H optimal control for the class of systems discussed previously in terms of LMIs. In Section IV we present numerical examples that illustrate their application. In section V final comments on the proposed method and on the results obtained are made. Notation Throughout this paper, capital letters denote matrices and small letters denote vectors. For simmetric matrices, M> ( ) indicates that M is positive definite (semipositive definite). M T represents the transpose of matrix M. I and represent identity matrices and zero matrices with appropriate dimensions, respectively. Matrices, if not explicitly stated, are assumed to have appropriate dimensions. 2. NONLINEAR CONTINUOS-TIME SSTEMS H NORM CHARACTERIZATION: A PROPOSAL One of the reasons because the H norm characterization of a system is important is the study of its robustness in rela- Serra Negra, SP - ISSN

2 tion to exogenous disturbances. The robustness with respect to exogenous disturbances can be expressed quantitatively in terms of the limits of the H norm. In this section we will study the H performance of the following continuos-time nonlinear system: ẋ = A Bw(t)+h(t, x) C Dw(t) (1) where x(t) R n is the state of the system, A is a matrix n n, B has dimension n m, C is a matrix l n, D has dimension l m, w(t) R m is the exogenous disturbance, h : R n+1 R n is the uncertain time-variant nonlinear term. Regarding h(t, x), we consider that it is norm bounded [1 as: h(t, x) T h(t, x) α 2 x T H T Hx (2) where the uncertainties limits: the scalar α and the matrix H are known. Knowing that w is an limited energy signal, then + w T (τ)w(τ)dτ < (3) the H norm may be characterized by the lower value of γ [1 such that y(t) 2 γ w(t) 2 (4) where. 2 is the Euclidian norm. The H norm of a system with transfer matrix G(s) can also be characterized by G(s) <γ y(t) T y(t) <γ 2 w T (t)w(t) (5) For a stable system the H norm can be characterized by a Lyapunov function V (x) =x T Px, P = P T > imposing V (x)+y T y γ 2 w T w< (6) We note that V (x) is expressed by Raplacing (7) in (6) we have V (x) =ẋ T Px+ x T P ẋ (7) ẋ T Px+ x T P ẋ + y T y γ 2 w T w< (8) Now substituting the equation of system (1) in (8) we have x T (A T P + PA+ C T C) w T (B T P + D T C) +x T (PB + C T D)w + w T (D T D γ 2 I)w + +h T Px+ x T Ph <, P> (9) We use the following lemma to obtain a quadratic form in the state for h T Px+ x T Ph Lemma 1. For any matrices (or vectors) X and with appropriate dimensions, we have the following inequality: X T + T X X T X + T (1) Proof. Since X and are matrices or vectors of appropriate dimensions we have It follows that ( X) T I( X) T T X X T + X T X X T + X T X T X + T (11) h T Px+ x T Ph h T h + x T PPx x T (α 2 H T H + PP)x (12) Now we have x T (A T P + PA+ C T C + PP + α 2 H T H) +w T (B T P + D T C) +x T (PB + C T D)w + w T (D T D γ 2 I)w < P> (13) that can be written as P>, [ T [ x S w B T P + D T C [ PB + C T D x D T D γ 2 < (14) I w where S = A T P + PA+ C T C + PP + α 2 H T H. Using the Schur complement formula [9, (14) can be written as P>, X PB + C T D P B T P + D T C D T D γ 2 I P I < (15) where X = A T P + PA+ C T C + α 2 H T H. Assuming that α and H are known we minimize γ solving the following LMI problem in P and γ min µ s.t. P = P T >, X B T P + D T C P PB + C T D P D T D µi < (16) I where γ = µ. If problem (16) is feasible, then its solution minimizes H norm for the system (1). Serra Negra, SP - ISSN

3 2.1. Examples To illustrate the proposed method for H norm characterization for nonlinear systems we will use the following examples Example 1. We consider the nonlinear system described by the following equations: ẋ = w(t)+h(t, x) where α =2and H = I. w(t) (17) In this paper all examples are solved using a computer with an AMD Turion 64 X2 (2. GHz) processor with 2 GB of RAM (8 MHz) with operational system Windows Vista 32-bits. The solver used is the SeDuMI [3 (Self-Dual- Minimization) interfaced by ALMIP [4 (et Another LMI Parser) both running in Matlab 7.. Using the method proposed in (16) to find the minimum H norm for the system (17) of example 1 we find that γ =4.878 and P = 1 9 Example 2. Consider the system [ ẋ = h(t, x) [ where α =1.5 and H = I. [ [ w(t) w(t) (18) Using again the method proposed in (16) to determine the minimum H norm we find that γ = and [ P = for the system (18) of example 2 3. H OPTIMAL CONTROL DESIGN In this section, we consider the optimal H control problem for the following nonlinear system with time-varying uncertainties and exogenous disturbances ẋ = A B u u + B w w(t)+h(t, x) C Dw(t) (19) where u R m is the control input, w(t) R q is the exogenous disturbance. A R n n, B u R n m, B w R n m, C R l n and D R l m are know constants matrices, h : R n+1 R n is the uncertain time-variant nonlinear term satisfying (2). Let us consider the problem of finding a linear controller for the system (19) that at the same time stabilizes the system and minimizes the H norm. Applying the linear feedback control law u = Kx (2) where K is a constant matrix, to the open-loop system (19), we obtain the closed-loop system ẋ =(A + B u K) B w w(t)+h(t, x) C Dw(t) (21) We consider that pair (A, B u ) is controllable. For a stable system the H norm can be characterized by a Lyapunov function V (x) =x T Px, P = P T > imposing (6). Now replacing (21) in (6) and using Lemma 1 and equation (2) we have x T (A T P + PA+ K T Bu T P + PB u K + PP + α 2 H T H) w T (BwP T + D T C)x +x T (PB w + C T D)w + w T (D T D γ 2 I)w < (22) that can be written as P>, [ T [ x X w BwP T + D T C [ PB w + C T D x D T D γ 2 I w < (23) where X = A T P + PA + K T B T u P + PB u K + PP + α 2 H T H. Multiplying (23) on the left and on the right by [ P 1 I (24) where P 1 =, and making the change of variable proposed in [5 L = K so (25) K = L 1 (26) Serra Negra, SP - ISSN

