QCD (for Colliders) Lecture 3 Gavin Salam, CERN Fourth Asia-Europe-Pacific School of High-Energy Physics September 2018, Qhy Nhon, Vietnam

Size: px
Start display at page:

Download "QCD (for Colliders) Lecture 3 Gavin Salam, CERN Fourth Asia-Europe-Pacific School of High-Energy Physics September 2018, Qhy Nhon, Vietnam"

Transcription

1 QCD (for Colliders) Lecture 3 Gavin Salam, CERN Fourth Asia-Europe-Pacific School of High-Energy Physics September 208, Qhy Nhon, Vietnam

2 2 the real world? µ B + π K... Z H µ + B u σ _ u proton proton

3 GLUON EMISSION FROM A QUARK Consider an emission with energy E s ( soft ) σ 0 θ ke p angle θ ( collinear wrt quark) Examine correction to some hard process with cross section σ 0 d ' 0 2 sc F de E d This has a divergence when E 0 or θ 0 [in some sense because of quark propagator going on-shell] 3

4 Suppose we re not inclusive e.g. calculate probability of emitting a gluon Probability P g of emitting gluon from a quark with energy Q: P g ' 2 sc F Z Q de E We cut off the integral for transverse momenta (p T E θ) below some non-perturbative threshold Q 0. Z d (E >Q 0) On the grounds that perturbation theory doesn t apply for p T ~ Λ QCD i.e. language of quarks and gluons becomes meaningless With this cutoff, the result is P g ' sc F ln 2 Q Q 0 + O ( s ln Q) this is called a double logarithm [it crops up all over the place in QCD] 4

5 <latexit sha_base64="vwlyvp7d9lzds6szqoon5tpo8w=">aaade3iczzlnbtnaemfx5iuer6qcuayiinfakv0hwbgikulsklfjw6kbrpf6nay6xpvddratfk/b03bdxhkarjwj4ysqknqke8fz+4893v+mlzlwrdhfilx+87de6377qcphz+0unundlybrgy8kv5iifk5tuyuyku+kimgkkvinz9oqw4eefhbgyb/cohktaqza5pkdwls+tzmpprzwyhplougun9nyolh8q72rjik9p9hcwelt/ljcjqurlva22vpsjfghe8zzoxrspcq7lzm2ea3zzak06vwgqlypetoj0iprgcbd4dvlsj4vhhzcgbwxcvs5iqfjjfeibro5frxwk5iks0wfmjo/hksmvaxktg8nhhpr5fvzq4phbwlikvlaw5mdltvgb9twjzfap97qlc/mbipa7mtmi+gicfk+pk2nhbm2ked2qbcxaj8r8onwhuleph2kyll7wsctczr09w0bvm0hsvy2qfnfl5srx5zhfofkgzw9qflj7vioij7vo+dqfg70lhp/mdpnju5sgzfguqtets/bha3i0avewdues3yjdwnl0hmxpmd8p4myzhw8i9obdgl/wr/gx/hb9x0jby9zwlwxh++q8suwej</latexit> <latexit sha_base64="vwlyvp7d9lzds6szqoon5tpo8w=">aaade3iczzlnbtnaemfx5iuer6qcuayiinfakv0hwbgikulsklfjw6kbrpf6nay6xpvddratfk/b03bdxhkarjwj4ysqknqke8fz+4893v+mlzlwrdhfilx+87de6377qcphz+0unundlybrgy8kv5iifk5tuyuyku+kimgkkvinz9oqw4eefhbgyb/cohktaqza5pkdwls+tzmpprzwyhplougun9nyolh8q72rjik9p9hcwelt/ljcjqurlva22vpsjfghe8zzoxrspcq7lzm2ea3zzak06vwgqlypetoj0iprgcbd4dvlsj4vhhzcgbwxcvs5iqfjjfeibro5frxwk5iks0wfmjo/hksmvaxktg8nhhpr5fvzq4phbwlikvlaw5mdltvgb9twjzfap97qlc/mbipa7mtmi+gicfk+pk2nhbm2ked2qbcxaj8r8onwhuleph2kyll7wsctczr09w0bvm0hsvy2qfnfl5srx5zhfofkgzw9qflj7vioij7vo+dqfg70lhp/mdpnju5sgzfguqtets/bha3i0avewdues3yjdwnl0hmxpmd8p4myzhw8i9obdgl/wr/gx/hb9x0jby9zwlwxh++q8suwej</latexit> <latexit sha_base64="vwlyvp7d9lzds6szqoon5tpo8w=">aaade3iczzlnbtnaemfx5iuer6qcuayiinfakv0hwbgikulsklfjw6kbrpf6nay6xpvddratfk/b03bdxhkarjwj4ysqknqke8fz+4893v+mlzlwrdhfilx+87de6377qcphz+0unundlybrgy8kv5iifk5tuyuyku+kimgkkvinz9oqw4eefhbgyb/cohktaqza5pkdwls+tzmpprzwyhplougun9nyolh8q72rjik9p9hcwelt/ljcjqurlva22vpsjfghe8zzoxrspcq7lzm2ea3zzak06vwgqlypetoj0iprgcbd4dvlsj4vhhzcgbwxcvs5iqfjjfeibro5frxwk5iks0wfmjo/hksmvaxktg8nhhpr5fvzq4phbwlikvlaw5mdltvgb9twjzfap97qlc/mbipa7mtmi+gicfk+pk2nhbm2ked2qbcxaj8r8onwhuleph2kyll7wsctczr09w0bvm0hsvy2qfnfl5srx5zhfofkgzw9qflj7vioij7vo+dqfg70lhp/mdpnju5sgzfguqtets/bha3i0avewdues3yjdwnl0hmxpmd8p4myzhw8i9obdgl/wr/gx/hb9x0jby9zwlwxh++q8suwej</latexit> <latexit sha_base64="vwlyvp7d9lzds6szqoon5tpo8w=">aaade3iczzlnbtnaemfx5iuer6qcuayiinfakv0hwbgikulsklfjw6kbrpf6nay6xpvddratfk/b03bdxhkarjwj4ysqknqke8fz+4893v+mlzlwrdhfilx+87de6377qcphz+0unundlybrgy8kv5iifk5tuyuyku+kimgkkvinz9oqw4eefhbgyb/cohktaqza5pkdwls+tzmpprzwyhplougun9nyolh8q72rjik9p9hcwelt/ljcjqurlva22vpsjfghe8zzoxrspcq7lzm2ea3zzak06vwgqlypetoj0iprgcbd4dvlsj4vhhzcgbwxcvs5iqfjjfeibro5frxwk5iks0wfmjo/hksmvaxktg8nhhpr5fvzq4phbwlikvlaw5mdltvgb9twjzfap97qlc/mbipa7mtmi+gicfk+pk2nhbm2ked2qbcxaj8r8onwhuleph2kyll7wsctczr09w0bvm0hsvy2qfnfl5srx5zhfofkgzw9qflj7vioij7vo+dqfg70lhp/mdpnju5sgzfguqtets/bha3i0avewdues3yjdwnl0hmxpmd8p4myzhw8i9obdgl/wr/gx/hb9x0jby9zwlwxh++q8suwej</latexit> Suppose we re not inclusive e.g. calculate probability of emitting a gluon Probability P g of emitting gluon from a quark with energy Q: P g ' 2 sc F Z Q Q 0 de E We cut off the integral for transverse momenta (p T E θ) below some non-perturbative threshold Q 0. Z Q 0 E On the grounds that perturbation theory doesn t apply for p T ~ Λ QCD i.e. language of quarks and gluons becomes meaningless d With this cutoff, the result is P g ' sc F ln 2 Q Q 0 + O ( s ln Q) this is called a double logarithm [it crops up all over the place in QCD] 5

6 Suppose we re not inclusive e.g. calculate probability of emitting a gluon Suppose we take Q 0 ~ Λ QCD, what do we get? P g ' sc F Let s use α s = α s (Q) = /(2b ln Q/Λ) [Actually over most of integration range this is optimistically small] ln 2 Q! C F Q 0 2b ln Put in some numbers: Q = 00 GeV, Λ QCD 0.2 GeV, C F =4/3, b( b 0 ) 0.6 P g ' 2.2 Q! C F QCD 4b 2 s This is supposed to be an O(αs) correction. But the final result ~ /αs QCD hates to not emit gluons! 6

7 correct way of doing it: with running coupling inside the integral Adding running coupling is straightforward: just use α s (p t ) with p t Eθ, in the integrand: P g = 2C F π Q dp t α Q 0 p s (p t ) t p t /Q dz z = C F πb 0 ( ln Q Λ ln ln Q Λ + ) Structure of answer changes a bit: it s larger than /α s (Q), by a factor ln ln Q/Λ. Βut to keep expressions simple in these lectures we ll often restrict ourselves to a fixed-coupling approximation. 7

8 Picturing a QCD event q q Start off with a qqbar system 8

9 Picturing a QCD event q q a gluon gets emitted at small angles 9

10 Picturing a QCD event q q it radiates a further gluon 0

11 Picturing a QCD event q q and so forth

12 Picturing a QCD event q q meanwhile the same happened on the other side 2

13 Picturing a QCD event q q then a non-perturbative transition occurs 3

14 Picturing a QCD event q π, K, p,... q giving a pattern of hadrons that remembers the gluon branching (hadrons mostly produced at small angles wrt qqbar directions two jets ) 4

15 5 resummation and parton showers the previous slides applied in practice

16 Resummation Analytical, or semi-numerical, calculation of dominant logarithmically enhanced terms, to all orders in the strong coupling. Applies when you place a strong constraint on an observable. Calculations are often specific to a single observable. Parton shower Monte Carlo Simulation of emission of arbitrary number of particles, usually ordered in angle or p t. Underlying algorithm should reproduce many of the singular limits of multi-particle QCD amplitudes, including virtual corrections. Can be used to calculate arbitrary observables. 6

17 Resummation: one way of seeing the underlying key idea Calculate cross section for some observable v(p, p m ), a function of the event momenta, to be less than some cut V. Illustrate structure in soft limit, fixed coupling, ignore secondary emissions from soft gluons. (v(emissions) < V )= X 0 lim!0 m! X n=0 my m=0 i= m+n n! Y i=m+ 2 s C F 2 s C F Z Z de i E i de i E i Z Z d i i d i i Z 2 0 Z 2 0 d i 2 d i 2 (V v(p,...,p m )) 7

18 Resummation: one way of seeing the underlying key idea Calculate cross section for some observable v(p, p m ), a function of the event momenta, to be less than some cut V. Illustrate structure in soft limit, fixed coupling, ignore secondary emissions from soft gluons. (v(emissions) < V )= X 0 lim!0 m! X n=0 my m=0 i= m+n n! Y i=m+ 2 s C F 2 s C F Z Z de i E i de i E i Any number of real gluons (independent of each other if angles are all very different) Z Z d i i d i i Z 2 0 Z 2 0 d i 2 d i 2 (V v(p,...,p m )) 7

19 Resummation: one way of seeing the underlying key idea Calculate cross section for some observable v(p, p m ), a function of the event momenta, to be less than some cut V. Illustrate structure in soft limit, fixed coupling, ignore secondary emissions from soft gluons. (v(emissions) < V )= X 0 lim!0 m! X n=0 my m=0 i= m+n n! Y i=m+ Any number of virtual gluons 2 s C F 2 s C F Z Z de i E i de i E i Any number of real gluons (independent of each other if angles are all very different) Z Z d i i d i i Z 2 0 Z 2 0 d i 2 d i 2 (V v(p,...,p m )) 7

20 Resummation: one way of seeing the underlying key idea Calculate cross section for some observable v(p, p m ), a function of the event momenta, to be less than some cut V. Illustrate structure in soft limit, fixed coupling, ignore secondary emissions from soft gluons. (v(emissions) < V )= X 0 lim!0 m! X n=0 my m=0 i= m+n n! Y i=m+ Any number of virtual gluons 2 s C F 2 s C F Z Z de i E i de i E i Any number of real gluons (independent of each other if angles are all very different) Z Z d i i d i i Z 2 0 Z 2 0 d i 2 d i 2 (V v(p,...,p m )) constraint from observable, involves just real gluons 7

21 <latexit sha_base64="sptxsjw/3lwcyzzmwyhpahc0js=">aaac+hiczzllbhmxfiad4vbcpsks2vikkyoe0uyerbddvfrcbfiftwmrxmf0xvekvm2psrosea8cjvelpfggxgitrdfuqjlcqqz/trfozl9/8604nbf8a9kdopmrdt3tu5w79/8hc7tvpozbzjqmxfqiwfxlyjrhixcedybfamjczyofzdgun39kxvjcnbqjzn0jq8vztsgfvlqdzh5x7nr53ctd7awo25sfbjb4aov09bkmlkv2arn2rylgueu9ilkb6lseld5k35seaf4sod638jy008vsh92sgd4cux5aq8fnefz4uyqluuel6qq7ls9kuncxzmpradb2kli7vgfjobwsrjkxzrrofqxzl0gfktm+n3lr4kbodhbempaph2fd5q0p0tqjzmkkbdey62za/m8ay9dmc4ybqydw+x7fc6xhjik6p0a+ftgvego4hnddqbotiiaahu6a6qicuy7euiwkfakflkagplga7ashr5dachxplkdn86icxqp5es03kd0uffidwmfrqh2sgqm7rxgj0yfk2ydhjeswrae0kc5azsruju9eg9fl8lbqk/qu7shevqkhak3qio6ikkf6df6g/5gn6ov0bfo+3w0qix2hqovin78a9ls9dg=</latexit> <latexit sha_base64="sptxsjw/3lwcyzzmwyhpahc0js=">aaac+hiczzllbhmxfiad4vbcpsks2vikkyoe0uyerbddvfrcbfiftwmrxmf0xvekvm2psrosea8cjvelpfggxgitrdfuqjlcqqz/trfozl9/8604nbf8a9kdopmrdt3tu5w79/8hc7tvpozbzjqmxfqiwfxlyjrhixcedybfamjczyofzdgun39kxvjcnbqjzn0jq8vztsgfvlqdzh5x7nr53ctd7awo25sfbjb4aov09bkmlkv2arn2rylgueu9ilkb6lseld5k35seaf4sod638jy008vsh92sgd4cux5aq8fnefz4uyqluuel6qq7ls9kuncxzmpradb2kli7vgfjobwsrjkxzrrofqxzl0gfktm+n3lr4kbodhbempaph2fd5q0p0tqjzmkkbdey62za/m8ay9dmc4ybqydw+x7fc6xhjik6p0a+ftgvego4hnddqbotiiaahu6a6qicuy7euiwkfakflkagplga7ashr5dachxplkdn86icxqp5es03kd0uffidwmfrqh2sgqm7rxgj0yfk2ydhjeswrae0kc5azsruju9eg9fl8lbqk/qu7shevqkhak3qio6ikkf6df6g/5gn6ov0bfo+3w0qix2hqovin78a9ls9dg=</latexit> <latexit sha_base64="sptxsjw/3lwcyzzmwyhpahc0js=">aaac+hiczzllbhmxfiad4vbcpsks2vikkyoe0uyerbddvfrcbfiftwmrxmf0xvekvm2psrosea8cjvelpfggxgitrdfuqjlcqqz/trfozl9/8604nbf8a9kdopmrdt3tu5w79/8hc7tvpozbzjqmxfqiwfxlyjrhixcedybfamjczyofzdgun39kxvjcnbqjzn0jq8vztsgfvlqdzh5x7nr53ctd7awo25sfbjb4aov09bkmlkv2arn2rylgueu9ilkb6lseld5k35seaf4sod638jy008vsh92sgd4cux5aq8fnefz4uyqluuel6qq7ls9kuncxzmpradb2kli7vgfjobwsrjkxzrrofqxzl0gfktm+n3lr4kbodhbempaph2fd5q0p0tqjzmkkbdey62za/m8ay9dmc4ybqydw+x7fc6xhjik6p0a+ftgvego4hnddqbotiiaahu6a6qicuy7euiwkfakflkagplga7ashr5dachxplkdn86icxqp5es03kd0uffidwmfrqh2sgqm7rxgj0yfk2ydhjeswrae0kc5azsruju9eg9fl8lbqk/qu7shevqkhak3qio6ikkf6df6g/5gn6ov0bfo+3w0qix2hqovin78a9ls9dg=</latexit> <latexit sha_base64="sptxsjw/3lwcyzzmwyhpahc0js=">aaac+hiczzllbhmxfiad4vbcpsks2vikkyoe0uyerbddvfrcbfiftwmrxmf0xvekvm2psrosea8cjvelpfggxgitrdfuqjlcqqz/trfozl9/8604nbf8a9kdopmrdt3tu5w79/8hc7tvpozbzjqmxfqiwfxlyjrhixcedybfamjczyofzdgun39kxvjcnbqjzn0jq8vztsgfvlqdzh5x7nr53ctd7awo25sfbjb4aov09bkmlkv2arn2rylgueu9ilkb6lseld5k35seaf4sod638jy008vsh92sgd4cux5aq8fnefz4uyqluuel6qq7ls9kuncxzmpradb2kli7vgfjobwsrjkxzrrofqxzl0gfktm+n3lr4kbodhbempaph2fd5q0p0tqjzmkkbdey62za/m8ay9dmc4ybqydw+x7fc6xhjik6p0a+ftgvego4hnddqbotiiaahu6a6qicuy7euiwkfakflkagplga7ashr5dachxplkdn86icxqp5es03kd0uffidwmfrqh2sgqm7rxgj0yfk2ydhjeswrae0kc5azsruju9eg9fl8lbqk/qu7shevqkhak3qio6ikkf6df6g/5gn6ov0bfo+3w0qix2hqovin78a9ls9dg=</latexit> Resummation example result It s common to ask questions like what is the probability that a Z boson is produced with transverse momentum < p T Answer is given (~) by a Sudakov form factor, i.e. the probability of not emitting any gluons with transverse momentum > p T. P (Z trans.mom. <p T ) ' exp apple 2 s C F ln 2 M Z p T when p T is small, the logarithm is large and compensates for the smallness of α s so you need to resum log-enhanced terms to all orders in α s. 8

22 What do we know about resummation? You ll sometimes see mention of NNLL or similar This means next-next-to-leading logarithmic Most common definition of Leading logarithmic (LL): you sum all terms with p=n+ (for n= ) in exp " X n,p n s ln p M H p T NLL: include all terms with p=n (for n= ) NNLL: include all terms with p=n (for n= ) In real life, the function that appears in the resummation is sometimes instead a Fourier or Mellin transform of an exponential # 9

23 Resummation of Higgs p T spectrum (same formula, with C F C A ) dσ/d p t H [pb/gev] ratio to N 3 LL+NNLO NNLO N 3 LL+NNLO RadISH+NNLOJET, 3 TeV, m H = 25 GeV µ R = µ F = m H /2, Q = m H /2 PDF4LHC5 (NNLO) uncertainties with µ R, µ F, Q variations p t H [GeV] NNLO, ill-behaved at small pt. NNLO+N3LL, resummation ensures sensible, reliable predictions at small pt. This kind of resummation is an input to nearly all LHC Higgs studies Bizon et al

24 NNLO N3 LL+NNLO T NNLL+NLO Data 0.02 Resummation of Z p spectrum v. data NNPDF3.0 (NNLO) Ratio to data /dptz (/ )d uncertainties with µr, µf, NNLO 3 N LL+NNLO 0.08 NNLL+NLO 0.06 Data (ATLAS) ptz RadISH+NNLOJET + 8 TeV, pp Z( )+X 0.0 < Y < 2.4, 66 < M < 6 GeV NNPDF3.0 (NNLO) uncertainties with µr, µf, Q variations Bizon et al

25 (Threshold resummation) If you produce a system near threshold, i.e. mass M close to the pp centre-of-mass energy s, there are so-called threshold logarithms, which modify the total cross section. Steeply falling PDFs may also result in threshold logarithms. Driven by a quantity N, N = d ln σ d ln s Resummation involves terms Valid if N. (α s ln 2 N) n, often enhance σ In practice, for some applications (e.g. top, Higgs production), M s and N ~ 2. Opinions differ about validity of threshold resummation in this regime 22

26 resummation v. parton showers (the basic idea, ignoring secondary emsn. from gluons) a resummation predicts one observable to high accuracy a parton shower takes the same idea of a Sudakov form factor and uses it to generate emissions from probability of not emitting gluons above a certain p T, you can deduce p T distribution of first emission. use a random number generator (r) to sample that p T distribution deduce p T by solving r =exp " 2 s C A ln 2 p2 T,max p 2 T # 2. repeat for next emission, etc., until p T falls below some nonperturbative cutoff very similar to radioactive decay, with time ~ /pt and a decay rate ~ pt log /pt 23

27 A toy shower (fixed coupling, primary branching only, only pt, no energy conservation, no PDFs, etc.) #!/usr/bin/env python # an oversimplified (QED-like) parton shower # for Zuoz lectures (206) by Gavin P. Salam from random import random from math import pi, exp, log, sqrt pthigh = 00.0 ptcut =.0 alphas = 0.2 CA=3 def main(): for iev in range(0,0): print "\nevent", iev event() def event(): # start with maximum possible value of Sudakov sudakov = while (True): # scale it by a random number sudakov *= random() # deduce the corresponding pt pt = ptfromsudakov(sudakov) # if pt falls below the cutoff, event is finished if (pt < ptcut): break print " primary emission with pt = ", pt def ptfromsudakov(sudakovvalue): """Returns the pt value that solves the relation Sudakov = sudakovvalue (for 0 < sudakovvalue < ) """ norm = (2*CA/pi) # r = Sudakov = exp(-alphas * norm * L^2) # --> log(r) = -alphas * norm * L^2 # --> L^2 = log(r)/(-alphas*norm) L2 = log(sudakovvalue)/(-alphas * norm) pt = pthigh * exp(-sqrt(l2)) return pt main() 24

28 A toy shower (fixed coupling, primary branching only, only pt, no energy conservation, no PDFs, etc.) #!/usr/bin/env python # an oversimplified (QED-like) parton shower # for Zuoz lectures (206) by Gavin P. Salam from random import random from math import pi, exp, log, sqrt pthigh = 00.0 ptcut =.0 alphas = 0.2 CA=3 def main(): for iev in range(0,0): print "\nevent", iev event() def event(): # start with maximum possible value of Sudakov sudakov = while (True): # scale it by a random number sudakov *= random() # deduce the corresponding pt pt = ptfromsudakov(sudakov) # if pt falls below the cutoff, event is finished if (pt < ptcut): break print " primary emission with pt = ", pt def ptfromsudakov(sudakovvalue): """Returns the pt value that solves the relation Sudakov = sudakovvalue (for 0 < sudakovvalue < ) """ norm = (2*CA/pi) # r = Sudakov = exp(-alphas * norm * L^2) # --> log(r) = -alphas * norm * L^2 # --> L^2 = log(r)/(-alphas*norm) L2 = log(sudakovvalue)/(-alphas * norm) pt = pthigh * exp(-sqrt(l2)) return pt main() % python./toy-shower.py Event 0 primary emission with pt = primary emission with pt = primary emission with pt = Event primary emission with pt = primary emission with pt = primary emission with pt = primary emission with pt = primary emission with pt = primary emission with pt = Event 2 primary emission with pt = primary emission with pt = primary emission with pt = Event 3 primary emission with pt = primary emission with pt = primary emission with pt = primary emission with pt = primary emission with pt = Event 4 primary emission with pt = primary emission with pt = primary emission with pt = primary emission with pt = primary emission with pt =

29 A toy shower (fixed coupling, primary branching only, only pt, no energy conservation, no PDFs, etc.) #!/usr/bin/env python # an oversimplified (QED-like) parton shower # for Zuoz lectures (206) by Gavin P. Salam from random import random from math import pi, exp, log, sqrt pthigh = 00.0 ptcut =.0 alphas = 0.2 CA=3 def main(): for iev in range(0,0): print "\nevent", iev event() def event(): # start with maximum possible value of Sudakov sudakov = while (True): # scale it by a random number sudakov *= random() # deduce the corresponding pt pt = ptfromsudakov(sudakov) # if pt falls below the cutoff, event is finished if (pt < ptcut): break print " primary emission with pt = ", pt def ptfromsudakov(sudakovvalue): """Returns the pt value that solves the relation Sudakov = sudakovvalue (for 0 < sudakovvalue < ) """ norm = (2*CA/pi) # r = Sudakov = exp(-alphas * norm * L^2) # --> log(r) = -alphas * norm * L^2 # --> L^2 = log(r)/(-alphas*norm) L2 = log(sudakovvalue)/(-alphas * norm) pt = pthigh * exp(-sqrt(l2)) return pt main() % python./toy-shower.py Event 0 primary emission with pt = primary emission with pt = primary emission with pt = Event primary emission with pt = primary emission with pt = primary emission with pt = primary emission with pt = primary emission with pt = primary emission with pt = Event 2 primary emission with pt = primary emission with pt = primary emission with pt = Event 3 primary emission with pt = primary emission with pt = primary emission with pt = primary emission with pt = primary emission with pt = If you want to play: replace CA=3 (emission from gluons) with CF=4/3 (emission from quarks) and see how pattern Event 4 primary emission with pt = primary emission with pt = primary with pt = primary of emissions emission with pt changes = primary emission with pt = (multiplicity, pt of hardest... emission, etc.) 24

30 Secondary, tertiary gluons: many showers use colour dipoles (Pythia, Sherpa & option in Herwig) Original dipole MC: Ariadne (90 s) q q Use large-n C idea of colour structure g Initial q q qq event = colour dipole. q q Radiated gluon turns dipole 2 dipoles q g g q Each dipole then radiates independently (different colour no interference), creating new colour dipoles at each step 25

31 Event record from a real-world shower (Herwig6 old shower with compact record) u Z _ u proton proton 26

32 combining showers & fixed order essential for accurate cross sections & multijet states 27

33 E.g. jet multiplicity in events with a W v. Pythia CMS σ(w + n-jets) σ(w) Pythia (shower only) data energy scale unfolding MadGraph Z2 MadGraph D6T Pythia Z2-36 pb jet E T at s W eν = 7 TeV > 30 GeV arxiv: shower MCs on their own cannot reproduce pattern of hard multijet states (there are topologies that are almost inaccessible via showering) σ( inclusive jet multiplicity, n 28

34 MLM matching Z+parton 29

35 MLM matching shower Z+parton 30

36 MLM matching + shower Z+parton Z+2partons 3

37 MLM matching + shower Z+parton shower Z+2partons 32

38 MLM matching + v. shower Z+parton shower Z+2partons shower of Z+parton generates hard gluon 33

39 MLM matching + v. shower Z+parton shower Z+2partons shower of Z+parton generates hard gluon 34

40 MLM matching DOUBLE COUNTING + v. shower Z+parton shower Z+2partons shower of Z+parton generates hard gluon 35

41 MLM matching + v. shower Z+parton shower Z+2partons shower of Z+parton generates hard gluon 36

42 MLM matching ACCEPT ACCEPT REJECT Q merge p t cut + v. shower Z+parton shower Z+2partons shower of Z+parton generates hard gluon Hard jets above scale Qmerge have distributions given by tree-level ME Rejection procedure eliminates double-counted jets from parton shower Rejection generates Sudakov form factors between individual jet scales An alternative approach is called CKKW (similar in spirit, Sudakov put in manually) 37

43 Combining NLO accuracy with parton showers () ideas Frixione & Webber 02 Expand your Monte Carlo branching to first order in α s MC@NLO cont. Rather non-trivial requires deep understanding of MC Calculate differences wrt true O (α s ) both in real and virtual pieces Let s imagine a problem with one phase-space dimension, e.g. E. Expand Monte If your Carlo Monte cross Carlo section givesfor correct emission softwith and/or energy collinear E: limits, those differences are finite σ MC δ(e)+α s σr MC (E)+α sσv MC δ(e)+o ( α 2 ) s Generate extra partonic configurations with phase-space distributions With proportional true NLOto real/virtual those differences terms and as αshower s σ R (E) them andα s σ V δ(e), define ( ) MC@NLO = MC +α s (σ V σv MC )+α s de(σ R (E) σr MC (E)) All weights finite, but can be ± Processes include Frixione, Laenen, Motylinski, Nason, Webber, White Higgs boson, single vector boson, vector boson pair, heavy quark pair, single top (with and without associated W), lepton pair and associated 38

44 Combining NLO accuracy with parton showers (2) POWHEG ideas Aims to work around limitations Nason 04 the (small fraction of) negative weights the tight interconnection with a specific MC Principle Write a simplified Monte Carlo that generates just one emission (the hardest one) which alone gives the correct NLO result. Essentially uses special Sudakov (k t )=exp( exact real-radition probability above k t ) Lets your default parton-shower do branchings below that k t. 39

45 Recent developments and research directions (Much) more efficient ways of combining tree-level and showers: Vincia Getting shower samples that are simultaneously NLO accurate at different multiplicities (FxFx, Sherpa NLO matching) Showers that are NNLO accurate: MiNLO, Geneva, UNNLOPS Understanding the underlying resummation accuracy of showers (going beyond LL, leading colour) and its interplay with merging / matching 40

46 [pb] fb CMS (8 TeV) Data MG5 + PY6 ( 4j LO + PS) SHERPA 2 ( 2j NLO 3,4j LO + PS) MG5_aMC + PY8 ( 2j NLO + PS) dσ/dn jets MG5/Data anti-k T (R = 0.5) jets jet jet p > 30 GeV, y < 2.4 T Z/γ* ll channel Stat. unc. Modern tools give good predictions for multijet rates with vector bosons (up to ~ 4 jets, sometimes beyond) SHERPA/Data Stat. unc. MG5_aMC/Data Stat. theo. PDF α s unc N jets 4

47 d σ d N jet σ MC/Data MC/Data ATLAS Powheg+Pythia8 MG5_aMC@NLO+Herwig++ Sherpa v Data Stat. Stat.+Syst. 3 TeV, 3.2 fb add. jet p T Number of additional jets - 60 GeV Number of additional jets.4 Powheg+Pythia6 (RadLo) Powheg+Pythia6 (RadHi) Powheg+Pythia Number of additional jets d σ d N jet σ Modern tools give good 2 0predictions for Sherpa v2.2 multijet rates with top quarks MC/Data MC/Data arxiv: Powheg+Pythia8 MG5_aMC@NLO+Herw 205 Data Stat. Stat.+Syst. 0 Numbe 0 Number o.4 Powheg+Pythia6 (RadLo) Powheg+Pythia6 0 Number of 42

48 hadronisation & MPI essential models for realistic events i.e. events with hadrons 43

49 two main models for the parton hadron transition ( hadronisation ) String Fragmentation (Pythia and friends) Cluster Fragmentation (Herwig) (& Sherpa) Pictures from ESW book 44

50 two main models for the parton hadron transition ( hadronisation ) String Fragmentation (Pythia and friends) Cluster Fragmentation (Herwig) (& Sherpa) Pictures from ESW book 44

51 multi-parton interactions (MPI, a.k.a. underlying event) n type cluster h type cluster taken from R. Field i type cluster taken from Allow 2 2 scatterings of multiple other partons in the incoming protons 45

52 Underlying event properties v. MCs /(N ev η ϕ)n Ratio ch ALICE Preliminary Uncertainties: stat.(vertical), syst.(box) p T 403 ALI PREL Transverse region > 0.5 GeV/c and η < 0.8 charged particle density pp@3tev published pp@7tev Pythia8(Monash203) EPOS-LHC 2 3TeV/7TeV Pythia8/Data EPOS-LHC/Data p leading T (GeV/c) e toward region in pp collisions at p s = e transverse region. inclusive /dη ch dn / /dη ch dn Data/MC ALICE Preliminary pp, s = 3 TeV, INEL > 0 Multiplicity Class 0-0.0% % Data PYTHIA 8 Monash 203 PYTHIA 8 Monash 203 no CR PYTHIA 6 Perugia 20 EPOS LHC.5. η ALI-PREL-4039 η 46

53 jets i.e. how we make sense of the hadronic part of events 47

54 µ + µ B + π K... B jets i.e. how we make sense of the hadronic part of events proton proton Interpretation µ + µ Z _ b H b u σ _ u proton proton 48

55 Why do we see jets? Gluon emission quark non perturbative hadronisation π + K L π 0 K + π Z s de E d Non-perturbative physics s 49

56 Why do we see jets? Gluon emission quark non perturbative hadronisation π + K L π 0 K + π Z s de E d Non-perturbative physics s While you can see jets with your eyes, to do quantitative physics, you need an algorithmic procedure that defines what exactly a jet is 49

57 make a choice, specify a Jet Definition {p } jet definition {j } i k particles, 4-momenta, calorimeter towers,... jets Which particles do you put together into a same jet? How do you recombine their momenta (4-momentum sum is the obvious choice, right?) Jet [definitions] are legal contracts between theorists and experimentalists -- MJ Tannenbaum They re also a way of organising the information in an event 000 s of particles per events, up to ,000 events per second 50

58 what should a jet definition achieve? p π π φ K LO partons NLO partons parton shower hadron level Jet Def n Jet Def n Jet Def n Jet Def n jet jet 2 jet jet 2 jet jet 2 jet jet 2 projection to jets should be resilient to QCD effects 5

59 Reconstructing jets is an ambiguous task 52

60 Reconstructing jets is an ambiguous task 2 clear jets 52

61 Reconstructing jets is an ambiguous task 2 clear jets 3 jets? 52

62 Reconstructing jets is an ambiguous task 2 clear jets 3 jets? or 4 jets? 53

63 Jet definition ingredients Jet algorithm A set of rules that you apply to combine particles into jets Jet algorithm parameters Thresholds that help specify when two particles belong to the same jet or not. Most hadron collider jet algorithms have two threshold parameters: Jet angular radius parameter R: particles closer in angle than R get recombined (NB: usually implemented as a condition on the distance parameter on the standard hadron collider rapidity-azimuth [y,φ] cylinder) Transverse momentum threshold: jets should have p T > p T,min 54

64 the main jet algorithm at the LHC A Sequential recombination algorithm R 2 ij =(y i y j ) 2 +( i j ) 2 y = 2 ln E + p z E p z Involves calculating clustering distance between pairs of particles d ij = max(p 2 ti,p2 tj ) R 2 ij R 2, d ib = p 2 ti. Find smallest of d ij, d ib 2. If ij, recombine them 3. If ib, call i a jet and remove from list of particles 4. repeat from step until no particles left Only use jets with p t > p t,min anti-k t algorithm Cacciari, GPS & Soyez,

65 Jet clustering: anti-k t p t /GeV 50 anti-k t algorithm How do di erent sequential recombination jet algorithms build up the jet? d ij = max(p 2 ti,p2 tj ) R 2 ij R y d ib = p 2 ti [here R=2.0 p T,min =20 GeV at LHC: R=0.4.0] Rij 2 =(y i y j ) 2 +( i j ) 2 y = 2 ln E + p z E p z Gavin Salam (CERN) Jets Physics at the LHC Edinburgh May/June / 5

66 Jet clustering: anti-k t p t /GeV 50 anti-k t algorithm dmin is dij = e 05 How do di erent sequential recombination jet algorithms build up the jet? d ij = max(p 2 ti,p2 tj ) R 2 ij R y d ib = p 2 ti [here R=2.0 p T,min =20 GeV at LHC: R=0.4.0] Rij 2 =(y i y j ) 2 +( i j ) 2 y = 2 ln E + p z E p z Gavin Salam (CERN) Jets Physics at the LHC Edinburgh May/June / 5

67 Jet clustering: anti-k t p t /GeV 50 anti-k t algorithm How do di erent sequential recombination jet algorithms build up the jet? d ij = max(p 2 ti,p2 tj ) R 2 ij R y d ib = p 2 ti [here R=2.0 p T,min =20 GeV at LHC: R=0.4.0] Rij 2 =(y i y j ) 2 +( i j ) 2 y = 2 ln E + p z E p z Gavin Salam (CERN) Jets Physics at the LHC Edinburgh May/June / 5

68 Jet clustering: anti-k t p t /GeV 50 anti-k t algorithm dmin is dij = How do di erent sequential recombination jet algorithms build up the jet? d ij = max(p 2 ti,p2 tj ) R 2 ij R y d ib = p 2 ti [here R=2.0 p T,min =20 GeV at LHC: R=0.4.0] Rij 2 =(y i y j ) 2 +( i j ) 2 y = 2 ln E + p z E p z Gavin Salam (CERN) Jets Physics at the LHC Edinburgh May/June / 5

69 Jet clustering: anti-k t p t /GeV 50 anti-k t algorithm How do di erent sequential recombination jet algorithms build up the jet? d ij = max(p 2 ti,p2 tj ) R 2 ij R y d ib = p 2 ti [here R=2.0 p T,min =20 GeV at LHC: R=0.4.0] Rij 2 =(y i y j ) 2 +( i j ) 2 y = 2 ln E + p z E p z Gavin Salam (CERN) Jets Physics at the LHC Edinburgh May/June / 5

70 Jet clustering: anti-k t p t /GeV 50 anti-k t algorithm dmin is dij = How do di erent sequential recombination jet algorithms build up the jet? d ij = max(p 2 ti,p2 tj ) R 2 ij R y d ib = p 2 ti [here R=2.0 p T,min =20 GeV at LHC: R=0.4.0] Rij 2 =(y i y j ) 2 +( i j ) 2 y = 2 ln E + p z E p z Gavin Salam (CERN) Jets Physics at the LHC Edinburgh May/June / 5

71 Jet clustering: anti-k t p t /GeV 50 anti-k t algorithm How do di erent sequential recombination jet algorithms build up the jet? d ij = max(p 2 ti,p2 tj ) R 2 ij R y d ib = p 2 ti [here R=2.0 p T,min =20 GeV at LHC: R=0.4.0] Rij 2 =(y i y j ) 2 +( i j ) 2 y = 2 ln E + p z E p z Gavin Salam (CERN) Jets Physics at the LHC Edinburgh May/June / 5

72 Jet clustering: anti-k t p t /GeV anti-k t algorithm dmin is dij = How do di erent sequential recombination jet algorithms build up the jet? Anti-k t gradually makes its way through the secondary blob: only hierarchy in clustering is distance from hard core. 20 d ij = max(p 2 ti,p2 tj ) R 2 ij R y d ib = p 2 ti [here R=2.0 p T,min =20 GeV at LHC: R=0.4.0] Rij 2 =(y i y j ) 2 +( i j ) 2 y = 2 ln E + p z E p z Gavin Salam (CERN) Jets Physics at the LHC Edinburgh May/June / 5

73 Jet clustering: anti-k t p t /GeV anti-k t algorithm How do di erent sequential recombination jet algorithms build up the jet? Anti-k t gradually makes its way through the secondary blob: only hierarchy in clustering is distance from hard core. 20 d ij = max(p 2 ti,p2 tj ) R 2 ij R y d ib = p 2 ti [here R=2.0 p T,min =20 GeV at LHC: R=0.4.0] Rij 2 =(y i y j ) 2 +( i j ) 2 y = 2 ln E + p z E p z Gavin Salam (CERN) Jets Physics at the LHC Edinburgh May/June / 5

74 Jet clustering: anti-k t p t /GeV anti-k t algorithm dmin is dij = How do di erent sequential recombination jet algorithms build up the jet? Anti-k t gradually makes its way through the secondary blob: only hierarchy in clustering is distance from hard core. 20 d ij = max(p 2 ti,p2 tj ) R 2 ij R y d ib = p 2 ti [here R=2.0 p T,min =20 GeV at LHC: R=0.4.0] Rij 2 =(y i y j ) 2 +( i j ) 2 y = 2 ln E + p z E p z Gavin Salam (CERN) Jets Physics at the LHC Edinburgh May/June / 5

75 Jet clustering: anti-k t p t /GeV anti-k t algorithm How do di erent sequential recombination jet algorithms build up the jet? Anti-k t gradually makes its way through the secondary blob: only hierarchy in clustering is distance from hard core. 20 d ij = max(p 2 ti,p2 tj ) R 2 ij R y d ib = p 2 ti [here R=2.0 p T,min =20 GeV at LHC: R=0.4.0] Rij 2 =(y i y j ) 2 +( i j ) 2 y = 2 ln E + p z E p z Gavin Salam (CERN) Jets Physics at the LHC Edinburgh May/June / 5

76 Jet clustering: anti-k t p t /GeV anti-k t algorithm dmin is dij = How do di erent sequential recombination jet algorithms build up the jet? Anti-k t gradually makes its way through the secondary blob: only hierarchy in clustering is distance from hard core. 20 d ij = max(p 2 ti,p2 tj ) R 2 ij R y d ib = p 2 ti [here R=2.0 p T,min =20 GeV at LHC: R=0.4.0] Rij 2 =(y i y j ) 2 +( i j ) 2 y = 2 ln E + p z E p z Gavin Salam (CERN) Jets Physics at the LHC Edinburgh May/June / 5

