Structure of the Roper in Lattice QCD

Size: px
Start display at page:

Download "Structure of the Roper in Lattice QCD"

Transcription

1 Structure of the Roper in Lattice QCD Waseem Kamleh Collaborators Dale Roberts, Derek Leinweber, Adrian Kiratidis Selim Mahbub, Peter Moran and Tony Williams CSSM, University of Adelaide APFB 2014

2

3

4 Roper Resonance Quark model: N = 2 radial excitation of the nucleon. Much lower in mass than simple quark model predictions.

5 Roper Resonance

6 Roper Resonance Quark model: N = 2 radial excitation of the nucleon. Much lower in mass than simple quark model predictions. Experiment: Lighter than N = 1 radial excitation of the nucleon, the negative parity S 11 (1535). Exotic in nature.

7 Roper Resonance It has proven difficult to isolate this state on the lattice. Consider the nucleon interpolators, χ 1 (x) = ɛ abc (u Ta (x) Cγ 5 d b (x)) u c (x), χ 2 (x) = ɛ abc (u Ta (x) C d b (x)) γ 5 u c (x), χ 4 (x) = ɛ abc (u Ta (x) Cγ 5 γ 4 d b (x)) u c (x). Historically thought Roper couples to χ 2.

8 Roper Resonance It has proven difficult to isolate this state on the lattice. Consider the nucleon interpolators, χ 1 (x) = ɛ abc (u Ta (x) Cγ 5 d b (x)) u c (x), χ 2 (x) = ɛ abc (u Ta (x) C d b (x)) γ 5 u c (x), χ 4 (x) = ɛ abc (u Ta (x) Cγ 5 γ 4 d b (x)) u c (x). Historically thought Roper couples to χ 2. We will see that this is wrong!

9 Roper Resonance It has proven difficult to isolate this state on the lattice. Consider the nucleon interpolators, χ 1 (x) = ɛ abc (u Ta (x) Cγ 5 d b (x)) u c (x), χ 2 (x) = ɛ abc (u Ta (x) C d b (x)) γ 5 u c (x), χ 4 (x) = ɛ abc (u Ta (x) Cγ 5 γ 4 d b (x)) u c (x). Historically thought Roper couples to χ 2. We will see that this is wrong! Key to isolating this elusive state is an appropriate variational basis. Phys.Lett. B707 (2012) , Roper Resonance in 2+1 Flavor QCD

10 Correlation Functions Start with the two point correlation function: G(t, p) = x e i p. x Ω T {χ(x) χ(0)} Ω.

11 Correlation Functions Start with the two point correlation function: G(t, p) = x e i p. x Ω T {χ(x) χ(0)} Ω. Insert completeness, project parity ± and p = 0 to obtain a tower of (excited) states G ± (t, 0) = α λ α λ α e Mαt.

12 Correlation Functions Start with the two point correlation function: G(t, p) = x e i p. x Ω T {χ(x) χ(0)} Ω. Insert completeness, project parity ± and p = 0 to obtain a tower of (excited) states G ± (t, 0) = α λ α λ α e Mαt. Asymptotically, Euclidean time evolution isolates the ground state G ± (t, 0) t = λ 0 λ 0 e M 0t.

13 Variational Method How can we access the excited states?

14 Variational Method How can we access the excited states? Construct an n n correlation matrix, G ij (t, p) = x e i p. x Ω T {χ i (x) χ j (0)} Ω.

15 Variational Method How can we access the excited states? Construct an n n correlation matrix, G ij (t, p) = x e i p. x Ω T {χ i (x) χ j (0)} Ω. Solve a generalised eigenproblem to find the linear combination of interpolating fields, φ α = N ui α χ i, φ α = i=1 N i=1 vi α χ i such that the correlation matrix is diagonalised, v α i G ij (t)u β j = δ αβ z α z β e mαt.