4 we have [ Z Bw T + D T C B w + C T D D T D γ 2 < (27) I where Z = A T + A + L T B T u + B u L + I + (C T C + α 2 H T H). Relying on the Schur complement formula [9, (27) can be written as Bw T + D T C D T D γ 2 I < (28) where W = A T +A +L T B T u +B u L+I. The minimum H norm can be computed using a convex optimization procedure Define µ = γ 2 min µ s.t. = T > Bw T + D T C D T D µi < (29) The H norm procedure stabilizes the system (21) and minimizes its H norm if the optimization problem (29) is feasible. We should note, however, that the procedure outlined in (29) is aimed only at minimizing the H norm, with no restritions on the size of the gain. To limit the gain, we apply the following modifications of the optimization problem [1: min µ + k L + k s.t. = T > Bw T + D T C D T D γ 2 I < [ kl I L T < L I [ k I I > (3) I where k and k L are constraints on the magnitudes of gain K, satisfying [11: L T L<k L I, 1 <k I (31) 4. NUMERICAL EXAMPLES In this section numerical examples of H optimal control design illustrating the proposed method are presented. Example 3. Consider the system ẋ = u w(t)+h(t, x) where α =2and H = I. w(t) (32) Using the design method proprosed in (3) for the system (32) of the example 3 such that it be stable and have the lowest possible H norm we obtain γ =.949, = and the optimal gain matrix is: K = [ Example 4. [ [ ẋ = [ w(t)+h(t, x).7621 [ where α =1.5 and H = I. [ u w(t)(33) Again solving the problem (3) for the system (33) of the example 4 such that it be stable and have the lowest possible H norm we obtain γ =1.5482, = [ Serra Negra, SP - ISSN

5 and the optimal gain matrix: 5. CONCLUSIONS K = [ In this paper we proposed a new method for characterization of the H norm for nonlinear systems with time-varying uncertainties with known norm bound and exogenous disturbances through the construction of a convex optimization problem using LMIs. In addtion we also proposed a H optimal control design method for the same type of system ensuring stability and the lowest H norm possible. Numerical examples were presented to illustrate both proposed methods. [9 Boyd, S., Ghaoui, L., Feron, E. and Balakrishnan, V., 1994, Linear Matrix Inequalities in Systems and Control Theory. Philadelphia, PA SIAM Studies in Applied Mathematics [1 Kemin Zhou, John C. Doyle and Keith Glover, 1995, Robust and Optimal Control, Prentice Hall. [11 Chen, G.,. L., and Chu, J., Decentralized stabilization of large-scale linear systems with time-delay. Proceedings of the 14th IFAC Congres, 1(1), May, pp ACKNOWLEDGMENTS This work has been supported by grants from "Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES - Brazil". REFERENCES [1 D. M. Stipanovic and D.D. Siljak, 2, Robust Stabilization of Nonlinear Systems: The LMI Approach. Mathematical Problems in Engineering, vol. 6, n. 1, pp [2 K. Zhou and P.P. Khargonekar, 1988, Robust Stabilization of Linear Systems with norm bounded time varying uncertainty, Systems Control Letters, vol. 1, n. 1, pp [3 Sturm, J.F., 1999, Using SeDuMi 1.2, a MAT- LAB toolbox for optimization over symmetric cones, Optim. Methods Softw., vol. 1, n. 1, pp , [4 Lofberg, J., 24, ALMIP: A toolbox for modeling and optimization in MATLAB, Proc. 24 IEEE Int. Symp. Computer Aided Control Systems Design, Taipei, Taiwan, vol. 1, pp [5 Bernussou, J., Peres, P., and Geromel, J. C., 1989, A linear programming oriented procedure for quadratic stabilization of uncertain systems, Systems and Control Letters vol. 6, n. 1, pp [6 Geromel, J. C. Bernussou, J, and Peres, P. L. D., 1994, Decentralized control through parameter space optimization, Automatica, vol. 3, n. 1, pp [7 De Oliveira, M.C., Geromel, J.C. and Bernussou, J., 22, Extend H 2 and H norm characterization and controller parametrizations for discrete-time systems. Int. J. Control, vol 75, n. 9, pp [8 D. D. Siljak, 1991, Decentralized Control of Complex System, Academic Press, Boston, MA. Serra Negra, SP - ISSN

Research Article An Equivalent LMI Representation of Bounded Real Lemma for Continuous-Time Systems

Research Article An Equivalent LMI Representation of Bounded Real Lemma for Continuous-Time Systems Hindawi Publishing Corporation Journal of Inequalities and Applications Volume 28, Article ID 67295, 8 pages doi:1.1155/28/67295 Research Article An Equivalent LMI Representation of Bounded Real Lemma

More information

Optimization based robust control

Optimization based robust control Optimization based robust control Didier Henrion 1,2 Draft of March 27, 2014 Prepared for possible inclusion into The Encyclopedia of Systems and Control edited by John Baillieul and Tariq Samad and published

More information

Homogeneous polynomially parameter-dependent state feedback controllers for finite time stabilization of linear time-varying systems

Homogeneous polynomially parameter-dependent state feedback controllers for finite time stabilization of linear time-varying systems 23 European Control Conference (ECC) July 7-9, 23, Zürich, Switzerland. Homogeneous polynomially parameter-dependent state feedback controllers for finite time stabilization of linear time-varying systems

More information

Stability of linear time-varying systems through quadratically parameter-dependent Lyapunov functions

Stability of linear time-varying systems through quadratically parameter-dependent Lyapunov functions Stability of linear time-varying systems through quadratically parameter-dependent Lyapunov functions Vinícius F. Montagner Department of Telematics Pedro L. D. Peres School of Electrical and Computer

More information

Appendix A Solving Linear Matrix Inequality (LMI) Problems

Appendix A Solving Linear Matrix Inequality (LMI) Problems Appendix A Solving Linear Matrix Inequality (LMI) Problems In this section, we present a brief introduction about linear matrix inequalities which have been used extensively to solve the FDI problems described

More information

State feedback gain scheduling for linear systems with time-varying parameters

State feedback gain scheduling for linear systems with time-varying parameters State feedback gain scheduling for linear systems with time-varying parameters Vinícius F. Montagner and Pedro L. D. Peres Abstract This paper addresses the problem of parameter dependent state feedback

More information

From Convex Optimization to Linear Matrix Inequalities

From Convex Optimization to Linear Matrix Inequalities Dep. of Information Engineering University of Pisa (Italy) From Convex Optimization to Linear Matrix Inequalities eng. Sergio Grammatico grammatico.sergio@gmail.com Class of Identification of Uncertain

More information

June Engineering Department, Stanford University. System Analysis and Synthesis. Linear Matrix Inequalities. Stephen Boyd (E.