77 Jet clustering: anti-k t p t /GeV anti-k t algorithm How do di erent sequential recombination jet algorithms build up the jet? Anti-k t gradually makes its way through the secondary blob: only hierarchy in clustering is distance from hard core. 20 d ij = max(p 2 ti,p2 tj ) R 2 ij R y d ib = p 2 ti [here R=2.0 p T,min =20 GeV at LHC: R=0.4.0] Rij 2 =(y i y j ) 2 +( i j ) 2 y = 2 ln E + p z E p z Gavin Salam (CERN) Jets Physics at the LHC Edinburgh May/June / 5

78 Jet clustering: anti-k t p t /GeV anti-k t algorithm dmin is dib = How do di erent sequential recombination jet algorithms build up the jet? Anti-k t gradually makes its way through the secondary blob: only hierarchy in clustering is distance from hard core. 20 d ij = max(p 2 ti,p2 tj ) R 2 ij R y d ib = p 2 ti [here R=2.0 p T,min =20 GeV at LHC: R=0.4.0] Rij 2 =(y i y j ) 2 +( i j ) 2 y = 2 ln E + p z E p z Gavin Salam (CERN) Jets Physics at the LHC Edinburgh May/June / 5

79 Jet clustering: anti-k t p t /GeV anti-k t algorithm Good Jet (p T > p T,min ) How do di erent sequential recombination jet algorithms build up the jet? Anti-k t gradually makes its way through the secondary blob: only hierarchy in clustering is distance from hard core. 20 d ij = max(p 2 ti,p2 tj ) R 2 ij R y d ib = p 2 ti [here R=2.0 p T,min =20 GeV at LHC: R=0.4.0] Rij 2 =(y i y j ) 2 +( i j ) 2 y = 2 ln E + p z E p z Gavin Salam (CERN) Jets Physics at the LHC Edinburgh May/June / 5

80 Jet clustering: anti-k t p t /GeV anti-k t algorithm dmin is dib =.96 Good Jet (p T > p T,min ) How do di erent sequential recombination jet algorithms build up the jet? Anti-k t gradually makes its way through the secondary blob: only hierarchy in clustering is distance from hard core. 20 d ij = max(p 2 ti,p2 tj ) R 2 ij R y d ib = p 2 ti [here R=2.0 p T,min =20 GeV at LHC: R=0.4.0] Rij 2 =(y i y j ) 2 +( i j ) 2 y = 2 ln E + p z E p z Gavin Salam (CERN) Jets Physics at the LHC Edinburgh May/June / 5

81 Jet clustering: anti-k t p t /GeV anti-k t algorithm Good Jet (p T > p T,min ) How do di erent sequential recombination jet algorithms build up the jet? Anti-k t gradually makes its way through the secondary blob: only hierarchy in clustering is distance from hard core Too soft for a jet (p T < p T,min ) y d ij = d ib = max(p 2 ti,p2 tj ) p 2 ti R 2 ij R 2 [here R=2.0 p T,min =20 GeV at LHC: R=0.4.0] Rij 2 =(y i y j ) 2 +( i j ) 2 y = 2 ln E + p z E p z Gavin Salam (CERN) Jets Physics at the LHC Edinburgh May/June / 5

82 anti-k t in action [full simulated event] Clustering grows around hard cores d ij = max(p 2 ti,p2 tj ) R 2 ij R 2, d ib = p 2 ti R= 73

83 anti-k t in action [full simulated event] Clustering grows around hard cores d ij = max(p 2 ti,p2 tj ) R 2 ij R 2, d ib = p 2 ti R= 73

84 anti-k t in action [full simulated event] Clustering grows around hard cores d ij = max(p 2 ti,p2 tj ) R 2 ij R 2, d ib = p 2 ti R= 73

85 anti-k t in action [full simulated event] Clustering grows around hard cores d ij = max(p 2 ti,p2 tj ) R 2 ij R 2, d ib = p 2 ti R= 73

86 anti-k t in action [full simulated event] Clustering grows around hard cores d ij = max(p 2 ti,p2 tj ) R 2 ij R 2, d ib = p 2 ti R= 73

87 anti-k t in action [full simulated event] Clustering grows around hard cores d ij = max(p 2 ti,p2 tj ) R 2 ij R 2, d ib = p 2 ti R= 73

88 anti-k t in action [full simulated event] Clustering grows around hard cores d ij = max(p 2 ti,p2 tj ) R 2 ij R 2, d ib = p 2 ti R= 73

89 anti-k t in action [full simulated event] Clustering grows around hard cores d ij = max(p 2 ti,p2 tj ) R 2 ij R 2, d ib = p 2 ti R= 73

90 anti-k t in action [full simulated event] Clustering grows around hard cores d ij = max(p 2 ti,p2 tj ) R 2 ij R 2, d ib = p 2 ti R= 73

91 anti-k t in action [full simulated event] Clustering grows around hard cores d ij = max(p 2 ti,p2 tj ) R 2 ij R 2, d ib = p 2 ti R= 73

92 anti-k t in action [full simulated event] Clustering grows around hard cores d ij = max(p 2 ti,p2 tj ) R 2 ij R 2, d ib = p 2 ti R= 73

93 anti-k t in action [full simulated event] Clustering grows around hard cores d ij = max(p 2 ti,p2 tj ) R 2 ij R 2, d ib = p 2 ti R= 73

94 anti-k t in action [full simulated event] Clustering grows around hard cores d ij = max(p 2 ti,p2 tj ) R 2 ij R 2, d ib = p 2 ti R= 73

95 anti-k t in action [full simulated event] Clustering grows around hard cores d ij = max(p 2 ti,p2 tj ) R 2 ij R 2, d ib = p 2 ti R= 73

96 anti-k t in action [full simulated event] Clustering grows around hard cores d ij = max(p 2 ti,p2 tj ) R 2 ij R 2, d ib = p 2 ti R= 73

97 anti-k t in action [full simulated event] Clustering grows around hard cores d ij = max(p 2 ti,p2 tj ) R 2 ij R 2, d ib = p 2 ti R= Anti-kt gives circular jets ( cone-like ) in a way that s infrared safe 73

98 conclusions 74

99 ATLAS H WW* ANALYSIS [ ] 3 Signal and background models The ggf and VBF production modes for H! WW are modelled at next-to-leading order (NLO) in the strong coupling S with the Powheg MC generator [22 25], interfaced with Pythia8[26] (version 8.65) for the parton shower, hadronisation, and underlying event. The CT0 [27] PDF set is used and the parameters of the Pythia8 generator controlling the modelling of the parton shower and the underlying event are those corresponding to the AU2 set [28]. The Higgs boson mass set in the generation is 25.0 GeV, which is close to the measured value. The Powheg ggf model takes into account finite quark masses and a running-width Breit Wigner distribution that includes electroweak corrections at NLO [29]. To improve the modelling of the Higgs boson p T distribution, a reweighting scheme is applied to reproduce the prediction of the next-to-next-to-leading-order (NNLO) and next-to-next-to-leading-logarithm (NNLL) dynamic-scale calculation given by the HRes 2. program [30]. Events with 2 jets are further reweighted to reproduce the pt H spectrum predicted by the NLO Powheg simulation of Higgs boson production in association with two jets (H + 2 jets) [3]. Interference with continuum WW production [32, 33] has a negligible impact on this analysis due to the transverse-mass selection criteria described in Section 4 and is not included in the signal model. The inclusive cross sections at p s 8 TeV for a Higgs boson mass of 25 0 GeV, calculated at NNLO NNL Jets are reconstructed from topological clusters of calorimeter cells [50 52] using the anti-k t algorithm with a radius parameter of R = 0.4 [53]. Jet energies are corrected for the e ects of calorimeter noncompensation, signal losses due to noise threshold e ects, energy lost in non-instrumented regions, con- 75

100 WHAT DO ATLAS & CMS USE MOST FREQUENTLY? fraction of ATLAS & CMS papers that cite them GEANT4 Anti-k t jet alg. Pythia 6.4 MC Pythia 8. CT0 PDFs POWHEG Box POWHEG (2007) CTEQ6 PDFs Papers commonly cited by ATLAS and CMS ( ) CL(s) technique (A.Read) POWHEG (2004) MG5aMCatNLO MSTW2008 PDFs FastJet Manual Likelihood tests for new physics Sherpa. MadGraph 5 top++ NNLO ttbar Herwig 6 MC Pileup subtraction PDF4LHC (20) NNPDF23 PDFs CL(s) technique (T.Junk) NNPDF30 PDFs as of , excluding self-citations; all papers > 0.2 Perugia tunes (200) Herwig++ MC Plot by GP Salam based on data from InspireHEP 76

101 WHAT DO ATLAS & CMS USE MOST FREQUENTLY? fraction of ATLAS & CMS papers that cite them GEANT4 Anti-k t jet alg. Pythia 6.4 MC Pythia 8. CT0 PDFs POWHEG Box POWHEG (2007) CTEQ6 PDFs CL(s) technique (A.Read) POWHEG (2004) MG5aMCatNLO MSTW2008 PDFs FastJet Manual Likelihood tests for new physics Sherpa. Papers commonly cited by ATLAS and CMS ( ) as of , excluding self-citations; all papers > 0.2 QCD tools MadGraph 5 top++ NNLO ttbar Herwig 6 MC Pileup subtraction PDF4LHC (20) NNPDF23 PDFs CL(s) technique (T.Junk) NNPDF30 PDFs Perugia tunes (200) Herwig++ MC Plot by GP Salam based on data from InspireHEP 77

102 CONCLUSIONS A huge number of ingredients goes into hadron-collider predictions and studies (α s, PDFs, matrix elements, resummation, parton showers, non-perturbative models, jet algorithms, etc.) a key idea is the separation of (time) scales, factorisation short timescales: the hard process long timescales: hadronic physics in between: parton showers, resummation, DGLAP as long as you ask the right questions (e.g. look at jets, not individual hadrons), you can exploit this separation for quantitative, accurate, collider physics maximising accuracy and information extracted is today s research frontier 78

103 Extra resources Introductory level QCD lecture notes from CERN schools, e.g. Peter Skands, arxiv: GPS, arxiv:0.53 More advanced Slides from QCD and Monte Carlo specific schools CTEQ schools: MCNet schools: Books QCD and collider physics, Ellis, Stirling & Webber The Black Book of Quantum Chromodynamics, Campbell, Huston & Krauss 79

104 EXTRA SLIDES 80

105 GLUON V. HADRON MULTIPLICITY It turns out you can calculate the gluon multiplicity analytically, by summing all orders (n) of perturbation theory: N g n (n!) 2 ( CA πb ln Q Λ ) n exp 4CA πb ln Q Λ Compare to data for hadron multiplicity (Q s) Including some other higher-order terms and fitting overall normalisation Agreement is amazing! charged hadron multiplicity in e + e events adapted from ESW 8

106 <latexit sha_base64="7h+bf0l2oj2oamo4i6d7zpisfiw=">aaac9niczzlnbhmxemed5auerxsoxcyisk0urbsvelwqvxdh0qqosvupdiuv5tytdfg9ozerswbcenceqkegmfgcne8sud5gmnw3/obgy09zhrnxsbxz0z06/adu/d27jcfphz0+elr9+m5kzumdeakl/oyw4zyvtkbzzbts6upfhmnf9n25pftkg2tjz9on0kpcozauj2azx2koneypnuojn0pqussu+pisi08leifojlhdxh8q0kejjvd5pw7zcpnrmn7a5fhgn6esobpkop6if9xcdzh4fftvjvuxxod2yjzijzy2mm62/imckkqqutlodbmkomvhtqslsoc+iaqdfwyxomrvqqyxikaozu/hied4mlhixvypyvz72qgw8kymchcpmb2bdzz7fzpoqvqfasgo+sd2ol0lfsvzawznfauxfojayfg+zmu2l5lahmnat3ggsmnsy2dkwjsvqjscfwmtuejq8bv2ocgr+ovbzqfk6ts7odvqs0gklkhpvwo45pnlex2czifxhh9sfyb3fbzcwsiszqfti/odxhl3kvcv20dvlspbac/bc7ahevakhif34bqmaae/wc/wg/yjptgx6gv0breanzy5z8card//auap9q8=</latexit> <latexit sha_base64="7h+bf0l2oj2oamo4i6d7zpisfiw=">aaac9niczzlnbhmxemed5auerxsoxcyisk0urbsvelwqvxdh0qqosvupdiuv5tytdfg9ozerswbcenceqkegmfgcne8sud5gmnw3/obgy09zhrnxsbxz0z06/adu/d27jcfphz0+elr9+m5kzumdeakl/oyw4zyvtkbzzbts6upfhmnf9n25pftkg2tjz9on0kpcozauj2azx2koneypnuojn0pqussu+pisi08leifojlhdxh8q0kejjvd5pw7zcpnrmn7a5fhgn6esobpkop6if9xcdzh4fftvjvuxxod2yjzijzy2mm62/imckkqqutlodbmkomvhtqslsoc+iaqdfwyxomrvqqyxikaozu/hied4mlhixvypyvz72qgw8kymchcpmb2bdzz7fzpoqvqfasgo+sd2ol0lfsvzawznfauxfojayfg+zmu2l5lahmnat3ggsmnsy2dkwjsvqjscfwmtuejq8bv2ocgr+ovbzqfk6ts7odvqs0gklkhpvwo45pnlex2czifxhh9sfyb3fbzcwsiszqfti/odxhl3kvcv20dvlspbac/bc7ahevakhif34bqmaae/wc/wg/yjptgx6gv0breanzy5z8card//auap9q8=</latexit> <latexit sha_base64="7h+bf0l2oj2oamo4i6d7zpisfiw=">aaac9niczzlnbhmxemed5auerxsoxcyisk0urbsvelwqvxdh0qqosvupdiuv5tytdfg9ozerswbcenceqkegmfgcne8sud5gmnw3/obgy09zhrnxsbxz0z06/adu/d27jcfphz0+elr9+m5kzumdeakl/oyw4zyvtkbzzbts6upfhmnf9n25pftkg2tjz9on0kpcozauj2azx2koneypnuojn0pqussu+pisi08leifojlhdxh8q0kejjvd5pw7zcpnrmn7a5fhgn6esobpkop6if9xcdzh4fftvjvuxxod2yjzijzy2mm62/imckkqqutlodbmkomvhtqslsoc+iaqdfwyxomrvqqyxikaozu/hied4mlhixvypyvz72qgw8kymchcpmb2bdzz7fzpoqvqfasgo+sd2ol0lfsvzawznfauxfojayfg+zmu2l5lahmnat3ggsmnsy2dkwjsvqjscfwmtuejq8bv2ocgr+ovbzqfk6ts7odvqs0gklkhpvwo45pnlex2czifxhh9sfyb3fbzcwsiszqfti/odxhl3kvcv20dvlspbac/bc7ahevakhif34bqmaae/wc/wg/yjptgx6gv0breanzy5z8card//auap9q8=</latexit> <latexit sha_base64="7h+bf0l2oj2oamo4i6d7zpisfiw=">aaac9niczzlnbhmxemed5auerxsoxcyisk0urbsvelwqvxdh0qqosvupdiuv5tytdfg9ozerswbcenceqkegmfgcne8sud5gmnw3/obgy09zhrnxsbxz0z06/adu/d27jcfphz0+elr9+m5kzumdeakl/oyw4zyvtkbzzbts6upfhmnf9n25pftkg2tjz9on0kpcozauj2azx2koneypnuojn0pqussu+pisi08leifojlhdxh8q0kejjvd5pw7zcpnrmn7a5fhgn6esobpkop6if9xcdzh4fftvjvuxxod2yjzijzy2mm62/imckkqqutlodbmkomvhtqslsoc+iaqdfwyxomrvqqyxikaozu/hied4mlhixvypyvz72qgw8kymchcpmb2bdzz7fzpoqvqfasgo+sd2ol0lfsvzawznfauxfojayfg+zmu2l5lahmnat3ggsmnsy2dkwjsvqjscfwmtuejq8bv2ocgr+ovbzqfk6ts7odvqs0gklkhpvwo45pnlex2czifxhh9sfyb3fbzcwsiszqfti/odxhl3kvcv20dvlspbac/bc7ahevakhif34bqmaae/wc/wg/yjptgx6gv0breanzy5z8card//auap9q8=</latexit> <latexit sha_base64="njz5wufmnxliaqplicfnlqmlsdc=">aaac3iczzjbaxnbfmcn663gw6qpvgygqaix7iqgl4wgl760vjqklw5czs7onkpnxsykgoalb+krx8jp46uffhsnfysxazp8ob9z4nxyzzlcxxbi+7cvxf/wd7d+qpht54+a+w/hknyqoielknovgkwesdhznj5pq0hknj7mlx/n/pskgsuuhlizpmmbf5kvjialrqzrtwct6qa9wq/xvvtnstflhxk2qzpr6eadngqjisyzg6t6kvbatm78gfwdrngme/hc8k5ivqkjvnac7deu00krqadseq7wniexdmmpxjhcavvpp5zqijdwqc+dlccohftfqxvubu+bs2xckw4vvoszhosm5ghsafuyrfz3pmftdahlzcmtzyrcox7swdstx2vzflaoexyktyfjy6yoctxwrbadas9ydiba8sfqddtsb8rjqtiwqdgq/bxpyhmvpti5wfu0e/ox/0fi3xalldyvhlww8ch22jw5mctmhv4qtmf+ipt0jiwfmyvabdmxrts+je8vlts/9htbw99bk9qm2uoheojz6hyzrebpgf9bfdbn9ia6jh9hpzwhuw+w8qbsw/fohjdlmmg==</latexit> <latexit sha_base64="njz5wufmnxliaqplicfnlqmlsdc=">aaac3iczzjbaxnbfmcn663gw6qpvgygqaix7iqgl4wgl760vjqklw5czs7onkpnxsykgoalb+krx8jp46uffhsnfysxazp8ob9z4nxyzzlcxxbi+7cvxf/wd7d+qpht54+a+w/hknyqoielknovgkwesdhznj5pq0hknj7mlx/n/pskgsuuhlizpmmbf5kvjialrqzrtwct6qa9wq/xvvtnstflhxk2qzpr6eadngqjisyzg6t6kvbatm78gfwdrngme/hc8k5ivqkjvnac7deu00krqadseq7wniexdmmpxjhcavvpp5zqijdwqc+dlccohftfqxvubu+bs2xckw4vvoszhosm5ghsafuyrfz3pmftdahlzcmtzyrcox7swdstx2vzflaoexyktyfjy6yoctxwrbadas9ydiba8sfqddtsb8rjqtiwqdgq/bxpyhmvpti5wfu0e/ox/0fi3xalldyvhlww8ch22jw5mctmhv4qtmf+ipt0jiwfmyvabdmxrts+je8vlts/9htbw99bk9qm2uoheojz6hyzrebpgf9bfdbn9ia6jh9hpzwhuw+w8qbsw/fohjdlmmg==</latexit> <latexit sha_base64="njz5wufmnxliaqplicfnlqmlsdc=">aaac3iczzjbaxnbfmcn663gw6qpvgygqaix7iqgl4wgl760vjqklw5czs7onkpnxsykgoalb+krx8jp46uffhsnfysxazp8ob9z4nxyzzlcxxbi+7cvxf/wd7d+qpht54+a+w/hknyqoielknovgkwesdhznj5pq0hknj7mlx/n/pskgsuuhlizpmmbf5kvjialrqzrtwct6qa9wq/xvvtnstflhxk2qzpr6eadngqjisyzg6t6kvbatm78gfwdrngme/hc8k5ivqkjvnac7deu00krqadseq7wniexdmmpxjhcavvpp5zqijdwqc+dlccohftfqxvubu+bs2xckw4vvoszhosm5ghsafuyrfz3pmftdahlzcmtzyrcox7swdstx2vzflaoexyktyfjy6yoctxwrbadas9ydiba8sfqddtsb8rjqtiwqdgq/bxpyhmvpti5wfu0e/ox/0fi3xalldyvhlww8ch22jw5mctmhv4qtmf+ipt0jiwfmyvabdmxrts+je8vlts/9htbw99bk9qm2uoheojz6hyzrebpgf9bfdbn9ia6jh9hpzwhuw+w8qbsw/fohjdlmmg==</latexit> <latexit sha_base64="go7l2ogay8yuie02dt7ifboswwm=">aaadfhicbzllahsxfiy0syvtnjshtry0ihntoh0g4kocglm4suxe7amongnhenbohhbcxyuhb9gm6k9233vfpllhff96qnlp+c4b6fzktbqw4vh3en65e+/+g53d6ogjx0+etvb2b7aagsb7rjkvuc6o5vio3gcbkl9rw2mzsx6v3zzm+dvnbqyocxmnb+vdkjelhgfn0pb9ttm+k0mkucwjlmhzb0ravfj+qf2riuacaup4dokwsncvix7tevvecb/hqqkdtr3nycml/pzcibf4v6texeriyyfjnjwo+7gi8dbilmknlrgeboxfcxjiklrobjau0witwmhdugmorrkawa8pu6iqpvvs05hbkfnoqccdnxjivjf8k8ck72ufoae2szhxlsagwm2ye/mc6q9dmdcod9rta/nbkhnjt4iof8inekof52bgstccgzx5qzkr/g2yfdrpebxlevh8c6vkkqqx8574ivkpc5raeh3pzkoxbpgtok83al5c8y3kzmrndyrx2sy6vcio8b2v/z/z7+vol3yjtyzznghbdi66sdxnpruh79fmrednqhn6bal6a06rh/roeojhv4eu8f+cbb+c7+hp8kftwkylhso0fqev/4ccwh/ga==</latexit> <latexit sha_base64="go7l2ogay8yuie02dt7ifboswwm=">aaadfhicbzllahsxfiy0syvtnjshtry0ihntoh0g4kocglm4suxe7amongnhenbohhbcxyuhb9gm6k9233vfpllhff96qnlp+c4b6fzktbqw4vh3en65e+/+g53d6ogjx0+etvb2b7aagsb7rjkvuc6o5vio3gcbkl9rw2mzsx6v3zzm+dvnbqyocxmnb+vdkjelhgfn0pb9ttm+k0mkucwjlmhzb0ravfj+qf2riuacaup4dokwsncvix7tevvecb/hqqkdtr3nycml/pzcibf4v6texeriyyfjnjwo+7gi8dbilmknlrgeboxfcxjiklrobjau0witwmhdugmorrkawa8pu6iqpvvs05hbkfnoqccdnxjivjf8k8ck72ufoae2szhxlsagwm2ye/mc6q9dmdcod9rta/nbkhnjt4iof8inekof52bgstccgzx5qzkr/g2yfdrpebxlevh8c6vkkqqx8574ivkpc5raeh3pzkoxbpgtok83al5c8y3kzmrndyrx2sy6vcio8b2v/z/z7+vol3yjtyzznghbdi66sdxnpruh79fmrednqhn6bal6a06rh/roeojhv4eu8f+cbb+c7+hp8kftwkylhso0fqev/4ccwh/ga==</latexit> <latexit sha_base64="go7l2ogay8yuie02dt7ifboswwm=">aaadfhicbzllahsxfiy0syvtnjshtry0ihntoh0g4kocglm4suxe7amongnhenbohhbcxyuhb9gm6k9233vfpllhff96qnlp+c4b6fzktbqw4vh3en65e+/+g53d6ogjx0+etvb2b7aagsb7rjkvuc6o5vio3gcbkl9rw2mzsx6v3zzm+dvnbqyocxmnb+vdkjelhgfn0pb9ttm+k0mkucwjlmhzb0ravfj+qf2riuacaup4dokwsncvix7tevvecb/hqqkdtr3nycml/pzcibf4v6texeriyyfjnjwo+7gi8dbilmknlrgeboxfcxjiklrobjau0witwmhdugmorrkawa8pu6iqpvvs05hbkfnoqccdnxjivjf8k8ck72ufoae2szhxlsagwm2ye/mc6q9dmdcod9rta/nbkhnjt4iof8inekof52bgstccgzx5qzkr/g2yfdrpebxlevh8c6vkkqqx8574ivkpc5raeh3pzkoxbpgtok83al5c8y3kzmrndyrx2sy6vcio8b2v/z/z7+vol3yjtyzznghbdi66sdxnpruh79fmrednqhn6bal6a06rh/roeojhv4eu8f+cbb+c7+hp8kftwkylhso0fqev/4ccwh/ga==</latexit> <latexit sha_base64="go7l2ogay8yuie02dt7ifboswwm=">aaadfhicbzllahsxfiy0syvtnjshtry0ihntoh0g4kocglm4suxe7amongnhenbohhbcxyuhb9gm6k9233vfpllhff96qnlp+c4b6fzktbqw4vh3en65e+/+g53d6ogjx0+etvb2b7aagsb7rjkvuc6o5vio3gcbkl9rw2mzsx6v3zzm+dvnbqyocxmnb+vdkjelhgfn0pb9ttm+k0mkucwjlmhzb0ravfj+qf2riuacaup4dokwsncvix7tevvecb/hqqkdtr3nycml/pzcibf4v6texeriyyfjnjwo+7gi8dbilmknlrgeboxfcxjiklrobjau0witwmhdugmorrkawa8pu6iqpvvs05hbkfnoqccdnxjivjf8k8ck72ufoae2szhxlsagwm2ye/mc6q9dmdcod9rta/nbkhnjt4iof8inekof52bgstccgzx5qzkr/g2yfdrpebxlevh8c6vkkqqx8574ivkpc5raeh3pzkoxbpgtok83al5c8y3kzmrndyrx2sy6vcio8b2v/z/z7+vol3yjtyzznghbdi66sdxnpruh79fmrednqhn6bal6a06rh/roeojhv4eu8f+cbb+c7+hp8kftwkylhso0fqev/4ccwh/ga==</latexit> <latexit sha_base64="j+jldveqxwcrxraoj8xn3n5ruo=">aaadanicbzjlaxsxeme2fqvpz22iuomftqmt0qac+b0jdss0jk6irgmwvwtrcwq2qxmmmwhrpp+mt9nov0wm/sa+vhxq/oidpz/xmqjq/cqokwyt5hcw3bt+5e2/nfupbw0epnzr3n64amk56pjkvfyqbyeukklepw4mlzamstxmy+pzvzywlgnk/0jp0b0sxhqwugogfjzc3xambgxtikce69zyyh7pqaohmxva8+mrjnumdfhnfsvpoukwxhtj+sgpf+fdeccixqvttpgvg5h2m+arastzinui3qpwmqzz9lu9iunkj4phuauwllemhjse7aourjg02cmmdhmbs9idwuwvx9fcobyfmgbavdusjnwdxozyuzk3lpfswgco3ywbjf6y9cl2xyls9fgms3va9gacqvpfbyqjoljr2ejpqfrbuu2dag5leapliwgjw2bqg2nxmvdlcxrggwfhfkdmcdjxryotb/skobhbh/qglvzosux5ae3ddoqebqkt8xxs6k3cb5l9jn9yhkqczemmqdviyq+tjp30437r8n3svb3ynlwgl0lk3pbd8ogcks7h5bf5e5eoir/g3+lv8y9farwte56rtyh//gvcsflz</latexit> <latexit sha_base64="j+jldveqxwcrxraoj8xn3n5ruo=">aaadanicbzjlaxsxeme2fqvpz22iuomftqmt0qac+b0jdss0jk6irgmwvwtrcwq2qxmmmwhrpp+mt9nov0wm/sa+vhxq/oidpz/xmqjq/cqokwyt5hcw3bt+5e2/nfupbw0epnzr3n64amk56pjkvfyqbyeukklepw4mlzamstxmy+pzvzywlgnk/0jp0b0sxhqwugogfjzc3xambgxtikce69zyyh7pqaohmxva8+mrjnumdfhnfsvpoukwxhtj+sgpf+fdeccixqvttpgvg5h2m+arastzinui3qpwmqzz9lu9iunkj4phuauwllemhjse7aourjg02cmmdhmbs9idwuwvx9fcobyfmgbavdusjnwdxozyuzk3lpfswgco3ywbjf6y9cl2xyls9fgms3va9gacqvpfbyqjoljr2ejpqfrbuu2dag5leapliwgjw2bqg2nxmvdlcxrggwfhfkdmcdjxryotb/skobhbh/qglvzosux5ae3ddoqebqkt8xxs6k3cb5l9jn9yhkqczemmqdviyq+tjp30437r8n3svb3ynlwgl0lk3pbd8ogcks7h5bf5e5eoir/g3+lv8y9farwte56rtyh//gvcsflz</latexit> <latexit sha_base64="j+jldveqxwcrxraoj8xn3n5ruo=">aaadanicbzjlaxsxeme2fqvpz22iuomftqmt0qac+b0jdss0jk6irgmwvwtrcwq2qxmmmwhrpp+mt9nov0wm/sa+vhxq/oidpz/xmqjq/cqokwyt5hcw3bt+5e2/nfupbw0epnzr3n64amk56pjkvfyqbyeukklepw4mlzamstxmy+pzvzywlgnk/0jp0b0sxhqwugogfjzc3xambgxtikce69zyyh7pqaohmxva8+mrjnumdfhnfsvpoukwxhtj+sgpf+fdeccixqvttpgvg5h2m+arastzinui3qpwmqzz9lu9iunkj4phuauwllemhjse7aourjg02cmmdhmbs9idwuwvx9fcobyfmgbavdusjnwdxozyuzk3lpfswgco3ywbjf6y9cl2xyls9fgms3va9gacqvpfbyqjoljr2ejpqfrbuu2dag5leapliwgjw2bqg2nxmvdlcxrggwfhfkdmcdjxryotb/skobhbh/qglvzosux5ae3ddoqebqkt8xxs6k3cb5l9jn9yhkqczemmqdviyq+tjp30437r8n3svb3ynlwgl0lk3pbd8ogcks7h5bf5e5eoir/g3+lv8y9farwte56rtyh//gvcsflz</latexit> <latexit sha_base64="j+jldveqxwcrxraoj8xn3n5ruo=">aaadanicbzjlaxsxeme2fqvpz22iuomftqmt0qac+b0jdss0jk6irgmwvwtrcwq2qxmmmwhrpp+mt9nov0wm/sa+vhxq/oidpz/xmqjq/cqokwyt5hcw3bt+5e2/nfupbw0epnzr3n64amk56pjkvfyqbyeukklepw4mlzamstxmy+pzvzywlgnk/0jp0b0sxhqwugogfjzc3xambgxtikce69zyyh7pqaohmxva8+mrjnumdfhnfsvpoukwxhtj+sgpf+fdeccixqvttpgvg5h2m+arastzinui3qpwmqzz9lu9iunkj4phuauwllemhjse7aourjg02cmmdhmbs9idwuwvx9fcobyfmgbavdusjnwdxozyuzk3lpfswgco3ywbjf6y9cl2xyls9fgms3va9gacqvpfbyqjoljr2ejpqfrbuu2dag5leapliwgjw2bqg2nxmvdlcxrggwfhfkdmcdjxryotb/skobhbh/qglvzosux5ae3ddoqebqkt8xxs6k3cb5l9jn9yhkqczemmqdviyq+tjp30437r8n3svb3ynlwgl0lk3pbd8ogcks7h5bf5e5eoir/g3+lv8y9farwte56rtyh//gvcsflz</latexit> Resummation of p T : steps along the way v(p,...,p m )= mx i= ~p T,i ' max(p T,...,p Tm ) Z my (V v(p,...,p m )) = (V p Ti ) Z V )= i= <latexit sha_base64="njz5wufmnxliaqplicfnlqmlsdc=">aaac3iczzjbaxnbfmcn663gw6qpvgygqaix7iqgl4wgl760vjqklw5czs7onkpnxsykgoalb+krx8jp46uffhsnfysxazp8ob9z4nxyzzlcxxbi+7cvxf/wd7d+qpht54+a+w/hknyqoielknovgkwesdhznj5pq0hknj7mlx/n/pskgsuuhlizpmmbf5kvjialrqzrtwct6qa9wq/xvvtnstflhxk2qzpr6eadngqjisyzg6t6kvbatm78gfwdrngme/hc8k5ivqkjvnac7deu00krqadseq7wniexdmmpxjhcavvpp5zqijdwqc+dlccohftfqxvubu+bs2xckw4vvoszhosm5ghsafuyrfz3pmftdahlzcmtzyrcox7swdstx2vzflaoexyktyfjy6yoctxwrbadas9ydiba8sfqddtsb8rjqtiwqdgq/bxpyhmvpti5wfu0e/ox/0fi3xalldyvhlww8ch22jw5mctmhv4qtmf+ipt0jiwfmyvabdmxrts+je8vlts/9htbw99bk9qm2uoheojz6hyzrebpgf9bfdbn9ia6jh9hpzwhuw+w8qbsw/fohjdlmmg==</latexit> X my Z Z Z 2 s C F de i d 2 i d i (V v(p m! m=0 i= E i i 0 2,...,p m )) Y Z apple Z Z Z 2 s C X Y Z Z F ZdE d =exp E (V E )! X n=0 n! m+n Y i=m+ 2 s C F Z de i E i Z d i i Z 2 0 d i 2 = expapple 2 s C F Z de E Z d 82

QCD at hadron colliders Lecture 2: Showers, Jets and fixed-order predictions

QCD at hadron colliders Lecture 2: Showers, Jets and fixed-order predictions QCD at hadron colliders Lecture 2: Showers, Jets and fixed-order predictions Gavin Salam CERN, Princeton & LPTHE/CNRS (Paris) Maria Laach Herbtschule für Hochenenergiephysik September 20, Germany QCD lecture

More information

QCD Phenomenology at High Energy

QCD Phenomenology at High Energy QCD Phenomenology at High Energy CERN Academic Training Lectures 18-21 February 2008 Lecture 5: Matching Fixed Order Matrix Elements with Parton Showers ME-PS Matching Two rather different objectives:

More information

Measurement of jet production in association with a Z boson at the LHC & Jet energy correction & calibration at HLT in CMS

Measurement of jet production in association with a Z boson at the LHC & Jet energy correction & calibration at HLT in CMS Measurement of jet production in association with a Z boson at the LHC & Jet energy correction & calibration at HLT in CMS Fengwangdong Zhang Peking University (PKU) & Université Libre de Bruxelles (ULB)

More information

Physics at Hadron Colliders Part II

Physics at Hadron Colliders Part II Physics at Hadron Colliders Part II Marina Cobal Università di Udine 1 The structure of an event One incoming parton from each of the protons enters the hard process, where then a number of outgoing particles

More information

New results for parton showers

New results for parton showers New results for parton showers Gavin P. Salam* Rudolf Peierls Centre for Theoretical Physics & All Souls College, Oxford including work with M. Dasgupta, F. Dreyer, K. Hamilton, P. Monni * on leave from

More information

Results on QCD jet production at the LHC (incl. Heavy flavours)

Results on QCD jet production at the LHC (incl. Heavy flavours) Results on QCD jet production at the LHC (incl. Heavy flavours) R. Seuster (TRIUMF) On behalf of the ATLAS and CMS collaborations Recontres du Vietnam August 11th 17th, 2013 Windows on the Universe Outline

More information

Recent Advances in QCD Event Generators

Recent Advances in QCD Event Generators Durham University Recent Advances in QCD Event Generators Peter Richardson IPPP, Durham University Bonn Seminar 27 th January 1 Introduction Monte Carlo event generators are essential for experimental

More information

Measurements of the production of a vector boson in association with jets in the ATLAS and CMS detectors

Measurements of the production of a vector boson in association with jets in the ATLAS and CMS detectors Measurements of the production of a vector boson in association with s in the ALAS and CMS detectors Vieri Candelise University of rieste and INFN rieste, Via Valerio 2, 3428, rieste, Italy Abstract. he

More information

Jets at LHCb. Gavin Salam. LHCb, CERN, 21 January CERN, Princeton & LPTHE/CNRS (Paris)

Jets at LHCb. Gavin Salam. LHCb, CERN, 21 January CERN, Princeton & LPTHE/CNRS (Paris) Jets at LHCb Gavin Salam CERN, Princeton & LPTHE/CNRS (Paris) LHCb, CERN, 21 January 2011 Jets @ LHCb (G. Salam) CERN, 2011-01-21 2 / 16 Any process that involves final-state partons gives jets Examples

More information

Non-perturbative effects for QCD jets at hadron colliders

Non-perturbative effects for QCD jets at hadron colliders Non-perturbative effects for QCD jets at hadron colliders Lorenzo Magnea Università di Torino INFN, Sezione di Torino Work in collaboration with M. Dasgupta and G. Salam. Milano 03/04/08 Outline Jets at

More information

Event shapes in hadronic collisions

Event shapes in hadronic collisions Event shapes in hadronic collisions Andrea Banfi ETH Zürich SM@LHC - Durham - April Event shapes at hadron colliders Event shapes are combinations of hadron momenta in a number related to the geometry

More information

Measurement of photon production cross sections also in association with jets with the ATLAS detector

Measurement of photon production cross sections also in association with jets with the ATLAS detector Nuclear and Particle Physics Proceedings 00 (07) 6 Nuclear and Particle Physics Proceedings Measurement of photon production cross sections also in association with jets with the detector Sebastien Prince

More information

Measurement of the jet production properties at the LHC with the ATLAS Detector

Measurement of the jet production properties at the LHC with the ATLAS Detector Measurement of the jet production properties at the LHC with the ALAS Detector Stanislav okar Comenius University, Bratislava On behalf of the ALAS collaboration Different features of the jet production

More information

Hard And Soft QCD Physics In ATLAS

Hard And Soft QCD Physics In ATLAS Hard And Soft QCD Physics In ALAS Stefanie Adomeit on behalf of the ALAS collaboration International Conference on New Frontiers in Physics - Crete, June -6, QCD Measurements in ALAS at LHC every kind

More information

Experiences on QCD Monte Carlo simulations: a user point of view on the inclusive jet cross-section simulations

Experiences on QCD Monte Carlo simulations: a user point of view on the inclusive jet cross-section simulations Journal of Physics: Conference Series Experiences on QCD Monte Carlo simulations: a user point of view on the inclusive jet cross-section simulations Related content - Measurement of multi-jet cross-sections

More information

Uncertainties in NLO+PS matched calculations of inclusive jet and dijet production

Uncertainties in NLO+PS matched calculations of inclusive jet and dijet production Uncertainties in NLO+PS matched calculations of inclusive jet and dijet production Institute for Particle Physics Phenomenology 26/09/202 arxiv:.220, arxiv:208.285 Uncertainties in NLO+PS matched calculations

More information

update to 29/11/2012

update to 29/11/2012 pp H + n jets with SHERPA update to 29/11/2012 S. Höche, F. Krauss, G. Luisoni, M. Schönherr, F. Siegert Institute for Particle Physics Phenomenology 20/12/2012 pp H + n jets with SHERPA update to 29/11/2012

More information

W/Z+jet results from the Tevatron

W/Z+jet results from the Tevatron W/Z+jet results from the Tevatron Dmitry Bandurin Florida State University On behalf of D0 and CDF Collaborations Moriond QCD 2012, March 15, La Thuile, Italy Precision QCD tests Photon, W, Z etc. p parton

More information

Multijet merging at NLO

Multijet merging at NLO Multijet merging at Institute for Particle Physics Phenomenology 09/0/0 arxiv:.0, arxiv:0.588 arxiv:07.5030, arxiv:07.503 arxiv:08.85 Multijet merging at 0000 0 0 0 0 0 0 0 0 00 00000 00000 00000 00000

More information

arxiv: v1 [hep-ex] 15 Jan 2019

arxiv: v1 [hep-ex] 15 Jan 2019 CMS-CR-8/37 January 7, 9 Top Quark Modelling and Tuning at CMS arxiv:9.559v [hep-ex] 5 Jan 9 Emyr Clement on behalf of the CMS Collaboration University of Bristol Recent measurements dedicated to improving

More information

Jets in Higgs Analysis

Jets in Higgs Analysis Jets in Higgs Analysis Conveners: Daniele del Re (CMS), Bruce Mellado (ATLAS), Gavin Salam (theory) & Frank Tackmann (theory) CERN, LPTHE/CNRS (Paris) & Princeton University 7th meeting of the LHC Higgs

More information

Miguel Villaplana Università degli Studi e INFN Milano. on behalf of the ATLAS Collaboration. September 11, 2017

Miguel Villaplana Università degli Studi e INFN Milano. on behalf of the ATLAS Collaboration. September 11, 2017 Measurement of photon (also +jets) production cross sections, jets production cross sections and extraction of the strong coupling constant ISMD2017 Tlaxcala City, Mexico Miguel Villaplana Università degli

More information

Transverse Energy-Energy Correlation on Hadron Collider. Deutsches Elektronen-Synchrotron

Transverse Energy-Energy Correlation on Hadron Collider. Deutsches Elektronen-Synchrotron Transverse Energy-Energy Correlation on Hadron Collider Wei Wang ( 王伟 ) Deutsches Elektronen-Synchrotron Work with Ahmed Ali, Fernando Barreiro, Javier Llorente arxiv: 1205.1689, Phys.Rev. D86, 114017(2012)

More information

Measurement of t-channel single top quark production in pp collisions

Measurement of t-channel single top quark production in pp collisions Measurement of t-channel single top quark production in pp collisions (on behalf of the CMS collaboration) INFN-Napoli & Università della Basilicata E-mail: Francesco.Fabozzi@cern.ch Measurements of t-channel

More information

Basics of Event Generators II

Basics of Event Generators II Basics of Event Generators II Leif Lönnblad Department of Astronomy and Theoretical Physics Lund University MCnet School on Event Generators São Paulo 2015.04.27 Event Generators II 1 Leif Lönnblad Lund

More information

Power corrections to jet distributions at hadron colliders

Power corrections to jet distributions at hadron colliders Power corrections to jet distributions at hadron colliders Lorenzo Magnea Università di Torino INFN, Sezione di Torino Work in collaboration with: M. Cacciari, M. Dasgupta, G. Salam. DIS 7 Munich 8//7

More information

Jet reconstruction in W + jets events at the LHC

Jet reconstruction in W + jets events at the LHC Jet reconstruction in W + jets events at the LHC Ulrike Schnoor Michigan State University High Energy Physics Institutsseminar IKTP TU Dresden, Nov 4, 010 Jet reconstruction in W + jets events at the LHC

More information

Inclusive. W & Z measurements in CMS. Georgios Daskalakis. on behalf of CMS Collaboration. .C.S.R. Demokritos

Inclusive. W & Z measurements in CMS. Georgios Daskalakis. on behalf of CMS Collaboration. .C.S.R. Demokritos Inclusive W & Z measurements in CMS Georgios Daskalakis.C.S.R. Demokritos on behalf of CMS Collaboration 1 Overview LHC hopefully will be proven to be a discovery machine but before that the measurement

More information

Precision QCD at the Tevatron. Markus Wobisch, Fermilab for the CDF and DØ Collaborations

Precision QCD at the Tevatron. Markus Wobisch, Fermilab for the CDF and DØ Collaborations Precision QCD at the Tevatron Markus Wobisch, Fermilab for the CDF and DØ Collaborations Fermilab Tevatron - Run II Chicago Ecm: 1.8 1.96 TeV more Bunches 6 36 Bunch Crossing 3500 396ns CDF Booster Tevatron

More information

2. HEAVY QUARK PRODUCTION

2. HEAVY QUARK PRODUCTION 2. HEAVY QUARK PRODUCTION In this chapter a brief overview of the theoretical and experimental knowledge of heavy quark production is given. In particular the production of open beauty and J/ψ in hadronic

More information

QCD (for colliders) Lecture 1: Introduction

QCD (for colliders) Lecture 1: Introduction QCD (for colliders) Lecture 1: Introduction Gavin Salam CERN At the Fourth Asia-Europe-Pacific School of High-Energy Physics September 2018, Quy Nhon, Vietnam QCD lecture 1 (p. 2) What is QCD QCD QUANTUM

More information

Proton anti proton collisions at 1.96 TeV currently highest centre of mass energy

Proton anti proton collisions at 1.96 TeV currently highest centre of mass energy Tevatron & Experiments 2 Proton anti proton collisions at 1.96 TeV currently highest centre of mass energy Tevatron performing very well 6.5 fb 1 delivered (per experiment) 2 fb 1 recorded in 2008 alone

More information

Zhong-Bo Kang Los Alamos National Laboratory

Zhong-Bo Kang Los Alamos National Laboratory Introduction to pqcd and Jets: lecture 3 Zhong-Bo Kang Los Alamos National Laboratory Jet Collaboration Summer School University of California, Davis July 19 21, 2014 Selected references on QCD QCD and

More information

Jets at the LHC. New Possibilities. Jeppe R. Andersen in collaboration with Jennifer M. Smillie. Blois workshop, Dec

Jets at the LHC. New Possibilities. Jeppe R. Andersen in collaboration with Jennifer M. Smillie. Blois workshop, Dec Jets at the LHC New Possibilities Jeppe R. Andersen in collaboration with Jennifer M. Smillie Blois workshop, Dec 17 2011 Jeppe R. Andersen (CP 3 -Origins) Jets at the LHC Blois Workshop, Dec. 17 2011

More information

On QCD jet mass distributions at LHC

On QCD jet mass distributions at LHC On QCD jet mass distributions at LHC Kamel Khelifa-Kerfa (USTHB) with M. Dasgupta, S. Marzani & M. Spannowsky CIPSA 2013 30 th Sep - 2 nd Oct 2013 Constantine, Algeria Outline 1 Jet substructure 2 Jet

More information

Superleading logarithms in QCD

Superleading logarithms in QCD Superleading logarithms in QCD Soft gluons in QCD: an introduction. Gaps between jets I: the old way (

More information

News in jet algorithms:

News in jet algorithms: News in jet algorithms: SISCone and anti-k t Grégory Soyez Brookhaven National Laboratory G.P. Salam, G. Soyez, JHEP 5 (7) 86 [arxiv:74.292] M. Cacciari, G.P. Salam, G. Soyez, JHEP 4 (8) 63 [arxiv:82.1189]

More information

Recent developments. Monte-Carlo Event Generators

Recent developments. Monte-Carlo Event Generators Recent developments in Monte-Carlo Event Generators Marek Schönherr Universität Zürich ISMD 205 Wildbad Kreuth Marek Schönherr /28 Contents Parton shower developments Higher precision in parton showers

More information

Jets (and photons) at the LHC. J. Huston LPC March 10, 2010

Jets (and photons) at the LHC. J. Huston LPC March 10, 2010 Jets (and photons) at the LHC J. Huston LPC March 10, 2010 More references Understanding cross sections at the LHC we have to understand QCD (at the LHC) PDF s, PDF luminosities and PDF uncertainties LO,

More information

Recent developments in the POWHEG BOX

Recent developments in the POWHEG BOX Recent developments in the POWHEG BOX Emanuele Re IPPP, Durham University Standard Model @ LHC Durham, 12 April 2011 in collaboration with S. Alioli, K. Hamilton, P. Nason and C. Oleari Outline Quick description

More information

Jets in QCD, an introduction

Jets in QCD, an introduction Jets in QCD, an introduction Gavin P. Salam LPTHE, UPMC Paris 6 & CNRS Hard Probes 2008 Illa Da Toxa, Galicia, 8-14 June 2008 Drawing on work with M. Cacciari, J. Rojo & G. Soyez Jets, G. Salam (p. 2)

More information

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland Available on CMS information server CMS CR -2013/016 The Compact Muon Solenoid Experiment Conference Report Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland 18 January 2013 (v2, 21 January 2013)

More information

QCD and jets physics at the LHC with CMS during the first year of data taking. Pavel Demin UCL/FYNU Louvain-la-Neuve

QCD and jets physics at the LHC with CMS during the first year of data taking. Pavel Demin UCL/FYNU Louvain-la-Neuve QCD and jets physics at the LHC with CMS during the first year of data taking Pavel Demin UCL/FYNU Louvain-la-Neuve February 8, 2006 Bon appétit! February 8, 2006 Pavel Demin UCL/FYNU 1 Why this seminar?

More information

Lecture 5. QCD at the LHC Joey Huston Michigan State University

Lecture 5. QCD at the LHC Joey Huston Michigan State University Lecture 5 QCD at the LHC Joey Huston Michigan State University Tevatron data Wealth of data from the Tevatron, both Run 1 and Run 2, that allows us to test/add to our pqcd formalism with analysis procedures/

More information

Moriond QCD. Latest Jets Results from the LHC. Klaus Rabbertz, KIT. Proton Structure (PDF) Proton Structure (PDF) Klaus Rabbertz

Moriond QCD. Latest Jets Results from the LHC. Klaus Rabbertz, KIT. Proton Structure (PDF) Proton Structure (PDF) Klaus Rabbertz Latest Jets Results from the LHC Proton Structure (PDF) Proton Structure (PDF), KIT 1 Flash Menu Motivation Accelerators and Detectors Jet Algorithms and Calibration Inclusive Jets Dijets and 3-Jets The

More information

Jet Matching at Hadron Colliders. Johan Alwall National Taiwan University

Jet Matching at Hadron Colliders. Johan Alwall National Taiwan University Jet Matching at Hadron Colliders Johan Alwall National Taiwan University IPMU Focus week, Tokyo, Japan, 12 Nov 2009 Why jet matching? Many (all) interesting New Physics signals at hadron colliders include

More information

PDFs for Event Generators: Why? Stephen Mrenna CD/CMS Fermilab

PDFs for Event Generators: Why? Stephen Mrenna CD/CMS Fermilab PDFs for Event Generators: Why? Stephen Mrenna CD/CMS Fermilab 1 Understanding Cross Sections @ LHC: many pieces to the puzzle LO, NLO and NNLO calculations K-factors Benchmark cross sections and pdf correlations

More information

arxiv: v1 [hep-ph] 18 Dec 2014

arxiv: v1 [hep-ph] 18 Dec 2014 arxiv:1412.6026v1 [hep-ph] 18 Dec 2014 Monte Carlo Tools for charged Higgs boson production Institut für Theoretische Physik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 9, D-48149

More information

arxiv: v1 [hep-ph] 3 Jul 2010

arxiv: v1 [hep-ph] 3 Jul 2010 arxiv:1007.0498v1 [hep-ph 3 Jul 2010 Single-top production with the POWHEG method IPPP, Durham University E-mail: emanuele.re@durham.ac.uk We describe briefly the POWHEG method and present results for

More information

Physics at Hadron Colliders

Physics at Hadron Colliders Physics at Hadron Colliders Part 2 Standard Model Physics Test of Quantum Chromodynamics - Jet production - W/Z production - Production of Top quarks Precision measurements -W mass - Top-quark mass QCD

More information

Azimuthal decorrelations between jets in QCD

Azimuthal decorrelations between jets in QCD Azimuthal decorrelations between jets in QCD Andrea Banfi ETH Zurich q q p 1 p 1 Outline Azimuthal decorrelations in QCD hard processes Dijets in the back-to-back region Phenomenology of azimuthal decorrelations

More information

Testing QCD at the LHC and the Implications of HERA DIS 2004

Testing QCD at the LHC and the Implications of HERA DIS 2004 Testing QCD at the LHC and the Implications of HERA DIS 2004 Jon Butterworth Impact of the LHC on QCD Impact of QCD (and HERA data) at the LHC Impact of the LHC on QCD The LHC will have something to say

More information

Recent QCD results from ATLAS

Recent QCD results from ATLAS Recent QCD results from ATLAS PASCOS 2013 Vojtech Pleskot Charles University in Prague 21.11.2013 Introduction / Outline Soft QCD: Underlying event in jet events @7TeV (2010 data) Hard double parton interactions

More information

Understanding Parton Showers

Understanding Parton Showers Understanding Parton Showers Zoltán Nagy DESY in collaboration with Dave Soper Introduction Pile-up events 7 vertices 2009 single vertex reconstructed! 2011 2010 4 vertices 25 vertices 2012 Introduction

More information

Bound-State Effects on Kinematical Distributions of Top-Quarks at Hadron Colliders

Bound-State Effects on Kinematical Distributions of Top-Quarks at Hadron Colliders 1 Bound-State Effects on Kinematical Distributions of Top-Quarks at Hadron Colliders Hiroshi YOKOYA (CERN-Japan Fellow) based on arxiv:1007.0075 in collaboration with Y. Sumino (Tohoku univ.) 2 Outline

More information

Event Generator Physics 2

Event Generator Physics 2 Event Generator Physics University of Cambridge 1st MCnet School, IPPP Durham 18 th 20 th April 2007 Structure of LHC Events 1. Hard process 2. Parton shower 3. Hadronization 4. Underlying event Lecture

More information

from Klaus Rabbertz, KIT Proton Structure (PDF) Proton Structure (PDF) Klaus Rabbertz Status of αs Determinations Mainz, Germany,

from Klaus Rabbertz, KIT Proton Structure (PDF) Proton Structure (PDF) Klaus Rabbertz Status of αs Determinations Mainz, Germany, High precision fundamental constants at the TeV scale from Proton Structure (PDF) Proton Structure (PDF), KIT 1 Outline 2012: No LHC results yet Motivation PDG2012 Jet energy scale αs from jet cross sections

More information

July 8, 2015, Pittsburgh. Jets. Zoltan Nagy DESY

July 8, 2015, Pittsburgh. Jets. Zoltan Nagy DESY July 8, 2015, Pittsburgh Jets Zoltan Nagy DESY What are Jets? A di-jet ATLAS event A multi-jet (6-jet) event What are Jets? What are Jets? The pt is concentrated in a few narrow sprays of particles These

More information

Multi-differential jet cross sections in CMS

Multi-differential jet cross sections in CMS Multi-differential jet cross sections in CMS A. Bermudez Martinez on behalf of the CMS collaboration. Deutsches Elektronen-Synchrotron (DESY) April 07 A. Bermudez (DESY) April 07 / 5 QCD Main background

More information

Measurement of W-boson Mass in ATLAS

Measurement of W-boson Mass in ATLAS Measurement of W-boson Mass in ATLAS Tai-Hua Lin on behalf of the ATLAS collaboration Blois 2017, France Outline Motivation for W mass measurement Measurement Strategy Method: Monte Carlo Templates Fits

More information

Jets: where from, where to?

Jets: where from, where to? Jets: where from, where to? Gavin P. Salam LPTHE, UPMC Paris 6 & CNRS London workshop on standard-model discoveries with early LHC data UCL, London, 31 March 29 Based on work with M. Cacciari, M. Dasgupta,

More information

Higgs-related SM Measurements at ATLAS

Higgs-related SM Measurements at ATLAS Higgs-related SM Measurements at ATLAS Junjie Zhu University of Michigan 2 nd MCTP Spring Symposium on Higgs Boson Physics Outline Introduction Isolated γγ cross section (37 pb -1, Phys. Rev. D 85, 012003

More information

Multiple Parton-Parton Interactions: from pp to A-A

Multiple Parton-Parton Interactions: from pp to A-A Multiple Parton-Parton Interactions: from pp to A-A Andreas Morsch CERN QCD Challenges at LHC Taxco, Mexico, Jan 18-22 (2016) Multiple Parton-Parton Interactions Phys. Lett. B 167 (1986) 476 Q i 2 Λ QCD

More information

Jets, UE and early LHC data

Jets, UE and early LHC data Jets, UE and early LHC data Gavin P. Salam LPTHE, UPMC Paris 6 & CNRS LHC@BNL Joint Theory/Experiment Workshop on Early Physics at the LHC 8 February 2010 Brookhaven National Laboratory, Upton, USA Based

More information

Vivian s Meeting April 17 th Jet Algorithms. Philipp Schieferdecker (KIT)

Vivian s Meeting April 17 th Jet Algorithms. Philipp Schieferdecker (KIT) th 2009 Jet Algorithms What are Jets? Collimated bunches of stable hadrons, originating from partons (quarks & gluons) after fragmentation and hadronization Jet Finding is the approximate attempt to reverse-engineer

More information

Status of Higgs and jet physics. Andrea Banfi

Status of Higgs and jet physics. Andrea Banfi Status of Higgs and jet physics Andrea Banfi Outline Importance of jet physics in LHC Higgs analyses Zero-jet cross section NNLL+NNLO resummations Progress in Monte Carlo event generators One-jet cross

More information

Jet reconstruction with first data in ATLAS

Jet reconstruction with first data in ATLAS University of Victoria, Victoria, BC, Canada E-mail: damir.lelas@cern.ch The algorithms used for jet reconstruction in ATLAS are presented. General performance aspects like jet signal linearity and the

More information

Inclusive jet cross section in ATLAS

Inclusive jet cross section in ATLAS Inclusive jet cross section in ALAS (on behalf of the ALAS collaboration) Pavel Starovoitov CERN -04-0 he researcher is supported by Marie Curie Incoming International Fellowship of the European Commission

More information

A shower algorithm based on the dipole formalism. Stefan Weinzierl

A shower algorithm based on the dipole formalism. Stefan Weinzierl A shower algorithm based on the dipole formalism Stefan Weinzierl Universität Mainz in collaboration with M. Dinsdale and M. Ternick Introduction: I.: II: III: Event generators and perturbative calculations

More information

Measurement of EW production! of Z+2j at the LHC

Measurement of EW production! of Z+2j at the LHC Measurement of EW production! of Z+j at the LHC Frontiers of Fundamental Physics, Marseille Kiran Joshi On behalf the ATLAS and CMS collaborations /7/ Overview Introduction and motivation ATLAS measurement

More information

Tests of Pythia8 Rescattering Model

Tests of Pythia8 Rescattering Model Tests of Pythia8 Rescattering Model arxiv:5.325v [hep-ph] Nov 25 Tasnuva Chowdhury Shahjalal University of Science and Technology Sylhet, Bangladesh. Deepak Kar University of Witwatersrand Johannesburg,

More information

Geneva: Event Generation at NLO

Geneva: Event Generation at NLO Geneva: Event Generation at NLO Saba Zuberi UC Berkeley/LBL Christian Bauer, Calvin Berggren, Nicholas Dunn, Andrew Hornig, Frank Tackmann, Jesse Thaler, Christopher Vermilion, Jonathan Walsh, SZ Outline

More information

arxiv: v1 [hep-ex] 2 Nov 2017

arxiv: v1 [hep-ex] 2 Nov 2017 Proceedings of the Fifth Annual LHCP CR-7/358 November 3, 7 Measurement of jet properties in arxiv:7.654v [hep-ex] Nov 7 Patrick L.S. Connor DESY, Notkestrasse 87, 67 Hamburg, Germany ABSRAC We present

More information

PoS(ICHEP2012)300. Electroweak boson production at LHCb

PoS(ICHEP2012)300. Electroweak boson production at LHCb Physik-Institut der Universität Zürich, Switzerland. E-mail: jonathan.anderson@cern.ch The electroweak boson production cross-sections have been measured in the forward region using s = 7 TeV proton-proton

More information

Matching and merging Matrix Elements with Parton Showers II

Matching and merging Matrix Elements with Parton Showers II Tree-level ME vs PS CKKW CKKW-L Matching and merging Matri Elements with Parton Showers II Leif Lönnblad Department of Theoretical Physics Lund University MCnet/CTEQ Summer School Debrecen 08.08.15 Matching

More information

Differential Top Cross-section Measurements

Differential Top Cross-section Measurements Differential op Cross-section Measurements ALPS207 Obergurgl Michael Fenton on behalf of the ALAS Collaboration University of Glasgow m.fenton.@research.gla.ac.uk April 8, 207 Michael Fenton Differential

More information

W/Z + jets and W/Z + heavy flavor production at the LHC

W/Z + jets and W/Z + heavy flavor production at the LHC W/Z + jets and W/Z + heavy flavor production at the LHC A. Paramonov (ANL) on behalf of the ATLAS and CMS collaborations Moriond QCD 2012 Motivation for studies of jets produced with a W or Z boson Standard

More information

Atlas results on diffraction

Atlas results on diffraction Atlas results on diffraction Alessia Bruni INFN Bologna, Italy for the ATLAS collaboration Rencontres du Viet Nam 14th Workshop on Elastic and Diffractive Scattering Qui Nhon, 16/12/2011 EDS 2011 Alessia

More information

Powheg in Herwig++ for SUSY

Powheg in Herwig++ for SUSY Powheg in Herwig++ for SUSY Alix Wilcock IPPP, Durham University 27/04/205 Based on work done with P. Richardson, S. Plätzer and B. Fuks Acronyms SUSY = Supersymmetry Want SUSY to solve the hierarchy problem

More information

Properties of Proton-proton Collision and. Comparing Event Generators by Multi-jet Events

Properties of Proton-proton Collision and. Comparing Event Generators by Multi-jet Events Properties of Proton-proton Collision and Comparing Event Generators by Multi-jet Events Author: W. H. TANG 1 (Department of Physics, The Chinese University of Hong Kong) Supervisors: Z. L. MARSHALL 2,

More information

The Heavy Quark Search at the LHC

The Heavy Quark Search at the LHC The Heavy Quark Search at the LHC The Heavy Quark Search at the LHC Backgrounds: estimating and suppressing tt, multijets,... jet mass technique NLO effects matrix elements for extra jets initial state

More information

Results from D0: dijet angular distributions, dijet mass cross section and dijet azimuthal decorrelations

Results from D0: dijet angular distributions, dijet mass cross section and dijet azimuthal decorrelations Results from D: dijet angular distributions, dijet mass cross section and dijet azimuthal decorrelations Zdenek Hubacek Czech Technical University in Prague E-mail: zdenek.hubacek@cern.ch on behalf of

More information

Z boson studies at the ATLAS experiment at CERN. Giacomo Artoni Ph.D Thesis Project June 6, 2011

Z boson studies at the ATLAS experiment at CERN. Giacomo Artoni Ph.D Thesis Project June 6, 2011 Z boson studies at the ATLAS experiment at CERN Giacomo Artoni Ph.D Thesis Project June 6, 2011 Outline Introduction to the LHC and ATLAS ((Very) Brief) Z boson history Measurement of σ Backgrounds Acceptances

More information

Predictive Monte Carlo tools for the LHC

Predictive Monte Carlo tools for the LHC Predictive Monte Carlo tools for the LHC Centre for Cosmology, Particle Physics and Phenomenology (CP3), BelgiuM Lecture III CERN Academic Training Lectures - May 2012 1 PLAN Basics : LO predictions and

More information

Pino and Power Corrections: from LEP to LHC

Pino and Power Corrections: from LEP to LHC Pino and Power Corrections: from LEP to LHC Gavin Salam CERN, Princeton University & LPTHE/CNRS (Paris) Pino 2012 A special meeting in honour of Giuseppe Marchesini, on the occasion of his 70th birthday.

More information

Measurements of the vector boson production with the ATLAS detector

Measurements of the vector boson production with the ATLAS detector Measurements of the vector boson production with the ATLAS detector A. Lapertosa 1,2,, on behalf of the ATLAS Collaboration 1 Università degli Studi di Genova 2 INFN Sezione di Genova Abstract. Measurements

More information

MC ATLAS Stephen Jiggins on behalf of the ATLAS Collaboration University College London (UCL)

MC ATLAS Stephen Jiggins on behalf of the ATLAS Collaboration University College London (UCL) MC Tuning @ ATLAS Stephen Jiggins on behalf of the ATLAS Collaboration University College London (UCL) Contents Contents: 1) Monte Carlo models/event generation 2) Basic Tuning Methodology 3) A2 tune series

More information

VH production at the LHC: recent theory progress

VH production at the LHC: recent theory progress VH production at the LHC: recent theory progress Giancarlo Ferrera Università di Milano & INFN Milano LHC Higgs Cross Section Working Group CERN June 12th 214 Motivations Associated vector boson Higgs

More information

Azimuthal Correlations for Inclusive 2-jet, 3-jet and 4-jet events in pp collisions at s = 13 TeV with CMS

Azimuthal Correlations for Inclusive 2-jet, 3-jet and 4-jet events in pp collisions at s = 13 TeV with CMS Azimuthal Correlations for Inclusive 2-jet, 3-jet and 4-jet events in pp collisions at s = 13 TeV with CMS Paris Gianneios University of Ioannina 29 th March 2018, HEP Athens Outline 1 2 3 4 5 CMS Detector

More information

Toward an Understanding of Hadron-Hadron. Collisions From Feynman-Field to the LHC

Toward an Understanding of Hadron-Hadron. Collisions From Feynman-Field to the LHC Toward an Understanding of Hadron-Hadron Collisions From Feynman-Field to the LHC Rick Field University of Florida Outline of Talk The old days of Feynman-Field Phenomenology. XXIèmes Rencontres de Blois

More information

Measurement of multijets and the internal structure of jets at ATLAS

Measurement of multijets and the internal structure of jets at ATLAS Measurement of multijets and the internal structure of jets at ALAS Bilge M. Demirköz, on behalf of the ALAS Collaboration Institut de Fisica d Altes Energies, Barcelona, SPAIN also at Middle East echnical

More information

Tests of QCD Using Jets at CMS. Salim CERCI Adiyaman University On behalf of the CMS Collaboration IPM /10/2017

Tests of QCD Using Jets at CMS. Salim CERCI Adiyaman University On behalf of the CMS Collaboration IPM /10/2017 Tests of QCD Using Jets at CMS Salim CERCI Adiyaman University On behalf of the CMS Collaboration IPM-2017 24/10/2017 2/25 Outline Introduction QCD at LHC QCD measurements on the LHC data Jets The strong

More information

LHC Heavy Ion Physics Lecture 5: Jets, W, Z, photons

LHC Heavy Ion Physics Lecture 5: Jets, W, Z, photons LHC Heavy Ion Physics Lecture 5: Jets, W, Z, photons HUGS 2015 Bolek Wyslouch Techniques to study the plasma Radiation of hadrons Azimuthal asymmetry and radial expansion Energy loss by quarks, gluons

More information

arxiv: v1 [hep-ex] 11 Nov 2016

arxiv: v1 [hep-ex] 11 Nov 2016 EUROPEAN ORGANIAION FOR NUCLEAR RESEARCH (CERN) CERN-EP/06-56 08//8 -SMP-4-0 Measurements of differential production cross sections for a boson in association with s in pp collisions at s = 8 ev arxiv:6.0844v

More information

Multi-jet production and jet correlations at CMS

Multi-jet production and jet correlations at CMS Multi-jet production and jet correlations at Gábor I. Veres on behalf of the Collaboration CERN E-mail: gabor.veres@cern.ch Hadronic jet production at the LHC is an excellent testing ground for QCD. Essential

More information

NNLOPS predictions for Higgs boson production

NNLOPS predictions for Higgs boson production NNLOPS predictions for Higgs boson production Emanuele Re Rudolf Peierls Centre for Theoretical Physics, University of Oxford GGI Florence, 12 September 2014 Outline brief motivation method used results

More information

Standard Model Handles and Candles WG (session 1)

Standard Model Handles and Candles WG (session 1) Standard Model Handles and Candles WG (session 1) Conveners: Experiment: Craig Buttar, Jorgen d Hondt, Markus Wobisch Theory: Michael Kramer, Gavin Salam This talk: the jets sub-group 1. Background + motivation

More information

Hard QCD and Hadronic Final State at HERA. Alice Valkárová, on behalf of H1 and ZEUS Collaborations

Hard QCD and Hadronic Final State at HERA. Alice Valkárová, on behalf of H1 and ZEUS Collaborations Hard QCD and Hadronic Final State at HERA Alice Valkárová, on behalf of H1 and ZEUS Collaborations Diffraction 2016, Acireale, Sicily 4.9.2016 HERA collider experiments 27.5 GeV electrons/positrons on

More information

JET FRAGMENTATION DENNIS WEISER

JET FRAGMENTATION DENNIS WEISER JET FRAGMENTATION DENNIS WEISER OUTLINE Physics introduction Introduction to jet physics Jets in heavy-ion-collisions Jet reconstruction Paper discussion The CMS experiment Data selection and track/jet

More information

QCD in gauge-boson production at the LHC "

QCD in gauge-boson production at the LHC QCD in gauge-boson production at the LHC " " Matthias Schott " on behalf of the ATLAS and CMS Collaborations" Prof. Dr. Matthias Schott What can we learn " from those tests?" Inclusive and differential

More information