16 Eigenstate-Projected Correlators The left and right vectors are used to define the eigenstate-projected correlators v α i G ± ij (t)u α j G α ±(t).

17 Eigenstate-Projected Correlators The left and right vectors are used to define the eigenstate-projected correlators v α i G ± ij (t)u α j G α ±(t). Effective masses of different states are then analysed from the eigenstate-projected correlators in the usual way.

18 Eigenstate-Projected Correlators The left and right vectors are used to define the eigenstate-projected correlators v α i G ± ij (t)u α j G α ±(t). Effective masses of different states are then analysed from the eigenstate-projected correlators in the usual way. Not able to access the Roper using χ 1, χ 2 ( or χ 4 ) alone.

19 Eigenstate-Projected Correlators The left and right vectors are used to define the eigenstate-projected correlators v α i G ± ij (t)u α j G α ±(t). Effective masses of different states are then analysed from the eigenstate-projected correlators in the usual way. Not able to access the Roper using χ 1, χ 2 ( or χ 4 ) alone. Solution: Use different levels of gauge-invariant quark smearing to expand the operator basis.

20 Eigenstate-Projected Correlators The left and right vectors are used to define the eigenstate-projected correlators v α i G ± ij (t)u α j G α ±(t). Effective masses of different states are then analysed from the eigenstate-projected correlators in the usual way. Not able to access the Roper using χ 1, χ 2 ( or χ 4 ) alone. Solution: Use different levels of gauge-invariant quark smearing to expand the operator basis. Analogy: Can expand any radial function using a basis of Gaussians of different widths f ( r ) = i c i e ε i r 2.

21 Simulation Details PACS-CS Configs (via ILDG) S. Aoki, et al., Phys. Rev. D79 (2009) flavour dynamical-fermion QCD Lattice volume: a = fm, (2.9 fm) 3 m π = { 156, 293, 413, 572, 702 } MeV Combined 8 8 correlation matrix analysis using χ 1, χ 2 and χ 1, χ 4 with 4 different levels (n = 16, 35, 100, 200) of smearing. Corresponds to RMS radii of 2.37, 3.50, 5.92 and 8.55 lattice units.

22 N + spectrum

23 Eigenvector analysis State 1 (Ground) Eigenvector Component χ 1 χ n = 16 n = 35 n = 100 n = 200

24 Eigenvector analysis State 2 (First Excited) Eigenvector Component χ 1 χ n = 16 n = 35 n = 100 n = 200

25 Eigenvector analysis First Excited State Dominant contribution is from χ 1, n = 200. Eigenvector Component χ 1 χ n = 16 n = 35 n = 100 n = 200

26 Eigenvector analysis First Excited State Opposite contribution from a mix of χ 1, n = 100 and χ 1, n = 35. Eigenvector Component χ 1 χ n = 16 n = 35 n = 100 n = 200

27 Eigenvector analysis First Excited State Negligible contribution from χ 1, n = 16 and all χ 2 operators. Eigenvector Component χ 1 χ n = 16 n = 35 n = 100 n = 200

28

29

30

31 Eigenvector analysis State 4 Eigenvector Component χ 1 χ n = 16 n = 35 n = 100 n = 200

32 Eigenvector analysis First positive-parity excited state couples strongly to χ 1. Large smearing values are critical. χ 2 coupling to the Roper is negligible. Transition from scattering state to resonance as quark mass drops. The 3-quark coupling to meson-baryon scattering states is suppressed by the lattice volume 1/ V. At light quark mass the Roper mass is pushed up due to finite volume effects? How can we learn more? Study multiple lattice volumes.

33 Eigenvector analysis First positive-parity excited state couples strongly to χ 1. Large smearing values are critical. χ 2 coupling to the Roper is negligible. Transition from scattering state to resonance as quark mass drops. The 3-quark coupling to meson-baryon scattering states is suppressed by the lattice volume 1/ V. At light quark mass the Roper mass is pushed up due to finite volume effects? How can we learn more? Study multiple lattice volumes. Expensive.

