THE FAST FOURIER TRANSFORM ALGORITHM IN RUIN THEORY FOR THE CLASSICAL RISK MODEL

Size: px
Start display at page:

Download "THE FAST FOURIER TRANSFORM ALGORITHM IN RUIN THEORY FOR THE CLASSICAL RISK MODEL"

Transcription

1 y y THE FST FORIER TRNSFORM LGORITHM IN RIN THEORY FOR THE CLSSICL RISK MODEL Susan M. itts niversity of Cambridge bstract We focus on numerical evaluation of some quantities of interest in ruin theory, and on the practical use of the fast Fourier transform algorithm () in this context. We discuss the general application of the for stochastic models, and we illustrate this by looking again at the probability of ruin in the classical risk model and by extending this approach to evaluation of the first moment of the time to ruin in the classical model. I. RIN QNTITIES IN THE CLSSICL RISK MODEL In the classical risk model in insurance mathematics, claims arrive in a oisson process, rate, and claim sies are independent identically distributed random variables, independent of the claim arrivals process. Let denote the claim-sie distribution function, and let,, assumed finite as necessary. remiums arrive linearly in time at rate, and we write! "#%$&' (, where &, the premium loading factor, is assumed to be stricly positive. The surplus at time ) is *+",) where - CED is the initial surplus, and F",) ' is the number of claims that have arrived by time ). Then ruin is said to occur if *+",) ' ever becomes negative. Let GH"I-J'K LNMO QR)TS9*+",) ' VDW be the time of ruin. We have GX"I-J'TY[Z, with GX"I-J'\]Z if ruin does not occur. The assumptions of the above model imply that ^_"`GH"I-J'[Za'bc (see smussen (), page 6), and so the probability of (ultimate) ruin, de"i-j'9f^_"`gh"i-j'%aza', is strictly smaller than one. The ruin-time moments are dgh"i-j'i. GH"I-J' j"`gh"i-j'%fza', for kdl m on, where j",p' is the indicator function of an event p, and d ",-J'qrde"I-J'. Dalbaen (99) shows that the ruin time has finite "st$uv' st moment if and only if w/z. In this paper, we motivate and briefly describe the use of the fast Fourier transform algorithm () for some applied probability calculations, and we illustrate how this lends itself to some calculations in ruin theory for the classical risk model s examples, we consider the probability of ruin dx",-j' and the first ruin-time moment dq ",-J'. For further and more detailed discussion, see itts (5). There is a large body of literature on ruin theory, including many papers on the numerical evaluation of various ruin theoretic quantities (see, for example, Goovaerts and De Vylder (93), Ramsay (99), Ramsay and sabel (997) and Dickson and Waters ()). The use of the for the probability of ruin is discussed in Embrechts, Grübel and itts (993). Methods for reducing various types of error that occur in the application of the are developed in Grübel and Hermesmeier (999, ). In the present paper, we illustrate the naive application of the using off-the-peg routines in commonly available software packages. II. DEFECTIVE RENEWL EQTIONS Many ruin quantities can be shown to satisfy a defective renewal equation such as "I-J'T{3 } ~o ",- K J' k"i m J'/$ ƒj",- ' - Dl ()

2 y : & - : where y " ' is the unknown object of interest, is a known function on Dl Za'. Let L ", J', and assume D( a. Then is a defective probability distribution function, and ƒ is, where f is a proper probability distribution function. Then the solution to () is "I-J'T % } ~o ƒj",-k J' k"i h J' where k"` J'k?B " J' and is a compound geometric distribution (see Willmot and Lin (), Chapter 9). The probability of ruin dx",- ' satisfies the defective renewal equation x", J'k dx",-j' q$ } ~o de"i- K J' H } "I m J'X$ ", J', we have that } ", J' "` J' () } "I-J' (3) q$ & Ht",) ' m) is the claim-sie equilibrium where, writing distribution, a proper probability distribution function (Willmot and Lin ()). fter a few algebraic manipulations, the solution () gives the ollaceck Khinchine formula (smussen (), III.), with w B" q$ &m', de"i-j'b!k",-j' where?b " " ' Lin and Willmot () show that d ",- ' satisfies the defective renewal equation d_ "I-J' %$'& } ~o d_ ",- K J' } " m J'/$ ( ~ de", J' h H With ƒ ",-J' ( ~ de", J' h, and as in (4), we obtain d "I-J'b } ~ ƒ! Convolutions are involved, both for the compound geometric, and for ƒ*)+ an obvious tool for calculation of the required quantities. # } (4) ",- K J' k"i m J' (5) in (), and so the is III. THE FST FORIER TRNSFORM IN LIED ROBBILITY Let, be a discrete random variable concentrated on Q Dl.- f W for some positive integer -, with ^_"/, B', D.-, and with distribution function, say. The characteristic function of, is 34_",) '.5 5 :76 4_"I 9B' );:= and this is the discrete Fourier transform H",) ' of i "? ', where DC H",) 'b Given the values of can be found using the inversion formula?b 5 )*:E ",) ' at the - Fourier frequencies )GF {nihkjlm-, J fdl.- E, the original s DC F?B "`)/F ' 5 In applications, the non-negative random variable, may have a density (and so not be discrete). Then we approximate the distribution of, by a discrete distribution, and one way to do this is to put where } Fw Qe"RJx$ DTSm' Qeo"RJ\ DlVSm' J m C :ON } QeWKmn is a small postive discretisation parameter, which we must choose. The discretised distri- to the bution assigns to the non-negative integer J a probability mass equal to that assigned by X

3 " interval ""RJk DlVSm'3 v"rj $udlts'. The next step is to choose the truncation parameter -, so that } } } DC ' is used as the input array for the. For efficient use of the, we choose - and to reduce the discretisation error, and also the aliasing error. t the very least, this means choosing - and such that 4 "@- DlVSm' is negligible, but see also Grübel and Hermesmeier (999, ). to be a power of n. We need to choose - 3. The probability of ruin IV. SOME LICTIONS IN RIN THEORY We define the tail measure associated with a finite non-negative measure on the Borel sets of Dl Za', by ",p'] ",) Za' h). The measure has a density ",) oza'. If is the claim-sie probability measure, then the the claim-sie equilibrium distribution is given by the measure. Hence, the equilibrium distribution is continuous with density t" ', ie it is not discrete and will always need to be discretised, whether or not the original claim-sie distribution is discrete. For discretisation parameter, let }Fw vo"rj\ DlVSm'3 v"rje$ DlVSm' #} } +o" Kmn.Kmn For some claim-sie distributions (for example, the exponential distribution), an expression for the }F s can be found explicitly. When this is not possible, another approach is to evaluate the above expressions when is replaced by the distribution function, say, belonging to the discretised version of g. Then we approximate } " Je$ DlVSm' } " J/ DlTS' by }Fw F$ F C "` J' m u n where is the mass assigned to by. We introduce the notation for the discrete tail operation, so that, if is the array " DC ' and is the array " } #} DC ', then we write " '. To calculate an approximation to the compound geometric distribution, we first apply the to the array to obtain the array "!R" ', say. Then we calculate the array #%$'& "#%! J'B"#! )(* +!v" '', where ( F $ denotes multiplication, and the operations are carried out pointwise. The inverse is then applied to #,$'& to give an array # "-# # DC ', where # F is an approximation to the mass assigned by to the interval "RJbEDlVSm'3 v"rj $ DlVSm'. Then, by (4) an approximation to the ruin probability is given by d F g 4. F #, and this is an approximation to d " J $ DTSm'. The above procedure is easily F } implemented in software packages such as S-lus or R, using just a few lines of code. We illustrate this for the areto distribution with tail probabilities given by $J x", J' B"I $i J', CaD, so that the equilibrium distribution has tail probabilities given by } ", J'b B"I!$+ J', CaD. (see, Goovaerts and De Vylder (93), Ramsay (99, 3), Ramsay and sabel (997)). In this case, the discretised equilibrium distribution has an easy explicit expression, }Fw / $ F C $ $ F$ 34 Jk We apply this with and & Dl=, and the results are given in Table I, together with the values obtained in Ramsay and sabel (997) and Ramsay (3). J+rD n

4 ~ & ~ 4 Ramsay and sabel Ramsay TBLE I ROXIMTIONS TO RIN ROBBILITIES WITH RETO DISTRIBTED CLIM SIZES.! Dickson and Waters () #" #" TBLE II ROXIMTIONS TO THE FIRST CONDITIONL MOMENT %$ OF THE RIN TIME WITH RETO DISTRIBTED CLIM SIZES. B. The first moment of the time of ruin From (4), we see that dx",-j' is a density of the measure '& )(, where ( is the compound geometric probability measure with distribution function. Further, the function ƒ "I-J' is a density of )* ( &. Then, from (5), we see that dq "I-J' is a density of & WC,+ * ( )(. Starting with the array # from the calculation of d, we calculate the array -/. Lx "-#l', which is an approximation to the measure &E (. Next, we find ƒ ( "-.L`'. The convolution ƒ ( # can be carried out via, and then -.LsE WC,+ ƒ ( # is an approximation to &, so that -/.L.F43 & " J DTSm'3 v" J/$aDlVSm'. n approximation to dq " JL ' is given by d_ }F we have from () and () d " Dh'b ƒj" Dh' k"idh' % {ƒj"idh't -/.LI F, for Jk. For d_ " Dm', we note that, since k"idh', de", J' h " ", J' m f where.b" nb" % J' ' is the expectation of the compound geometric distribution. n " J' Combining approximations to dq "I-J' and de"i-j' gives an approximation to the conditional first moment & d65 "I-J'b GX"I-J'7 GH"I-J' Z. Dickson and Waters () consider d5 ",-J' for a areto distribution with tail t"` J'! 9 B" 9 $ J' ;:, EC D, with =, 9?, and with &wvdl and ]m=. Table II shows the results for - ;?@Dhn and ifdl Dhn, and for - SmnSmnBB and irdl Dhn, together with the numerical approximations in Dickson and Waters (). REFERENCES smussen, S. () Ruin robabilities. World Scientific, Singapore. Dalbaen, F. (99) remark on the moments of ruin time in classical risk theory. Insurance: Mathematics and Economics Dickson, D.C.M., and Waters, H.R. () The distribution of the time to ruin in the classical risk model. STIN Bulltin

5 Embrechts,., Grübel, R. and itts, S.M. (993) Some applications of the fast Fourier transform algorithm in insurance mathematics. Statistica Neerlandica Goovaerts, M. and De Vylder, F. (93) stable recursive algorithm for evaluation of ultimate ruin probabilities. STIN Bulletin Grübel, R. and Hermesmeier, R. (999) Computation of compound distributions I: aliasing errors and exponential tilting. STIN Bulletin Grübel, R. and Hermesmeier, R. () Computation of compound distributions II: discretiation errors and Richardson extrapolation. STIN Bulletin Lin X.S. and Willmot, G.E. () The moments of the time of ruin, the surplus before ruin, and the deficit at ruin. Insurance: Mathematics and Economics itts, S.M. (5) The fast Fourier transform algorithm in ruin theory. In preparation. Ramsay, C.M. (99) Improving Goovaerts and De Vylder s stable recursive algorithm. STIN Bulletin Ramsay, C.M. (3) solution to the ruin problem for areto distributions. Insurance: Mathematics and Economics Ramsay, C.M. and sabel, M.. (997) Calculating ruin probabilities via product integration. STIN Bulletin Willmot, G.E. and Lin, X. S. () Lundberg pproximations for Compound Distributions with Insurance pplications. Springer, New York. 5

Stability of the Defect Renewal Volterra Integral Equations

Stability of the Defect Renewal Volterra Integral Equations 19th International Congress on Modelling and Simulation, Perth, Australia, 12 16 December 211 http://mssanz.org.au/modsim211 Stability of the Defect Renewal Volterra Integral Equations R. S. Anderssen,

More information

A polynomial expansion to approximate ruin probabilities

A polynomial expansion to approximate ruin probabilities A polynomial expansion to approximate ruin probabilities P.O. Goffard 1 X. Guerrault 2 S. Loisel 3 D. Pommerêt 4 1 Axa France - Institut de mathématiques de Luminy Université de Aix-Marseille 2 Axa France

More information

Ruin Probabilities of a Discrete-time Multi-risk Model

Ruin Probabilities of a Discrete-time Multi-risk Model Ruin Probabilities of a Discrete-time Multi-risk Model Andrius Grigutis, Agneška Korvel, Jonas Šiaulys Faculty of Mathematics and Informatics, Vilnius University, Naugarduko 4, Vilnius LT-035, Lithuania

More information

Upper Bounds for the Ruin Probability in a Risk Model With Interest WhosePremiumsDependonthe Backward Recurrence Time Process

Upper Bounds for the Ruin Probability in a Risk Model With Interest WhosePremiumsDependonthe Backward Recurrence Time Process Λ4flΛ4» ν ff ff χ Vol.4, No.4 211 8fl ADVANCES IN MATHEMATICS Aug., 211 Upper Bounds for the Ruin Probability in a Risk Model With Interest WhosePremiumsDependonthe Backward Recurrence Time Process HE

More information

A Note On The Erlang(λ, n) Risk Process

A Note On The Erlang(λ, n) Risk Process A Note On The Erlangλ, n) Risk Process Michael Bamberger and Mario V. Wüthrich Version from February 4, 2009 Abstract We consider the Erlangλ, n) risk process with i.i.d. exponentially distributed claims

More information

Ruin probabilities of the Parisian type for small claims

Ruin probabilities of the Parisian type for small claims Ruin probabilities of the Parisian type for small claims Angelos Dassios, Shanle Wu October 6, 28 Abstract In this paper, we extend the concept of ruin in risk theory to the Parisian type of ruin. For

More information

Finite-time Ruin Probability of Renewal Model with Risky Investment and Subexponential Claims

Finite-time Ruin Probability of Renewal Model with Risky Investment and Subexponential Claims Proceedings of the World Congress on Engineering 29 Vol II WCE 29, July 1-3, 29, London, U.K. Finite-time Ruin Probability of Renewal Model with Risky Investment and Subexponential Claims Tao Jiang Abstract

More information

University Of Calgary Department of Mathematics and Statistics

University Of Calgary Department of Mathematics and Statistics University Of Calgary Department of Mathematics and Statistics Hawkes Seminar May 23, 2018 1 / 46 Some Problems in Insurance and Reinsurance Mohamed Badaoui Department of Electrical Engineering National

More information

Recursive Calculation of Finite Time Ruin Probabilities Under Interest Force

Recursive Calculation of Finite Time Ruin Probabilities Under Interest Force Recursive Calculation of Finite Time Ruin Probabilities Under Interest Force Rui M R Cardoso and Howard R Waters Abstract In this paper we consider a classical insurance surplus process affected by a constant

More information

On a discrete time risk model with delayed claims and a constant dividend barrier

On a discrete time risk model with delayed claims and a constant dividend barrier On a discrete time risk model with delayed claims and a constant dividend barrier Xueyuan Wu, Shuanming Li Centre for Actuarial Studies, Department of Economics The University of Melbourne, Parkville,

More information

A Dynamic Contagion Process with Applications to Finance & Insurance

A Dynamic Contagion Process with Applications to Finance & Insurance A Dynamic Contagion Process with Applications to Finance & Insurance Angelos Dassios Department of Statistics London School of Economics Angelos Dassios, Hongbiao Zhao (LSE) A Dynamic Contagion Process

More information

Necessary and sucient condition for the boundedness of the Gerber-Shiu function in dependent Sparre Andersen model

Necessary and sucient condition for the boundedness of the Gerber-Shiu function in dependent Sparre Andersen model Miskolc Mathematical Notes HU e-issn 1787-2413 Vol. 15 (214), No 1, pp. 159-17 OI: 1.18514/MMN.214.757 Necessary and sucient condition for the boundedness of the Gerber-Shiu function in dependent Sparre

More information

arxiv: v1 [math.pr] 19 Aug 2017

arxiv: v1 [math.pr] 19 Aug 2017 Parisian ruin for the dual risk process in discrete-time Zbigniew Palmowski a,, Lewis Ramsden b, and Apostolos D. Papaioannou b, arxiv:1708.06785v1 [math.pr] 19 Aug 2017 a Department of Applied Mathematics

More information

Analysis of the ruin probability using Laplace transforms and Karamata Tauberian theorems

Analysis of the ruin probability using Laplace transforms and Karamata Tauberian theorems Analysis of the ruin probability using Laplace transforms and Karamata Tauberian theorems Corina Constantinescu and Enrique Thomann Abstract The classical result of Cramer-Lundberg states that if the rate

More information

Some Approximations on the Probability of Ruin and the Inverse Ruin Function

Some Approximations on the Probability of Ruin and the Inverse Ruin Function MATIMYÁS MATEMATIKA Journal of the Mathematical Society of the Philippines ISSN 115-6926 Vol. 38 Nos. 1-2 (215) pp. 43-5 Some Approximations on the Probability of Ruin and the Inverse Ruin Function Lu

More information

Multivariate Risk Processes with Interacting Intensities

Multivariate Risk Processes with Interacting Intensities Multivariate Risk Processes with Interacting Intensities Nicole Bäuerle (joint work with Rudolf Grübel) Luminy, April 2010 Outline Multivariate pure birth processes Multivariate Risk Processes Fluid Limits

More information

Monotonicity and Aging Properties of Random Sums

Monotonicity and Aging Properties of Random Sums Monotonicity and Aging Properties of Random Sums Jun Cai and Gordon E. Willmot Department of Statistics and Actuarial Science University of Waterloo Waterloo, Ontario Canada N2L 3G1 E-mail: jcai@uwaterloo.ca,

More information

Discounted probabilities and ruin theory in the compound binomial model

Discounted probabilities and ruin theory in the compound binomial model Insurance: Mathematics and Economics 26 (2000) 239 250 Discounted probabilities and ruin theory in the compound binomial model Shixue Cheng a, Hans U. Gerber b,, Elias S.W. Shiu c,1 a School of Information,

More information

Asymptotics of random sums of heavy-tailed negatively dependent random variables with applications

Asymptotics of random sums of heavy-tailed negatively dependent random variables with applications Asymptotics of random sums of heavy-tailed negatively dependent random variables with applications Remigijus Leipus (with Yang Yang, Yuebao Wang, Jonas Šiaulys) CIRM, Luminy, April 26-30, 2010 1. Preliminaries

More information

TRANSACTIONS OF SOCIETY OF ACTUARIES 1992 VOL. 44 A PRACTICAL ALGORITHM FOR APPROXIMATING THE PROBABILITY OF RUIN COLIN M.

TRANSACTIONS OF SOCIETY OF ACTUARIES 1992 VOL. 44 A PRACTICAL ALGORITHM FOR APPROXIMATING THE PROBABILITY OF RUIN COLIN M. TRANSACTIONS OF SOCIETY OF ACTUARIES 1992 VOL. 44 A PRACTICAL ALGORITHM FOR APPROXIMATING THE PROBABILITY OF RUIN COLIN M. RAMSAY ABSTRACT For a compound Poisson process, the sequence of record jumps generated

More information

Reinsurance and ruin problem: asymptotics in the case of heavy-tailed claims

Reinsurance and ruin problem: asymptotics in the case of heavy-tailed claims Reinsurance and ruin problem: asymptotics in the case of heavy-tailed claims Serguei Foss Heriot-Watt University, Edinburgh Karlovasi, Samos 3 June, 2010 (Joint work with Tomasz Rolski and Stan Zachary

More information

The finite-time Gerber-Shiu penalty function for two classes of risk processes

The finite-time Gerber-Shiu penalty function for two classes of risk processes The finite-time Gerber-Shiu penalty function for two classes of risk processes July 10, 2014 49 th Actuarial Research Conference University of California, Santa Barbara, July 13 July 16, 2014 The finite

More information

Panjer recursion versus FFT for compound distributions

Panjer recursion versus FFT for compound distributions Noname manuscript No. will be inserted by the editor) Panjer recursion versus FFT for compound distributions Paul Embrechts Marco Frei the date of receipt and acceptance should be inserted later Abstract

More information

Dto. Economia Financiera y Actuarial UCM Campus de Somosaguas Ftad. CC Economicas Madrid, Spain

Dto. Economia Financiera y Actuarial UCM Campus de Somosaguas Ftad. CC Economicas Madrid, Spain CALCULATING RUIN PROBABILITIES VIA PRODUCT INTEGRATION COLIN M. RAMSAY ~ Actuarial Science Program University of Nebraska-Lincoln Lincoln NE 68588-0426, USA MIGUEL A. USABEL 2 Dto. Economia Financiera

More information

Ruin probabilities in multivariate risk models with periodic common shock

Ruin probabilities in multivariate risk models with periodic common shock Ruin probabilities in multivariate risk models with periodic common shock January 31, 2014 3 rd Workshop on Insurance Mathematics Universite Laval, Quebec, January 31, 2014 Ruin probabilities in multivariate

More information

THREE METHODS TO CALCULATE THE PROBABILITY OF RUIN. University of Lausanne, Switzerland

THREE METHODS TO CALCULATE THE PROBABILITY OF RUIN. University of Lausanne, Switzerland THREE METHODS TO CALCULATE THE PROBABILITY OF RUIN BY FRANCOIS DUFRESNE AND HANS U. GERBER University of Lausanne, Switzerland ABSTRACT The first method, essentially due to GOOVAERTS and DE VYLDER, uses

More information

On the probability of reaching a barrier in an Erlang(2) risk process

On the probability of reaching a barrier in an Erlang(2) risk process Statistics & Operations Research Transactions SORT 29 (2) July-December 25, 235-248 ISSN: 1696-2281 www.idescat.net/sort Statistics & Operations Research c Institut d Estadística de Transactions Catalunya

More information

On the discounted penalty function in a discrete time renewal risk model with general interclaim times

On the discounted penalty function in a discrete time renewal risk model with general interclaim times On the discounted penalty function in a discrete time renewal risk model with general interclaim times Xueyuan Wu, Shuanming Li Centre for Actuarial Studies, Department of Economics The University of Melbourne,

More information

Applying the proportional hazard premium calculation principle

Applying the proportional hazard premium calculation principle Applying the proportional hazard premium calculation principle Maria de Lourdes Centeno and João Andrade e Silva CEMAPRE, ISEG, Technical University of Lisbon, Rua do Quelhas, 2, 12 781 Lisbon, Portugal

More information

A numerical method for solving uncertain differential equations

A numerical method for solving uncertain differential equations Journal of Intelligent & Fuzzy Systems 25 (213 825 832 DOI:1.3233/IFS-12688 IOS Press 825 A numerical method for solving uncertain differential equations Kai Yao a and Xiaowei Chen b, a Department of Mathematical

More information

On a compound Markov binomial risk model with time-correlated claims

On a compound Markov binomial risk model with time-correlated claims Mathematica Aeterna, Vol. 5, 2015, no. 3, 431-440 On a compound Markov binomial risk model with time-correlated claims Zhenhua Bao School of Mathematics, Liaoning Normal University, Dalian 116029, China

More information

A Ruin Model with Compound Poisson Income and Dependence Between Claim Sizes and Claim Intervals

A Ruin Model with Compound Poisson Income and Dependence Between Claim Sizes and Claim Intervals Acta Mathematicae Applicatae Sinica, English Series Vol. 3, No. 2 (25) 445 452 DOI:.7/s255-5-478- http://www.applmath.com.cn & www.springerlink.com Acta Mathema cae Applicatae Sinica, English Series The

More information

Comonotonicity and Maximal Stop-Loss Premiums

Comonotonicity and Maximal Stop-Loss Premiums Comonotonicity and Maximal Stop-Loss Premiums Jan Dhaene Shaun Wang Virginia Young Marc J. Goovaerts November 8, 1999 Abstract In this paper, we investigate the relationship between comonotonicity and

More information

Modelling Operational Risk Using Bayesian Inference

Modelling Operational Risk Using Bayesian Inference Pavel V. Shevchenko Modelling Operational Risk Using Bayesian Inference 4y Springer 1 Operational Risk and Basel II 1 1.1 Introduction to Operational Risk 1 1.2 Defining Operational Risk 4 1.3 Basel II

More information

Rare event simulation for the ruin problem with investments via importance sampling and duality

Rare event simulation for the ruin problem with investments via importance sampling and duality Rare event simulation for the ruin problem with investments via importance sampling and duality Jerey Collamore University of Copenhagen Joint work with Anand Vidyashankar (GMU) and Guoqing Diao (GMU).

More information

1 Introduction. 2 Measure theoretic definitions

1 Introduction. 2 Measure theoretic definitions 1 Introduction These notes aim to recall some basic definitions needed for dealing with random variables. Sections to 5 follow mostly the presentation given in chapter two of [1]. Measure theoretic definitions

More information

MS&E 321 Spring Stochastic Systems June 1, 2013 Prof. Peter W. Glynn Page 1 of 7

MS&E 321 Spring Stochastic Systems June 1, 2013 Prof. Peter W. Glynn Page 1 of 7 MS&E 321 Spring 12-13 Stochastic Systems June 1, 213 Prof. Peter W. Glynn Page 1 of 7 Section 9: Renewal Theory Contents 9.1 Renewal Equations..................................... 1 9.2 Solving the Renewal

More information

Characterizations on Heavy-tailed Distributions by Means of Hazard Rate

Characterizations on Heavy-tailed Distributions by Means of Hazard Rate Acta Mathematicae Applicatae Sinica, English Series Vol. 19, No. 1 (23) 135 142 Characterizations on Heavy-tailed Distributions by Means of Hazard Rate Chun Su 1, Qi-he Tang 2 1 Department of Statistics

More information

1 Gambler s Ruin Problem

1 Gambler s Ruin Problem Coyright c 2017 by Karl Sigman 1 Gambler s Ruin Problem Let N 2 be an integer and let 1 i N 1. Consider a gambler who starts with an initial fortune of $i and then on each successive gamble either wins

More information

Ruin Theory. A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science at George Mason University

Ruin Theory. A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science at George Mason University Ruin Theory A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science at George Mason University by Ashley Fehr Bachelor of Science West Virginia University, Spring

More information

HANDBOOK OF APPLICABLE MATHEMATICS

HANDBOOK OF APPLICABLE MATHEMATICS HANDBOOK OF APPLICABLE MATHEMATICS Chief Editor: Walter Ledermann Volume II: Probability Emlyn Lloyd University oflancaster A Wiley-Interscience Publication JOHN WILEY & SONS Chichester - New York - Brisbane

More information

Practical approaches to the estimation of the ruin probability in a risk model with additional funds

Practical approaches to the estimation of the ruin probability in a risk model with additional funds Modern Stochastics: Theory and Applications (204) 67 80 DOI: 05559/5-VMSTA8 Practical approaches to the estimation of the ruin probability in a risk model with additional funds Yuliya Mishura a Olena Ragulina

More information

IDLE PERIODS FOR THE FINITE G/M/1 QUEUE AND THE DEFICIT AT RUIN FOR A CASH RISK MODEL WITH CONSTANT DIVIDEND BARRIER

IDLE PERIODS FOR THE FINITE G/M/1 QUEUE AND THE DEFICIT AT RUIN FOR A CASH RISK MODEL WITH CONSTANT DIVIDEND BARRIER IDLE PERIODS FOR THE FINITE G/M/1 QUEUE AND THE DEFICIT AT RUIN FOR A CASH RISK MODEL WITH CONSTANT DIVIDEND BARRIER Andreas Löpker & David Perry December 17, 28 Abstract We consider a G/M/1 queue with

More information

On Upper Bounds for the Tail Distribution of Geometric Sums of Subexponential Random Variables

On Upper Bounds for the Tail Distribution of Geometric Sums of Subexponential Random Variables On Upper Bounds for the Tail Distribution of Geometric Sums of Subexponential Random Variables Andrew Richards arxiv:0805.4548v2 [math.pr] 18 Mar 2009 Department of Actuarial Mathematics and Statistics

More information

Preservation of Classes of Discrete Distributions Under Reliability Operations

Preservation of Classes of Discrete Distributions Under Reliability Operations Journal of Statistical Theory and Applications, Vol. 12, No. 1 (May 2013), 1-10 Preservation of Classes of Discrete Distributions Under Reliability Operations I. Elbatal 1 and M. Ahsanullah 2 1 Institute

More information

Poisson Processes. Stochastic Processes. Feb UC3M

Poisson Processes. Stochastic Processes. Feb UC3M Poisson Processes Stochastic Processes UC3M Feb. 2012 Exponential random variables A random variable T has exponential distribution with rate λ > 0 if its probability density function can been written

More information

Upper and lower bounds for ruin probability

Upper and lower bounds for ruin probability Upper and lower bounds for ruin probability E. Pancheva,Z.Volkovich and L.Morozensky 3 Institute of Mathematics and Informatics, the Bulgarian Academy of Sciences, 3 Sofia, Bulgaria pancheva@math.bas.bg

More information

Asymptotic Ruin Probabilities for a Bivariate Lévy-driven Risk Model with Heavy-tailed Claims and Risky Investments

Asymptotic Ruin Probabilities for a Bivariate Lévy-driven Risk Model with Heavy-tailed Claims and Risky Investments Asymptotic Ruin robabilities for a Bivariate Lévy-driven Risk Model with Heavy-tailed Claims and Risky Investments Xuemiao Hao and Qihe Tang Asper School of Business, University of Manitoba 181 Freedman

More information

On Finite-Time Ruin Probabilities in a Risk Model Under Quota Share Reinsurance

On Finite-Time Ruin Probabilities in a Risk Model Under Quota Share Reinsurance Applied Mathematical Sciences, Vol. 11, 217, no. 53, 269-2629 HIKARI Ltd, www.m-hikari.com https://doi.org/1.12988/ams.217.7824 On Finite-Time Ruin Probabilities in a Risk Model Under Quota Share Reinsurance

More information

arxiv: v1 [q-fin.rm] 27 Jun 2017

arxiv: v1 [q-fin.rm] 27 Jun 2017 Risk Model Based on General Compound Hawkes Process Anatoliy Swishchuk 1 2 arxiv:1706.09038v1 [q-fin.rm] 27 Jun 2017 Abstract: In this paper, we introduce a new model for the risk process based on general

More information

A Comparison: Some Approximations for the Aggregate Claims Distribution

A Comparison: Some Approximations for the Aggregate Claims Distribution A Comparison: ome Approximations for the Aggregate Claims Distribution K Ranee Thiagarajah ABTRACT everal approximations for the distribution of aggregate claims have been proposed in the literature. In

More information

Lecture Notes on Risk Theory

Lecture Notes on Risk Theory Lecture Notes on Risk Theory February 2, 21 Contents 1 Introduction and basic definitions 1 2 Accumulated claims in a fixed time interval 3 3 Reinsurance 7 4 Risk processes in discrete time 1 5 The Adjustment

More information

Characterization through Hazard Rate of heavy tailed distributions and some Convolution Closure Properties

Characterization through Hazard Rate of heavy tailed distributions and some Convolution Closure Properties Characterization through Hazard Rate of heavy tailed distributions and some Convolution Closure Properties Department of Statistics and Actuarial - Financial Mathematics, University of the Aegean October

More information

On Finite-Time Ruin Probabilities for Classical Risk Models

On Finite-Time Ruin Probabilities for Classical Risk Models On Finite-Time Ruin Probabilities for Classical Risk Models Claude Lefèvre, Stéphane Loisel To cite this version: Claude Lefèvre, Stéphane Loisel. On Finite-Time Ruin Probabilities for Classical Risk Models.

More information

Collatz cycles with few descents

Collatz cycles with few descents ACTA ARITHMETICA XCII.2 (2000) Collatz cycles with few descents by T. Brox (Stuttgart) 1. Introduction. Let T : Z Z be the function defined by T (x) = x/2 if x is even, T (x) = (3x + 1)/2 if x is odd.

More information

Information and Communications Security: Encryption and Information Hiding

Information and Communications Security: Encryption and Information Hiding Short Course on Information and Communications Security: Encryption and Information Hiding Tuesday, 10 March Friday, 13 March, 2015 Lecture 5: Signal Analysis Contents The complex exponential The complex

More information

Analysis of a Bivariate Risk Model

Analysis of a Bivariate Risk Model Jingyan Chen 1 Jiandong Ren 2 July 23, 2012 1 MSc candidate, Department of Statistical and Actuarial Sciences, The University of Western Ontario, London, Ontario, Canada. 2 Associate Professor, Department

More information

Nonlife Actuarial Models. Chapter 5 Ruin Theory

Nonlife Actuarial Models. Chapter 5 Ruin Theory Nonlife Actuarial Models Chapter 5 Ruin Theory Learning Objectives 1. Surplus function, premium rate and loss process 2. Probability of ultimate ruin 3. Probability of ruin before a finite time 4. Adjustment

More information

Tail Conditional Expectations for Extended Exponential Dispersion Models

Tail Conditional Expectations for Extended Exponential Dispersion Models American Researc Journal of Matematics Original Article ISSN 378-704 Volume 1 Issue 4 015 Tail Conditional Expectations for Extended Exponential Dispersion Models Ye (Zoe) Ye Qiang Wu and Don Hong 1 Program

More information

Supermodular ordering of Poisson arrays

Supermodular ordering of Poisson arrays Supermodular ordering of Poisson arrays Bünyamin Kızıldemir Nicolas Privault Division of Mathematical Sciences School of Physical and Mathematical Sciences Nanyang Technological University 637371 Singapore

More information

The Compound Poisson Risk Model with a Threshold Dividend Strategy

The Compound Poisson Risk Model with a Threshold Dividend Strategy The Compound Poisson Risk Model with a Threshold Dividend Strategy X. Sheldon Lin Department of Statistics University of Toronto Toronto, ON, M5S 3G3 Canada tel.: (416) 946-5969 fax: (416) 978-5133 e-mail:

More information

Polynomial approximation of mutivariate aggregate claim amounts distribution

Polynomial approximation of mutivariate aggregate claim amounts distribution Polynomial approximation of mutivariate aggregate claim amounts distribution Applications to reinsurance P.O. Goffard Axa France - Mathematics Institute of Marseille I2M Aix-Marseille University 19 th

More information

Ruin, Operational Risk and How Fast Stochastic Processes Mix

Ruin, Operational Risk and How Fast Stochastic Processes Mix Ruin, Operational Risk and How Fast Stochastic Processes Mix Paul Embrechts ETH Zürich Based on joint work with: - Roger Kaufmann (ETH Zürich) - Gennady Samorodnitsky (Cornell University) Basel Committee

More information

Prentice Hall Algebra Correlated to: Missouri Mathematics Course Level Expectations 2.0, for Algebra I

Prentice Hall Algebra Correlated to: Missouri Mathematics Course Level Expectations 2.0, for Algebra I Algebra I N: Number and Operations N.1: Understand numbers, ways of representing numbers, relationships among numbers and number systems N.1.A: Read, write and compare numbers N.1.A.1: compare and order

More information

Approximation and Aggregation of Risks by Variants of Panjer s Recursion

Approximation and Aggregation of Risks by Variants of Panjer s Recursion Approximation and Aggregation of Risks by Variants of Panjer s Recursion Uwe Schmock Vienna University of Technology, Austria Version of Slides: Feb. 8, 2013 Presentation based on joint work with Stefan

More information

A RISK MODEL WITH MULTI-LAYER DIVIDEND STRATEGY

A RISK MODEL WITH MULTI-LAYER DIVIDEND STRATEGY A RISK MODEL WITH MULTI-LAYER DIVIDEND STRATEGY HANSJÖRG ALBRECHER AND JÜRGEN HARTINGER Abstract In recent years, various dividend payment strategies for the classical collective ris model have been studied

More information

Precise Large Deviations for Sums of Negatively Dependent Random Variables with Common Long-Tailed Distributions

Precise Large Deviations for Sums of Negatively Dependent Random Variables with Common Long-Tailed Distributions This article was downloaded by: [University of Aegean] On: 19 May 2013, At: 11:54 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer

More information

HSC Research Report. Ruin Probability in Finite Time HSC/10/04. Krzysztof Burnecki* Marek Teuerle*

HSC Research Report. Ruin Probability in Finite Time HSC/10/04. Krzysztof Burnecki* Marek Teuerle* HSC Research Report HSC/1/4 Ruin Probability in Finite Time Krzysztof Burnecki* Marek Teuerle* * Hugo Steinhaus Center, Wrocław University of Technology, Poland Hugo Steinhaus Center Wrocław University

More information

Nested Uncertain Differential Equations and Its Application to Multi-factor Term Structure Model

Nested Uncertain Differential Equations and Its Application to Multi-factor Term Structure Model Nested Uncertain Differential Equations and Its Application to Multi-factor Term Structure Model Xiaowei Chen International Business School, Nankai University, Tianjin 371, China School of Finance, Nankai

More information

Introduction to Rare Event Simulation

Introduction to Rare Event Simulation Introduction to Rare Event Simulation Brown University: Summer School on Rare Event Simulation Jose Blanchet Columbia University. Department of Statistics, Department of IEOR. Blanchet (Columbia) 1 / 31

More information

Measuring the effects of reinsurance by the adjustment coefficient in the Sparre Anderson model

Measuring the effects of reinsurance by the adjustment coefficient in the Sparre Anderson model Measuring the effects of reinsurance by the adjustment coefficient in the Sparre Anderson model Centeno, Maria de Lourdes CEMAPRE, ISEG, Technical University of Lisbon and Centre for Actuarial Studies,

More information

Parameter estimation of a Lévy copula of a discretely observed bivariate compound Poisson process with an application to operational risk modelling

Parameter estimation of a Lévy copula of a discretely observed bivariate compound Poisson process with an application to operational risk modelling Parameter estimation of a Lévy copula of a discretely observed bivariate compound Poisson process with an application to operational risk modelling J. L. van Velsen 1,2 arxiv:1212.0092v1 [q-fin.rm] 1 Dec

More information

Dividend problems in the dual risk model

Dividend problems in the dual risk model Dividend problems in the dual risk model Lourdes B. Afonso, Rui M.R. Cardoso & Alfredo D. gídio dos Reis CMA and FCT, New University of Lisbon & CMAPR and ISG, Technical University of Lisbon, Portugal

More information

Optimal Reinsurance Strategy with Bivariate Pareto Risks

Optimal Reinsurance Strategy with Bivariate Pareto Risks University of Wisconsin Milwaukee UWM Digital Commons Theses and Dissertations May 2014 Optimal Reinsurance Strategy with Bivariate Pareto Risks Evelyn Susanne Gaus University of Wisconsin-Milwaukee Follow

More information

Package sdprisk. December 31, 2016

Package sdprisk. December 31, 2016 Type Package Version 1.1-5 Date 2016-12-30 Package sdprisk December 31, 2016 Title Measures of Risk for the Compound Poisson Risk Process with Diffusion Maintainer Benjamin Baumgartner

More information

TAKING THE CONVOLUTED OUT OF BERNOULLI CONVOLUTIONS: A DISCRETE APPROACH

TAKING THE CONVOLUTED OUT OF BERNOULLI CONVOLUTIONS: A DISCRETE APPROACH TAKING THE CONVOLUTED OUT OF BERNOULLI CONVOLUTIONS: A DISCRETE APPROACH Neil J. Calkin Department of Mathematical Sciences, Clemson University, Clemson, SC 29634 calkin@ces.clemson.edu Julia Davis Dillsburg,

More information

MULTIVARIATE COMPOUND POINT PROCESSES WITH DRIFTS

MULTIVARIATE COMPOUND POINT PROCESSES WITH DRIFTS MULTIVARIATE COMPOUND POINT PROCESSES WITH DRIFTS By HUAJUN ZHOU A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY WASHINGTON STATE UNIVERSITY Department

More information

f X (x) = λe λx, , x 0, k 0, λ > 0 Γ (k) f X (u)f X (z u)du

f X (x) = λe λx, , x 0, k 0, λ > 0 Γ (k) f X (u)f X (z u)du 11 COLLECTED PROBLEMS Do the following problems for coursework 1. Problems 11.4 and 11.5 constitute one exercise leading you through the basic ruin arguments. 2. Problems 11.1 through to 11.13 but excluding

More information

Discrete Applied Mathematics

Discrete Applied Mathematics Discrete Applied Mathematics 157 (2009 1696 1701 Contents lists available at ScienceDirect Discrete Applied Mathematics journal homepage: www.elsevier.com/locate/dam Riordan group involutions and the -sequence

More information

Asymptotics of the Finite-time Ruin Probability for the Sparre Andersen Risk. Model Perturbed by an Inflated Stationary Chi-process

Asymptotics of the Finite-time Ruin Probability for the Sparre Andersen Risk. Model Perturbed by an Inflated Stationary Chi-process Asymptotics of the Finite-time Ruin Probability for the Sparre Andersen Risk Model Perturbed by an Inflated Stationary Chi-process Enkelejd Hashorva and Lanpeng Ji Abstract: In this paper we consider the

More information

f(s) e -i n π s/l d s

f(s) e -i n π s/l d s Pointwise convergence of complex Fourier series Let f(x) be a periodic function with period l defined on the interval [,l]. The complex Fourier coefficients of f( x) are This leads to a Fourier series

More information

1 Gambler s Ruin Problem

1 Gambler s Ruin Problem 1 Gambler s Ruin Problem Consider a gambler who starts with an initial fortune of $1 and then on each successive gamble either wins $1 or loses $1 independent of the past with probabilities p and q = 1

More information

Probability Transforms with Elliptical Generators

Probability Transforms with Elliptical Generators Probability Transforms with Elliptical Generators Emiliano A. Valdez, PhD, FSA, FIAA School of Actuarial Studies Faculty of Commerce and Economics University of New South Wales Sydney, AUSTRALIA Zurich,

More information

2 markets. Money is gained or lost in high volatile markets (in this brief discussion, we do not distinguish between implied or historical volatility)

2 markets. Money is gained or lost in high volatile markets (in this brief discussion, we do not distinguish between implied or historical volatility) HARCH processes are heavy tailed Paul Embrechts (embrechts@math.ethz.ch) Department of Mathematics, ETHZ, CH 8092 Zürich, Switzerland Rudolf Grübel (rgrubel@stochastik.uni-hannover.de) Institut für Mathematische

More information

van Rooij, Schikhof: A Second Course on Real Functions

van Rooij, Schikhof: A Second Course on Real Functions vanrooijschikhof.tex April 25, 2018 van Rooij, Schikhof: A Second Course on Real Functions Notes from [vrs]. Introduction A monotone function is Riemann integrable. A continuous function is Riemann integrable.

More information

Asymptotic Analysis of Exceedance Probability with Stationary Stable Steps Generated by Dissipative Flows

Asymptotic Analysis of Exceedance Probability with Stationary Stable Steps Generated by Dissipative Flows Asymptotic Analysis of Exceedance Probability with Stationary Stable Steps Generated by Dissipative Flows Uğur Tuncay Alparslan a, and Gennady Samorodnitsky b a Department of Mathematics and Statistics,

More information

Ruin problems for a discrete time risk model with non-homogeneous conditions. 1 A non-homogeneous discrete time risk model

Ruin problems for a discrete time risk model with non-homogeneous conditions. 1 A non-homogeneous discrete time risk model Ruin problems for a discrete time risk model with non-homogeneous conditions ANNA CASTAÑER a, M. MERCÈ CLARAMUNT a, MAUDE GATHY b, CLAUDE LEFÈVRE b, 1 and MAITE MÁRMOL a a Universitat de Barcelona, Departament

More information

Two numerical methods to evaluate stop-loss premiums

Two numerical methods to evaluate stop-loss premiums Two numerical methods to evaluate stop-loss premiums Pierre-Olivier Goffard 1 and Patrick J. Laub 2 1 Department of Statistics and Applied Probability, University of California, Santa Barbara, USA 2 University

More information

Remarks on quantiles and distortion risk measures

Remarks on quantiles and distortion risk measures Remarks on quantiles and distortion risk measures Jan Dhaene Alexander Kukush y Daniël Linders z Qihe Tang x Version: October 7, 202 Abstract Distorted expectations can be expressed as weighted averages

More information

Extremes and ruin of Gaussian processes

Extremes and ruin of Gaussian processes International Conference on Mathematical and Statistical Modeling in Honor of Enrique Castillo. June 28-30, 2006 Extremes and ruin of Gaussian processes Jürg Hüsler Department of Math. Statistics, University

More information

Modelling the risk process

Modelling the risk process Modelling the risk process Krzysztof Burnecki Hugo Steinhaus Center Wroc law University of Technology www.im.pwr.wroc.pl/ hugo Modelling the risk process 1 Risk process If (Ω, F, P) is a probability space

More information

Chapter 4. Measure Theory. 1. Measure Spaces

Chapter 4. Measure Theory. 1. Measure Spaces Chapter 4. Measure Theory 1. Measure Spaces Let X be a nonempty set. A collection S of subsets of X is said to be an algebra on X if S has the following properties: 1. X S; 2. if A S, then A c S; 3. if

More information

ON THE TRUNCATED COMPOSITE WEIBULL-PARETO MODEL

ON THE TRUNCATED COMPOSITE WEIBULL-PARETO MODEL ON THE TRUNCATED COMPOSITE WEIBULL-PARETO MODEL SANDRA TEODORESCU and EUGENIA PANAITESCU The composite Weibull-Pareto model 2] was introduced as an alternative to the composite Lognormal-Pareto ] used

More information

Nonparametric estimation of tail risk measures from heavy-tailed distributions

Nonparametric estimation of tail risk measures from heavy-tailed distributions Nonparametric estimation of tail risk measures from heavy-tailed distributions Jonthan El Methni, Laurent Gardes & Stéphane Girard 1 Tail risk measures Let Y R be a real random loss variable. The Value-at-Risk

More information

Risk Aggregation. Paul Embrechts. Department of Mathematics, ETH Zurich Senior SFI Professor.

Risk Aggregation. Paul Embrechts. Department of Mathematics, ETH Zurich Senior SFI Professor. Risk Aggregation Paul Embrechts Department of Mathematics, ETH Zurich Senior SFI Professor www.math.ethz.ch/~embrechts/ Joint work with P. Arbenz and G. Puccetti 1 / 33 The background Query by practitioner

More information

Model reversibility of a two dimensional reflecting random walk and its application to queueing network

Model reversibility of a two dimensional reflecting random walk and its application to queueing network arxiv:1312.2746v2 [math.pr] 11 Dec 2013 Model reversibility of a two dimensional reflecting random walk and its application to queueing network Masahiro Kobayashi, Masakiyo Miyazawa and Hiroshi Shimizu

More information

Explicit Bounds for the Distribution Function of the Sum of Dependent Normally Distributed Random Variables

Explicit Bounds for the Distribution Function of the Sum of Dependent Normally Distributed Random Variables Explicit Bounds for the Distribution Function of the Sum of Dependent Normally Distributed Random Variables Walter Schneider July 26, 20 Abstract In this paper an analytic expression is given for the bounds

More information

Randomly Weighted Sums of Conditionnally Dependent Random Variables

Randomly Weighted Sums of Conditionnally Dependent Random Variables Gen. Math. Notes, Vol. 25, No. 1, November 2014, pp.43-49 ISSN 2219-7184; Copyright c ICSRS Publication, 2014 www.i-csrs.org Available free online at http://www.geman.in Randomly Weighted Sums of Conditionnally

More information

Notions such as convergent sequence and Cauchy sequence make sense for any metric space. Convergent Sequences are Cauchy

Notions such as convergent sequence and Cauchy sequence make sense for any metric space. Convergent Sequences are Cauchy Banach Spaces These notes provide an introduction to Banach spaces, which are complete normed vector spaces. For the purposes of these notes, all vector spaces are assumed to be over the real numbers.

More information

Practice Exam 1. (A) (B) (C) (D) (E) You are given the following data on loss sizes:

Practice Exam 1. (A) (B) (C) (D) (E) You are given the following data on loss sizes: Practice Exam 1 1. Losses for an insurance coverage have the following cumulative distribution function: F(0) = 0 F(1,000) = 0.2 F(5,000) = 0.4 F(10,000) = 0.9 F(100,000) = 1 with linear interpolation

More information