June Engineering Department, Stanford University. System Analysis and Synthesis. Linear Matrix Inequalities. Stephen Boyd (E. Stephen Boyd (E. Feron :::) System Analysis and Synthesis Control Linear Matrix Inequalities via Engineering Department, Stanford University Electrical June 1993 ACC, 1 linear matrix inequalities (LMIs)

More information

Graph and Controller Design for Disturbance Attenuation in Consensus Networks

Graph and Controller Design for Disturbance Attenuation in Consensus Networks 203 3th International Conference on Control, Automation and Systems (ICCAS 203) Oct. 20-23, 203 in Kimdaejung Convention Center, Gwangju, Korea Graph and Controller Design for Disturbance Attenuation in

More information

Fixed-Order Robust H Controller Design with Regional Pole Assignment

Fixed-Order Robust H Controller Design with Regional Pole Assignment SUBMITTED 1 Fixed-Order Robust H Controller Design with Regional Pole Assignment Fuwen Yang, Mahbub Gani, and Didier Henrion Abstract In this paper, the problem of designing fixed-order robust H controllers

More information

Robust Observer for Uncertain T S model of a Synchronous Machine

Robust Observer for Uncertain T S model of a Synchronous Machine Recent Advances in Circuits Communications Signal Processing Robust Observer for Uncertain T S model of a Synchronous Machine OUAALINE Najat ELALAMI Noureddine Laboratory of Automation Computer Engineering

More information

Robust Output Feedback Controller Design via Genetic Algorithms and LMIs: The Mixed H 2 /H Problem

Robust Output Feedback Controller Design via Genetic Algorithms and LMIs: The Mixed H 2 /H Problem Robust Output Feedback Controller Design via Genetic Algorithms and LMIs: The Mixed H 2 /H Problem Gustavo J. Pereira and Humberto X. de Araújo Abstract This paper deals with the mixed H 2/H control problem

More information

The servo problem for piecewise linear systems

The servo problem for piecewise linear systems The servo problem for piecewise linear systems Stefan Solyom and Anders Rantzer Department of Automatic Control Lund Institute of Technology Box 8, S-22 Lund Sweden {stefan rantzer}@control.lth.se Abstract

More information

Parameterized Linear Matrix Inequality Techniques in Fuzzy Control System Design

Parameterized Linear Matrix Inequality Techniques in Fuzzy Control System Design 324 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 9, NO. 2, APRIL 2001 Parameterized Linear Matrix Inequality Techniques in Fuzzy Control System Design H. D. Tuan, P. Apkarian, T. Narikiyo, and Y. Yamamoto

More information

Multiobjective Optimization Applied to Robust H 2 /H State-feedback Control Synthesis

Multiobjective Optimization Applied to Robust H 2 /H State-feedback Control Synthesis Multiobjective Optimization Applied to Robust H 2 /H State-feedback Control Synthesis Eduardo N. Gonçalves, Reinaldo M. Palhares, and Ricardo H. C. Takahashi Abstract This paper presents an algorithm for

More information

A new robust delay-dependent stability criterion for a class of uncertain systems with delay

A new robust delay-dependent stability criterion for a class of uncertain systems with delay A new robust delay-dependent stability criterion for a class of uncertain systems with delay Fei Hao Long Wang and Tianguang Chu Abstract A new robust delay-dependent stability criterion for a class of

More information

Stability analysis and state feedback control design of discrete-time systems with a backlash

Stability analysis and state feedback control design of discrete-time systems with a backlash American Control Conference Marriott Waterfront, Baltimore, MD, USA June 3-July, ThA9.5 Stability analysis and state feedback control design of discrete-time systems with a backlash Christophe Prieur,

More information

Modern Optimal Control

Modern Optimal Control Modern Optimal Control Matthew M. Peet Arizona State University Lecture 19: Stabilization via LMIs Optimization Optimization can be posed in functional form: min x F objective function : inequality constraints

More information

H State-Feedback Controller Design for Discrete-Time Fuzzy Systems Using Fuzzy Weighting-Dependent Lyapunov Functions

H State-Feedback Controller Design for Discrete-Time Fuzzy Systems Using Fuzzy Weighting-Dependent Lyapunov Functions IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL 11, NO 2, APRIL 2003 271 H State-Feedback Controller Design for Discrete-Time Fuzzy Systems Using Fuzzy Weighting-Dependent Lyapunov Functions Doo Jin Choi and PooGyeon

More information

A Riccati-Genetic Algorithms Approach To Fixed-Structure Controller Synthesis

A Riccati-Genetic Algorithms Approach To Fixed-Structure Controller Synthesis A Riccati-Genetic Algorithms Approach To Fixed-Structure Controller Synthesis A Farag and H Werner Technical University Hamburg-Harburg, Institute of Control Engineering afarag@tu-harburgde, hwerner@tu-harburgde

More information

On Control Design of Switched Affine Systems with Application to DC-DC Converters

On Control Design of Switched Affine Systems with Application to DC-DC Converters On Control Design of Switched Affine Systems with Application to DCDC Converters 5 E. I. Mainardi Júnior 1 M.C.M.Teixeira 1 R. Cardim 1 M. R. Moreira 1 E. Assunção 1 and Victor L. Yoshimura 2 1 UNESP Univ

More information

On Computing the Worst-case Performance of Lur'e Systems with Uncertain Time-invariant Delays

On Computing the Worst-case Performance of Lur'e Systems with Uncertain Time-invariant Delays Article On Computing the Worst-case Performance of Lur'e Systems with Uncertain Time-invariant Delays Thapana Nampradit and David Banjerdpongchai* Department of Electrical Engineering, Faculty of Engineering,

More information

Multi-Model Adaptive Regulation for a Family of Systems Containing Different Zero Structures

Multi-Model Adaptive Regulation for a Family of Systems Containing Different Zero Structures Preprints of the 19th World Congress The International Federation of Automatic Control Multi-Model Adaptive Regulation for a Family of Systems Containing Different Zero Structures Eric Peterson Harry G.