34 Eigenvector analysis First positive-parity excited state couples strongly to χ 1. Large smearing values are critical. χ 2 coupling to the Roper is negligible. Transition from scattering state to resonance as quark mass drops. The 3-quark coupling to meson-baryon scattering states is suppressed by the lattice volume 1/ V. At light quark mass the Roper mass is pushed up due to finite volume effects? How can we learn more? Study multiple lattice volumes. Expensive. Look at the excited state structure via the wave function.

35

36 Hydrogen S states

37 Wave function of the Roper We explore the structure of the nucleon excitations by examining the Bethe-Salpeter amplitude. The baryon wave function is built by giving each quark field in the annihilation operator a spatial dependence, χ 1 ( x, y, z, w) = ɛ abc ( u T a ( x + y) Cγ 5 d b ( x + z) ) u c ( x + w). The creation operator remains local. The resulting construction is gauge-dependent. We choose to fix to Landau gauge.

38 Wave function of the Roper Non-local sink operator cannot be smeared. Construct states using right eigenvector u α only. Eigenvectors from 4 4 CM analysis using χ 1 only. The position of the u quarks is fixed and we measure the d quark probability distribution.

39 Ground state probability distribution

40 Ground state probability distribution

41 Ground state probability distribution

42 Ground state probability distribution

43 Ground state probability distribution

44 First excited state probability distribution

45 First excited state probability distribution

46 First excited state probability distribution

47 First excited state probability distribution

48 First excited state probability distribution

49 Second excited state probability distribution

50 Second excited state probability distribution

51 Second excited state probability distribution

52 Second excited state probability distribution

53 Second excited state probability distribution

54

55

56

57

58

59 Wave Function

60 Wave Function

61 Wave Function

62 Wave Function

63 Quark Model comparison Compare to a non-relativistic constituent quark model. One-gluon-exchange motivated Coulomb + ramp potential. Spin dependence in R. K. Bhaduri, L. E. Cohler and Y. Nogami, Phys. Rev. Lett. 44 (1980) The radial Schrodinger equation is solved with boundary conditions relevant to the lattice data. The derivative of the wave function is set to vanish at a distance L x /2. Two parameter fit to the nucleon radial wave function yields: String tension σ = 400 MeV Constituent quark mass m q = 360 MeV These parameters are held fixed for the excited states.

64 Ground state comparison

65 Ground state comparison

66 Ground state comparison

67 Ground state comparison

68 Ground state comparison

69 First excited state comparison

70 First excited state comparison

71 First excited state comparison

72 First excited state comparison

73 First excited state comparison

74 Second excited state comparison

75 Second excited state comparison

76 Second excited state comparison

77 Second excited state comparison

78 Second excited state comparison

79 Quark Model comparison Ground state QM agrees well (as expected).

80 Quark Model comparison Ground state QM agrees well (as expected). First excited state shows a node structure.

81 Quark Model comparison Ground state QM agrees well (as expected). First excited state shows a node structure. Consistent with N = 2 radial excitation. QM predicts node position fairly well. QM disagrees near the boundary.

82 Quark Model comparison Ground state QM agrees well (as expected). First excited state shows a node structure. Consistent with N = 2 radial excitation. QM predicts node position fairly well. QM disagrees near the boundary. Reveals why an overlap of two broad Gaussians with opposite sign is needed to form the Roper.

83 Quark Model comparison Ground state QM agrees well (as expected). First excited state shows a node structure. Consistent with N = 2 radial excitation. QM predicts node position fairly well. QM disagrees near the boundary. Reveals why an overlap of two broad Gaussians with opposite sign is needed to form the Roper. Second excited state shows a double node structure. Consistent with N = 3 radial excitation. Similar story for QM comparison.

