CALCULATION AND EXPERIMENTAL VERIFICATION OF HEAT TRANSFER COEFFICIENT FOR LOW PRESSURE METHANOL EVAPORATOR

Size: px
Start display at page:

Download "CALCULATION AND EXPERIMENTAL VERIFICATION OF HEAT TRANSFER COEFFICIENT FOR LOW PRESSURE METHANOL EVAPORATOR"

Transcription

1 CALCULATION AND EXPERIMENTAL VERIFICATION OF HEAT TRANSFER COEFFICIENT FOR LOW PRESSURE METHANOL EVAPORATOR Tomasz HAŁON (*), Bartosz ZAJĄCZKOWSKI (*), Zbigniew KRÓLICKI (*), Karolina WOJTASIK (*) (*) Wrocław University of Technology, Katedra Termodynamiki, Teorii Maszyn i Urządzeń Cieplnych, Wybrzeże Wyspiańskiego 27, Wrocław. bartosz.zajaczkowski@pwr.edu.pl ABSTRACT Natural refrigerants are attracting attention due to their environmental neutrality. They have good thermal properties, but their evaporation pressures at near room temperatures are just a few kpa. There is limited information regarding evaporation of methanol at low-pressures. Empirical correlations for boiling heat transfer coefficient that were developed at atmospheric pressure levels tend to give high errors. In this paper we show an experimental data for pool boiling of methanol in pressure region kpa and heat fluxes kw/m 2. The results are compared to calculations based on eight empirical heat transfer coefficient correlations. Since all of them yielded noticable errors, we suggested new constants for the power law equation that allow more accurate prediction of heat transfer coefficient. 1. INTRODUCTION Growing demand for environmentally friendly refrigerants recently returned natural fluids, such as methanol, water or butane into spotlight (Bailey et al., 2006). Strong concern is also put on sustainable and energy efficient refrigeration technologies. In this field adsorption refrigeration is a novel, fast-developing branch of cooling technologies. Adsorption refrigerators are driven by heat instead of electricity for compressors. The biggest advantage of those systems is that they can be powered at temperature as low as o C (Askalany et al., 2013). The data on low-pressure boiling of natural refrigerants can be used by heat pipe industry (Bailey et al., 2006), in electronic equipment cooling (Pal and Joshi, 2006), as well as in sorption refrigeration systems. One of the factors that determine the adsorbent-adsorbate pair is the temperature of cooling. Natural refrigerants used in adsorption refrigerators are typically water or alcohols. They are environmentally friendly and usually characterized by thermal properties exceeding those of synthetic refrigerants. If the device is designed for ice-making, then the only choice is methanol (or other alcohol) paired with suitable adsorbent, e.g. active carbon (Halon et al., 2013; Schnabel et al., 2008). Unfortunately, in the temperature range used in domestic refrigeration or air conditioning (approx. -20 o C to 15 o C) methanol boils at sub-atmospheric pressures (a few kpa) yielding considerably lower heat transfer coefficient (Mcgillis et al., 1991; Schnabel et al., 2008). In order to design an evaporator, i.e. determine its dimensions and cooling capacity, it is necessary to estimate heat transfer coefficient for refrigerant boiling under near vacuum conditions. However, with a few exceptions, most of research was conducted for refrigerants boiling at atmospheric or higher pressures (Mcgillis et al., 1991; Prasad et al., 2007). Prasad et al. (Prasad et al., 2007) evaluated heat transfer coefficient for methanol boiling on heated, copper coated and uncoated tubes in pressure range from kpa to kpa. The authors proposed a dimensional equation based on their experimental results. Bailey et al (Bailey et al., 2006) measured heat transfer coefficient and critical heat flux for methanol during boiling on a horizontal surface. The analyzed pressure range was 20 kpa to 500 kpa. Presented results show that at critical heat flux the correlation of Zuber/Kutateladze gives good resemblance to experimental data, but only if constant K takes value of 1.7

2 instead of 1.3 used by Zuber. Alam and Agarwal (Alam and Agarwal, 2009) measured heat transfer coefficient for methanol over a plain and coated surfaces for pressures from 44 to 97 kpa. They have established that empirical constants for the power law equation depend upon liquid type, surface characteristic and its coating type. In cited article they did not provide the values of those constants. In this paper we evaluate eight correlations for boiling heat transfer coefficient of methanol and compare them with an experimental data using the mean absolute deviation (MAD) and the mean relative deviation (MRD). 2. CALCULATION OF HEAT TRANSFER COEFFICIENT FOR BOILING METHANOL Heat transfer during boiling is a complicated process, dependent from many variables, like type of boiling medium, material, type and finish of heating wall, presence of additives or contaminations, pressure, temperature, presence of dissolved gases or presence of gases trapped in wall cavities. Despite many studies, boiling mechanism is not fully understood and thus no general formula for boiling HTC in a wide area of conditions exists. There are many empirical or semi-empirical correlations for boiling HTC. Eight popular were chosen and shown in table 2 along with authors own proposition. Most correlations tend to give high deviations for small and medium heat fluxes, where natural convection has bigger effect on heat transfer than bubble nucleation (Mcgillis et al., 1991; Schnabel et al., 2008). It was shown that for water at low pressure (Mcgillis et al., 1991), vapor specific volume and surface tension enlarges the minimal wall superheat for the onset of nucleate boiling regime. The same phenomenon is forecasted for methanol. Table 1. Known correlations for heat transfer coefficient. Name Number Correlation Power law (1) h = C q! p! By Prasad et al. (p from kpa to kpa): C=0.4963, m=0.7, n=0.32, Pressure in kpa McNelly (2) h = q c!!.!" r p λ σ!.!" ρ 1 ρ" Mostinsky (3)!.! h = p!.!" F!!" q Pressure correction factor: F! = 1.8p!!.!" + 4p!!.! + 10p!!" Pressures in bar. Stephan Abdelsalam (4) λ h = d! ρ" ρ!.! q d! λ T!"#!.!" r d!!!.!"# a! Reference (Prasad et al., 2007)!.!! ρ! ρ" ρ!.!! (Thome, 2006) Bubble departure diameter: d! = β Kutateladze (5) Kruzylin (6) 2σ g(ρ ρ ) β for water is 45o and for other fluids 35o h = φ p!.! q!.! For methanol, where φ = 0.36 correlation is: h = p!.! q!.! Pressures in bar. λ!!,!!.!!! h = Pr K! K! l Bubble departure frequency:

