From inductive inference to machine learning

Size: px
Start display at page:

Download "From inductive inference to machine learning"

Transcription

1 From inductive inference to machine learning ADAPTED FROM AIMA SLIDES Russel&Norvig:Artificial Intelligence: a modern approach AIMA: Inductive inference AIMA: Inductive inference 1

2 Outline Bayesian inferences with multiple models Bayesian learning Maximum aposterioriand maximum likelihood learning Bayes net learning ML parameter learning with complete data linear regression Inductive learning Decision tree learning Measuring learning performance AIMA: Inductive inference 2

3 Bayesian inference with multiple models Assume multiple models M i =(S i,θ i ) with prior p(m i ) i =1,...,M. The inference p(q = q E = e) can be performed as follows: p(q e) =Σ i=1,...,m p(q, M i e) =Σ i=1,...,m p(q M i,e)p(m i e) Note that p(m i e) is a posterior over models with evidence e: p(m i e) = p(e M i)p(m i ) p(e) p(e M i )p(m i ) i.e., the evidence e reweight our beliefs in multiple models. The inference is performed by Bayesian Model Averaging (BMA). Epicurus (342(?) B.C B.C.) principle of multiple explanations which states that one should keep all hypotheses that are consistent with the data. AIMA: Inductive inference 3

4 Bayesian model averaging with data Beside models, assume N multiple complete observations D N. The standard inference p(q = q E = e, D N ) is defined as: p(q e, D N )=Σ i=1,...,m p(q, M i e, D N )=Σ i=1,...,m p(q M i,e,d N )p(m i e, D N ) Because p(q M i,e,d N )=p(q M i,e) and p(m i e, D N ) p(m i D N ): p(q e, D N ) Σ i=1,...,m p(q M i,e)p(m i D N ) where again p(m i D N ) is a posterior after observations D N : p(m i D N )= p(d N M i )p(m i ) p(e) p(d N M i ) p(m }{{} i ). }{{} likelihood prior i.e., our rational foundation, probability theory, automatically includes and normatively defines learning from observations as standard Bayesian inference! AIMA: Inductive inference 4

5 Full Bayesian learning View learning as Bayesian updating of a probability distribution over the hypothesis space H is the hypothesis variable, values h 1,h 2,...,priorP(H) jth observation d j gives the outcome of random variable D j training data d = d 1,...,d N Given the data so far, each hypothesis has a posterior probability: P (h i d) =αp (d h i )P (h i ) where P (d h i ) is called the likelihood Predictions use a likelihood-weighted average over the hypotheses: P(X d) =Σ i P(X d,h i )P (h i d) =Σ i P(X h i )P (h i d) No need to pick one best-guess hypothesis! AIMA: Inductive inference 5

6 Example Suppose there are five kinds of bags of candies: 10% are h 1 : 100% cherry candies 20% are h 2 : 75% cherry candies + 25% lime candies 40% are h 3 : 50% cherry candies + 50% lime candies 20% are h 4 : 25% cherry candies + 75% lime candies 10% are h 5 : 100% lime candies Then we observe candies drawn from some bag: What kind of bag is it? What flavour will the next candy be? AIMA: Inductive inference 6

7 Posterior probability of hypotheses Posterior probability of hypothesis P(h 1 d) P(h 2 d) P(h 3 d) P(h 4 d) P(h 5 d) Number of samples in d AIMA: Inductive inference 7

8 Prediction probability 1 P(next candy is lime d) Number of samples in d AIMA: Inductive inference 8

9 MAP approximation Summing over the hypothesis space is often intractable (e.g., 18,446,744,073,709,551,616 Boolean functions of 6 attributes) Maximum a posteriori (MAP) learning: choose h MAP maximizing P (h i d) I.e., maximize P (d h i )P (h i ) or log P (d h i )+logp (h i ) Log terms can be viewed as (negative of) bits to encode data given hypothesis + bits to encode hypothesis This is the basic idea of minimum description length (MDL) learning For deterministic hypotheses, P (d h i ) is 1 if consistent, 0 otherwise MAP = simplest consistent hypothesis (cf. science) AIMA: Inductive inference 9

10 ML approximation For large data sets, prior becomes irrelevant Maximum likelihood (ML) learning: choose h ML maximizing P (d h i ) I.e., simply get the best fit to the data; identical to MAP for uniform prior (which is reasonable if all hypotheses are of the same complexity) ML is the standard (non-bayesian) statistical learning method AIMA: Inductive inference 10

11 ML parameter learning in Bayes nets Bag from a new manufacturer; fraction θ of cherry candies? Any θ is possible: continuum of hypotheses h θ θ is a parameter for this simple (binomial) model. P( F=cherry) θ Flavor Suppose we unwrap N candies, c cherries and l = N c limes These are i.i.d. (independent, identically distributed) observations, P (d h θ )= N j =1 P (d j h θ )=θ c (1 θ) l Maximize this w.r.t. θ which is easier for the log-likelihood: L(d h θ )=logp (d h θ )= N dl(d h θ ) dθ j =1 log P (d j h θ )=c log θ + l log(1 θ) = c θ l 1 θ =0 θ = c c + l = c N AIMA: Inductive inference 11

12 Inductive learning (a.k.a. Science) Simplest form: learn a function from examples (tabula rasa) f is the target function An example is a pair x, f(x), e.g., O O X X X, +1 Problem: find a(n) hypothesis h such that h f given a training set of examples. (This is a highly simplified model of real learning: Ignores prior knowledge Assumes a deterministic, observable environment Assumes examples are given Assumes that the agent wants to learn f why?) AIMA: Inductive inference 12

13 Inductive learning method Construct/adjust h to agree with f on training set (h is consistent if it agrees with f on all examples) E.g., curve fitting: f(x) x AIMA: Inductive inference 13

14 Inductive learning method Construct/adjust h to agree with f on training set (h is consistent if it agrees with f on all examples) E.g., curve fitting: f(x) x AIMA: Inductive inference 14

15 Inductive learning method Construct/adjust h to agree with f on training set (h is consistent if it agrees with f on all examples) E.g., curve fitting: f(x) x AIMA: Inductive inference 15

16 Inductive learning method Construct/adjust h to agree with f on training set (h is consistent if it agrees with f on all examples) E.g., curve fitting: f(x) x AIMA: Inductive inference 16

17 Inductive learning method Construct/adjust h to agree with f on training set (h is consistent if it agrees with f on all examples) E.g., curve fitting: f(x) x AIMA: Inductive inference 17

18 Ockham s razor Ockham s razor: balance consistency and simplicity The principle of Occam s razor ( , sometimes spelt Ockham). Occam s razor states that when inferring causes entities should not be multiplied beyond necessity. This is widely understood to mean: Among all hypotheses consistent with the observations, choose the simplest. In terms of a prior distribution over hypotheses, this is the same as giving simpler hypotheses higher a priori probability, and more complex ones lower probability. AIMA: Inductive inference 18

19 Attribute-based representations Examples described by attribute values (Boolean, discrete, continuous, etc.), e.g., situations where I will/won t wait for a table: Example Attributes Target Alt Bar Fri Hun Pat Price Rain Res Type Est WillWait X 1 T F F T Some $$$ F T French 0 10 T X 2 T F F T Full $ F F Thai F X 3 F T F F Some $ F F Burger 0 10 T X 4 T F T T Full $ F F Thai T X 5 T F T F Full $$$ F T French >60 F X 6 F T F T Some $$ T T Italian 0 10 T X 7 F T F F None $ T F Burger 0 10 F X 8 F F F T Some $$ T T Thai 0 10 T X 9 F T T F Full $ T F Burger >60 F X 10 T T T T Full $$$ F T Italian F X 11 F F F F None $ F F Thai 0 10 F X 12 T T T T Full $ F F Burger T Classification of examples is positive (T) or negative (F) AIMA: Inductive inference 19

20 Decision trees Common representation for protocols, e.g. here is the true tree for deciding whether to wait: Patrons? None Some Full F T WaitEstimate? > F Alternate? Hungry? T No Yes No Yes Reservation? Fri/Sat? T Alternate? No Yes No Yes No Yes Bar? T F T T Raining? No Yes No Yes F T F T AIMA: Inductive inference 20

21 Expressiveness Decision trees can express any function of the input attributes. E.g., for Boolean functions, truth table row path to leaf: A B A xor B F F F F T T T F T T T F F F B A F T B T F T T T F Trivially, there is a consistent decision tree for any training set with one path to leaf for each example (unless f nondeterministic in x), but it probably won t generalize to new examples. Prefer to find more compact decision trees. AIMA: Inductive inference 21

22 Hypothesis spaces How many distinct decision trees with n Boolean attributes?? AIMA: Inductive inference 22

23 Hypothesis spaces How many distinct decision trees with n Boolean attributes?? = number of Boolean functions AIMA: Inductive inference 23

24 Hypothesis spaces How many distinct decision trees with n Boolean attributes?? = number of Boolean functions = number of distinct truth tables with 2 n rows AIMA: Inductive inference 24

25 Hypothesis spaces How many distinct decision trees with n Boolean attributes?? = number of Boolean functions = number of distinct truth tables with 2 n rows = 2 2n AIMA: Inductive inference 25

26 Hypothesis spaces How many distinct decision trees with n Boolean attributes?? = number of Boolean functions = number of distinct truth tables with 2 n rows = 2 2n E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616 trees AIMA: Inductive inference 26

27 Hypothesis spaces How many distinct decision trees with n Boolean attributes?? = number of Boolean functions = number of distinct truth tables with 2 n rows = 2 2n E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616 trees How many purely conjunctive hypotheses (e.g., Hungry Rain)?? AIMA: Inductive inference 27

28 Hypothesis spaces How many distinct decision trees with n Boolean attributes?? = number of Boolean functions = number of distinct truth tables with 2 n rows = 2 2n E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616 trees How many purely conjunctive hypotheses (e.g., Hungry Rain)?? Each attribute can be in (positive), in (negative), or out 3 n distinct conjunctive hypotheses More expressive hypothesis space increases chance that target function can be expressed increases number of hypotheses consistent w/ training set may get worse predictions AIMA: Inductive inference 28

29 Decision tree learning Aim: find a small tree consistent with the training examples Idea: recursively choose most significant attribute to branch function DTL(examples, attributes, default) returns a decision tree if examples is empty then return default else if all examples have the same classification then return the classification else if attributes is empty then return Mode(examples) else best Choose-Attribute(attributes, examples) tree a new decision tree with root test best for each value v i of best do examples i {elements of examples with best = v i } subtree DTL(examples i, attributes best, Mode(examples)) add a branch to tree with label v i and subtree subtree return tree AIMA: Inductive inference 29

30 Choosing an attribute Idea: a good attribute splits the examples into subsets that are (ideally) all positive or all negative Patrons? Type? None Some Full French Italian Thai Burger Patrons? is a better choice gives information about the classification AIMA: Inductive inference 30

31 Information answers questions Information The more clueless I am about the answer initially, the more information is contained in the answer Scale: 1 bit = answer to Boolean question with prior 0.5, 0.5 Informationinananswerwhenprioris P 1,...,P n is H( P 1,...,P n )=Σ n i =1 P i log 2 P i (also called entropy of the prior) AIMA: Inductive inference 31

32 Information contd. Suppose we have p positive and n negative examples at the root H( p/(p+n),n/(p+n) ) bits needed to classify a new example E.g., for 12 restaurant examples, p = n =6 so we need 1 bit An attribute splits the examples E into subsets E i,eachofwhich (we hope) needs less information to complete the classification Let E i have p i positive and n i negative examples H( p i /(p i + n i ),n i /(p i + n i ) ) bits needed to classify a new example expected number of bits per example over all branches is Σ i p i + n i p + n H( p i/(p i + n i ),n i /(p i + n i ) ) For Patrons?, this is bits, for Type this is (still) 1 bit choose the attribute that minimizes the remaining information needed AIMA: Inductive inference 32

33 Example contd. Decision tree learned from the 12 examples: Patrons? None Some Full F T Hungry? Yes No Type? F French Italian Thai Burger T F Fri/Sat? T No Yes F T Substantially simpler than true tree a more complex hypothesis isn t justified by small amount of data AIMA: Inductive inference 33

34 Decision tree as local conditional model AIMA: Inductive inference 34

35 Performance measurement How do we know that h f? (Hume s Problem of Induction) 1) Use theorems of computational/statistical learning theory 2) Try h on a new test set of examples (use same distribution over example space as training set) Learning curve = % correct on test set for increasing training set size % correct on test set Training set size AIMA: Inductive inference 35

36 Performance measurement contd. Learning curve depends on realizable (can express target function) vs. non-realizable non-realizability can be due to missing attributes or restricted hypothesis class (e.g., thresholded linear function) redundant expressiveness (e.g., loads of irrelevant attributes) % correct 1 realizable redundant nonrealizable # of examples AIMA: Inductive inference 36

37 Summary Learning needed for unknown environments, lazy designers Learning method depends on type of performance element, available feedback, type of component to be improved, and its representation Full Bayesian learning gives best possible predictions but is intractable MAP learning balances complexity with accuracy on training data Maximum likelihood assumes uniform prior, OK for large data sets For supervised learning, the aim is to find a simple hypothesis that is approximately consistent with training examples Decision tree learning using information gain Learning performance = prediction accuracy measured on test set AIMA: Inductive inference 37

Statistical Learning. Philipp Koehn. 10 November 2015

Statistical Learning. Philipp Koehn. 10 November 2015 Statistical Learning Philipp Koehn 10 November 2015 Outline 1 Learning agents Inductive learning Decision tree learning Measuring learning performance Bayesian learning Maximum a posteriori and maximum

More information

Learning from Observations. Chapter 18, Sections 1 3 1

Learning from Observations. Chapter 18, Sections 1 3 1 Learning from Observations Chapter 18, Sections 1 3 Chapter 18, Sections 1 3 1 Outline Learning agents Inductive learning Decision tree learning Measuring learning performance Chapter 18, Sections 1 3

More information

CS 380: ARTIFICIAL INTELLIGENCE

CS 380: ARTIFICIAL INTELLIGENCE CS 380: ARTIFICIAL INTELLIGENCE MACHINE LEARNING 11/11/2013 Santiago Ontañón santi@cs.drexel.edu https://www.cs.drexel.edu/~santi/teaching/2013/cs380/intro.html Summary so far: Rational Agents Problem

More information

CS 380: ARTIFICIAL INTELLIGENCE MACHINE LEARNING. Santiago Ontañón

CS 380: ARTIFICIAL INTELLIGENCE MACHINE LEARNING. Santiago Ontañón CS 380: ARTIFICIAL INTELLIGENCE MACHINE LEARNING Santiago Ontañón so367@drexel.edu Summary so far: Rational Agents Problem Solving Systematic Search: Uninformed Informed Local Search Adversarial Search

More information

Introduction to Artificial Intelligence. Learning from Oberservations

Introduction to Artificial Intelligence. Learning from Oberservations Introduction to Artificial Intelligence Learning from Oberservations Bernhard Beckert UNIVERSITÄT KOBLENZ-LANDAU Winter Term 2004/2005 B. Beckert: KI für IM p.1 Outline Learning agents Inductive learning

More information

Statistical learning. Chapter 20, Sections 1 3 1

Statistical learning. Chapter 20, Sections 1 3 1 Statistical learning Chapter 20, Sections 1 3 Chapter 20, Sections 1 3 1 Outline Bayesian learning Maximum a posteriori and maximum likelihood learning Bayes net learning ML parameter learning with complete

More information

Statistical learning. Chapter 20, Sections 1 3 1

Statistical learning. Chapter 20, Sections 1 3 1 Statistical learning Chapter 20, Sections 1 3 Chapter 20, Sections 1 3 1 Outline Bayesian learning Maximum a posteriori and maximum likelihood learning Bayes net learning ML parameter learning with complete

More information

Learning and Neural Networks

Learning and Neural Networks Artificial Intelligence Learning and Neural Networks Readings: Chapter 19 & 20.5 of Russell & Norvig Example: A Feed-forward Network w 13 I 1 H 3 w 35 w 14 O 5 I 2 w 23 w 24 H 4 w 45 a 5 = g 5 (W 3,5 a

More information

Bayesian learning Probably Approximately Correct Learning

Bayesian learning Probably Approximately Correct Learning Bayesian learning Probably Approximately Correct Learning Peter Antal antal@mit.bme.hu A.I. December 1, 2017 1 Learning paradigms Bayesian learning Falsification hypothesis testing approach Probably Approximately

More information

Learning Decision Trees

Learning Decision Trees Learning Decision Trees CS194-10 Fall 2011 Lecture 8 CS194-10 Fall 2011 Lecture 8 1 Outline Decision tree models Tree construction Tree pruning Continuous input features CS194-10 Fall 2011 Lecture 8 2

More information

Statistical learning. Chapter 20, Sections 1 4 1

Statistical learning. Chapter 20, Sections 1 4 1 Statistical learning Chapter 20, Sections 1 4 Chapter 20, Sections 1 4 1 Outline Bayesian learning Maximum a posteriori and maximum likelihood learning Bayes net learning ML parameter learning with complete

More information

Learning with Probabilities

Learning with Probabilities Learning with Probabilities CS194-10 Fall 2011 Lecture 15 CS194-10 Fall 2011 Lecture 15 1 Outline Bayesian learning eliminates arbitrary loss functions and regularizers facilitates incorporation of prior

More information

1. Courses are either tough or boring. 2. Not all courses are boring. 3. Therefore there are tough courses. (Cx, Tx, Bx, )

1. Courses are either tough or boring. 2. Not all courses are boring. 3. Therefore there are tough courses. (Cx, Tx, Bx, ) Logic FOL Syntax FOL Rules (Copi) 1. Courses are either tough or boring. 2. Not all courses are boring. 3. Therefore there are tough courses. (Cx, Tx, Bx, ) Dealing with Time Translate into first-order

More information

Decision Trees. CS 341 Lectures 8/9 Dan Sheldon

Decision Trees. CS 341 Lectures 8/9 Dan Sheldon Decision rees CS 341 Lectures 8/9 Dan Sheldon Review: Linear Methods Y! So far, we ve looked at linear methods! Linear regression! Fit a line/plane/hyperplane X 2 X 1! Logistic regression! Decision boundary

More information

Decision Trees. None Some Full > No Yes. No Yes. No Yes. No Yes. No Yes. No Yes. No Yes. Patrons? WaitEstimate? Hungry? Alternate?

Decision Trees. None Some Full > No Yes. No Yes. No Yes. No Yes. No Yes. No Yes. No Yes. Patrons? WaitEstimate? Hungry? Alternate? Decision rees Decision trees is one of the simplest methods for supervised learning. It can be applied to both regression & classification. Example: A decision tree for deciding whether to wait for a place

More information

CSC242: Intro to AI. Lecture 23

CSC242: Intro to AI. Lecture 23 CSC242: Intro to AI Lecture 23 Administrivia Posters! Tue Apr 24 and Thu Apr 26 Idea! Presentation! 2-wide x 4-high landscape pages Learning so far... Input Attributes Alt Bar Fri Hun Pat Price Rain Res

More information

Bayesian Learning. Artificial Intelligence Programming. 15-0: Learning vs. Deduction

Bayesian Learning. Artificial Intelligence Programming. 15-0: Learning vs. Deduction 15-0: Learning vs. Deduction Artificial Intelligence Programming Bayesian Learning Chris Brooks Department of Computer Science University of San Francisco So far, we ve seen two types of reasoning: Deductive

More information

16.4 Multiattribute Utility Functions

16.4 Multiattribute Utility Functions 285 Normalized utilities The scale of utilities reaches from the best possible prize u to the worst possible catastrophe u Normalized utilities use a scale with u = 0 and u = 1 Utilities of intermediate

More information

} It is non-zero, and maximized given a uniform distribution } Thus, for any distribution possible, we have:

} It is non-zero, and maximized given a uniform distribution } Thus, for any distribution possible, we have: Review: Entropy and Information H(P) = X i p i log p i Class #04: Mutual Information & Decision rees Machine Learning (CS 419/519): M. Allen, 1 Sept. 18 } Entropy is the information gained on average when

More information

Decision Trees. Ruy Luiz Milidiú

Decision Trees. Ruy Luiz Milidiú Decision Trees Ruy Luiz Milidiú Resumo Objetivo Examinar o conceito de Árvores de Decisão e suas aplicações Sumário Surpresa e Informação Entropia Informação Mútua Divergência e Entropia Cruzada Ganho

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Reading for today: R&N 18.1-18.4 Next lecture: R&N 18.6-18.12, 20.1-20.3.2 Outline The importance of a good representation Different types of learning problems Different

More information

Chapter 18. Decision Trees and Ensemble Learning. Recall: Learning Decision Trees

Chapter 18. Decision Trees and Ensemble Learning. Recall: Learning Decision Trees CSE 473 Chapter 18 Decision Trees and Ensemble Learning Recall: Learning Decision Trees Example: When should I wait for a table at a restaurant? Attributes (features) relevant to Wait? decision: 1. Alternate:

More information

brainlinksystem.com $25+ / hr AI Decision Tree Learning Part I Outline Learning 11/9/2010 Carnegie Mellon

brainlinksystem.com $25+ / hr AI Decision Tree Learning Part I Outline Learning 11/9/2010 Carnegie Mellon I Decision Tree Learning Part I brainlinksystem.com $25+ / hr Illah Nourbakhsh s version Chapter 8, Russell and Norvig Thanks to all past instructors Carnegie Mellon Outline Learning and philosophy Induction

More information

Bayesian Learning Extension

Bayesian Learning Extension Bayesian Learning Extension This document will go over one of the most useful forms of statistical inference known as Baye s Rule several of the concepts that extend from it. Named after Thomas Bayes this

More information

Assignment 1: Probabilistic Reasoning, Maximum Likelihood, Classification

Assignment 1: Probabilistic Reasoning, Maximum Likelihood, Classification Assignment 1: Probabilistic Reasoning, Maximum Likelihood, Classification For due date see https://courses.cs.sfu.ca This assignment is to be done individually. Important Note: The university policy on

More information

EECS 349:Machine Learning Bryan Pardo

EECS 349:Machine Learning Bryan Pardo EECS 349:Machine Learning Bryan Pardo Topic 2: Decision Trees (Includes content provided by: Russel & Norvig, D. Downie, P. Domingos) 1 General Learning Task There is a set of possible examples Each example

More information

CSC 411 Lecture 3: Decision Trees

CSC 411 Lecture 3: Decision Trees CSC 411 Lecture 3: Decision Trees Roger Grosse, Amir-massoud Farahmand, and Juan Carrasquilla University of Toronto UofT CSC 411: 03-Decision Trees 1 / 33 Today Decision Trees Simple but powerful learning

More information

Introduction to Statistical Learning Theory. Material para Máster en Matemáticas y Computación

Introduction to Statistical Learning Theory. Material para Máster en Matemáticas y Computación Introduction to Statistical Learning Theory Material para Máster en Matemáticas y Computación 1 Learning agents Inductive learning Decision tree learning First Part: Outline 2 Learning Learning is essential

More information

MODULE -4 BAYEIAN LEARNING

MODULE -4 BAYEIAN LEARNING MODULE -4 BAYEIAN LEARNING CONTENT Introduction Bayes theorem Bayes theorem and concept learning Maximum likelihood and Least Squared Error Hypothesis Maximum likelihood Hypotheses for predicting probabilities

More information

Machine Learning (CS 419/519): M. Allen, 14 Sept. 18 made, in hopes that it will allow us to predict future decisions

Machine Learning (CS 419/519): M. Allen, 14 Sept. 18 made, in hopes that it will allow us to predict future decisions Review: Decisions Based on Attributes } raining set: cases where patrons have decided to wait or not, along with the associated attributes for each case Class #05: Mutual Information & Decision rees Machine

More information

Decision Trees. Tirgul 5

Decision Trees. Tirgul 5 Decision Trees Tirgul 5 Using Decision Trees It could be difficult to decide which pet is right for you. We ll find a nice algorithm to help us decide what to choose without having to think about it. 2

More information

Probabilistic Reasoning. Kee-Eung Kim KAIST Computer Science

Probabilistic Reasoning. Kee-Eung Kim KAIST Computer Science Probabilistic Reasoning Kee-Eung Kim KAIST Computer Science Outline #1 Acting under uncertainty Probabilities Inference with Probabilities Independence and Bayes Rule Bayesian networks Inference in Bayesian

More information

CMPT 310 Artificial Intelligence Survey. Simon Fraser University Summer Instructor: Oliver Schulte

CMPT 310 Artificial Intelligence Survey. Simon Fraser University Summer Instructor: Oliver Schulte CMPT 310 Artificial Intelligence Survey Simon Fraser University Summer 2017 Instructor: Oliver Schulte Assignment 3: Chapters 13, 14, 18, 20. Probabilistic Reasoning and Learning Instructions: The university

More information

Learning from Examples

Learning from Examples Learning from Examples Data fitting Decision trees Cross validation Computational learning theory Linear classifiers Neural networks Nonparametric methods: nearest neighbor Support vector machines Ensemble

More information

Parametric Models. Dr. Shuang LIANG. School of Software Engineering TongJi University Fall, 2012

Parametric Models. Dr. Shuang LIANG. School of Software Engineering TongJi University Fall, 2012 Parametric Models Dr. Shuang LIANG School of Software Engineering TongJi University Fall, 2012 Today s Topics Maximum Likelihood Estimation Bayesian Density Estimation Today s Topics Maximum Likelihood

More information

Lecture 3: Decision Trees

Lecture 3: Decision Trees Lecture 3: Decision Trees Cognitive Systems - Machine Learning Part I: Basic Approaches of Concept Learning ID3, Information Gain, Overfitting, Pruning last change November 26, 2014 Ute Schmid (CogSys,

More information

Lecture 3: Decision Trees

Lecture 3: Decision Trees Lecture 3: Decision Trees Cognitive Systems II - Machine Learning SS 2005 Part I: Basic Approaches of Concept Learning ID3, Information Gain, Overfitting, Pruning Lecture 3: Decision Trees p. Decision

More information

Learning Decision Trees

Learning Decision Trees Learning Decision Trees Machine Learning Fall 2018 Some slides from Tom Mitchell, Dan Roth and others 1 Key issues in machine learning Modeling How to formulate your problem as a machine learning problem?

More information

Topics. Bayesian Learning. What is Bayesian Learning? Objectives for Bayesian Learning

Topics. Bayesian Learning. What is Bayesian Learning? Objectives for Bayesian Learning Topics Bayesian Learning Sattiraju Prabhakar CS898O: ML Wichita State University Objectives for Bayesian Learning Bayes Theorem and MAP Bayes Optimal Classifier Naïve Bayes Classifier An Example Classifying

More information

Learning Decision Trees

Learning Decision Trees Learning Decision Trees Machine Learning Spring 2018 1 This lecture: Learning Decision Trees 1. Representation: What are decision trees? 2. Algorithm: Learning decision trees The ID3 algorithm: A greedy

More information

CSCE 478/878 Lecture 6: Bayesian Learning

CSCE 478/878 Lecture 6: Bayesian Learning Bayesian Methods Not all hypotheses are created equal (even if they are all consistent with the training data) Outline CSCE 478/878 Lecture 6: Bayesian Learning Stephen D. Scott (Adapted from Tom Mitchell

More information

Notes on Machine Learning for and

Notes on Machine Learning for and Notes on Machine Learning for 16.410 and 16.413 (Notes adapted from Tom Mitchell and Andrew Moore.) Choosing Hypotheses Generally want the most probable hypothesis given the training data Maximum a posteriori

More information

Decision Tree Learning. Dr. Xiaowei Huang

Decision Tree Learning. Dr. Xiaowei Huang Decision Tree Learning Dr. Xiaowei Huang https://cgi.csc.liv.ac.uk/~xiaowei/ After two weeks, Remainders Should work harder to enjoy the learning procedure slides Read slides before coming, think them

More information

Decision Tree Learning

Decision Tree Learning Decision Tree Learning Goals for the lecture you should understand the following concepts the decision tree representation the standard top-down approach to learning a tree Occam s razor entropy and information

More information

Data Mining. CS57300 Purdue University. Bruno Ribeiro. February 8, 2018

Data Mining. CS57300 Purdue University. Bruno Ribeiro. February 8, 2018 Data Mining CS57300 Purdue University Bruno Ribeiro February 8, 2018 Decision trees Why Trees? interpretable/intuitive, popular in medical applications because they mimic the way a doctor thinks model

More information

Introduction. Decision Tree Learning. Outline. Decision Tree 9/7/2017. Decision Tree Definition

Introduction. Decision Tree Learning. Outline. Decision Tree 9/7/2017. Decision Tree Definition Introduction Decision Tree Learning Practical methods for inductive inference Approximating discrete-valued functions Robust to noisy data and capable of learning disjunctive expression ID3 earch a completely

More information

CS340 Machine learning Lecture 5 Learning theory cont'd. Some slides are borrowed from Stuart Russell and Thorsten Joachims

CS340 Machine learning Lecture 5 Learning theory cont'd. Some slides are borrowed from Stuart Russell and Thorsten Joachims CS340 Machine learning Lecture 5 Learning theory cont'd Some slides are borrowed from Stuart Russell and Thorsten Joachims Inductive learning Simplest form: learn a function from examples f is the target

More information

Decision Trees. CS57300 Data Mining Fall Instructor: Bruno Ribeiro

Decision Trees. CS57300 Data Mining Fall Instructor: Bruno Ribeiro Decision Trees CS57300 Data Mining Fall 2016 Instructor: Bruno Ribeiro Goal } Classification without Models Well, partially without a model } Today: Decision Trees 2015 Bruno Ribeiro 2 3 Why Trees? } interpretable/intuitive,

More information

Classification: Decision Trees

Classification: Decision Trees Classification: Decision Trees These slides were assembled by Byron Boots, with grateful acknowledgement to Eric Eaton and the many others who made their course materials freely available online. Feel

More information

Introduction To Artificial Neural Networks

Introduction To Artificial Neural Networks Introduction To Artificial Neural Networks Machine Learning Supervised circle square circle square Unsupervised group these into two categories Supervised Machine Learning Supervised Machine Learning Supervised

More information

CS 6375 Machine Learning

CS 6375 Machine Learning CS 6375 Machine Learning Decision Trees Instructor: Yang Liu 1 Supervised Classifier X 1 X 2. X M Ref class label 2 1 Three variables: Attribute 1: Hair = {blond, dark} Attribute 2: Height = {tall, short}

More information

Classification Algorithms

Classification Algorithms Classification Algorithms UCSB 293S, 2017. T. Yang Slides based on R. Mooney UT Austin 1 Table of Content Problem Definition Rocchio K-nearest neighbor case based Bayesian algorithm Decision trees 2 Classification

More information

Lecture 9: Bayesian Learning

Lecture 9: Bayesian Learning Lecture 9: Bayesian Learning Cognitive Systems II - Machine Learning Part II: Special Aspects of Concept Learning Bayes Theorem, MAL / ML hypotheses, Brute-force MAP LEARNING, MDL principle, Bayes Optimal

More information

Classification Algorithms

Classification Algorithms Classification Algorithms UCSB 290N, 2015. T. Yang Slides based on R. Mooney UT Austin 1 Table of Content roblem Definition Rocchio K-nearest neighbor case based Bayesian algorithm Decision trees 2 Given:

More information

Supervised Learning (contd) Decision Trees. Mausam (based on slides by UW-AI faculty)

Supervised Learning (contd) Decision Trees. Mausam (based on slides by UW-AI faculty) Supervised Learning (contd) Decision Trees Mausam (based on slides by UW-AI faculty) Decision Trees To play or not to play? http://www.sfgate.com/blogs/images/sfgate/sgreen/2007/09/05/2240773250x321.jpg

More information

Introduction to Bayesian Learning

Introduction to Bayesian Learning Course Information Introduction Introduction to Bayesian Learning Davide Bacciu Dipartimento di Informatica Università di Pisa bacciu@di.unipi.it Apprendimento Automatico: Fondamenti - A.A. 2016/2017 Outline

More information

Introduction to Bayesian Learning. Machine Learning Fall 2018

Introduction to Bayesian Learning. Machine Learning Fall 2018 Introduction to Bayesian Learning Machine Learning Fall 2018 1 What we have seen so far What does it mean to learn? Mistake-driven learning Learning by counting (and bounding) number of mistakes PAC learnability

More information

Statistics and learning: Big Data

Statistics and learning: Big Data Statistics and learning: Big Data Learning Decision Trees and an Introduction to Boosting Sébastien Gadat Toulouse School of Economics February 2017 S. Gadat (TSE) SAD 2013 1 / 30 Keywords Decision trees

More information

Bayesian Learning (II)

Bayesian Learning (II) Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Bayesian Learning (II) Niels Landwehr Overview Probabilities, expected values, variance Basic concepts of Bayesian learning MAP

More information

Machine Learning. Gaussian Mixture Models. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall

Machine Learning. Gaussian Mixture Models. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall Machine Learning Gaussian Mixture Models Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall 2012 1 The Generative Model POV We think of the data as being generated from some process. We assume

More information

Computing Posterior Probabilities. Vassilis Athitsos CSE 4308/5360: Artificial Intelligence I University of Texas at Arlington

Computing Posterior Probabilities. Vassilis Athitsos CSE 4308/5360: Artificial Intelligence I University of Texas at Arlington Computing Posterior Probabilities Vassilis Athitsos CSE 4308/5360: Artificial Intelligence I University of Texas at Arlington 1 Overview of Candy Bag Example As described in Russell and Norvig, for Chapter

More information

Decision Tree Learning

Decision Tree Learning Topics Decision Tree Learning Sattiraju Prabhakar CS898O: DTL Wichita State University What are decision trees? How do we use them? New Learning Task ID3 Algorithm Weka Demo C4.5 Algorithm Weka Demo Implementation

More information

Artificial Intelligence Roman Barták

Artificial Intelligence Roman Barták Artificial Intelligence Roman Barták Department of Theoretical Computer Science and Mathematical Logic Introduction We will describe agents that can improve their behavior through diligent study of their

More information

Decision Tree Learning

Decision Tree Learning Topics Decision Tree Learning Sattiraju Prabhakar CS898O: DTL Wichita State University What are decision trees? How do we use them? New Learning Task ID3 Algorithm Weka Demo C4.5 Algorithm Weka Demo Implementation

More information

Algorithmisches Lernen/Machine Learning

Algorithmisches Lernen/Machine Learning Algorithmisches Lernen/Machine Learning Part 1: Stefan Wermter Introduction Connectionist Learning (e.g. Neural Networks) Decision-Trees, Genetic Algorithms Part 2: Norman Hendrich Support-Vector Machines

More information

Decision Tree Learning - ID3

Decision Tree Learning - ID3 Decision Tree Learning - ID3 n Decision tree examples n ID3 algorithm n Occam Razor n Top-Down Induction in Decision Trees n Information Theory n gain from property 1 Training Examples Day Outlook Temp.

More information

Machine learning. This can raise two sorts of doubts.

Machine learning. This can raise two sorts of doubts. Machine learning An agent is learning if she improves her performance on future tasks after making observations of her environment and previous achievements. This can raise two sorts of doubts. First,

More information

Question of the Day. Machine Learning 2D1431. Decision Tree for PlayTennis. Outline. Lecture 4: Decision Tree Learning

Question of the Day. Machine Learning 2D1431. Decision Tree for PlayTennis. Outline. Lecture 4: Decision Tree Learning Question of the Day Machine Learning 2D1431 How can you make the following equation true by drawing only one straight line? 5 + 5 + 5 = 550 Lecture 4: Decision Tree Learning Outline Decision Tree for PlayTennis

More information

Machine Learning. Lecture 4: Regularization and Bayesian Statistics. Feng Li. https://funglee.github.io

Machine Learning. Lecture 4: Regularization and Bayesian Statistics. Feng Li. https://funglee.github.io Machine Learning Lecture 4: Regularization and Bayesian Statistics Feng Li fli@sdu.edu.cn https://funglee.github.io School of Computer Science and Technology Shandong University Fall 207 Overfitting Problem

More information

Decision Tree Learning

Decision Tree Learning Decision Tree Learning Goals for the lecture you should understand the following concepts the decision tree representation the standard top-down approach to learning a tree Occam s razor entropy and information

More information

Linear Classifiers: Expressiveness

Linear Classifiers: Expressiveness Linear Classifiers: Expressiveness Machine Learning Spring 2018 The slides are mainly from Vivek Srikumar 1 Lecture outline Linear classifiers: Introduction What functions do linear classifiers express?

More information

Incremental Stochastic Gradient Descent

Incremental Stochastic Gradient Descent Incremental Stochastic Gradient Descent Batch mode : gradient descent w=w - η E D [w] over the entire data D E D [w]=1/2σ d (t d -o d ) 2 Incremental mode: gradient descent w=w - η E d [w] over individual

More information

CHAPTER-17. Decision Tree Induction

CHAPTER-17. Decision Tree Induction CHAPTER-17 Decision Tree Induction 17.1 Introduction 17.2 Attribute selection measure 17.3 Tree Pruning 17.4 Extracting Classification Rules from Decision Trees 17.5 Bayesian Classification 17.6 Bayes

More information

Machine learning. The general model. Routine learning. General learning schemes

Machine learning. The general model. Routine learning. General learning schemes Machine learning An agent is learning if she improves her performance on future tasks after making observations of her environment and previous achievements. This can raise two sorts of doubts. First,

More information

Decision Tree Learning Mitchell, Chapter 3. CptS 570 Machine Learning School of EECS Washington State University

Decision Tree Learning Mitchell, Chapter 3. CptS 570 Machine Learning School of EECS Washington State University Decision Tree Learning Mitchell, Chapter 3 CptS 570 Machine Learning School of EECS Washington State University Outline Decision tree representation ID3 learning algorithm Entropy and information gain

More information

Decision Trees (Cont.)

Decision Trees (Cont.) Decision Trees (Cont.) R&N Chapter 18.2,18.3 Side example with discrete (categorical) attributes: Predicting age (3 values: less than 30, 30-45, more than 45 yrs old) from census data. Attributes (split

More information

Introduction to Machine Learning CMU-10701

Introduction to Machine Learning CMU-10701 Introduction to Machine Learning CMU-10701 23. Decision Trees Barnabás Póczos Contents Decision Trees: Definition + Motivation Algorithm for Learning Decision Trees Entropy, Mutual Information, Information

More information

Machine Learning

Machine Learning Machine Learning 10-701 Tom M. Mitchell Machine Learning Department Carnegie Mellon University January 13, 2011 Today: The Big Picture Overfitting Review: probability Readings: Decision trees, overfiting

More information

Decision Trees. Lewis Fishgold. (Material in these slides adapted from Ray Mooney's slides on Decision Trees)

Decision Trees. Lewis Fishgold. (Material in these slides adapted from Ray Mooney's slides on Decision Trees) Decision Trees Lewis Fishgold (Material in these slides adapted from Ray Mooney's slides on Decision Trees) Classification using Decision Trees Nodes test features, there is one branch for each value of

More information

COMPUTATIONAL LEARNING THEORY

COMPUTATIONAL LEARNING THEORY COMPUTATIONAL LEARNING THEORY XIAOXU LI Abstract. This paper starts with basic concepts of computational learning theory and moves on with examples in monomials and learning rays to the final discussion

More information

Applied Logic. Lecture 4 part 2 Bayesian inductive reasoning. Marcin Szczuka. Institute of Informatics, The University of Warsaw

Applied Logic. Lecture 4 part 2 Bayesian inductive reasoning. Marcin Szczuka. Institute of Informatics, The University of Warsaw Applied Logic Lecture 4 part 2 Bayesian inductive reasoning Marcin Szczuka Institute of Informatics, The University of Warsaw Monographic lecture, Spring semester 2017/2018 Marcin Szczuka (MIMUW) Applied

More information

Decision Tree Learning

Decision Tree Learning Decision Tree Learning Berlin Chen Department of Computer Science & Information Engineering National Taiwan Normal University References: 1. Machine Learning, Chapter 3 2. Data Mining: Concepts, Models,

More information

Machine Learning (CS 567) Lecture 2

Machine Learning (CS 567) Lecture 2 Machine Learning (CS 567) Lecture 2 Time: T-Th 5:00pm - 6:20pm Location: GFS118 Instructor: Sofus A. Macskassy (macskass@usc.edu) Office: SAL 216 Office hours: by appointment Teaching assistant: Cheol

More information

Machine Learning 4771

Machine Learning 4771 Machine Learning 4771 Instructor: Tony Jebara Topic 11 Maximum Likelihood as Bayesian Inference Maximum A Posteriori Bayesian Gaussian Estimation Why Maximum Likelihood? So far, assumed max (log) likelihood

More information

Quantifying uncertainty & Bayesian networks

Quantifying uncertainty & Bayesian networks Quantifying uncertainty & Bayesian networks CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2016 Soleymani Artificial Intelligence: A Modern Approach, 3 rd Edition,

More information

Outline. Introduction. Bayesian Probability Theory Bayes rule Bayes rule applied to learning Bayesian learning and the MDL principle

Outline. Introduction. Bayesian Probability Theory Bayes rule Bayes rule applied to learning Bayesian learning and the MDL principle Outline Introduction Bayesian Probability Theory Bayes rule Bayes rule applied to learning Bayesian learning and the MDL principle Sequence Prediction and Data Compression Bayesian Networks Copyright 2015

More information

Lecture 2 Machine Learning Review

Lecture 2 Machine Learning Review Lecture 2 Machine Learning Review CMSC 35246: Deep Learning Shubhendu Trivedi & Risi Kondor University of Chicago March 29, 2017 Things we will look at today Formal Setup for Supervised Learning Things

More information

Bayesian Learning. CSL603 - Fall 2017 Narayanan C Krishnan

Bayesian Learning. CSL603 - Fall 2017 Narayanan C Krishnan Bayesian Learning CSL603 - Fall 2017 Narayanan C Krishnan ckn@iitrpr.ac.in Outline Bayes Theorem MAP Learners Bayes optimal classifier Naïve Bayes classifier Example text classification Bayesian networks

More information

Dan Roth 461C, 3401 Walnut

Dan Roth   461C, 3401 Walnut CIS 519/419 Applied Machine Learning www.seas.upenn.edu/~cis519 Dan Roth danroth@seas.upenn.edu http://www.cis.upenn.edu/~danroth/ 461C, 3401 Walnut Slides were created by Dan Roth (for CIS519/419 at Penn

More information

Supervised Learning! Algorithm Implementations! Inferring Rudimentary Rules and Decision Trees!

Supervised Learning! Algorithm Implementations! Inferring Rudimentary Rules and Decision Trees! Supervised Learning! Algorithm Implementations! Inferring Rudimentary Rules and Decision Trees! Summary! Input Knowledge representation! Preparing data for learning! Input: Concept, Instances, Attributes"

More information

Machine Learning and Data Mining. Decision Trees. Prof. Alexander Ihler

Machine Learning and Data Mining. Decision Trees. Prof. Alexander Ihler + Machine Learning and Data Mining Decision Trees Prof. Alexander Ihler Decision trees Func-onal form f(x;µ): nested if-then-else statements Discrete features: fully expressive (any func-on) Structure:

More information

Probability Based Learning

Probability Based Learning Probability Based Learning Lecture 7, DD2431 Machine Learning J. Sullivan, A. Maki September 2013 Advantages of Probability Based Methods Work with sparse training data. More powerful than deterministic

More information

Midterm, Fall 2003

Midterm, Fall 2003 5-78 Midterm, Fall 2003 YOUR ANDREW USERID IN CAPITAL LETTERS: YOUR NAME: There are 9 questions. The ninth may be more time-consuming and is worth only three points, so do not attempt 9 unless you are

More information

Lecture : Probabilistic Machine Learning

Lecture : Probabilistic Machine Learning Lecture : Probabilistic Machine Learning Riashat Islam Reasoning and Learning Lab McGill University September 11, 2018 ML : Many Methods with Many Links Modelling Views of Machine Learning Machine Learning

More information

Decision Trees. CSC411/2515: Machine Learning and Data Mining, Winter 2018 Luke Zettlemoyer, Carlos Guestrin, and Andrew Moore

Decision Trees. CSC411/2515: Machine Learning and Data Mining, Winter 2018 Luke Zettlemoyer, Carlos Guestrin, and Andrew Moore Decision Trees Claude Monet, The Mulberry Tree Slides from Pedro Domingos, CSC411/2515: Machine Learning and Data Mining, Winter 2018 Luke Zettlemoyer, Carlos Guestrin, and Andrew Moore Michael Guerzhoy

More information

Lecture 4: Probabilistic Learning. Estimation Theory. Classification with Probability Distributions

Lecture 4: Probabilistic Learning. Estimation Theory. Classification with Probability Distributions DD2431 Autumn, 2014 1 2 3 Classification with Probability Distributions Estimation Theory Classification in the last lecture we assumed we new: P(y) Prior P(x y) Lielihood x2 x features y {ω 1,..., ω K

More information

Machine Learning, Midterm Exam: Spring 2009 SOLUTION

Machine Learning, Midterm Exam: Spring 2009 SOLUTION 10-601 Machine Learning, Midterm Exam: Spring 2009 SOLUTION March 4, 2009 Please put your name at the top of the table below. If you need more room to work out your answer to a question, use the back of

More information

CS6375: Machine Learning Gautam Kunapuli. Decision Trees

CS6375: Machine Learning Gautam Kunapuli. Decision Trees Gautam Kunapuli Example: Restaurant Recommendation Example: Develop a model to recommend restaurants to users depending on their past dining experiences. Here, the features are cost (x ) and the user s

More information

Decision Trees. Data Science: Jordan Boyd-Graber University of Maryland MARCH 11, Data Science: Jordan Boyd-Graber UMD Decision Trees 1 / 1

Decision Trees. Data Science: Jordan Boyd-Graber University of Maryland MARCH 11, Data Science: Jordan Boyd-Graber UMD Decision Trees 1 / 1 Decision Trees Data Science: Jordan Boyd-Graber University of Maryland MARCH 11, 2018 Data Science: Jordan Boyd-Graber UMD Decision Trees 1 / 1 Roadmap Classification: machines labeling data for us Last

More information

CS 6140: Machine Learning Spring What We Learned Last Week. Survey 2/26/16. VS. Model

CS 6140: Machine Learning Spring What We Learned Last Week. Survey 2/26/16. VS. Model Logis@cs CS 6140: Machine Learning Spring 2016 Instructor: Lu Wang College of Computer and Informa@on Science Northeastern University Webpage: www.ccs.neu.edu/home/luwang Email: luwang@ccs.neu.edu Assignment

More information