84 Quark Model comparison Ground state QM agrees well (as expected). First excited state shows a node structure. Consistent with N = 2 radial excitation. QM predicts node position fairly well. QM disagrees near the boundary. Reveals why an overlap of two broad Gaussians with opposite sign is needed to form the Roper. Second excited state shows a double node structure. Consistent with N = 3 radial excitation. Similar story for QM comparison. Finite volume effects?

85 Ground state probability distribution

86 Ground state probability distribution

87 Ground state probability distribution

88 Ground state probability distribution

89 Ground state probability distribution

90 First excited state probability distribution

91 First excited state probability distribution

92 First excited state probability distribution

93 First excited state probability distribution

94 First excited state probability distribution

95 Second excited state probability distribution

96 Second excited state probability distribution

97 Second excited state probability distribution

98 Second excited state probability distribution

99 Second excited state probability distribution

100 Quark Model comparison Wave function should be spherically symmetric. Outer shell of Roper wave function clearly reveals distortion due to finite volume. Effective field theory arguments suggest the small volume will drive up the energy.

101 5-quark operators What if the Roper has a large 5-quark component? Dynamical gauge fields can create q q from glue. Maybe we can do a better job by introducing 5-quark operators? Take χ 1 and χ 2 operators and couple a π to get N quantum numbers: χ 1 + π χ 5 χ 2 + π χ 5 Preliminary results at m π = 293 MeV with two smearings n = 35, 200.

102 N+ spectrum with 5 quark operators n s = S-wave N + π + π P-wave N + π 1 => χ 1 + χ 2 2 => χ 1 + χ 2 + χ 5 3 => χ 1 + χ 2 + χ 5 4 => χ 1 + χ 2 + χ 5 + χ 5 5 => χ 1 + χ 5 + χ 5 6 => χ 2 + χ 5 + χ 5 7 => χ 5 + χ 5 M(GeV) Correlation Matrix Number

103 N+ spectrum with 5 quark operators

104 n s = State 1 E-vector component u χ1 35 u χ1 200 u χ2 35 u χ2 200 u χ5 35 u χ5 200 u χ 5 35 u χ Correlation Matrix Number

105 n s = State 2 E-vector component u χ1 35 u χ1 200 u χ2 35 u χ2 200 u χ5 35 u χ5 200 u χ 5 35 u χ Correlation Matrix Number

106 Summary A basis of multiple Gaussian smearings is well-suited to isolating radial excitations of the nucleon. The variational method allows us to access a state that is consistent with the N = 2 Roper excitation with standard three-quark interpolators. Probing the Roper wave function reveals a nodal structure. χ 2 has negligible coupling to the Roper. Multiple χ 1 operators at large smearings are critical to form the correct structure.

107 Summary Qualitative agreement with QM predictions for the Roper radial wave function. Finite volume effects clearly evident in the Roper probability distribution. Larger lattice volumes needed! Preliminary results do not indicate a strong coupling to 5-quark operators.

Nucleon Spectroscopy with Multi-Particle Operators

Nucleon Spectroscopy with Multi-Particle Operators Nucleon Spectroscopy with Multi-Particle Operators Adrian L. Kiratidis Waseem Kamleh, Derek B. Leinweber CSSM, The University of Adelaide 21st of July - LHP V 2015 - Cairns, Australia 1/41 Table of content

More information

Excited States of the Nucleon in Lattice QCD

Excited States of the Nucleon in Lattice QCD Collaborators: Alan Ó Cais, Waseem Kamleh, Ben G. Lasscock, Derek B. Leinweber and Anthony G. Williams CSSM, University of Adelaide Adelaide Outline Introduction 1 Introduction 2 3 4 2 point Correlation

More information

Wave functions of the Nucleon

Wave functions of the Nucleon Wave functions of the Nucleon Samuel D. Thomas (1) Collaborators: Waseem Kamleh (1), Derek B. Leinweber (1), Dale S. Roberts (1,2) (1) CSSM, University of Adelaide, (2) Australian National University LHPV,