3 K! = ρ c! σ T!"# r! ρ! l Number of bubble creation zones: q r ρ K! = g (ρ ρ ) λ T!"# Characteristic linear dimension (bubble departure dimension) l= Kiczgin and Tobielewicz (7) λ!.! Re Pr!.! Ga!.!"# K!.!! l Characteristic linear dimension (bubble departure dimension) h = !! l= Labuncov (8) σ g (ρ ρ ) σ g (ρ ρ ) Nondimensional number by Kutateladze: p!"# l K! = σ Galileo number: g ρ! l! Ga = µμ!! λ h = (Re K! )!.!" Pr! l Characteristic linear dimension (bubble departure dimension) c! ρ σ T! l= r! ρ! Bubble departure frequency: ρ c! σ T! K! =! r ρ! l 3. (Kichigin and Tobilevich, 1955) EXPERIMENTAL SETUP Experimental setup (in Fig. 1) is made of a glass cylinder (inner diameter 77 mm) filled with methanol. The bottom brass round plate is connected to the heating coil that is controlled with autotransformer. The surface roughness (Ra) was estimated on the basis of used surface treatment (emery paper 180) to be 0.05 mm. The upper cover is a brass plate with soldered cooling coil (made of copper). The condenser is ensuring constant pressure pe it was connected to cooling water or nitrogen (for saturation temperatures Tsat lower than 0oC). Temperature is controlled with a set of thermocouples that are connected to the temperature recorder. Wall temperature sensor is positioned 1 mm under the surface and its readings are modified by heat conduction equation. During experiments, cylinder was wrapped by 2 cm thick polyethylene foam insulation to minimize heat losses and maintain stable boiling conditions. Heat gains and losses were calculated, but neglected because their contribution to total heat added through heater was on the level of fraction of percent. The glass cylinder wall thickness was checked with EN Photographs of the setup are presented in Fig. 2. During preparation of experimental setup 30 ml of methanol (99.8%) was injected to the open vessel (under atmospheric pressure). All ports were then sealed and air was evacuated by vacuum pump until absolute pressure of about 2 kpa was reached. After methanol reached equilibrium conditions, the vessel was evacuated once more in order to take out any non-condensable gasses that could have been dissolved in tested refrigerant. During all experiments, methanol was not changed in the vessel.

4 Fig. 1. Schematic presentation of an experimental setup that allows determination of the boiling heat transfer coefficient at sub-atmospheric pressures. Fig. 2. Experimental setup for the analysis of boiling at sub-atmospheric pressures. Power of the heater was controlled using autotransformer (100 and 200 W). After about 60 minutes required for stabilization of boiling, the temperature of heating wall and the pressure inside the vessel were read.

5 Heat transfer coefficient h was then calculated according to Newton s law of cooling in eq. (9). As for heat loss from heater, the heat balance was made for heating plate. For the purpose of calculating heat transfer coefficient losses from the plate were subtracted from heat shown by autotransformer. h = q (T! T!"# )!! (9) Saturation temperature T sat and other thermodynamic properties of methanol were obtained from CoolProp library (Bell et al., 2014). Experiments were conducted for two different heat powers Q: 100 and 200 W in pressure p e range between kpa. Measurement error was calculated using finite differential method (Onan et al., 2014). 4. RESULTS AND DISCUSSION Values of experimental heat transfer coefficient h have flat characteristic in given pressure region. They change from the lowest to the highest value by up to 30%. In measured pressure p sat and heat transfer density q, the heat transfer coefficient h is lower than 1 kw/m 2 K and differs between 686 to 973 W/m 2 K for q = 43 kw/m 2 and from 543 to 704 W/m 2 K for q = 21 kw/m 2. Comparison between measured data and results of correlations gathered in table 1 is shown in fig. 3 and fig. 4 for q = 21 kw/m 2 and for q = 43 kw/m 2 respectively. It shows that most correlations give over-predicted values in comparison with measurements. The most accurate results are given by Kutateladze correlation. Mean Absolute Deviation (MAD) and Mean Relative Deviation (MRD) for all correlations is shown in table 2. The MAD shows correlation accuracy, while MRD checks if it is over-prediction or under-prediction. Equations for MAD and MRD are shown as eq. (10) and (11) respectively (Fang et al., 2013). MAD =!! MRD =!!!!!!"#$%&'#$!!!!"#$%&"'!!! (10)!!!!"#$%&"'!!!"#$%&'#$!!!!"#$%&"'!!! (11)!!!"#$%&"' Table 2. Values of Mean Absolute Deviation (MAD) and Mean Relative Deviation (MRD) for given correlations Correlation Number MAD MRD Power Law with our constants (1) Power Law with Prasad et al. (1) constants McNelly (2) Mostinsky (3) Stephan-Abdelsalam (4) Kutateladze (5) Kruzhylin (6) Kiczgin and Tobielewicz (7) Labuncov (8)

6 Fig. 3 Heat transfer coefficient h measured in experiment and compared with calculation results for q = 21 kw/m 2. Fig.4 Heat transfer coefficient h measured in experiment and compared with calculation results for q = 43 kw/m 2. MAD and MRD values confirm observations from diagrams. As seen on diagrams, the most accurate correlation is the one proposed by Kutateladze with 42% MAD and under-prediction of 42%. After that there is one correlation having MAD lower than 100% - it is the power law correlation with parameters proposed for higher pressures by Prasad et al. with 64% MAD. For given conditions (pressure from 0.3 kpa to 18 kpa, methanol), heat transfer coefficient was proven to be mostly related to heat transfer density. The least square method was used in order to obtain the best possible resemblance of correlation to experimental results. It have shown that constants for power law correlation from eq. (1) are as follows: C = 9.11, m = 0.373, n = Power Law with parameters proposed by us has the mean absolute deviation of 6% with small averaged over-prediction of 2%. 5. CONCLUSIONS Boiling of methanol at sub-atmospheric conditions yields heat transfer coefficient lower than it is predicted by most correlations. The best prediction is given by Kutateladze equation (0.42 MAD). It is also the only one that under-predicts the HTC, thus there is no risk of creating too small heat exchangers.

7 Heat transfer coefficient depends mostly on heat flux density q, but in checked pressure region it does not show big dependency from pressure. We have proposed our own constants for power law equation from eq. (1). It estimates the heat transfer coefficient with MAD of 6% and MRD of +2% in given conditions. The formula with those constants is h = 9.11 q!.!"! p!.!"#. Heat transfer coefficient for pool boiling of methanol in pressure region kpa and heat fluxes kw/m 2 is lower than 1 kw/m 2 K. This is the order of magnitude similar to heat transfer coefficient for forced convection. This proves observations of McGillis et al. (Mcgillis et al., 1991) that the nucleate boiling starts with higher wall superheats than in atmospheric conditions. 6. LIST OF SYMBOLS h heat transfer coefficient, W/(m 2 K) p pressure, Pa q heat transfer density, W/m 2 C empirical constant, - m empirical constant, - n empirical constant, - c p specific heat, J/(kgK) r latent heat of vaporization, J/kg F p pressure correction factor, d p bubble diameter, m T temperature, K l - Characteristic linear dimension (bubble departure dimension), m Pr Prandtl number, - Ga Gallileo number, - Re Reynolds number, - g gravity acceleration, m/s 2 MAD mean absolute deviation, - MRD mean relative deviation, - K q Number of bubble creation zones, - K u Bubble departure frequency, - K p Nondimensional number by Kutateladze, - Greek symbols λ heat conductivity, W/(mK) σ surface tension, N/m α thermal diffusivity, m 2 /s µ - dynamic viscosity, Pa s ρ density, kg/m 3 Subscripts/Superscripts concerning liquid concerning vapor w concerning wall sat saturation conditions kr critical conditionsa r - reduced 7. REFERENCES Alam, M., Agarwal, V., Pool Boiling of Liquids & their Mixtures on Enhanced Surfaces at Subatmospheric Pressures, in: International Conference on Chemical & Process Engineering. Rome, Italy.

8 Askalany, A. a., Salem, M., Ismael, I.M., Ali, a. H.H., Morsy, M.G., Saha, B.B., An overview on adsorption pairs for cooling. Renew. Sustain. Energy Rev. 19, Bailey, W., Young, E., Beduz, C., Yang, Y., Pool boiling study on candidature of pentane, methanol and water for near room temperature cooling. Therm. Thermomechanical Proc. 10th Intersoc. Conf. Phenom. Electron. Syst ITHERM Bell, I.H., Wronski, J., Quoilin, S., Lemort, V., Pure and Pseudo-pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp. Cengel, Y.A., Heat Transfer: A Practical Approach, 2nd ed. Mcgraw-Hill. Fang, X., Zhou, Z., Li, D., Review of correlations of flow boiling heat transfer coefficients for carbon dioxide. Int. J. Refrig. 36, Fazel, S., S., Pool boiling heat transfer to pure liquids, in: WSEAS Conference. Cambridge, UK, pp Hałon, T., Zajączkowski, B., Królicki, Z., Modelowanie współczynnika efektywności ziębniczej w adsorpcyjnym systemie trigeneracyjnym. Chłodnictwo 48, Kichigin M.A., Tobilevich N. Yu., 1955, Generalization of experimental data on heat transfer in boiling, in: Hydrodynamics and heat transfer for boiling in high pressure boilers, Izd Akad. Nauk SSSR, Moscow, pp Mcgillis, W.R., Carey, V.P., Fitch, J.S., Hamburgen, W.R., Pool boiling enhancement techniques for water at low pressure, in: IEEE Semi Therm Symposium. pp Onan, C., Ozkan, D.B., Erdem, S., CFD and Experimental Analysis of a Falling Film outside Smooth and Helically Grooved Tubes. Adv. Mech. Eng. 2014, Pal, a., Joshi, Y., Boiling at sub-atmospheric conditions with enhanced structures, in: Thermal and Thermomechanical Proceedings 10th Intersociety Conference on Phenomena in Electronics Systems, ITHERM Ieee, pp Prasad, L., Siraj Alam, M., Gupta, S.C., Agarwal, V.K., Enhanced Boiling of Methanol on Copper Coated Surface. Chem. Eng. Technol. 30, Schnabel, L., Scherr, C., Weber, C., Water as refrigerant experimental evaluation of boiling characteristics at low temperatures and pressures, in: VII Minsk International Seminar Heat Pipes, Heat Pumps, Refrigerators, Power Sources. pp Thome, J.R., Boiling Heat Transfer on External Surfaces, in: Engineering Data Book III. pp

Pool Boiling Heat Transfer to Pure Liquids

Pool Boiling Heat Transfer to Pure Liquids Pool Boiling Heat Transfer to Pure Liquids S. A. ALAVI FAZEL, S. ROUMANA Chemical Engineering Department Islamic Azad University, Mahshahr branch Mahshahr, Khuzestan province IRAN alavifazel@gmail.com

More information

Chapter 10: Boiling and Condensation 1. Based on lecture by Yoav Peles, Mech. Aero. Nuc. Eng., RPI.

Chapter 10: Boiling and Condensation 1. Based on lecture by Yoav Peles, Mech. Aero. Nuc. Eng., RPI. Chapter 10: Boiling and Condensation 1 1 Based on lecture by Yoav Peles, Mech. Aero. Nuc. Eng., RPI. Objectives When you finish studying this chapter, you should be able to: Differentiate between evaporation

More information

Boiling and Condensation (ME742)

Boiling and Condensation (ME742) Indian Institute of Technology Kanpur Department of Mechanical Engineering Boiling and Condensation (ME742) PG/Open Elective Credits: 3-0-0-9 Updated Syllabus: Introduction: Applications of boiling and

More information

If there is convective heat transfer from outer surface to fluid maintained at T W.

If there is convective heat transfer from outer surface to fluid maintained at T W. Heat Transfer 1. What are the different modes of heat transfer? Explain with examples. 2. State Fourier s Law of heat conduction? Write some of their applications. 3. State the effect of variation of temperature

More information

Nucleate boiling heat transfer coefficients of halogenated refrigerants up to critical heat fluxes

Nucleate boiling heat transfer coefficients of halogenated refrigerants up to critical heat fluxes Nucleate boiling heat transfer coefficients of halogenated refrigerants up to critical heat fluxes K-J Park 1, D Jung 1, and SEShim 2 1 Department of Mechanical Engineering, Inha University, Incheon, Republic

More information

We know from thermodynamics that when the temperature of a liquid

We know from thermodynamics that when the temperature of a liquid cen58933_ch10.qxd 9/4/2002 12:37 PM Page 515 BOILING AND CONDENSATION CHAPTER 10 We know from thermodynamics that when the temperature of a liquid at a specified pressure is raised to the saturation temperature

More information

Examination Heat Transfer

Examination Heat Transfer Examination Heat Transfer code: 4B680 date: 17 january 2006 time: 14.00-17.00 hours NOTE: There are 4 questions in total. The first one consists of independent sub-questions. If necessary, guide numbers

More information

Heat Transfer Correlations for Small Closed End Heat Pipe with Special Vapor Chamber

Heat Transfer Correlations for Small Closed End Heat Pipe with Special Vapor Chamber Original Article Heat Transfer Correlations for Small Closed End Heat Pipe with Special Vapor Chamber Duangkamon Hemathurin 1, Narong Srihajong 1, Paisan Kumthong 1, Juthamat Silon 1 Received: 12 June

More information

Evaporation Heat Transfer Coefficients Of R-446A And R-1234ze(E)

Evaporation Heat Transfer Coefficients Of R-446A And R-1234ze(E) Proceedings of the 2 nd World Congress on Mechanical, Chemical, and Material Engineering (MCM'16) Budapest, Hungary August 22 23, 2016 Paper No. HTFF 144 DOI: 10.11159/htff16.144 Evaporation Heat Transfer

More information

Heat Transfer of Condensation in Smooth Round Tube from Superheated Vapor

Heat Transfer of Condensation in Smooth Round Tube from Superheated Vapor Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 2016 Heat Transfer of Condensation in Smooth Round Tube from Superheated Vapor

More information

PROBLEM h fg ρ v ρ l σ 10 3 T sat (kj/kg) (kg/m 3 ) (N/m) (K)

PROBLEM h fg ρ v ρ l σ 10 3 T sat (kj/kg) (kg/m 3 ) (N/m) (K) PROBLEM 10.9 KNOWN: Fluids at 1 atm: mercury, ethanol, R-1. FIND: Critical heat flux; compare with value for water also at 1 atm. ASSUMPTIONS: (1) Steady-state conditions, () Nucleate pool boiling. PROPERTIES:

More information

A Novel Model Considered Mass and Energy Conservation for Both Liquid and Vapor in Adsorption Refrigeration System.

A Novel Model Considered Mass and Energy Conservation for Both Liquid and Vapor in Adsorption Refrigeration System. Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 2016 A Novel Model Considered Mass and Energy Conservation for Both Liquid and

More information

Comparison of pool boiling heat transfer for different tunnel-pore surfaces

Comparison of pool boiling heat transfer for different tunnel-pore surfaces EPJ Web of Conferences, 9 () DOI:./ epjconf/9 C Owned by the authors, published by EDP Sciences, Comparison of pool boiling heat transfer for different nel-pore surfaces Robert Pastuszko,a Kielce University

More information

heat transfer process where a liquid undergoes a phase change into a vapor (gas)

heat transfer process where a liquid undergoes a phase change into a vapor (gas) Two-Phase: Overview Two-Phase two-phase heat transfer describes phenomena where a change of phase (liquid/gas) occurs during and/or due to the heat transfer process two-phase heat transfer generally considers

More information

Chapter 1 INTRODUCTION AND BASIC CONCEPTS

Chapter 1 INTRODUCTION AND BASIC CONCEPTS Heat and Mass Transfer: Fundamentals & Applications 5th Edition in SI Units Yunus A. Çengel, Afshin J. Ghajar McGraw-Hill, 2015 Chapter 1 INTRODUCTION AND BASIC CONCEPTS Mehmet Kanoglu University of Gaziantep

More information

Boiling Heat Transfer and Pressure Drop of R1234ze(E) inside a Small-Diameter 2.5 mm Microfin Tube

Boiling Heat Transfer and Pressure Drop of R1234ze(E) inside a Small-Diameter 2.5 mm Microfin Tube Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 208 Boiling Heat Transfer and Pressure Drop of inside a Small-Diameter 2.5 mm

More information

An experimental investigation on condensation of R134a refrigerant in microchannel heat exchanger

An experimental investigation on condensation of R134a refrigerant in microchannel heat exchanger Journal of Physics: Conference Series PAPER OPEN ACCESS An eperimental investigation on condensation of R134a refrigerant in microchannel heat echanger To cite this article: A S Shamirzaev 218 J. Phys.:

More information

Module 8: BoiIing Lecture 29: Boiling Heat Transfer. The Lecture Contains: Introduction. Boiling modes. Pool Boiling. Correlations in Pool Boiling

Module 8: BoiIing Lecture 29: Boiling Heat Transfer. The Lecture Contains: Introduction. Boiling modes. Pool Boiling. Correlations in Pool Boiling The Lecture Contains: Introduction Boiling modes Pool Boiling Correlations in Pool Boiling file:///d /Web%20Course%20(Ganesh%20Rana)/Dr.%20gautam%20biswas/Final/convective_heat_and_mass_transfer/lecture29/29_1.html[12/24/2014

More information

Effect of Nanofluid Concentration on the Performance of Circular Heat Pipe

Effect of Nanofluid Concentration on the Performance of Circular Heat Pipe International Journal of Scientific & Engineering Research Volume 2, Issue 4, April-2011 1 Effect of Nanofluid Concentration on the Performance of Circular Heat Pipe M. G. Mousa Abstract The goal of this

More information

Enhanced Boiling Heat Transfer by using micropin-finned surfaces for Electronic Cooling

Enhanced Boiling Heat Transfer by using micropin-finned surfaces for Electronic Cooling Enhanced Boiling Heat Transfer by using micropin-finned surfaces for Electronic Cooling JinJia Wei State Key Laboratory of Multiphase Flow in Power Engineering Xi an Jiaotong University Contents 1. Background

More information

Theoretical and Experimental Studies on Transient Heat Transfer for Forced Convection Flow of Helium Gas over a Horizontal Cylinder

Theoretical and Experimental Studies on Transient Heat Transfer for Forced Convection Flow of Helium Gas over a Horizontal Cylinder 326 Theoretical and Experimental Studies on Transient Heat Transfer for Forced Convection Flow of Helium Gas over a Horizontal Cylinder Qiusheng LIU, Katsuya FUKUDA and Zheng ZHANG Forced convection transient

More information

Level 7 Post Graduate Diploma in Engineering Heat and mass transfer

Level 7 Post Graduate Diploma in Engineering Heat and mass transfer 9210-221 Level 7 Post Graduate Diploma in Engineering Heat and mass transfer 0 You should have the following for this examination one answer book non programmable calculator pen, pencil, drawing instruments

More information

Condensation and Evaporation Characteristics of Flows Inside Three Dimensional Vipertex Enhanced Heat Transfer Tubes

Condensation and Evaporation Characteristics of Flows Inside Three Dimensional Vipertex Enhanced Heat Transfer Tubes 1777 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 61, 2017 Guest Editors: Petar S Varbanov, Rongxin Su, Hon Loong Lam, Xia Liu, Jiří J Klemeš Copyright 2017, AIDIC Servizi S.r.l. ISBN 978-88-95608-51-8;

More information

Temperature and Heat. Two systems of temperature. Temperature conversions. PHY heat - J. Hedberg

Temperature and Heat. Two systems of temperature. Temperature conversions. PHY heat - J. Hedberg Temperature and Heat 1. Two systems of temperature 1. Temperature conversions 2. Real science (one scale to rule them all) 3. Temperature scales 2. Effects of temperature on materials 1. Linear Thermal

More information

Nucleate pool boiling heat transfer from small horizontal smooth tube bundles

Nucleate pool boiling heat transfer from small horizontal smooth tube bundles TRANSACTIONS OF THE INSTITUTE OF FLUID-FLOW MACHINERY No. 123, 2011, 85 98 KRZYSZTOF KRASOWSKI 1 and JANUSZ T. CIEŚLIŃSKI 2 Nucleate pool boiling heat transfer from small horizontal smooth tube bundles

More information

BOILING AND CONDENSATION HEAT TRANSFER COEFFICIENTS FOR A HEAT PIPE HEAT EXCHANGER

BOILING AND CONDENSATION HEAT TRANSFER COEFFICIENTS FOR A HEAT PIPE HEAT EXCHANGER Frontiers in Heat Pipes Available at www.thermalfluidscentral.org BOILING AND CONDENSATION HEAT TRANSFER COEFFICIENTS FOR A HEAT PIPE HEAT EXCHANGER R. Laubscher, R.T. Dobson * Department of Mechanical

More information

THE EFFECT OF LIQUID FILM EVAPORATION ON FLOW BOILING HEAT TRANSFER IN A MICRO TUBE

THE EFFECT OF LIQUID FILM EVAPORATION ON FLOW BOILING HEAT TRANSFER IN A MICRO TUBE Proceedings of the International Heat Transfer Conference IHTC14 August 8-13, 2010, Washington, DC, USA IHTC14-22751 THE EFFECT OF LIQUID FILM EVAPORATION ON FLOW BOILING HEAT TRANSFER IN A MICRO TUBE

More information

MECHANISM OF GAS-LIQUID EXCHANGE IN MICROBUBBLE EMISSION BOILING

MECHANISM OF GAS-LIQUID EXCHANGE IN MICROBUBBLE EMISSION BOILING MECHANISM OF GAS-LIQUID EXCHANGE IN MICROBUBBLE EMISSION BOILING *T. Furusho, K. Yuki, R. Kibushi, N. Unno and K. Suzuki 2 Tokyo University of Science-Yamaguchi, Daigaku-dori --, Sanyo-Onoda, Yamaguchi,

More information

Mathematical Modelling for Refrigerant Flow in Diabatic Capillary Tube

Mathematical Modelling for Refrigerant Flow in Diabatic Capillary Tube Mathematical Modelling for Refrigerant Flow in Diabatic Capillary Tube Jayant Deshmukh Department of Mechanical Engineering Sagar Institute of Research and Technology, Bhopal, M.P., India D.K. Mudaiya

More information

S.E. (Chemical) (Second Semester) EXAMINATION, 2012 HEAT TRANSFER (2008 PATTERN) Time : Three Hours Maximum Marks : 100

S.E. (Chemical) (Second Semester) EXAMINATION, 2012 HEAT TRANSFER (2008 PATTERN) Time : Three Hours Maximum Marks : 100 Total No. of Questions 12] [Total No. of Printed Pages 7 Seat No. [4162]-187 S.E. (Chemical) (Second Semester) EXAMINATION, 2012 HEAT TRANSFER (2008 PATTERN) Time : Three Hours Maximum Marks : 100 N.B.

More information

S.E. (Chemical) (Second Semester) EXAMINATION, 2011 HEAT TRANSFER (2008 PATTERN) Time : Three Hours Maximum Marks : 100

S.E. (Chemical) (Second Semester) EXAMINATION, 2011 HEAT TRANSFER (2008 PATTERN) Time : Three Hours Maximum Marks : 100 Total No. of Questions 12] [Total No. of Printed Pages 7 [4062]-186 S.E. (Chemical) (Second Semester) EXAMINATION, 2011 HEAT TRANSFER (2008 PATTERN) Time : Three Hours Maximum Marks : 100 N.B. : (i) Answers

More information

HEAT TRANSFER CAPABILITY OF A THERMOSYPHON HEAT TRANSPORT DEVICE WITH EXPERIMENTAL AND CFD STUDIES

HEAT TRANSFER CAPABILITY OF A THERMOSYPHON HEAT TRANSPORT DEVICE WITH EXPERIMENTAL AND CFD STUDIES HEAT TRANSFER CAPABILITY OF A THERMOSYPHON HEAT TRANSPORT DEVICE WITH EXPERIMENTAL AND CFD STUDIES B.M. Lingade a*, Elizabeth Raju b, A Borgohain a, N.K. Maheshwari a, P.K.Vijayan a a Reactor Engineering

More information

Phone: , For Educational Use. SOFTbank E-Book Center, Tehran. Fundamentals of Heat Transfer. René Reyes Mazzoco

Phone: , For Educational Use. SOFTbank E-Book Center, Tehran. Fundamentals of Heat Transfer. René Reyes Mazzoco 8 Fundamentals of Heat Transfer René Reyes Mazzoco Universidad de las Américas Puebla, Cholula, Mexico 1 HEAT TRANSFER MECHANISMS 1.1 Conduction Conduction heat transfer is explained through the molecular

More information

Axial profiles of heat transfer coefficients in a liquid film evaporator

Axial profiles of heat transfer coefficients in a liquid film evaporator Axial profiles of heat transfer coefficients in a liquid film evaporator Pavel Timár, Ján Stopka, Vladimír Báleš Department of Chemical and Biochemical Engineering, Faculty of Chemical and Food Technology,

More information

Heat and Mass Transfer Unit-1 Conduction

Heat and Mass Transfer Unit-1 Conduction 1. State Fourier s Law of conduction. Heat and Mass Transfer Unit-1 Conduction Part-A The rate of heat conduction is proportional to the area measured normal to the direction of heat flow and to the temperature

More information

Convective Mass Transfer

Convective Mass Transfer Convective Mass Transfer Definition of convective mass transfer: The transport of material between a boundary surface and a moving fluid or between two immiscible moving fluids separated by a mobile interface

More information

Uncertainty Analysis on Prediction of Heat Transfer Coefficient and Pressure Drop in Heat Exchangers Due to Refrigerant Property Prediction Error

Uncertainty Analysis on Prediction of Heat Transfer Coefficient and Pressure Drop in Heat Exchangers Due to Refrigerant Property Prediction Error Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 2014 Uncertainty Analysis on Prediction of Heat Transfer Coefficient and Pressure

More information

PROBLEM ρ v (kg/m 3 ) ANALYSIS: The critical heat flux can be estimated by Eq with C = 0.

PROBLEM ρ v (kg/m 3 ) ANALYSIS: The critical heat flux can be estimated by Eq with C = 0. PROBLEM 10.10 KNOWN: Fluids at 1 atm: mercury, ethanol, R-14a. FIND: Critical heat flux; compare with value for water also at 1 atm. ASSUMPTIONS: (1) Steady-state conditions, () Nucleate pool boiling.

More information

Performance Analyses of a Multiple Horizontal Tubes for Steam Condensation

Performance Analyses of a Multiple Horizontal Tubes for Steam Condensation IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 78-1684 Volume 5, Issue 4 (Jan. - Feb. 013), PP 1-18 Performance Analyses of a Multiple Horizontal Tubes for Steam Condensation Dharmendra

More information

LIQUID FILM THICKNESS OF OSCILLATING FLOW IN A MICRO TUBE

LIQUID FILM THICKNESS OF OSCILLATING FLOW IN A MICRO TUBE Proceedings of the ASME/JSME 2011 8th Thermal Engineering Joint Conference AJTEC2011 March 13-17, 2011, Honolulu, Hawaii, USA AJTEC2011-44190 LIQUID FILM THICKNESS OF OSCILLATING FLOW IN A MICRO TUBE Youngbae

More information

Heriot-Watt University

Heriot-Watt University Heriot-Watt University Heriot-Watt University Research Gateway Shell-side boiling of a glycerol-water mixture at low sub-atmospheric pressures McNeil, David Archibald; Burnside, Bryce; Elsaye, Elsaye Abdulhafiz;

More information

INVESTIGATION OF VAPOR GENERATION INTO CAPILLARY STRUCTURES OF MINIATURE LOOP HEAT PIPES

INVESTIGATION OF VAPOR GENERATION INTO CAPILLARY STRUCTURES OF MINIATURE LOOP HEAT PIPES Minsk International Seminar Heat Pipes, Heat Pumps, Refrigerators Minsk, Belarus, September 8-, INESTIGATION OF APOR GENERATION INTO CAPIARY STRUCTURES OF MINIATURE OOP HEAT PIPES.M. Kiseev, A.S. Nepomnyashy,

More information

Experimental investigation on up-flow boiling of R1234yf in aluminum multi-port extruded tubes

Experimental investigation on up-flow boiling of R1234yf in aluminum multi-port extruded tubes Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 2016 Experimental investigation on up-flow boiling of R1234yf in aluminum multi-port

More information

Principles of Food and Bioprocess Engineering (FS 231) Problems on Heat Transfer

Principles of Food and Bioprocess Engineering (FS 231) Problems on Heat Transfer Principles of Food and Bioprocess Engineering (FS 1) Problems on Heat Transfer 1. What is the thermal conductivity of a material 8 cm thick if the temperature at one end of the product is 0 C and the temperature

More information

AN EXPERIMENTAL INVESTIGATION OF POOL BOILING AT ATMOSPHERIC PRESSURE

AN EXPERIMENTAL INVESTIGATION OF POOL BOILING AT ATMOSPHERIC PRESSURE 8 DAFFODIL INTERNATIONAL UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY, VOLUME 6, ISSUE 1, JULY 11 AN EXPERIMENTAL INVESTIGATION OF POOL BOILING AT ATMOSPHERIC PRESSURE Md. Saimon Islam, Khadija Taslima

More information

ME 331 Homework Assignment #6

ME 331 Homework Assignment #6 ME 33 Homework Assignment #6 Problem Statement: ater at 30 o C flows through a long.85 cm diameter tube at a mass flow rate of 0.020 kg/s. Find: The mean velocity (u m ), maximum velocity (u MAX ), and

More information

Characteristics of Flow Boiling Heat Transfer of Sub-Critical CO2 in Mini-Channels With Micro- Fins

Characteristics of Flow Boiling Heat Transfer of Sub-Critical CO2 in Mini-Channels With Micro- Fins Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 2008 Characteristics of Flow Boiling Heat Transfer of Sub-Critical CO2 in Mini-Channels

More information

AN EXPERIMENTAL INVESTIGATION OF BOILING HEAT CONVECTION WITH RADIAL FLOW IN A FRACTURE

AN EXPERIMENTAL INVESTIGATION OF BOILING HEAT CONVECTION WITH RADIAL FLOW IN A FRACTURE PROCEEDINGS, Twenty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 25-27, 1999 SGP-TR-162 AN EXPERIMENTAL INVESTIGATION OF BOILING HEAT CONVECTION

More information

NUMERICAL PREDICTION OF NUCLEATE POOL BOILING HEAT TRANSFER COEFFICIENT UNDER HIGH HEAT FLUXES. P.O. Box 522, Belgrade, Serbia

NUMERICAL PREDICTION OF NUCLEATE POOL BOILING HEAT TRANSFER COEFFICIENT UNDER HIGH HEAT FLUXES. P.O. Box 522, Belgrade, Serbia NUMERICAL PREDICTION OF NUCLEATE POOL BOILING HEAT TRANSFER COEFFICIENT UNDER HIGH HEAT FLUXES Milada L. PEZO a*, Vladimir D. STEVANOVIĆ b a Department of Thermal Engineering and Energy, Institute of Nuclear

More information

EXPERIMENTAL ANALYSIS OF R-134a FLOW CONDENSATION IN A SMOOTH TUBE

EXPERIMENTAL ANALYSIS OF R-134a FLOW CONDENSATION IN A SMOOTH TUBE HEFAT2012 9 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 16 18 July 2012 Malta EXPERIMENTAL ANALYSIS OF R-134a FLOW CONDENSATION IN A SMOOTH TUBE Bastos S., Fernández-Seara

More information

Thermodynamics I. Properties of Pure Substances

Thermodynamics I. Properties of Pure Substances Thermodynamics I Properties of Pure Substances Dr.-Eng. Zayed Al-Hamamre 1 Content Pure substance Phases of a pure substance Phase-change processes of pure substances o Compressed liquid, Saturated liquid,

More information

A generalized correlation of nucleate pool boiling of liquids

A generalized correlation of nucleate pool boiling of liquids Indian Journal of Chemical Technology Vol. 11, September 2004, pp. 719-725 A generalized correlation of nucleate pool boiling of liquids S Bhaumik a, V K Agarwal b & S C Gupta b* a Mechanical Engineering

More information

Chapter 3 PROPERTIES OF PURE SUBSTANCES. Thermodynamics: An Engineering Approach, 6 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2008

Chapter 3 PROPERTIES OF PURE SUBSTANCES. Thermodynamics: An Engineering Approach, 6 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2008 Chapter 3 PROPERTIES OF PURE SUBSTANCES Thermodynamics: An Engineering Approach, 6 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2008 Objectives Introduce the concept of a pure substance. Discuss

More information

A Generalized Correlation for Pool Boiling Heat Transfer Coefficient Based on Corresponding State Rule for Pure Compounds and Binary Mixtures

A Generalized Correlation for Pool Boiling Heat Transfer Coefficient Based on Corresponding State Rule for Pure Compounds and Binary Mixtures A Generalized Correlation for Pool Boiling Heat Transfer Coefficient Based on Corresponding State Rule for Pure Compounds and Binary Mixtures HASAN QABAZARD and MAHMOOD MOSHFEGHIAN 1 Petroleum Research

More information

PROPERTIES OF PURE SUBSTANCES. Chapter 3. Mehmet Kanoglu. Thermodynamics: An Engineering Approach, 6 th Edition. Yunus A. Cengel, Michael A.

PROPERTIES OF PURE SUBSTANCES. Chapter 3. Mehmet Kanoglu. Thermodynamics: An Engineering Approach, 6 th Edition. Yunus A. Cengel, Michael A. Thermodynamics: An Engineering Approach, 6 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2008 Chapter 3 PROPERTIES OF PURE SUBSTANCES Mehmet Kanoglu Copyright The McGraw-Hill Companies, Inc.

More information

C ONTENTS CHAPTER TWO HEAT CONDUCTION EQUATION 61 CHAPTER ONE BASICS OF HEAT TRANSFER 1 CHAPTER THREE STEADY HEAT CONDUCTION 127

C ONTENTS CHAPTER TWO HEAT CONDUCTION EQUATION 61 CHAPTER ONE BASICS OF HEAT TRANSFER 1 CHAPTER THREE STEADY HEAT CONDUCTION 127 C ONTENTS Preface xviii Nomenclature xxvi CHAPTER ONE BASICS OF HEAT TRANSFER 1 1-1 Thermodynamics and Heat Transfer 2 Application Areas of Heat Transfer 3 Historical Background 3 1-2 Engineering Heat

More information

FLOW BOILING HEAT-TRANSFER IN PLATE MICRO- CHANNEL HEAT SINK

FLOW BOILING HEAT-TRANSFER IN PLATE MICRO- CHANNEL HEAT SINK International J. of Math. Sci. & Engg. Appls. (IJMSEA) ISSN 0973-9424, Vol. 10 No. I (April, 2016), pp. 257-265 FLOW BOILING HEAT-TRANSFER IN PLATE MICRO- CHANNEL HEAT SINK R. S. H. AL-KHAFAJY College

More information

Enhanced pool boiling heat transfer on mini- and micro- structured

Enhanced pool boiling heat transfer on mini- and micro- structured EPJ Web of Conferences 4, 0 02 (206) DOI:.5/ epjconf/ 20640 002 C Owned by the authors, published by EDP Sciences, 206 Enhanced pool boiling heat transfer on mini- and micro- structured surfaces Robert

More information

first law of ThermodyNamics

first law of ThermodyNamics first law of ThermodyNamics First law of thermodynamics - Principle of conservation of energy - Energy can be neither created nor destroyed Basic statement When any closed system is taken through a cycle,

More information

Comparison of Heat Transfer rate of closed loop micro pulsating heat pipes having different number of turns

Comparison of Heat Transfer rate of closed loop micro pulsating heat pipes having different number of turns The International Journal of Engineering and Science (IJES) Volume 6 Issue 7 Pages PP 01-12 2017 ISSN (e): 2319 1813 ISSN (p): 2319 1805 Comparison of Heat Transfer rate of closed loop micro pulsating

More information

Heat Transfer Predictions for Carbon Dioxide in Boiling Through Fundamental Modelling Implementing a Combination of Nusselt Number Correlations

Heat Transfer Predictions for Carbon Dioxide in Boiling Through Fundamental Modelling Implementing a Combination of Nusselt Number Correlations Heat Transfer Predictions for Carbon Dioxide in Boiling Through Fundamental Modelling Implementing a Combination of Nusselt Number Correlations L. Makaum, P.v.Z. Venter and M. van Eldik Abstract Refrigerants

More information

PHYS102 Previous Exam Problems. Temperature, Heat & The First Law of Thermodynamics

PHYS102 Previous Exam Problems. Temperature, Heat & The First Law of Thermodynamics PHYS102 Previous Exam Problems CHAPTER 18 Temperature, Heat & The First Law of Thermodynamics Equilibrium & temperature scales Thermal expansion Exchange of heat First law of thermodynamics Heat conduction

More information

: HEAT TRANSFER & EVAPORATION COURSE CODE : 4072 COURSE CATEGORY : B PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 70 CREDIT : 5 TIME SCHEDULE

: HEAT TRANSFER & EVAPORATION COURSE CODE : 4072 COURSE CATEGORY : B PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 70 CREDIT : 5 TIME SCHEDULE COURSE TITLE : HEAT TRANSFER & EVAPORATION COURSE CODE : 4072 COURSE CATEGORY : B PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 70 CREDIT : 5 TIME SCHEDULE MODULE TOPIC PERIODS 1 Conduction,Fourier law,variation

More information

HEAT AND MASS TRANSFER. List of Experiments:

HEAT AND MASS TRANSFER. List of Experiments: HEAT AND MASS TRANSFER List of Experiments: Conduction Heat Transfer Unit 1. Investigation of Fourier Law for linear conduction of heat along a simple bar. 2. Study the conduction of heat along a composite

More information

InterPACKICNMM

InterPACKICNMM Proceedings of the ASME 215 International Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems and ASME 215 International Conference on Nanochannels, Microchannels,

More information

Development of cryogenic silicon detectors for the TOTEM Roman pots

Development of cryogenic silicon detectors for the TOTEM Roman pots Development of cryogenic silicon detectors for the TOTEM Roman pots S. Grohmann, CERN ST-CV RD39 Collaboration Seminar on Solid State Detectors July 11, 2001 Table of contents u u u u Introduction / Roman

More information

Pulsating heat pipe panels

Pulsating heat pipe panels Pulsating heat pipe panels A.A. Antukh, M.I. Rabetsky, V.E. Romanenkov, L.L. Vasiliev Luikov Heat and Mass Transfer Institute, P. Brovka 15, 220072, Minsk, Belarus Phone/Fax: +375-17-284-21-33, E-mail:

More information

International Journal of Heat and Mass Transfer

International Journal of Heat and Mass Transfer International Journal of Heat and Mass Transfer 52 (2009) 4519 4524 Contents lists available at ScienceDirect International Journal of Heat and Mass Transfer journal homepage: www.elsevier.com/locate/ijhmt

More information

The thermal performance of thermosyphons employing nanofluids

The thermal performance of thermosyphons employing nanofluids Advanced Computational Methods and Experiments in Heat Transfer XIII 315 The thermal performance of thermosyphons employing nanofluids T. Grab 1 & M. H. Buschmann 2 1 TU Bergakademie Freiberg, Germany

More information

THERMAL DESIGN OF FALLING FILM EVAPORATOR

THERMAL DESIGN OF FALLING FILM EVAPORATOR YMCA Institute of Engineering, Faridabad, Haryana.., Dec 9-10, 006. THERMAL DESIGN OF FALLING FILM EVAPORATOR Ashik Patel 1, Manish purohit, C. R. Sonawane 3 1, Department of Mechanical Engineering Students,

More information

Integration of Boiling Experiments in the Undergraduate Heat Transfer Laboratory

Integration of Boiling Experiments in the Undergraduate Heat Transfer Laboratory Integration of Boiling Experiments in the Undergraduate Heat Transfer Laboratory Hosni I. Abu-Mulaweh, Josué Njock Libii Engineering Department Indiana University-Purdue University at Fort Wayne Fort Wayne,

More information

Evaporation Heat Transfer and Pressure Drop of Refrigerant R-410A Flow in a Vertical Plate Heat Exchanger

Evaporation Heat Transfer and Pressure Drop of Refrigerant R-410A Flow in a Vertical Plate Heat Exchanger Y. Y. Hsieh T. F. Lin Department of Mechanical Engineering, National Chaio Tung University, Hsinchu, Taiwan, R.O.C. Evaporation Heat Transfer and Pressure Drop of Refrigerant R-410A Flow in a Vertical

More information

Chapter 3 PROPERTIES OF PURE SUBSTANCES

Chapter 3 PROPERTIES OF PURE SUBSTANCES Thermodynamics: An Engineering Approach Seventh Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Chapter 3 PROPERTIES OF PURE SUBSTANCES Copyright The McGraw-Hill Companies, Inc. Permission

More information

Numerical Study on the Condensation Length of Binary Zeotropic Mixtures

Numerical Study on the Condensation Length of Binary Zeotropic Mixtures 1 Numerical Study on the Condensation Length of Binary Zeotropic Mixtures Han Deng, Maria Fernandino, Carlos A. Dorao 3rd Trondheim Gas Technology Conference 4 5 June, 2014 Trondheim, Norway 3rd Trondheim

More information

Coolant. Circuits Chip

Coolant. Circuits Chip 1) A square isothermal chip is of width w=5 mm on a side and is mounted in a subtrate such that its side and back surfaces are well insulated, while the front surface is exposed to the flow of a coolant

More information

Forced Convective Boiling Heat Transfer in Microtubes at Low Mass and Heat Fluxes

Forced Convective Boiling Heat Transfer in Microtubes at Low Mass and Heat Fluxes Symposium on Compact Heat Exchangers, A Festschrift on the th Birthday of Ramesh K. Shah, August, Grenoble, France, pp.1~ 1 Forced Convective Boiling Heat Transfer in Microtubes at Low Mass and Heat Fluxes

More information

FORCE FED BOILING AND CONDENSATION FOR HIGH HEAT FLUX APPLICATIONS

FORCE FED BOILING AND CONDENSATION FOR HIGH HEAT FLUX APPLICATIONS FORCE FED BOILING AND CONDENSATION FOR HIGH HEAT FLUX APPLICATIONS Edvin Cetegen 1, Serguei Dessiatoun 1, Michael M. Ohadi 2 1 Smart and Small Thermal Systems Laboratory Department of Mechanical Engineering,

More information

Engineering Thermodynamics. Chapter 1. Introductory Concepts and Definition

Engineering Thermodynamics. Chapter 1. Introductory Concepts and Definition 1.1 Introduction Chapter 1 Introductory Concepts and Definition Thermodynamics may be defined as follows : Thermodynamics is an axiomatic science which deals with the relations among heat, work and properties

More information

enhancements of immersion cooling of high power chips with nucleate boiling of dielectric liquids

enhancements of immersion cooling of high power chips with nucleate boiling of dielectric liquids Advancements in Thermal Management Conference, Denver, CO, 3-4 August 216 enhancements of immersion cooling of high power chips with nucleate boiling of dielectric liquids Mohamed S. El-Genk Regents Professor,

More information

THE CHARACTERISTICS OF BRAZED PLATE HEAT EXCHANGERS WITH DIFFERENT CHEVRON ANGLES

THE CHARACTERISTICS OF BRAZED PLATE HEAT EXCHANGERS WITH DIFFERENT CHEVRON ANGLES THE CHARACTERISTICS OF BRAZED PLATE HEAT EXCHANGERS WITH DIFFERENT CHEVRON ANGLES M. Amala Justus Selvam 1, Senthil kumar P. 2 and S. Muthuraman 3 1 Sathyabama University, Tamil Nadu, India 2 K. S. R College

More information

Scale-up problems are often perceived as difficult. Here the reaction calorimetry has proven to be

Scale-up problems are often perceived as difficult. Here the reaction calorimetry has proven to be APPLICATION OF REACTION CALORIMETRY FOR THE SOLUTION OF SCALE-UP PROBLEMS A paper from the RC User Forum Europe, Interlaken, 1995 Francis Stoessel, Ciba AG, Basel, Switzerland. Scale-up problems are often

More information

EFFECT OF LIQUID REYNOLDS NUMBER ON PRESSURE DROP OF EVAPORATIVE R-290 IN 500µm CIRCULAR TUBE

EFFECT OF LIQUID REYNOLDS NUMBER ON PRESSURE DROP OF EVAPORATIVE R-290 IN 500µm CIRCULAR TUBE International Journal of Technology (2015) 5: 851-857 ISSN 2086-9614 IJTech 2017 EFFECT OF LIQUID REYNOLDS NUMBER ON PRESSURE DROP OF EVAPORATIVE R-290 IN 500µm CIRCULAR TUBE Sentot Novianto 1, Agus S.

More information

ORC Condenser Heat Exchanger Design and Modelling

ORC Condenser Heat Exchanger Design and Modelling ORC Condenser Heat Exchanger Design and Modelling Shadreck M. Situmbeko University of Botswana, Gaborone, Botswana; University of KwaZulu-Natal, Durban, RSA; Freddie L. Inambao University of KwaZulu-Natal,

More information

EVAPORATION YUSRON SUGIARTO

EVAPORATION YUSRON SUGIARTO EVAPORATION YUSRON SUGIARTO Evaporation: - Factors affecting evaporation - Evaporators - Film evaporators - Single effect and multiple effect evaporators - Mathematical problems on evaporation Principal

More information

A New Numerical Approach for Predicting the Two- Phase Flow of Refrigerants during Evaporation and Condensation

A New Numerical Approach for Predicting the Two- Phase Flow of Refrigerants during Evaporation and Condensation Numerical Heat Transfer, Part B: Fundamentals An International Journal of Computation and Methodology ISSN: 1040-7790 (Print) 1521-0626 (Online) Journal homepage: http://www.tandfonline.com/loi/unhb20

More information

Experimental Analysis of Wire Sandwiched Micro Heat Pipes

Experimental Analysis of Wire Sandwiched Micro Heat Pipes Experimental Analysis of Wire Sandwiched Micro Heat Pipes Rag, R. L. Department of Mechanical Engineering, John Cox Memorial CSI Institute of Technology, Thiruvananthapuram 695 011, India Abstract Micro

More information

FLOW BOILING OF ETHANOL IN SMALL DIAMETER TUBES

FLOW BOILING OF ETHANOL IN SMALL DIAMETER TUBES 8th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics HEFAT211 8 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 11 July 13 July 211 Pointe

More information

IHTC DRAFT MEASUREMENT OF LIQUID FILM THICKNESS IN MICRO TUBE ANNULAR FLOW

IHTC DRAFT MEASUREMENT OF LIQUID FILM THICKNESS IN MICRO TUBE ANNULAR FLOW DRAFT Proceedings of the 14 th International Heat Transfer Conference IHTC14 August 8-13, 2010, Washington D.C., USA IHTC14-23176 MEASUREMENT OF LIQUID FILM THICKNESS IN MICRO TUBE ANNULAR FLOW Hiroshi

More information

SHRI RAMSWAROOP MEMORIAL COLLEGE OF ENGG. & MANAGEMENT B.Tech. [SEM V (ME-51, 52, 53, 54)] QUIZ TEST-1 (Session: )

SHRI RAMSWAROOP MEMORIAL COLLEGE OF ENGG. & MANAGEMENT B.Tech. [SEM V (ME-51, 52, 53, 54)] QUIZ TEST-1 (Session: ) QUIZ TEST-1 Time: 1 Hour HEAT AND MASS TRANSFER Note: All questions are compulsory. Q1) The inside temperature of a furnace wall ( k=1.35w/m.k), 200mm thick, is 1400 0 C. The heat transfer coefficient

More information

PREDICTION OF TWO-PHASE THERMOSYPHON THROUGHPUT BY SELF DEVELOPED CAE PROGRAM

PREDICTION OF TWO-PHASE THERMOSYPHON THROUGHPUT BY SELF DEVELOPED CAE PROGRAM HEFAT2014 10 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 14 16 July 2014 Orlando, Florida PREDICTION OF TWO-PHASE THERMOSYPHON THROUGHPUT BY SELF DEVELOPED CAE PROGRAM

More information

The Effect of Nozzle Height on Cooling Heat Transfer from a Hot Steel Plate by an Impinging Liquid Jet

The Effect of Nozzle Height on Cooling Heat Transfer from a Hot Steel Plate by an Impinging Liquid Jet , pp. 704 709 The Effect of Nozzle Height on Cooling Heat Transfer from a Hot Steel Plate by an Impinging Liquid Jet Piljong LEE, Haewon CHOI 1) and Sunghong LEE 2) Technical Research Center, POSCO, Pohang

More information

TankExampleNov2016. Table of contents. Layout

TankExampleNov2016. Table of contents. Layout Table of contents Task... 2 Calculation of heat loss of storage tanks... 3 Properties ambient air Properties of air... 7 Heat transfer outside, roof Heat transfer in flow past a plane wall... 8 Properties

More information

CONDENSATION HEAT TRANSFER COEFFICIENT CORRELATION BASED ON SLIP RATIO MODEL IN A HORIZONTAL HEAT EXCHANGER

CONDENSATION HEAT TRANSFER COEFFICIENT CORRELATION BASED ON SLIP RATIO MODEL IN A HORIZONTAL HEAT EXCHANGER CONDENSATION HEAT TRANSFER COEFFICIENT CORRELATION BASED ON SLIP RATIO MODEL IN A HORIZONTAL HEAT EXCHANGER Seok Kim, Sung Uk Ryu, Seung Tae Lee, Dong-Jin Euh, and Chul-Hwa Song Korea Atomic Energy Research

More information

Measurement of the performances of a transparent closed loop two-phase thermosyphon

Measurement of the performances of a transparent closed loop two-phase thermosyphon Advanced Computational Methods and Experiments in Heat Transfer XI 227 Measurement of the performances of a transparent closed loop two-phase thermosyphon B. Agostini & M. Habert ABB Switzerland Ltd.,

More information

Performance Characterization of Two Selected Refrigerants in a Flat-Plate Micro-Tube Condenser

Performance Characterization of Two Selected Refrigerants in a Flat-Plate Micro-Tube Condenser The Second International Energy 23 Conference Performance Characterization of Two Selected Refrigerants in a Flat-Plate Micro-Tube Condenser E. Al-Hajri 1, S. Dessiatoun 1, A. Shooshtari 1, and M. Ohadi

More information

EXPERIMENTAL INVESTIGATION OF IN SITU PRESSURE MEASUREMENT OF AN OSCILLATING HEAT PIPE

EXPERIMENTAL INVESTIGATION OF IN SITU PRESSURE MEASUREMENT OF AN OSCILLATING HEAT PIPE Frontiers in Heat Pipes Available at www.thermalfluidscentral.org EXPERIMENTAL INVESTIGATION OF IN SITU PRESSURE MEASUREMENT OF AN OSCILLATING HEAT PIPE Fritz F. Laun, and Brent S. Taft* Air Force Research

More information

1. Basic state values of matter

1. Basic state values of matter 1. Basic state values of matter Example 1.1 The pressure inside a boiler is p p = 115.10 5 Pa and p v = 9.44.10 4 Pa inside a condenser. Calculate the absolute pressure inside the boiler and condenser

More information

High Resolution Measurements of Boiling Heat Transfer

High Resolution Measurements of Boiling Heat Transfer High Resolution Measurements of Boiling Heat Transfer Martin Freystein Institute of Technical Thermodynamics, TU armstadt Personal Skills and Boiling Experience Single Bubble Pool Boiling Bubble Coalescence

More information

Thermo-Fluid Performance of a Vapor- Chamber Finned Heat Sink

Thermo-Fluid Performance of a Vapor- Chamber Finned Heat Sink The Egyptian International Journal of Engineering Sciences and Technology Vol. 20 (July 2016) 10 24 http://www.eijest.zu.edu.eg Thermo-Fluid Performance of a Vapor- Chamber Finned Heat Sink Saeed A.A.

More information

Heat processes. Heat exchange

Heat processes. Heat exchange Heat processes Heat exchange Heat energy transported across a surface from higher temperature side to lower temperature side; it is a macroscopic measure of transported energies of molecular motions Temperature

More information