More information

Static Output Feedback Stabilisation with H Performance for a Class of Plants

Static Output Feedback Stabilisation with H Performance for a Class of Plants Static Output Feedback Stabilisation with H Performance for a Class of Plants E. Prempain and I. Postlethwaite Control and Instrumentation Research, Department of Engineering, University of Leicester,

More information

Fixed Order H Controller for Quarter Car Active Suspension System

Fixed Order H Controller for Quarter Car Active Suspension System Fixed Order H Controller for Quarter Car Active Suspension System B. Erol, A. Delibaşı Abstract This paper presents an LMI based fixed-order controller design for quarter car active suspension system in

More information

Convex Optimization Approach to Dynamic Output Feedback Control for Delay Differential Systems of Neutral Type 1,2

Convex Optimization Approach to Dynamic Output Feedback Control for Delay Differential Systems of Neutral Type 1,2 journal of optimization theory and applications: Vol. 127 No. 2 pp. 411 423 November 2005 ( 2005) DOI: 10.1007/s10957-005-6552-7 Convex Optimization Approach to Dynamic Output Feedback Control for Delay

More information

Linear Matrix Inequalities in Robust Control. Venkataramanan (Ragu) Balakrishnan School of ECE, Purdue University MTNS 2002

Linear Matrix Inequalities in Robust Control. Venkataramanan (Ragu) Balakrishnan School of ECE, Purdue University MTNS 2002 Linear Matrix Inequalities in Robust Control Venkataramanan (Ragu) Balakrishnan School of ECE, Purdue University MTNS 2002 Objective A brief introduction to LMI techniques for Robust Control Emphasis on

More information

LMI based output-feedback controllers: γ-optimal versus linear quadratic.

LMI based output-feedback controllers: γ-optimal versus linear quadratic. Proceedings of the 17th World Congress he International Federation of Automatic Control Seoul Korea July 6-11 28 LMI based output-feedback controllers: γ-optimal versus linear quadratic. Dmitry V. Balandin

More information

A New Strategy to the Multi-Objective Control of Linear Systems

A New Strategy to the Multi-Objective Control of Linear Systems Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference 25 Seville, Spain, December 12-15, 25 TuC8.6 A New Strategy to the Multi-Objective Control of Linear

More information

STABILITY AND STABILIZATION OF A CLASS OF NONLINEAR SYSTEMS WITH SATURATING ACTUATORS. Eugênio B. Castelan,1 Sophie Tarbouriech Isabelle Queinnec

STABILITY AND STABILIZATION OF A CLASS OF NONLINEAR SYSTEMS WITH SATURATING ACTUATORS. Eugênio B. Castelan,1 Sophie Tarbouriech Isabelle Queinnec STABILITY AND STABILIZATION OF A CLASS OF NONLINEAR SYSTEMS WITH SATURATING ACTUATORS Eugênio B. Castelan,1 Sophie Tarbouriech Isabelle Queinnec DAS-CTC-UFSC P.O. Box 476, 88040-900 Florianópolis, SC,

More information

Synthesis of Static Output Feedback SPR Systems via LQR Weighting Matrix Design

Synthesis of Static Output Feedback SPR Systems via LQR Weighting Matrix Design 49th IEEE Conference on Decision and Control December 15-17, 21 Hilton Atlanta Hotel, Atlanta, GA, USA Synthesis of Static Output Feedback SPR Systems via LQR Weighting Matrix Design Jen-te Yu, Ming-Li

More information

ROBUST CONTROLLER DESIGN: POLYNOMIALLY PARAMETER DEPENDENT LYAPUNOV FUNCTION APPROACH

ROBUST CONTROLLER DESIGN: POLYNOMIALLY PARAMETER DEPENDENT LYAPUNOV FUNCTION APPROACH Journal of ELECTRICAL ENGINEERING, VOL 58, NO 6, 2007, 313 317 ROBUST CONTROLLER DESIGN: POLYNOMIALLY PARAMETER DEPENDENT LYAPUNOV FUNCTION APPROACH Vojtech Veselý The paper addresses the problem of robust

More information

8 A First Glimpse on Design with LMIs

8 A First Glimpse on Design with LMIs 8 A First Glimpse on Design with LMIs 8.1 Conceptual Design Problem Given a linear time invariant system design a linear time invariant controller or filter so as to guarantee some closed loop indices

More information

Riccati Equations and Inequalities in Robust Control

Riccati Equations and Inequalities in Robust Control Riccati Equations and Inequalities in Robust Control Lianhao Yin Gabriel Ingesson Martin Karlsson Optimal Control LP4 2014 June 10, 2014 Lianhao Yin Gabriel Ingesson Martin Karlsson (LTH) H control problem

More information

OBSERVER DESIGN WITH GUARANTEED BOUND FOR LPV SYSTEMS. Jamal Daafouz Gilles Millerioux Lionel Rosier

OBSERVER DESIGN WITH GUARANTEED BOUND FOR LPV SYSTEMS. Jamal Daafouz Gilles Millerioux Lionel Rosier OBSERVER DESIGN WITH GUARANTEED BOUND FOR LPV SYSTEMS Jamal Daafouz Gilles Millerioux Lionel Rosier CRAN UMR 739 ENSEM 2, Avenue de la Forêt de Haye 54516 Vandoeuvre-lès-Nancy Cedex France, Email: Jamal.Daafouz@ensem.inpl-nancy.fr

More information

LOW ORDER H CONTROLLER DESIGN: AN LMI APPROACH

LOW ORDER H CONTROLLER DESIGN: AN LMI APPROACH LOW ORDER H CONROLLER DESIGN: AN LMI APPROACH Guisheng Zhai, Shinichi Murao, Naoki Koyama, Masaharu Yoshida Faculty of Systems Engineering, Wakayama University, Wakayama 640-8510, Japan Email: zhai@sys.wakayama-u.ac.jp

More information

On parameter-dependent Lyapunov functions for robust stability of linear systems

On parameter-dependent Lyapunov functions for robust stability of linear systems On parameter-dependent Lyapunov functions for robust stability of linear systems Didier Henrion, Denis Arzelier, Dimitri Peaucelle, Jean-Bernard Lasserre Abstract For a linear system affected by real parametric

More information

Rank-one LMIs and Lyapunov's Inequality. Gjerrit Meinsma 4. Abstract. We describe a new proof of the well-known Lyapunov's matrix inequality about

Rank-one LMIs and Lyapunov's Inequality. Gjerrit Meinsma 4. Abstract. We describe a new proof of the well-known Lyapunov's matrix inequality about Rank-one LMIs and Lyapunov's Inequality Didier Henrion 1;; Gjerrit Meinsma Abstract We describe a new proof of the well-known Lyapunov's matrix inequality about the location of the eigenvalues of a matrix

More information

Analytical Validation Tools for Safety Critical Systems

Analytical Validation Tools for Safety Critical Systems Analytical Validation Tools for Safety Critical Systems Peter Seiler and Gary Balas Department of Aerospace Engineering & Mechanics, University of Minnesota, Minneapolis, MN, 55455, USA Andrew Packard

More information

FINITE HORIZON ROBUST MODEL PREDICTIVE CONTROL USING LINEAR MATRIX INEQUALITIES. Danlei Chu, Tongwen Chen, Horacio J. Marquez

FINITE HORIZON ROBUST MODEL PREDICTIVE CONTROL USING LINEAR MATRIX INEQUALITIES. Danlei Chu, Tongwen Chen, Horacio J. Marquez FINITE HORIZON ROBUST MODEL PREDICTIVE CONTROL USING LINEAR MATRIX INEQUALITIES Danlei Chu Tongwen Chen Horacio J Marquez Department of Electrical and Computer Engineering University of Alberta Edmonton

More information

Stability of neutral delay-diœerential systems with nonlinear perturbations

Stability of neutral delay-diœerential systems with nonlinear perturbations International Journal of Systems Science, 000, volume 1, number 8, pages 961± 96 Stability of neutral delay-diœerential systems with nonlinear perturbations JU H. PARK{ SANGCHUL WON{ In this paper, the

More information

ON THE ROBUST STABILITY OF NEUTRAL SYSTEMS WITH TIME-VARYING DELAYS

ON THE ROBUST STABILITY OF NEUTRAL SYSTEMS WITH TIME-VARYING DELAYS ON THE ROBUST STABILITY OF NEUTRAL SYSTEMS WITH TIME-VARYING DELAYS V. J. S. Leite P. L. D. Peres E. B. Castelan S. Tarbouriech UnED Divinópolis CEFET-MG R. Monte Santo, 319 35502-036, Divinópolis - MG

More information

On Bounded Real Matrix Inequality Dilation

On Bounded Real Matrix Inequality Dilation On Bounded Real Matrix Inequality Dilation Solmaz Sajjadi-Kia and Faryar Jabbari Abstract We discuss a variation of dilated matrix inequalities for the conventional Bounded Real matrix inequality, and

More information

H 2 and H 1 cost estimates for time-invariant uncertain

H 2 and H 1 cost estimates for time-invariant uncertain INT. J. CONTROL, 00, VOL. 75, NO. 9, ±79 Extended H and H systems norm characterizations and controller parametrizations for discrete-time M. C. DE OLIVEIRAy*, J. C. GEROMELy and J. BERNUSSOUz This paper

More information

Filter Design for Linear Time Delay Systems

Filter Design for Linear Time Delay Systems IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 11, NOVEMBER 2001 2839 ANewH Filter Design for Linear Time Delay Systems E. Fridman Uri Shaked, Fellow, IEEE Abstract A new delay-dependent filtering

More information

ON POLE PLACEMENT IN LMI REGION FOR DESCRIPTOR LINEAR SYSTEMS. Received January 2011; revised May 2011

ON POLE PLACEMENT IN LMI REGION FOR DESCRIPTOR LINEAR SYSTEMS. Received January 2011; revised May 2011 International Journal of Innovative Computing, Information and Control ICIC International c 2012 ISSN 1349-4198 Volume 8, Number 4, April 2012 pp. 2613 2624 ON POLE PLACEMENT IN LMI REGION FOR DESCRIPTOR

More information

ON STABILITY TESTS FOR LINEAR SYSTEMS

ON STABILITY TESTS FOR LINEAR SYSTEMS Copyright 22 IFAC 15th Triennial World Congress Barcelona Spain ON STABILITY TESTS FOR LINEAR SYSTEMS Maurício C. de Oliveira 1 Robert E. Skelton Department of Telematics School of Electrical and Computer

More information

The norms can also be characterized in terms of Riccati inequalities.

The norms can also be characterized in terms of Riccati inequalities. 9 Analysis of stability and H norms Consider the causal, linear, time-invariant system ẋ(t = Ax(t + Bu(t y(t = Cx(t Denote the transfer function G(s := C (si A 1 B. Theorem 85 The following statements

More information

Research Article Filter Design for Continuous-Time Linear Systems Subject to Sensor Saturation

Research Article Filter Design for Continuous-Time Linear Systems Subject to Sensor Saturation Hindawi Mathematical Problems in Engineering Volume 217 Article ID 218415 8 pages https://doi.org/1.1155/217/218415 Research Article Filter Design for Continuous-Time Linear Systems Subject to Sensor Saturation

More information

Robust Anti-Windup Controller Synthesis: A Mixed H 2 /H Setting

Robust Anti-Windup Controller Synthesis: A Mixed H 2 /H Setting Robust Anti-Windup Controller Synthesis: A Mixed H /H Setting ADDISON RIOS-BOLIVAR Departamento de Sistemas de Control Universidad de Los Andes Av. ulio Febres, Mérida 511 VENEZUELA SOLBEN GODOY Postgrado

More information

Robust stability analysis and control design for time-varying discrete-time polytopic systems with bounded parameter variation

Robust stability analysis and control design for time-varying discrete-time polytopic systems with bounded parameter variation 2008 American Control Conference Westin Seattle Hotel, Seattle, Washington, USA June 11-13, 2008 ThC04.6 Robust stability analysis and control design for time-varying discrete-time polytopic systems with

More information

Multiobjective H 2 /H /impulse-to-peak synthesis: Application to the control of an aerospace launcher

Multiobjective H 2 /H /impulse-to-peak synthesis: Application to the control of an aerospace launcher Multiobjective H /H /impulse-to-peak synthesis: Application to the control of an aerospace launcher D. Arzelier, D. Peaucelle LAAS-CNRS, 7 Avenue du Colonel Roche, 3 77 Toulouse, Cedex 4, France emails:

More information

ROBUST STABILITY TEST FOR UNCERTAIN DISCRETE-TIME SYSTEMS: A DESCRIPTOR SYSTEM APPROACH

ROBUST STABILITY TEST FOR UNCERTAIN DISCRETE-TIME SYSTEMS: A DESCRIPTOR SYSTEM APPROACH Latin American Applied Research 41: 359-364(211) ROBUS SABILIY ES FOR UNCERAIN DISCREE-IME SYSEMS: A DESCRIPOR SYSEM APPROACH W. ZHANG,, H. SU, Y. LIANG, and Z. HAN Engineering raining Center, Shanghai

More information

Nonlinear Control Design for Linear Differential Inclusions via Convex Hull Quadratic Lyapunov Functions

Nonlinear Control Design for Linear Differential Inclusions via Convex Hull Quadratic Lyapunov Functions Nonlinear Control Design for Linear Differential Inclusions via Convex Hull Quadratic Lyapunov Functions Tingshu Hu Abstract This paper presents a nonlinear control design method for robust stabilization

More information

Lecture Note 5: Semidefinite Programming for Stability Analysis

Lecture Note 5: Semidefinite Programming for Stability Analysis ECE7850: Hybrid Systems:Theory and Applications Lecture Note 5: Semidefinite Programming for Stability Analysis Wei Zhang Assistant Professor Department of Electrical and Computer Engineering Ohio State

More information

Robust Anti-Windup Compensation for PID Controllers

Robust Anti-Windup Compensation for PID Controllers Robust Anti-Windup Compensation for PID Controllers ADDISON RIOS-BOLIVAR Universidad de Los Andes Av. Tulio Febres, Mérida 511 VENEZUELA FRANCKLIN RIVAS-ECHEVERRIA Universidad de Los Andes Av. Tulio Febres,

More information

KTH. Access to the published version may require subscription.

KTH. Access to the published version may require subscription. KTH This is an accepted version of a paper published in IEEE Transactions on Automatic Control. This paper has been peer-reviewed but does not include the final publisher proof-corrections or journal pagination.

More information

Robust Multi-Objective Control for Linear Systems

Robust Multi-Objective Control for Linear Systems Robust Multi-Objective Control for Linear Systems Elements of theory and ROMULOC toolbox Dimitri PEAUCELLE & Denis ARZELIER LAAS-CNRS, Toulouse, FRANCE Part of the OLOCEP project (includes GloptiPoly)

More information

State estimation of uncertain multiple model with unknown inputs

State estimation of uncertain multiple model with unknown inputs State estimation of uncertain multiple model with unknown inputs Abdelkader Akhenak, Mohammed Chadli, Didier Maquin and José Ragot Centre de Recherche en Automatique de Nancy, CNRS UMR 79 Institut National

More information

SYNTHESIS OF ROBUST DISCRETE-TIME SYSTEMS BASED ON COMPARISON WITH STOCHASTIC MODEL 1. P. V. Pakshin, S. G. Soloviev

SYNTHESIS OF ROBUST DISCRETE-TIME SYSTEMS BASED ON COMPARISON WITH STOCHASTIC MODEL 1. P. V. Pakshin, S. G. Soloviev SYNTHESIS OF ROBUST DISCRETE-TIME SYSTEMS BASED ON COMPARISON WITH STOCHASTIC MODEL 1 P. V. Pakshin, S. G. Soloviev Nizhny Novgorod State Technical University at Arzamas, 19, Kalinina ul., Arzamas, 607227,

More information

LMI Based Model Order Reduction Considering the Minimum Phase Characteristic of the System

LMI Based Model Order Reduction Considering the Minimum Phase Characteristic of the System LMI Based Model Order Reduction Considering the Minimum Phase Characteristic of the System Gholamreza Khademi, Haniyeh Mohammadi, and Maryam Dehghani School of Electrical and Computer Engineering Shiraz

More information

Robust Variance Constrained Filter Design for Systems with Non-Gaussian Noises

Robust Variance Constrained Filter Design for Systems with Non-Gaussian Noises Robust Variance Constrained Filter Design for Systems with Non-Gaussian Noises Fuwen Yang, Yongmin Li, and Xiaohui Liu Abstract- In this paper, a variance constrained filtering problem is considered for

More information

Robust H Filter Design Using Frequency Gridding

Robust H Filter Design Using Frequency Gridding Robust H Filter Design Using Frequency Gridding Peter Seiler, Balint Vanek, József Bokor, and Gary J. Balas Abstract This paper considers the design of robust H filters for continuous-time linear systems

More information

2nd Symposium on System, Structure and Control, Oaxaca, 2004

2nd Symposium on System, Structure and Control, Oaxaca, 2004 263 2nd Symposium on System, Structure and Control, Oaxaca, 2004 A PROJECTIVE ALGORITHM FOR STATIC OUTPUT FEEDBACK STABILIZATION Kaiyang Yang, Robert Orsi and John B. Moore Department of Systems Engineering,

More information

I. D. Landau, A. Karimi: A Course on Adaptive Control Adaptive Control. Part 9: Adaptive Control with Multiple Models and Switching

I. D. Landau, A. Karimi: A Course on Adaptive Control Adaptive Control. Part 9: Adaptive Control with Multiple Models and Switching I. D. Landau, A. Karimi: A Course on Adaptive Control - 5 1 Adaptive Control Part 9: Adaptive Control with Multiple Models and Switching I. D. Landau, A. Karimi: A Course on Adaptive Control - 5 2 Outline

More information

H State Feedback Control of Discrete-time Markov Jump Linear Systems through Linear Matrix Inequalities

H State Feedback Control of Discrete-time Markov Jump Linear Systems through Linear Matrix Inequalities H State Feedback Control of Discrete-time Markov Jump Linear Systems through Linear Matrix Inequalities A. P. C. Gonçalves, A. R. Fioravanti, M. A. Al-Radhawi, J. C. Geromel Univ. Estadual Paulista - UNESP.

More information

Delay-dependent stability and stabilization of neutral time-delay systems

Delay-dependent stability and stabilization of neutral time-delay systems INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL Int. J. Robust Nonlinear Control 2009; 19:1364 1375 Published online 6 October 2008 in Wiley InterScience (www.interscience.wiley.com)..1384 Delay-dependent

More information

Robust Filtering for Discrete Nonlinear Fractional Transformation Systems

Robust Filtering for Discrete Nonlinear Fractional Transformation Systems Robust Filtering for Discrete Nonlinear Fractional Transformation Systems N.T. Hoang H.D. Tuan P. Aparian + and S. Hosoe Department of Electronic-Mechanical Engineering Nagoya University Furo-cho Chiusau

More information

Correspondence should be addressed to Chien-Yu Lu,

Correspondence should be addressed to Chien-Yu Lu, Hindawi Publishing Corporation Discrete Dynamics in Nature and Society Volume 2009, Article ID 43015, 14 pages doi:10.1155/2009/43015 Research Article Delay-Range-Dependent Global Robust Passivity Analysis

More information

Reduced model in H vibration control using linear matrix inequalities

Reduced model in H vibration control using linear matrix inequalities Shock and Vibration 13 (26) 469 484 469 IOS Press Reduced model in H vibration control using linear matrix inequalities Fernando Sarracini Júnior and Alberto Luiz Serpa Department of Computational Mechanics,

More information

7.1 Linear Systems Stability Consider the Continuous-Time (CT) Linear Time-Invariant (LTI) system

7.1 Linear Systems Stability Consider the Continuous-Time (CT) Linear Time-Invariant (LTI) system 7 Stability 7.1 Linear Systems Stability Consider the Continuous-Time (CT) Linear Time-Invariant (LTI) system ẋ(t) = A x(t), x(0) = x 0, A R n n, x 0 R n. (14) The origin x = 0 is a globally asymptotically

More information

Delay-Dependent Exponential Stability of Linear Systems with Fast Time-Varying Delay

Delay-Dependent Exponential Stability of Linear Systems with Fast Time-Varying Delay International Mathematical Forum, 4, 2009, no. 39, 1939-1947 Delay-Dependent Exponential Stability of Linear Systems with Fast Time-Varying Delay Le Van Hien Department of Mathematics Hanoi National University

More information

SYNTHESIS OF LOW ORDER MULTI-OBJECTIVE CONTROLLERS FOR A VSC HVDC TERMINAL USING LMIs

SYNTHESIS OF LOW ORDER MULTI-OBJECTIVE CONTROLLERS FOR A VSC HVDC TERMINAL USING LMIs SYNTHESIS OF LOW ORDER MULTI-OBJECTIVE CONTROLLERS FOR A VSC HVDC TERMINAL USING LMIs Martyn Durrant, Herbert Werner, Keith Abbott Control Institute, TUHH, Hamburg Germany; m.durrant@tu-harburg.de; Fax:

More information

DECENTRALIZED CONTROL DESIGN USING LMI MODEL REDUCTION

DECENTRALIZED CONTROL DESIGN USING LMI MODEL REDUCTION Journal of ELECTRICAL ENGINEERING, VOL. 58, NO. 6, 2007, 307 312 DECENTRALIZED CONTROL DESIGN USING LMI MODEL REDUCTION Szabolcs Dorák Danica Rosinová Decentralized control design approach based on partial

More information

ROBUST ANALYSIS WITH LINEAR MATRIX INEQUALITIES AND POLYNOMIAL MATRICES. Didier HENRION henrion

ROBUST ANALYSIS WITH LINEAR MATRIX INEQUALITIES AND POLYNOMIAL MATRICES. Didier HENRION  henrion GRADUATE COURSE ON POLYNOMIAL METHODS FOR ROBUST CONTROL PART IV.1 ROBUST ANALYSIS WITH LINEAR MATRIX INEQUALITIES AND POLYNOMIAL MATRICES Didier HENRION www.laas.fr/ henrion henrion@laas.fr Airbus assembly

More information

Introduction to linear matrix inequalities Wojciech Paszke

Introduction to linear matrix inequalities Wojciech Paszke Introduction to linear matrix inequalities Wojciech Paszke Institute of Control and Computation Engineering, University of Zielona Góra, Poland e-mail: W.Paszke@issi.uz.zgora.pl Outline Introduction to

More information

Fast Algorithms for SDPs derived from the Kalman-Yakubovich-Popov Lemma

Fast Algorithms for SDPs derived from the Kalman-Yakubovich-Popov Lemma Fast Algorithms for SDPs derived from the Kalman-Yakubovich-Popov Lemma Venkataramanan (Ragu) Balakrishnan School of ECE, Purdue University 8 September 2003 European Union RTN Summer School on Multi-Agent

More information

Research Article Delay-Dependent H Filtering for Singular Time-Delay Systems

Research Article Delay-Dependent H Filtering for Singular Time-Delay Systems Discrete Dynamics in Nature and Society Volume 211, Article ID 76878, 2 pages doi:1.1155/211/76878 Research Article Delay-Dependent H Filtering for Singular Time-Delay Systems Zhenbo Li 1, 2 and Shuqian

More information

Robust multivariable pid design via iterative lmi

Robust multivariable pid design via iterative lmi Robust multivariable pid design via iterative lmi ERNESTO GRANADO, WILLIAM COLMENARES, OMAR PÉREZ Universidad Simón Bolívar, Departamento de Procesos y Sistemas. Caracas, Venezuela. e- mail: granado, williamc,

More information

A Linear Matrix Inequality Approach to Robust Filtering

A Linear Matrix Inequality Approach to Robust Filtering 2338 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 45, NO. 9, SEPTEMBER 1997 A Linear Matrix Inequality Approach to Robust Filtering Huaizhong Li Minyue Fu, Senior Member, IEEE Abstract In this paper, we

More information

Simultaneous State and Fault Estimation for Descriptor Systems using an Augmented PD Observer

Simultaneous State and Fault Estimation for Descriptor Systems using an Augmented PD Observer Preprints of the 19th World Congress The International Federation of Automatic Control Simultaneous State and Fault Estimation for Descriptor Systems using an Augmented PD Observer Fengming Shi*, Ron J.

More information

Improved Stability Criteria for Lurie Type Systems with Time-varying Delay

Improved Stability Criteria for Lurie Type Systems with Time-varying Delay Vol. 37, No. 5 ACTA ATOMATICA SINICA May, 011 Improved Stability Criteria for Lurie Type Systems with Time-varying Delay RAMAKRISHNAN Krishnan 1 RAY Goshaidas 1 Abstract In this technical note, we present

More information

ANALYSIS OF DISCRETE-TIME H2 GUARANTEED COST PERFORMANCE

ANALYSIS OF DISCRETE-TIME H2 GUARANTEED COST PERFORMANCE ANALYSIS OF DISCREE-IME H2 GUARANEED COS PERFORMANCE Richard Conway Computer Mechanics Laboratory Department of Mechanical Engineering University of California at Berkeley Berkeley, California 94720-740

More information

An LMI Optimization Approach for Structured Linear Controllers

An LMI Optimization Approach for Structured Linear Controllers An LMI Optimization Approach for Structured Linear Controllers Jeongheon Han* and Robert E. Skelton Structural Systems and Control Laboratory Department of Mechanical & Aerospace Engineering University

More information

Research Article Convex Polyhedron Method to Stability of Continuous Systems with Two Additive Time-Varying Delay Components

Research Article Convex Polyhedron Method to Stability of Continuous Systems with Two Additive Time-Varying Delay Components Applied Mathematics Volume 202, Article ID 689820, 3 pages doi:0.55/202/689820 Research Article Convex Polyhedron Method to Stability of Continuous Systems with Two Additive Time-Varying Delay Components

More information

Linear Systems with Saturating Controls: An LMI Approach. subject to control saturation. No assumption is made concerning open-loop stability and no

Linear Systems with Saturating Controls: An LMI Approach. subject to control saturation. No assumption is made concerning open-loop stability and no Output Feedback Robust Stabilization of Uncertain Linear Systems with Saturating Controls: An LMI Approach Didier Henrion 1 Sophie Tarbouriech 1; Germain Garcia 1; Abstract : The problem of robust controller

More information

Lecture 10: Linear Matrix Inequalities Dr.-Ing. Sudchai Boonto

Lecture 10: Linear Matrix Inequalities Dr.-Ing. Sudchai Boonto Dr-Ing Sudchai Boonto Department of Control System and Instrumentation Engineering King Mongkuts Unniversity of Technology Thonburi Thailand Linear Matrix Inequalities A linear matrix inequality (LMI)

More information

STATE ESTIMATION IN COORDINATED CONTROL WITH A NON-STANDARD INFORMATION ARCHITECTURE. Jun Yan, Keunmo Kang, and Robert Bitmead

STATE ESTIMATION IN COORDINATED CONTROL WITH A NON-STANDARD INFORMATION ARCHITECTURE. Jun Yan, Keunmo Kang, and Robert Bitmead STATE ESTIMATION IN COORDINATED CONTROL WITH A NON-STANDARD INFORMATION ARCHITECTURE Jun Yan, Keunmo Kang, and Robert Bitmead Department of Mechanical & Aerospace Engineering University of California San

More information

H 2 Suboptimal Estimation and Control for Nonnegative

H 2 Suboptimal Estimation and Control for Nonnegative Proceedings of the 2007 American Control Conference Marriott Marquis Hotel at Times Square New York City, USA, July 11-13, 2007 FrC20.3 H 2 Suboptimal Estimation and Control for Nonnegative Dynamical Systems

More information

Tracking Control of a Class of Differential Inclusion Systems via Sliding Mode Technique

Tracking Control of a Class of Differential Inclusion Systems via Sliding Mode Technique International Journal of Automation and Computing (3), June 24, 38-32 DOI: 7/s633-4-793-6 Tracking Control of a Class of Differential Inclusion Systems via Sliding Mode Technique Lei-Po Liu Zhu-Mu Fu Xiao-Na

More information

PAijpam.eu DELAY-RANGE-DEPENDENT MEAN SQUARE STABILITY OF STOCHASTIC SYSTEMS WITH INTERVAL TIME-VARYING DELAYS

PAijpam.eu DELAY-RANGE-DEPENDENT MEAN SQUARE STABILITY OF STOCHASTIC SYSTEMS WITH INTERVAL TIME-VARYING DELAYS International Journal of Pure and Applied Mathematics Volume 94 No. 4 2014, 489-499 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: http://dx.doi.org/10.12732/ijpam.v94i4.4

More information

To appear in IEEE Trans. on Automatic Control Revised 12/31/97. Output Feedback

To appear in IEEE Trans. on Automatic Control Revised 12/31/97. Output Feedback o appear in IEEE rans. on Automatic Control Revised 12/31/97 he Design of Strictly Positive Real Systems Using Constant Output Feedback C.-H. Huang P.A. Ioannou y J. Maroulas z M.G. Safonov x Abstract

More information

Constrained interpolation-based control for polytopic uncertain systems

Constrained interpolation-based control for polytopic uncertain systems 2011 50th IEEE Conference on Decision and Control and European Control Conference CDC-ECC Orlando FL USA December 12-15 2011 Constrained interpolation-based control for polytopic uncertain systems H.-N.

More information

Observer-based sampled-data controller of linear system for the wave energy converter

Observer-based sampled-data controller of linear system for the wave energy converter International Journal of Fuzzy Logic and Intelligent Systems, vol. 11, no. 4, December 211, pp. 275-279 http://dx.doi.org/1.5391/ijfis.211.11.4.275 Observer-based sampled-data controller of linear system

More information

OVER the past one decade, Takagi Sugeno (T-S) fuzzy

OVER the past one decade, Takagi Sugeno (T-S) fuzzy 2838 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. 53, NO. 12, DECEMBER 2006 Discrete H 2 =H Nonlinear Controller Design Based on Fuzzy Region Concept and Takagi Sugeno Fuzzy Framework

More information

Robust Model Predictive Control through Adjustable Variables: an application to Path Planning

Robust Model Predictive Control through Adjustable Variables: an application to Path Planning 43rd IEEE Conference on Decision and Control December 4-7, 24 Atlantis, Paradise Island, Bahamas WeC62 Robust Model Predictive Control through Adjustable Variables: an application to Path Planning Alessandro

More information

IN many practical systems, there is such a kind of systems

IN many practical systems, there is such a kind of systems L 1 -induced Performance Analysis and Sparse Controller Synthesis for Interval Positive Systems Xiaoming Chen, James Lam, Ping Li, and Zhan Shu Abstract This paper is concerned with the design of L 1 -

More information

Nonlinear Model Predictive Control for Periodic Systems using LMIs

Nonlinear Model Predictive Control for Periodic Systems using LMIs Marcus Reble Christoph Böhm Fran Allgöwer Nonlinear Model Predictive Control for Periodic Systems using LMIs Stuttgart, June 29 Institute for Systems Theory and Automatic Control (IST), University of Stuttgart,

More information

Floor Control (kn) Time (sec) Floor 5. Displacement (mm) Time (sec) Floor 5.

Floor Control (kn) Time (sec) Floor 5. Displacement (mm) Time (sec) Floor 5. DECENTRALIZED ROBUST H CONTROL OF MECHANICAL STRUCTURES. Introduction L. Bakule and J. Böhm Institute of Information Theory and Automation Academy of Sciences of the Czech Republic The results contributed

More information

Robust H 2 Filtering for Discrete LTI Systems with Linear Fractional Representation

Robust H 2 Filtering for Discrete LTI Systems with Linear Fractional Representation Proceedings of the 47th IEEE Conference on Decision and Control Cancun, Mexico, Dec. 9-11, 28 Robust H 2 Filtering for Discrete LTI Systems with Linear Fractional Representation Rubens H. Korogui and José

More information