More information

The Wave Function of the Roper Resonance

The Wave Function of the Roper Resonance The Wave Function of the Roper Resonance Special Research Centre for the Subatomic Structure of Matter, School of Chemistry & Physics, University of Adelaide, SA, 5005, Australia Waseem Kamleh Special

More information

Probing Nucleon Resonances on the Lattice

Probing Nucleon Resonances on the Lattice Probing Nucleon Resonances on the Lattice Benjamin Owen Supervisors: Derek Leinweber, Waseem Kamleh April 7th, 2014 Benjamin Owen (Adelaide Uni) April 7th, 2014 1 / 27 Outline 1 Accessing states on the

More information

The 1405 MeV Lambda Resonance in Full-QCD

The 1405 MeV Lambda Resonance in Full-QCD , Waseem Kamleh, Derek B. Leinweber, and M. Selim Mahbub Special Research Centre for the Subatomic Structure of Matter School of Chemistry & Physics, University of Adelaide, SA, 5005, Australia E-mail:

More information

The Λ(1405) is an anti-kaon nucleon molecule. Jonathan Hall, Waseem Kamleh, Derek Leinweber, Ben Menadue, Ben Owen, Tony Thomas, Ross Young

The Λ(1405) is an anti-kaon nucleon molecule. Jonathan Hall, Waseem Kamleh, Derek Leinweber, Ben Menadue, Ben Owen, Tony Thomas, Ross Young The Λ(1405) is an anti-kaon nucleon molecule Jonathan Hall, Waseem Kamleh, Derek Leinweber, Ben Menadue, Ben Owen, Tony Thomas, Ross Young The Λ(1405) The Λ(1405) is the lowest-lying odd-parity state of

More information

The Λ(1405) is an anti-kaon nucleon molecule. Jonathan Hall, Waseem Kamleh, Derek Leinweber, Ben Menadue, Ben Owen, Tony Thomas, Ross Young

The Λ(1405) is an anti-kaon nucleon molecule. Jonathan Hall, Waseem Kamleh, Derek Leinweber, Ben Menadue, Ben Owen, Tony Thomas, Ross Young The Λ(1405) is an anti-kaon nucleon molecule Jonathan Hall, Waseem Kamleh, Derek Leinweber, Ben Menadue, Ben Owen, Tony Thomas, Ross Young The Λ(1405) The Λ(1405) is the lowest-lying odd-parity state of

More information

arxiv: v1 [hep-lat] 30 Nov 2015

arxiv: v1 [hep-lat] 30 Nov 2015 ADP-15-45/T947 N Spectroscopy from Lattice QCD: The Roper Explained arxiv:1511.09146v1 [hep-lat] 30 Nov 2015 Derek Leinweber 1, Waseem Kamleh 1, Adrian Kiratidis 1, Zhan-Wei Liu 1, Selim Mahbub 1,2, Dale

More information

Low-lying positive-parity excited states of the nucleon

Low-lying positive-parity excited states of the nucleon Low-lying positive-parity excited states of the nucleon ab, Alan Ó Cais ac, Waseem Kamleh a, B.G. Lasscock a, Derek B. Leinweber a, Anthony G. Williams a a Special Research Centre for the Subatomic Structure

More information

Nucleon excited states on the lattice

Nucleon excited states on the lattice Nucleon excited states on the lattice C.B. Lang, Valentina Verduci Graz, 12.12.12 Overview Motivation: Investigate the nucleon spectrum studying the π N scattering. The approach: How do we extract excited

More information

Baryon spectroscopy with spatially improved quark sources

Baryon spectroscopy with spatially improved quark sources Baryon spectroscopy with spatially improved quark sources T. Burch,, D. Hierl, and A. Schäfer Institut für Theoretische Physik Universität Regensburg D-93040 Regensburg, Germany. E-mail: christian.hagen@physik.uni-regensburg.de

More information

Baryon Resonance Determination using LQCD. Robert Edwards Jefferson Lab. Baryons 2013

Baryon Resonance Determination using LQCD. Robert Edwards Jefferson Lab. Baryons 2013 Baryon Resonance Determination using LQCD Robert Edwards Jefferson Lab Baryons 2013 Where are the Missing Baryon Resonances? What are collective modes? Is there freezing of degrees of freedom? What is

More information

the excited spectrum of QCD

the excited spectrum of QCD the excited spectrum of QCD the spectrum of excited hadrons let s begin with a convenient fiction : imagine that QCD were such that there was a spectrum of stable excited hadrons e.g. suppose we set up

More information

Valence quark contributions for the γn P 11 (1440) transition

Valence quark contributions for the γn P 11 (1440) transition Valence quark contributions for the γn P 11 (144) transition Gilberto Ramalho (Instituto Superior Técnico, Lisbon) In collaboration with Kazuo Tsushima 12th International Conference on Meson-Nucleon Physics

More information

L. David Roper

L. David Roper The Heavy Proton L. David Roper mailto:roperld@vt.edu Introduction The proton is the nucleus of the hydrogen atom, which has one orbiting electron. The proton is the least massive of the baryons. Its mass

More information

QCD Vacuum, Centre Vortices and Flux Tubes

QCD Vacuum, Centre Vortices and Flux Tubes QCD Vacuum, Centre Vortices and Flux Tubes Derek Leinweber Centre for the Subatomic Structure of Matter and Department of Physics University of Adelaide QCD Vacuum, Centre Vortices and Flux Tubes p.1/50

More information

hybrids (mesons and baryons) JLab Advanced Study Institute

hybrids (mesons and baryons) JLab Advanced Study Institute hybrids (mesons and baryons) 2000 2000 1500 1500 1000 1000 500 500 0 0 71 the resonance spectrum of QCD or, where are you hiding the scattering amplitudes? real QCD real QCD has very few stable particles

More information

Hamiltonian approach to Yang- Mills Theories in 2+1 Dimensions: Glueball and Meson Mass Spectra

Hamiltonian approach to Yang- Mills Theories in 2+1 Dimensions: Glueball and Meson Mass Spectra Hamiltonian approach to Yang- Mills Theories in 2+1 Dimensions: Glueball and Meson Mass Spectra Aleksandr Yelnikov Virginia Tech based on hep-th/0512200 hep-th/0604060 with Rob Leigh and Djordje Minic

More information

Mass of Heavy Mesons from Lattice QCD

Mass of Heavy Mesons from Lattice QCD Mass of Heavy Mesons from Lattice QCD David Richards Jefferson Laboratory/Hadron Spectrum Collaboration Temple, March 2016 Outline Heavy Mesons Lattice QCD Spectroscopy Recipe Book Results and insight

More information

Exotic and excited-state radiative transitions in charmonium from lattice QCD

Exotic and excited-state radiative transitions in charmonium from lattice QCD Exotic and excited-state radiative transitions in charmonium from lattice QCD Christopher Thomas, Jefferson Lab Hadron Spectroscopy Workshop, INT, November 2009 In collaboration with: Jo Dudek, Robert

More information

QCD Symmetries in eta and etaprime mesic nuclei

QCD Symmetries in eta and etaprime mesic nuclei QCD Symmetries in eta and etaprime mesic nuclei Steven Bass Chiral symmetry, eta and eta physics: the masses of these mesons are 300-400 MeV too big for them to be pure Goldstone bosons Famous axial U(1)

More information

Resonances and Lattice QCD

Resonances and Lattice QCD Resonances and Lattice QCD David Richards (Jefferson Laboratory/LHPC) Motivation Review Recipe Variational Method Group-theoretical methods Numerical implementation Exploratory Tests Conclusions and Future

More information

Cornelius Bennhold George Washington University

Cornelius Bennhold George Washington University Cornelius Bennhold George Washington University The past 7 years Low-lying baryon resonances Missing and exotic (hybrid) resonances How many N* do we need? How many do we have? Resonance form factors The

More information

Hamiltonian approach to Yang- Mills Theories in 2+1 Dimensions: Glueball and Meson Mass Spectra

Hamiltonian approach to Yang- Mills Theories in 2+1 Dimensions: Glueball and Meson Mass Spectra Hamiltonian approach to Yang- Mills Theories in 2+1 Dimensions: Glueball and Meson Mass Spectra Aleksandr Yelnikov Virginia Tech based on hep-th/0512200 hep-th/0604060 with Rob Leigh and Djordje Minic

More information

J/ψ-Φ interaction and Y(4140) on the lattice QCD

J/ψ-Φ interaction and Y(4140) on the lattice QCD J/ψ-Φ interaction and Y(4140) on the lattice QCD Sho Ozaki (Univ. of Tokyo) in collaboration with Shoichi Sasaki (Univ. of Tokyo) Tetsuo Hatsuda (Univ. of Tokyo & Riken) Contents Introduction Charmonium(J/ψ)-Φ

More information

lattice QCD and the hadron spectrum Jozef Dudek ODU/JLab

lattice QCD and the hadron spectrum Jozef Dudek ODU/JLab lattice QCD and the hadron spectrum Jozef Dudek ODU/JLab the light meson spectrum relatively simple models of hadrons: bound states of constituent quarks and antiquarks the quark model empirical meson

More information

Department of Physical Sciences, University of Helsinki and Helsinki Institute of Physics, Finland

Department of Physical Sciences, University of Helsinki and Helsinki Institute of Physics, Finland Energies and radial distributions of B s mesons - the effect of hypercubic blocking (for UKQCD Collaboration) Department of Physical Sciences, University of Helsinki and Helsinki Institute of Physics,

More information

Properties of ground and excited state hadrons from lattice QCD

Properties of ground and excited state hadrons from lattice QCD Properties of ground and excited state hadrons from lattice QCD Daniel Mohler TRIUMF, Theory Group Vancouver, B.C., Canada Newport News, March 22 200 Co-Workers: Christof Gattringer, Christian Lang, Georg

More information

Weak interactions. Chapter 7

Weak interactions. Chapter 7 Chapter 7 Weak interactions As already discussed, weak interactions are responsible for many processes which involve the transformation of particles from one type to another. Weak interactions cause nuclear

More information

Pion-Nucleon P 11 Partial Wave

Pion-Nucleon P 11 Partial Wave Pion-Nucleon P 11 Partial Wave Introduction 31 August 21 L. David Roper, http://arts.bev.net/roperldavid/ The author s PhD thesis at MIT in 1963 was a -7 MeV pion-nucleon partial-wave analysis 1. A major

More information

(Towards) Baryon Resonances from Lattice QCD

(Towards) Baryon Resonances from Lattice QCD (Towards) Baryon Resonances from Lattice QCD Daniel Mohler Fermilab Theory Group Batavia, IL, USA Paphos, October 2013 Daniel Mohler (Fermilab) Baryon Resonances from Lattice QCD Paphos, October 2013 1

More information

Hadron Spectroscopy at COMPASS

Hadron Spectroscopy at COMPASS Hadron Spectroscopy at Overview and Analysis Methods Boris Grube for the Collaboration Physik-Department E18 Technische Universität München, Garching, Germany Future Directions in Spectroscopy Analysis

More information

Chiral and angular momentum content of rho and rho mesons from dynamical lattice calculations

Chiral and angular momentum content of rho and rho mesons from dynamical lattice calculations Chiral and angular momentum content of rho and rho mesons from dynamical lattice calculations L. Ya. Glozman Institut für Physik, FB Theoretische Physik, