Egészségügyi informatika és biostatisztika Biomarkerek

Size: px
Start display at page:

Download "Egészségügyi informatika és biostatisztika Biomarkerek"

Transcription

1 Egészségügyi informatika és biostatisztika Biomarkerek Antal Péter Computational Biomedicine (Combine) workgroup Department of Measurement and Information Systems, Budapest University of Technology and Economics 1

2 Áttekintés Okozati és diagnosztikai markerek felfedezésének problémái Genetikai asszociációs kutatások Tumor marker kutatások Biomarker aspektusai, típusai, dimenziói Valószínűségi gráfos hálózatok, oksági Bayes-hálózatok További információ hasznossága Diagnosztikai jóság mértékei A biomarker tanulás statisztikai nehézsége 2

3 Pariticpants Pariticpants Genetic association studies (GAS) Clinical/ Demographic information A quantitative/ binary disease information Genotyping/sequencing Genetic variants Single Nucleotied Polymorphisms (SNPs) SNP i? Disease (Pairwise) statistical test of association Relevant SNPs for a disease with complex genetic background. Risch, N. and Merikangas, K., The future of genetic studies of complex human diseases. Science, 273(5281), pp

4 Genetikai asszociációs adatok Validációs SNP-ek Teljes genomi polimorfizmus adat (~1m, <100$) Kipótolt polimorfizmus adat (5m) Exome szekvenálás (1% WGS, x10k/x100k, 500$-1000$) Teljes genom szekvenálás (600$-2000$) 4

5 Megmagyarázott variancia (R 2 ) A hiányzó örökletesség Betegség Lókuszok száma Megmagyarázott örökletesség Örökletességi mérték T2 diabetesz 18 6%Testvéri előfordulás HDL cholesterol % Fenotipusos variancia Testmagasság 40 5%Fenotipusos variancia Szkizofrénia 5 3%Ikerbeli előfordulás 5

6 Tumor markers New omic markers genomics, proteomics, metabolomics,.. Missing the mark, 2007, Nature MISSING THE MARK: Why is it so hard to find a test to predict cancer?, 2011, Nature

7 Aspects of biomarkers Maximum predictivity, minimum redundancy Predictive power Directness Causality Multiple target Uncertainty

8 Questions about biomarkers Identification of a weakly significant biomarker Among huge number of irrelent factors, correction for multiple hypothesis testing Identification of weakly significant biomarkers Identification of interactions Identification of multitarget biomarkers Identification of a biomarker relevant for multiple aspects Identification of context-specific biomarkers Pleiotropic interactions and epistatic interactions Identification of pure effect modifiers Biomarkers without main effects: parametrically and structurally (structural) Discrimination of direct/indirect biomarkers Strong/weak relevance (structural) Discrimination of diagnostic and target biomarkers Causes versus effects Estimation of effect size Adjusting for confounding Optimal selection of a diagnostic biomarker Optimal selection of sequence of diagnostic biomarkers 8

9 Kérdéstípusok az orvosi döntéstámogatásban Diagnosztikai következtetés P(Diagnózis Passzív megfigyelések) Legkisebb várható veszteségű diagnózis passzív megfigyelések esetén Optimális információgyűjtés További információ hatása a következtetésre: P(Diagnózis megfigyelések, új megfigyelés) További információ hasznossága Terápiás következtetés P(Kimenetel Megfigyelés, Beavatkozás) Kontrafaktuális következtetés P(ElképzeltKimenetel Megfigyelés, Beavatkozás,Kimenetel, ElképzeltBeavatkozás) 9

10 Bayesian networks: interpretations M P ={I P,1 (X 1 ;Y 1 Z 1 ),...} ), ( ) ( ), ( ) ( ) ( ),,,, ( M S T P D S P M O D P M O P M P T S D O M P 3. Concise representation of joint distributions 2. Graphical representation of (in)dependencies 1. Causal model 4. Decision network

11 Motivation: from observational inference In a Bayesian network, any query can be answered corresponding to passive observations: p(q=q E=e). What is the (conditional) probability of Q=q given that E=e. Note that Q can preceed temporally E. X Y Specification: p(x), p(y X) Joint distribution: p(x,y) Inferences: p(x), p(y), p(y X), p(x Y) 12/1/2017 A.I. 11

12 Motivation: to interventional inference Perfect intervention: do(x=x) as set X to x. What is the relation of p(q=q E=e) and p(q=q do(e=e))? X Y Specification: p(x), p(y X) Joint distribution: p(x,y) Inferences: p(y X=x)=p(Y do(x=x)) p(x Y=y) p(x do(y=y)) What is a formal knowledge representation of a causal model? What is the formal inference method? 12/1/2017 A.I. 12

13 Principles of causality strong association, X precedes temporally Y, plausible explanation without alternative explanations based on confounding, necessity (generally: if cause is removed, effect is decreased or actually: y would not have been occurred with that much probability if x had not been present), sufficiency (generally: if exposure to cause is increased, effect is increased or actually: y would have been occurred with larger probability if x had been present). Autonomous, transportable mechanism. The probabilistic definition of causation formalizes many, but for example not the counterfactual aspects. 12/1/2017 A.I. 13

14 Conditional independence I P (X;Y Z) or (X Y Z) P denotes that X is independent of Y given Z: P(X;Y z)=p(y z) P(X z) for all z with P(z)>0. (Almost) alternatively, I P (X;Y Z) iff P(X Z,Y)= P(X Z) for all z,y with P(z,y)>0. Other notations: D P (X;Y Z) =def= I P (X;Y Z) Contextual independence: for not all z.

15 The independence model of a distribution The independence map (model) M of a distribution P is the set of the valid independence triplets: M P ={I P,1 (X 1 ;Y 1 Z 1 ),..., I P,K (X K ;Y K Z K )} If P(X,Y,Z) is a Markov chain, then M P ={D(X;Y), D(Y;Z), I(X;Z Y)} Normally/almost always: D(X;Z) Exceptionally: I(X;Z) X Y Z

16 The independence map of a N-BN Y X Z If P(Y,X,Z) is a naive Bayesian network, then M P ={D(X;Y), D(Y;Z), I(X;Z Y)} Normally/almost always: D(X;Z) Exceptionally: I(X;Z)

17 Bayesian networks: the three facets M P ={I P,1 (X 1 ;Y 1 Z 1 ),...} ), ( ) ( ), ( ) ( ) ( ),,,, ( M S T P D S P M O D P M O P M P T S D O M P 3. Concise representation of joint distributions 2. Graphical representation of (in)dependencies 1. Causal model

18 Inferring independencies from structure: d-separation I G (X;Y Z) denotes that X is d-separated (directed separated) from Y by Z in directed graph G.

19 d-separation and the global Markov condition

20 Representation of independencies For certain distributions exact representation is not possible by Bayesian networks, e.g.: 1. Intransitive Markov chain: X Y Z 2. Pure multivariate cause: {X,Z} Y V 3. Diamond structure: P(X,Y,Z,V) with M P ={D(X;Z), D(X;Y), D(V;X), D(V;Z), I(V;Y {X,Z}), I(X;Z {V,Y}).. }. X Z Y

21 Markov blanket (and boundary) 12/1/2017 A.I. 21

22 A jegykiválasztási probléma The feature subset selection (FSS) problem Egy X i jegy erősen releváns, ha létezik x i,y i, és s i = x 1, x i-1,x i+1,,x n úgy, hogy p(x i,s i )>0 és p(y x i,s i ) p(y s i ). Egy X i jegy gyengén releváns, ha létezik x i,y i, és valamely s i úgy, hogy p(x i,s i )>0 és p(y x i,s i ) p(y s i ).

23 Biomarkers and the feature subset selection (FSS) problem

24 A Bayesian network definition A directed acyclic graph (DAG) G is a Bayesian network of distribution P(U) iff P(U) obeys the global Markov condition with respect to G and G is minimal (i.e. no edges can be omitted without violating this property). 12/1/2017 A.I. 24

25 A practical definition

26 Association vs. Causation Causal models: X Y X Y X causes Y Y causes X X * Y... There is a common cause (pure confounding) X *... * Y Causal effect of Y on X is confounded by many factors From passive observations: M P ={D(X;Y)} P(X,Y) X Y X and Y are associated Reichenbach's Common Cause Principle: a correlation between events X and Y indicates either that X causes Y, or that Y causes X, or that X and Y have a common cause.

27 The building block of causality: v-structure (arrow of time) p(x),p(z X),p(Y Z) X Z Y p(x Z),p(Z Y),p(Y) X Z Y p(x Z),p(Z),p(Y Z) X Z Y transitive M intransitive M p(x),p(z X,Y),p(Y) X Y Z v-structure M P ={D(X;Z), D(Z;Y), D(X,Y), I(X;Y Z)} M P ={D(X;Z), D(Y;Z), I(X;Y), D(X;Y Z) } Often (confounding): present knowledge renders (otherwise dependent) future states conditionally independent. Ever(?): present knowledge renders (otherwise independent) future states conditionally dependent.

28 Observational equivalence of causal models

29 A limits of learnability: compelled edges ( can we interpret edges as causal relations? compelled edges)

30 Interventional inference in causal Bayesian networks (Passive, observational) inference P(Query Observations) Interventionist inference P(Query Observations, Interventions) Counterfactual inference P(Query Observations, Counterfactual conditionals)

31 Interventions and graph surgery If G is a causal model, then compute p(y do(x=x)) by 1. deleting the incoming edges to X 2. setting X=x 3. performing standard Bayesian network inference. Mutation? Subpopulation Location Disease E X? Y *

32 Local Causal Discovery can we interpret edges as causal relations in the presence of hidden variables? Can we learn causal relations from observational data in presence of confounders??? Smoking Increased propensity Smoking A genetic polymorphism* Increased susceptibility Lung cancer Lung cancer Automated, tabula rasa causal inference from (passive) observation is possible, i.e. hidden, confounding variables can be excluded E X? Y??? *

33 Questions about biomarkers Identification of a weakly significant biomarker Among huge number of irrelent factors, correction for multiple hypothesis testing Identification of weakly significant biomarkers Identification of interactions Identification of multitarget biomarkers Identification of a biomarker relevant for multiple aspects Identification of context-specific biomarkers Pleiotropic interactions and epistatic interactions Identification of pure effect modifiers Biomarkers without main effects: parametrically and structurally (structural) Discrimination of direct/indirect biomarkers Strong/weak relevance (structural) Discrimination of diagnostic and target biomarkers Causes versus effects Estimation of effect size Adjusting for confounding Optimal selection of a diagnostic biomarker Optimal selection of sequence of diagnostic biomarkers 33

34 Sensitivity of the inference 1 P(Pathology=malignant E=e) Evidence e

35 Decision theory probability theory+utility theory Decision situation: Actions Outcomes Probabilities of outcomes Utilities/losses of outcomes QALY, micromort Maximum Expected Utility Principle (MEU) Best action is the one with maximum expected utility a o i j p U ( o j ai ) ( o j ai ) ( a i) j U( oj ai ) p( oj ai EU ) a* arg max i EU ( ai ) Actions a i (which experiment) Outcomes (e.g. dataset) Probabilities Utilities, costs Expected utilities P(o j a i ) U(o j ), C(a i ) EU(a i ) = P(o j a i )U(o j ) a i o j

36 Maximizing expected utility 12/1/2017 A.I. 36

37

38

39 Value of (perfect) Information 12/1/2017 A.I. 39

40

41 Extensions Bayesian learning Predictive inference Parametric inference Value of further information Sequential decisions Optimal stopping (secretary problem) Multiarmed bandit problem Markov decision problem. U i U (e i ) e i a i =s i * D ij U i1 (s i *) U i+1 U i1 (D ir )

42 Characterizing a biomarker/test Sensitivity: p(prediction=true Ref=TRUE) Specificity: p(prediction=false Ref=FALSE) PPV: p(ref=true Prediction=TRUE) NPV: p(ref=false Prediction=FALSE) Healthy Disease present threshold t

43 Questions about biomarkers Identification of a weakly significant biomarker Among huge number of irrelent factors, correction for multiple hypothesis testing Identification of weakly significant biomarkers Identification of interactions Identification of multitarget biomarkers Identification of a biomarker relevant for multiple aspects Identification of context-specific biomarkers Pleiotropic interactions and epistatic interactions Identification of pure effect modifiers Biomarkers without main effects: parametrically and structurally (structural) Discrimination of direct/indirect biomarkers Strong/weak relevance (structural) Discrimination of diagnostic and target biomarkers Causes versus effects Estimation of effect size Adjusting for confounding Optimal selection of a diagnostic biomarker Optimal selection of sequence of diagnostic biomarkers 43

44 Why can we learn? The most incomprehensible thing about the world is that it is at all comprehensible. Albert Einstein. No theory of knowledge should attempt to explain why we are successful in our attempt to explain things. K.R.Popper: Objective Knowledge, 1972 Possibility of learning is an empirical observation.

45 Principles for induction Epicurus' (342? B.C B.C.) principle of multiple explanations which states that one should keep all hypotheses that are consistent with the data. The principle of Occam's razor ( , sometimes spelt Ockham). Occam's razor states that when inferring causes entities should not be multiplied beyond necessity. This is widely understood to mean: Among all hypotheses consistent with the observations, choose the simplest. In terms of a prior distribution over hypotheses, this is the same as giving simpler hypotheses higher a priori probability, and more complex ones lower probability.

46 Bayesian model averaging Russel&Norvig: Artificial intelligence, ch.20

47 Bayesian Model Averaging example Russel&Norvig: Artificial intelligence

48 Learning rate for models Russel&Norvig: Artificial intelligence

49 Learning rate for model predictions Russel&Norvig: Artificial intelligence

50

51

52 Probably Approximately Correct (PAC)-learning To have at least δ probability of approximate correctness: H (1 ε) n δ By expressing the sample size as function of ε accuracy and δ confidence we get a bound for sample complexity 1/ε(ln H + ln 1 δ ) n

53 Decision trees One possible representation for hypotheses E.g., here is the true tree for deciding whether to wait:

54 Expressiveness Decision trees can express any function of the input attributes. E.g., for Boolean functions, truth table row path to leaf: Trivially, there is a consistent decision tree for any training set with one path to leaf for each example (unless f nondeterministic in x) but it probably won't generalize to new examples Prefer to find more compact decision trees

55 Hypothesis spaces How many distinct decision trees with n Boolean attributes? = number of Boolean functions = number of distinct truth tables with 2 n rows = 2 2n E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616 trees How many purely conjunctive hypotheses (e.g., Hungry Rain)? Each attribute can be in (positive), in (negative), or out 3 n distinct conjunctive hypotheses More expressive hypothesis space increases chance that target function can be expressed increases number of hypotheses consistent with training set may get worse predictions

56 Multiple testing problem (MTP) If we perform N tests and our goal is p(falserejection 1 or or FalseRejection N )<α then we have to ensure, e.g. that for all p(falserejection i )< α/n loss of statistical power (probability of discovery of a true hypothesis)!

57 Solutions for MTP Study design: incorporation of prior Corrections Permutation tests Generate perturbed data sets under the null hypothesis: permute predictors and outcome. False discovery rate, q-value Bayesian approach

58 Corrections for multiple testing

59 Corrections for multiple testing I have 1,000,000 hypotheses that are not mutually exclusive. 1. I test them all. Correction? 2. I plan to test them all, but I run out of resources after testing only one of them. Correction? 3. I test one of them, and a year later test the others. Correction? If so, when? 4. I only test the first one because that is the one I suspect. Correction? 5. I run an algorithm that prunes unlikely hypotheses, keeping only 100,000. Correction for 100,000 or for 1,000,000 hypotheses? (R.Neopolitan, 2010)

60 Permute outcome/target Permutation testing Outcome Predictor variables Y X 1 X n Samples A random permutation guarantees the independency of the outcome Y. A random permutation corresponds to an artificial data set from the null model. direct estimation of the p-value: the probability of observing a more extreme data set from the null model with the same sample size. p( D perm N : IncompatibilityWithNull ( D real N ) IncompatibilityWithNull ( D perm N ))

61 False discovery rate (FDR) I. Another aspect of multiple hypothesis testing: the probability of Type I. error for any tests the expected number of Type I. errors at a given significance level (False discovery rate, FDR) q-value: the minimum FDR at which the test may be called significant.

62 False discovery rate (FDR) II.

63 Bayesian-network based Bayesian multilevel analysis (BN-BMLA) Hierarchic statistical questions about typed relevance can be translated to questions about Bayesian network structural features: Pairwise association Markov Blanket Memberhsips (MBM) Multivariable analysis Markov Blanket sets (MB) Multivariable analysis with interactions Markov Blanket Subgraphs (MBG) Complete dependency models Partially Directed Acyclic Graphs (PDAG) Complete causal models Bayesian network (BN) Hierarchy of levels BN PDAG MBG MB MBM

64 Kapcsolt, eltérő absztrakciós szintű hipotézisosztályok Az asszociációs tanulmányok kérdései Bayes hálók strukturális jegyeivel formalizálhatók Páronkénti erős relevancia: Markov Blanket Memberhsips (MBM) Többváltozós erős relevancia: Markov Blanket sets (k-sub/sup-mbs) Multifaktoriális interakciós algráf: Markov Blanket Subgraphs (MBG, C-RPDAG) Teljes interakciós modell: Részlegesen irányított Bayes háló (PDAG) Teljes oksági modell: Bayes háló (BN) Kapcsolt, absztrakciós szintek: DAG=>PDAG=>MBG=>C-RPDAG=>MB=>MBM

Causal Bayesian networks. Peter Antal

Causal Bayesian networks. Peter Antal Causal Bayesian networks Peter Antal antal@mit.bme.hu A.I. 4/8/2015 1 Can we represent exactly (in)dependencies by a BN? From a causal model? Suff.&nec.? Can we interpret edges as causal relations with

More information

Causal Bayesian networks. Peter Antal

Causal Bayesian networks. Peter Antal Causal Bayesian networks Peter Antal antal@mit.bme.hu A.I. 11/25/2015 1 Can we represent exactly (in)dependencies by a BN? From a causal model? Suff.&nec.? Can we interpret edges as causal relations with

More information

Bayesian networks as causal models. Peter Antal

Bayesian networks as causal models. Peter Antal Bayesian networks as causal models Peter Antal antal@mit.bme.hu A.I. 3/20/2018 1 Can we represent exactly (in)dependencies by a BN? From a causal model? Suff.&nec.? Can we interpret edges as causal relations

More information

Bayesian learning Probably Approximately Correct Learning

Bayesian learning Probably Approximately Correct Learning Bayesian learning Probably Approximately Correct Learning Peter Antal antal@mit.bme.hu A.I. December 1, 2017 1 Learning paradigms Bayesian learning Falsification hypothesis testing approach Probably Approximately

More information

Fusion in simple models

Fusion in simple models Fusion in simple models Peter Antal antal@mit.bme.hu A.I. February 8, 2018 1 Basic concepts of probability theory Joint distribution Conditional probability Bayes rule Chain rule Marginalization General

More information

From inductive inference to machine learning

From inductive inference to machine learning From inductive inference to machine learning ADAPTED FROM AIMA SLIDES Russel&Norvig:Artificial Intelligence: a modern approach AIMA: Inductive inference AIMA: Inductive inference 1 Outline Bayesian inferences

More information

Statistical Learning. Philipp Koehn. 10 November 2015

Statistical Learning. Philipp Koehn. 10 November 2015 Statistical Learning Philipp Koehn 10 November 2015 Outline 1 Learning agents Inductive learning Decision tree learning Measuring learning performance Bayesian learning Maximum a posteriori and maximum

More information

Introduction to Artificial Intelligence. Learning from Oberservations

Introduction to Artificial Intelligence. Learning from Oberservations Introduction to Artificial Intelligence Learning from Oberservations Bernhard Beckert UNIVERSITÄT KOBLENZ-LANDAU Winter Term 2004/2005 B. Beckert: KI für IM p.1 Outline Learning agents Inductive learning

More information

Lecture 4 October 18th

Lecture 4 October 18th Directed and undirected graphical models Fall 2017 Lecture 4 October 18th Lecturer: Guillaume Obozinski Scribe: In this lecture, we will assume that all random variables are discrete, to keep notations

More information

1. what conditional independencies are implied by the graph. 2. whether these independecies correspond to the probability distribution

1. what conditional independencies are implied by the graph. 2. whether these independecies correspond to the probability distribution NETWORK ANALYSIS Lourens Waldorp PROBABILITY AND GRAPHS The objective is to obtain a correspondence between the intuitive pictures (graphs) of variables of interest and the probability distributions of

More information

Introduction to Causal Calculus

Introduction to Causal Calculus Introduction to Causal Calculus Sanna Tyrväinen University of British Columbia August 1, 2017 1 / 1 2 / 1 Bayesian network Bayesian networks are Directed Acyclic Graphs (DAGs) whose nodes represent random

More information

Probability theory: elements

Probability theory: elements Probability theory: elements Peter Antal antal@mit.bme.hu A.I. February 17, 2017 1 Joint distribution Conditional robability Indeendence, conditional indeendence Bayes rule Marginalization/Exansion Chain

More information

Undirected Graphical Models: Markov Random Fields

Undirected Graphical Models: Markov Random Fields Undirected Graphical Models: Markov Random Fields 40-956 Advanced Topics in AI: Probabilistic Graphical Models Sharif University of Technology Soleymani Spring 2015 Markov Random Field Structure: undirected

More information

#!" $"" % &'' % " ( Data analysis process Bayesian decision theoretic foundation Causal inference Open access data, publication, model, computation

#! $ % &'' %  ( Data analysis process Bayesian decision theoretic foundation Causal inference Open access data, publication, model, computation !" #!" $"" % # &'' % " ( Data analysis process Bayesian decision theoretic foundation Causal inference Open access data, publication, model, computation Langley, P. (1978). Bacon: A general discovery system.

More information

Lecture 5: Bayesian Network

Lecture 5: Bayesian Network Lecture 5: Bayesian Network Topics of this lecture What is a Bayesian network? A simple example Formal definition of BN A slightly difficult example Learning of BN An example of learning Important topics

More information

Learning from Observations. Chapter 18, Sections 1 3 1

Learning from Observations. Chapter 18, Sections 1 3 1 Learning from Observations Chapter 18, Sections 1 3 Chapter 18, Sections 1 3 1 Outline Learning agents Inductive learning Decision tree learning Measuring learning performance Chapter 18, Sections 1 3

More information

CS 380: ARTIFICIAL INTELLIGENCE MACHINE LEARNING. Santiago Ontañón

CS 380: ARTIFICIAL INTELLIGENCE MACHINE LEARNING. Santiago Ontañón CS 380: ARTIFICIAL INTELLIGENCE MACHINE LEARNING Santiago Ontañón so367@drexel.edu Summary so far: Rational Agents Problem Solving Systematic Search: Uninformed Informed Local Search Adversarial Search

More information

CS 380: ARTIFICIAL INTELLIGENCE

CS 380: ARTIFICIAL INTELLIGENCE CS 380: ARTIFICIAL INTELLIGENCE MACHINE LEARNING 11/11/2013 Santiago Ontañón santi@cs.drexel.edu https://www.cs.drexel.edu/~santi/teaching/2013/cs380/intro.html Summary so far: Rational Agents Problem

More information

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2014

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2014 Bayesian Networks: Construction, Inference, Learning and Causal Interpretation Volker Tresp Summer 2014 1 Introduction So far we were mostly concerned with supervised learning: we predicted one or several

More information

ANALYTIC COMPARISON. Pearl and Rubin CAUSAL FRAMEWORKS

ANALYTIC COMPARISON. Pearl and Rubin CAUSAL FRAMEWORKS ANALYTIC COMPARISON of Pearl and Rubin CAUSAL FRAMEWORKS Content Page Part I. General Considerations Chapter 1. What is the question? 16 Introduction 16 1. Randomization 17 1.1 An Example of Randomization

More information

Conditional Independence and Factorization

Conditional Independence and Factorization Conditional Independence and Factorization Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr

More information

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz Uncertainty & Probabilities & Bandits Daniel Hennes 16.11.2017 (WS 2017/18) University Stuttgart - IPVS - Machine Learning & Robotics 1 Today Uncertainty Probability

More information

Introduction to Artificial Intelligence. Unit # 11

Introduction to Artificial Intelligence. Unit # 11 Introduction to Artificial Intelligence Unit # 11 1 Course Outline Overview of Artificial Intelligence State Space Representation Search Techniques Machine Learning Logic Probabilistic Reasoning/Bayesian

More information

Causality. Pedro A. Ortega. 18th February Computational & Biological Learning Lab University of Cambridge

Causality. Pedro A. Ortega. 18th February Computational & Biological Learning Lab University of Cambridge Causality Pedro A. Ortega Computational & Biological Learning Lab University of Cambridge 18th February 2010 Why is causality important? The future of machine learning is to control (the world). Examples

More information

COS402- Artificial Intelligence Fall Lecture 10: Bayesian Networks & Exact Inference

COS402- Artificial Intelligence Fall Lecture 10: Bayesian Networks & Exact Inference COS402- Artificial Intelligence Fall 2015 Lecture 10: Bayesian Networks & Exact Inference Outline Logical inference and probabilistic inference Independence and conditional independence Bayes Nets Semantics

More information

CMPT Machine Learning. Bayesian Learning Lecture Scribe for Week 4 Jan 30th & Feb 4th

CMPT Machine Learning. Bayesian Learning Lecture Scribe for Week 4 Jan 30th & Feb 4th CMPT 882 - Machine Learning Bayesian Learning Lecture Scribe for Week 4 Jan 30th & Feb 4th Stephen Fagan sfagan@sfu.ca Overview: Introduction - Who was Bayes? - Bayesian Statistics Versus Classical Statistics

More information

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2016

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2016 Bayesian Networks: Construction, Inference, Learning and Causal Interpretation Volker Tresp Summer 2016 1 Introduction So far we were mostly concerned with supervised learning: we predicted one or several

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 3 Linear

More information

4.1 Notation and probability review

4.1 Notation and probability review Directed and undirected graphical models Fall 2015 Lecture 4 October 21st Lecturer: Simon Lacoste-Julien Scribe: Jaime Roquero, JieYing Wu 4.1 Notation and probability review 4.1.1 Notations Let us recall

More information

Learning in Bayesian Networks

Learning in Bayesian Networks Learning in Bayesian Networks Florian Markowetz Max-Planck-Institute for Molecular Genetics Computational Molecular Biology Berlin Berlin: 20.06.2002 1 Overview 1. Bayesian Networks Stochastic Networks

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Introduction. Basic Probability and Bayes Volkan Cevher, Matthias Seeger Ecole Polytechnique Fédérale de Lausanne 26/9/2011 (EPFL) Graphical Models 26/9/2011 1 / 28 Outline

More information

Uncertainty and Bayesian Networks

Uncertainty and Bayesian Networks Uncertainty and Bayesian Networks Tutorial 3 Tutorial 3 1 Outline Uncertainty Probability Syntax and Semantics for Uncertainty Inference Independence and Bayes Rule Syntax and Semantics for Bayesian Networks

More information

From Causality, Second edition, Contents

From Causality, Second edition, Contents From Causality, Second edition, 2009. Preface to the First Edition Preface to the Second Edition page xv xix 1 Introduction to Probabilities, Graphs, and Causal Models 1 1.1 Introduction to Probability

More information

Causal Inference & Reasoning with Causal Bayesian Networks

Causal Inference & Reasoning with Causal Bayesian Networks Causal Inference & Reasoning with Causal Bayesian Networks Neyman-Rubin Framework Potential Outcome Framework: for each unit k and each treatment i, there is a potential outcome on an attribute U, U ik,

More information

Naïve Bayes classification

Naïve Bayes classification Naïve Bayes classification 1 Probability theory Random variable: a variable whose possible values are numerical outcomes of a random phenomenon. Examples: A person s height, the outcome of a coin toss

More information

Computational Genomics. Systems biology. Putting it together: Data integration using graphical models

Computational Genomics. Systems biology. Putting it together: Data integration using graphical models 02-710 Computational Genomics Systems biology Putting it together: Data integration using graphical models High throughput data So far in this class we discussed several different types of high throughput

More information

Probability. CS 3793/5233 Artificial Intelligence Probability 1

Probability. CS 3793/5233 Artificial Intelligence Probability 1 CS 3793/5233 Artificial Intelligence 1 Motivation Motivation Random Variables Semantics Dice Example Joint Dist. Ex. Axioms Agents don t have complete knowledge about the world. Agents need to make decisions

More information

Conditional Independence

Conditional Independence Conditional Independence Sargur Srihari srihari@cedar.buffalo.edu 1 Conditional Independence Topics 1. What is Conditional Independence? Factorization of probability distribution into marginals 2. Why

More information

Quantifying uncertainty & Bayesian networks

Quantifying uncertainty & Bayesian networks Quantifying uncertainty & Bayesian networks CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2016 Soleymani Artificial Intelligence: A Modern Approach, 3 rd Edition,

More information

GLOBEX Bioinformatics (Summer 2015) Genetic networks and gene expression data

GLOBEX Bioinformatics (Summer 2015) Genetic networks and gene expression data GLOBEX Bioinformatics (Summer 2015) Genetic networks and gene expression data 1 Gene Networks Definition: A gene network is a set of molecular components, such as genes and proteins, and interactions between

More information

Statistical Approaches to Learning and Discovery

Statistical Approaches to Learning and Discovery Statistical Approaches to Learning and Discovery Graphical Models Zoubin Ghahramani & Teddy Seidenfeld zoubin@cs.cmu.edu & teddy@stat.cmu.edu CALD / CS / Statistics / Philosophy Carnegie Mellon University

More information

Undirected Graphical Models

Undirected Graphical Models Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Introduction 2 Properties Properties 3 Generative vs. Conditional

More information

Directed Graphical Models or Bayesian Networks

Directed Graphical Models or Bayesian Networks Directed Graphical Models or Bayesian Networks Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Bayesian Networks One of the most exciting recent advancements in statistical AI Compact

More information

Building Bayesian Networks. Lecture3: Building BN p.1

Building Bayesian Networks. Lecture3: Building BN p.1 Building Bayesian Networks Lecture3: Building BN p.1 The focus today... Problem solving by Bayesian networks Designing Bayesian networks Qualitative part (structure) Quantitative part (probability assessment)

More information

Probabilistic Reasoning. (Mostly using Bayesian Networks)

Probabilistic Reasoning. (Mostly using Bayesian Networks) Probabilistic Reasoning (Mostly using Bayesian Networks) Introduction: Why probabilistic reasoning? The world is not deterministic. (Usually because information is limited.) Ways of coping with uncertainty

More information

Algorithmic Probability

Algorithmic Probability Algorithmic Probability From Scholarpedia From Scholarpedia, the free peer-reviewed encyclopedia p.19046 Curator: Marcus Hutter, Australian National University Curator: Shane Legg, Dalle Molle Institute

More information

CSC 411 Lecture 3: Decision Trees

CSC 411 Lecture 3: Decision Trees CSC 411 Lecture 3: Decision Trees Roger Grosse, Amir-massoud Farahmand, and Juan Carrasquilla University of Toronto UofT CSC 411: 03-Decision Trees 1 / 33 Today Decision Trees Simple but powerful learning

More information

Bayesian Networks and Decision Graphs

Bayesian Networks and Decision Graphs Bayesian Networks and Decision Graphs A 3-week course at Reykjavik University Finn V. Jensen & Uffe Kjærulff ({fvj,uk}@cs.aau.dk) Group of Machine Intelligence Department of Computer Science, Aalborg University

More information

Naïve Bayes classification. p ij 11/15/16. Probability theory. Probability theory. Probability theory. X P (X = x i )=1 i. Marginal Probability

Naïve Bayes classification. p ij 11/15/16. Probability theory. Probability theory. Probability theory. X P (X = x i )=1 i. Marginal Probability Probability theory Naïve Bayes classification Random variable: a variable whose possible values are numerical outcomes of a random phenomenon. s: A person s height, the outcome of a coin toss Distinguish

More information

Chris Bishop s PRML Ch. 8: Graphical Models

Chris Bishop s PRML Ch. 8: Graphical Models Chris Bishop s PRML Ch. 8: Graphical Models January 24, 2008 Introduction Visualize the structure of a probabilistic model Design and motivate new models Insights into the model s properties, in particular

More information

Ch.6 Uncertain Knowledge. Logic and Uncertainty. Representation. One problem with logical approaches: Department of Computer Science

Ch.6 Uncertain Knowledge. Logic and Uncertainty. Representation. One problem with logical approaches: Department of Computer Science Ch.6 Uncertain Knowledge Representation Hantao Zhang http://www.cs.uiowa.edu/ hzhang/c145 The University of Iowa Department of Computer Science Artificial Intelligence p.1/39 Logic and Uncertainty One

More information

CS 5522: Artificial Intelligence II

CS 5522: Artificial Intelligence II CS 5522: Artificial Intelligence II Bayes Nets: Independence Instructor: Alan Ritter Ohio State University [These slides were adapted from CS188 Intro to AI at UC Berkeley. All materials available at http://ai.berkeley.edu.]

More information

Probabilistic Models. Models describe how (a portion of) the world works

Probabilistic Models. Models describe how (a portion of) the world works Probabilistic Models Models describe how (a portion of) the world works Models are always simplifications May not account for every variable May not account for all interactions between variables All models

More information

Y. Xiang, Inference with Uncertain Knowledge 1

Y. Xiang, Inference with Uncertain Knowledge 1 Inference with Uncertain Knowledge Objectives Why must agent use uncertain knowledge? Fundamentals of Bayesian probability Inference with full joint distributions Inference with Bayes rule Bayesian networks

More information

CHAPTER-17. Decision Tree Induction

CHAPTER-17. Decision Tree Induction CHAPTER-17 Decision Tree Induction 17.1 Introduction 17.2 Attribute selection measure 17.3 Tree Pruning 17.4 Extracting Classification Rules from Decision Trees 17.5 Bayesian Classification 17.6 Bayes

More information

Bounding the Probability of Causation in Mediation Analysis

Bounding the Probability of Causation in Mediation Analysis arxiv:1411.2636v1 [math.st] 10 Nov 2014 Bounding the Probability of Causation in Mediation Analysis A. P. Dawid R. Murtas M. Musio February 16, 2018 Abstract Given empirical evidence for the dependence

More information

Graphical models and causality: Directed acyclic graphs (DAGs) and conditional (in)dependence

Graphical models and causality: Directed acyclic graphs (DAGs) and conditional (in)dependence Graphical models and causality: Directed acyclic graphs (DAGs) and conditional (in)dependence General overview Introduction Directed acyclic graphs (DAGs) and conditional independence DAGs and causal effects

More information

Bayesian Networks BY: MOHAMAD ALSABBAGH

Bayesian Networks BY: MOHAMAD ALSABBAGH Bayesian Networks BY: MOHAMAD ALSABBAGH Outlines Introduction Bayes Rule Bayesian Networks (BN) Representation Size of a Bayesian Network Inference via BN BN Learning Dynamic BN Introduction Conditional

More information

Intelligent Systems: Reasoning and Recognition. Reasoning with Bayesian Networks

Intelligent Systems: Reasoning and Recognition. Reasoning with Bayesian Networks Intelligent Systems: Reasoning and Recognition James L. Crowley ENSIMAG 2 / MoSIG M1 Second Semester 2016/2017 Lesson 13 24 march 2017 Reasoning with Bayesian Networks Naïve Bayesian Systems...2 Example

More information

CS 5522: Artificial Intelligence II

CS 5522: Artificial Intelligence II CS 5522: Artificial Intelligence II Bayes Nets Instructor: Alan Ritter Ohio State University [These slides were adapted from CS188 Intro to AI at UC Berkeley. All materials available at http://ai.berkeley.edu.]

More information

1. Courses are either tough or boring. 2. Not all courses are boring. 3. Therefore there are tough courses. (Cx, Tx, Bx, )

1. Courses are either tough or boring. 2. Not all courses are boring. 3. Therefore there are tough courses. (Cx, Tx, Bx, ) Logic FOL Syntax FOL Rules (Copi) 1. Courses are either tough or boring. 2. Not all courses are boring. 3. Therefore there are tough courses. (Cx, Tx, Bx, ) Dealing with Time Translate into first-order

More information

Bayesian Networks Inference with Probabilistic Graphical Models

Bayesian Networks Inference with Probabilistic Graphical Models 4190.408 2016-Spring Bayesian Networks Inference with Probabilistic Graphical Models Byoung-Tak Zhang intelligence Lab Seoul National University 4190.408 Artificial (2016-Spring) 1 Machine Learning? Learning

More information

Bayesian networks. Soleymani. CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2018

Bayesian networks. Soleymani. CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2018 Bayesian networks CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2018 Soleymani Slides have been adopted from Klein and Abdeel, CS188, UC Berkeley. Outline Probability

More information

An Introduction to Bayesian Machine Learning

An Introduction to Bayesian Machine Learning 1 An Introduction to Bayesian Machine Learning José Miguel Hernández-Lobato Department of Engineering, Cambridge University April 8, 2013 2 What is Machine Learning? The design of computational systems

More information

Probabilistic Causal Models

Probabilistic Causal Models Probabilistic Causal Models A Short Introduction Robin J. Evans www.stat.washington.edu/ rje42 ACMS Seminar, University of Washington 24th February 2011 1/26 Acknowledgements This work is joint with Thomas

More information

Lecture Notes 22 Causal Inference

Lecture Notes 22 Causal Inference Lecture Notes 22 Causal Inference Prediction and causation are very different. Typical questions are: Prediction: Predict after observing = x Causation: Predict after setting = x. Causation involves predicting

More information

Data Analysis and Uncertainty Part 1: Random Variables

Data Analysis and Uncertainty Part 1: Random Variables Data Analysis and Uncertainty Part 1: Random Variables Instructor: Sargur N. University at Buffalo The State University of New York srihari@cedar.buffalo.edu 1 Topics 1. Why uncertainty exists? 2. Dealing

More information

Probabilistic Models

Probabilistic Models Bayes Nets 1 Probabilistic Models Models describe how (a portion of) the world works Models are always simplifications May not account for every variable May not account for all interactions between variables

More information

Algorithmisches Lernen/Machine Learning

Algorithmisches Lernen/Machine Learning Algorithmisches Lernen/Machine Learning Part 1: Stefan Wermter Introduction Connectionist Learning (e.g. Neural Networks) Decision-Trees, Genetic Algorithms Part 2: Norman Hendrich Support-Vector Machines

More information

Bayesian networks. Chapter 14, Sections 1 4

Bayesian networks. Chapter 14, Sections 1 4 Bayesian networks Chapter 14, Sections 1 4 Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c Stuart Russel and Peter Norvig, 2004 Chapter 14, Sections 1 4 1 Bayesian networks

More information

Directed and Undirected Graphical Models

Directed and Undirected Graphical Models Directed and Undirected Davide Bacciu Dipartimento di Informatica Università di Pisa bacciu@di.unipi.it Machine Learning: Neural Networks and Advanced Models (AA2) Last Lecture Refresher Lecture Plan Directed

More information

Outline. CSE 573: Artificial Intelligence Autumn Agent. Partial Observability. Markov Decision Process (MDP) 10/31/2012

Outline. CSE 573: Artificial Intelligence Autumn Agent. Partial Observability. Markov Decision Process (MDP) 10/31/2012 CSE 573: Artificial Intelligence Autumn 2012 Reasoning about Uncertainty & Hidden Markov Models Daniel Weld Many slides adapted from Dan Klein, Stuart Russell, Andrew Moore & Luke Zettlemoyer 1 Outline

More information

CS 188: Artificial Intelligence Fall 2008

CS 188: Artificial Intelligence Fall 2008 CS 188: Artificial Intelligence Fall 2008 Lecture 14: Bayes Nets 10/14/2008 Dan Klein UC Berkeley 1 1 Announcements Midterm 10/21! One page note sheet Review sessions Friday and Sunday (similar) OHs on

More information

CS 343: Artificial Intelligence

CS 343: Artificial Intelligence CS 343: Artificial Intelligence Bayes Nets Prof. Scott Niekum The University of Texas at Austin [These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188

More information

CSCE 478/878 Lecture 6: Bayesian Learning

CSCE 478/878 Lecture 6: Bayesian Learning Bayesian Methods Not all hypotheses are created equal (even if they are all consistent with the training data) Outline CSCE 478/878 Lecture 6: Bayesian Learning Stephen D. Scott (Adapted from Tom Mitchell

More information

Bayesian Learning. Two Roles for Bayesian Methods. Bayes Theorem. Choosing Hypotheses

Bayesian Learning. Two Roles for Bayesian Methods. Bayes Theorem. Choosing Hypotheses Bayesian Learning Two Roles for Bayesian Methods Probabilistic approach to inference. Quantities of interest are governed by prob. dist. and optimal decisions can be made by reasoning about these prob.

More information

Computational Systems Biology: Biology X

Computational Systems Biology: Biology X Bud Mishra Room 1002, 715 Broadway, Courant Institute, NYU, New York, USA L#7:(Mar-23-2010) Genome Wide Association Studies 1 The law of causality... is a relic of a bygone age, surviving, like the monarchy,

More information

Today. Why do we need Bayesian networks (Bayes nets)? Factoring the joint probability. Conditional independence

Today. Why do we need Bayesian networks (Bayes nets)? Factoring the joint probability. Conditional independence Bayesian Networks Today Why do we need Bayesian networks (Bayes nets)? Factoring the joint probability Conditional independence What is a Bayes net? Mostly, we discuss discrete r.v. s What can you do with

More information

Probabilistic Graphical Models and Bayesian Networks. Artificial Intelligence Bert Huang Virginia Tech

Probabilistic Graphical Models and Bayesian Networks. Artificial Intelligence Bert Huang Virginia Tech Probabilistic Graphical Models and Bayesian Networks Artificial Intelligence Bert Huang Virginia Tech Concept Map for Segment Probabilistic Graphical Models Probabilistic Time Series Models Particle Filters

More information

CAUSALITY. Models, Reasoning, and Inference 1 CAMBRIDGE UNIVERSITY PRESS. Judea Pearl. University of California, Los Angeles

CAUSALITY. Models, Reasoning, and Inference 1 CAMBRIDGE UNIVERSITY PRESS. Judea Pearl. University of California, Los Angeles CAUSALITY Models, Reasoning, and Inference Judea Pearl University of California, Los Angeles 1 CAMBRIDGE UNIVERSITY PRESS Preface page xiii 1 Introduction to Probabilities, Graphs, and Causal Models 1

More information

Mathematical Formulation of Our Example

Mathematical Formulation of Our Example Mathematical Formulation of Our Example We define two binary random variables: open and, where is light on or light off. Our question is: What is? Computer Vision 1 Combining Evidence Suppose our robot

More information

CS Lecture 3. More Bayesian Networks

CS Lecture 3. More Bayesian Networks CS 6347 Lecture 3 More Bayesian Networks Recap Last time: Complexity challenges Representing distributions Computing probabilities/doing inference Introduction to Bayesian networks Today: D-separation,

More information

Artificial Intelligence Bayes Nets: Independence

Artificial Intelligence Bayes Nets: Independence Artificial Intelligence Bayes Nets: Independence Instructors: David Suter and Qince Li Course Delivered @ Harbin Institute of Technology [Many slides adapted from those created by Dan Klein and Pieter

More information

Markov Networks. l Like Bayes Nets. l Graphical model that describes joint probability distribution using tables (AKA potentials)

Markov Networks. l Like Bayes Nets. l Graphical model that describes joint probability distribution using tables (AKA potentials) Markov Networks l Like Bayes Nets l Graphical model that describes joint probability distribution using tables (AKA potentials) l Nodes are random variables l Labels are outcomes over the variables Markov

More information

Statistical testing. Samantha Kleinberg. October 20, 2009

Statistical testing. Samantha Kleinberg. October 20, 2009 October 20, 2009 Intro to significance testing Significance testing and bioinformatics Gene expression: Frequently have microarray data for some group of subjects with/without the disease. Want to find

More information

Announcements. CS 188: Artificial Intelligence Spring Probability recap. Outline. Bayes Nets: Big Picture. Graphical Model Notation

Announcements. CS 188: Artificial Intelligence Spring Probability recap. Outline. Bayes Nets: Big Picture. Graphical Model Notation CS 188: Artificial Intelligence Spring 2010 Lecture 15: Bayes Nets II Independence 3/9/2010 Pieter Abbeel UC Berkeley Many slides over the course adapted from Dan Klein, Stuart Russell, Andrew Moore Current

More information

9/12/17. Types of learning. Modeling data. Supervised learning: Classification. Supervised learning: Regression. Unsupervised learning: Clustering

9/12/17. Types of learning. Modeling data. Supervised learning: Classification. Supervised learning: Regression. Unsupervised learning: Clustering Types of learning Modeling data Supervised: we know input and targets Goal is to learn a model that, given input data, accurately predicts target data Unsupervised: we know the input only and want to make

More information

BN Semantics 3 Now it s personal! Parameter Learning 1

BN Semantics 3 Now it s personal! Parameter Learning 1 Readings: K&F: 3.4, 14.1, 14.2 BN Semantics 3 Now it s personal! Parameter Learning 1 Graphical Models 10708 Carlos Guestrin Carnegie Mellon University September 22 nd, 2006 1 Building BNs from independence

More information

Machine Learning (CS 567) Lecture 2

Machine Learning (CS 567) Lecture 2 Machine Learning (CS 567) Lecture 2 Time: T-Th 5:00pm - 6:20pm Location: GFS118 Instructor: Sofus A. Macskassy (macskass@usc.edu) Office: SAL 216 Office hours: by appointment Teaching assistant: Cheol

More information

An Introduction to Bayesian Networks: Representation and Approximate Inference

An Introduction to Bayesian Networks: Representation and Approximate Inference An Introduction to Bayesian Networks: Representation and Approximate Inference Marek Grześ Department of Computer Science University of York Graphical Models Reading Group May 7, 2009 Data and Probabilities

More information

Machine Learning

Machine Learning Machine Learning 10-601 Tom M. Mitchell Machine Learning Department Carnegie Mellon University August 30, 2017 Today: Decision trees Overfitting The Big Picture Coming soon Probabilistic learning MLE,

More information

Graphical Models - Part I

Graphical Models - Part I Graphical Models - Part I Oliver Schulte - CMPT 726 Bishop PRML Ch. 8, some slides from Russell and Norvig AIMA2e Outline Probabilistic Models Bayesian Networks Markov Random Fields Inference Outline Probabilistic

More information

Causal Discovery by Computer

Causal Discovery by Computer Causal Discovery by Computer Clark Glymour Carnegie Mellon University 1 Outline 1. A century of mistakes about causation and discovery: 1. Fisher 2. Yule 3. Spearman/Thurstone 2. Search for causes is statistical

More information

Artificial Intelligence Uncertainty

Artificial Intelligence Uncertainty Artificial Intelligence Uncertainty Ch. 13 Uncertainty Let action A t = leave for airport t minutes before flight Will A t get me there on time? A 25, A 60, A 3600 Uncertainty: partial observability (road

More information

PROBABILISTIC REASONING SYSTEMS

PROBABILISTIC REASONING SYSTEMS PROBABILISTIC REASONING SYSTEMS In which we explain how to build reasoning systems that use network models to reason with uncertainty according to the laws of probability theory. Outline Knowledge in uncertain

More information

Bayesian Networks Representation

Bayesian Networks Representation Bayesian Networks Representation Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University March 19 th, 2007 Handwriting recognition Character recognition, e.g., kernel SVMs a c z rr r r

More information

Markov Networks. l Like Bayes Nets. l Graph model that describes joint probability distribution using tables (AKA potentials)

Markov Networks. l Like Bayes Nets. l Graph model that describes joint probability distribution using tables (AKA potentials) Markov Networks l Like Bayes Nets l Graph model that describes joint probability distribution using tables (AKA potentials) l Nodes are random variables l Labels are outcomes over the variables Markov

More information

CS 188: Artificial Intelligence Spring Announcements

CS 188: Artificial Intelligence Spring Announcements CS 188: Artificial Intelligence Spring 2011 Lecture 14: Bayes Nets II Independence 3/9/2011 Pieter Abbeel UC Berkeley Many slides over the course adapted from Dan Klein, Stuart Russell, Andrew Moore Announcements

More information

CS6220: DATA MINING TECHNIQUES

CS6220: DATA MINING TECHNIQUES CS6220: DATA MINING TECHNIQUES Chapter 8&9: Classification: Part 3 Instructor: Yizhou Sun yzsun@ccs.neu.edu March 12, 2013 Midterm Report Grade Distribution 90-100 10 80-89 16 70-79 8 60-69 4

More information

Conditional probabilities and graphical models

Conditional probabilities and graphical models Conditional probabilities and graphical models Thomas Mailund Bioinformatics Research Centre (BiRC), Aarhus University Probability theory allows us to describe uncertainty in the processes we model within

More information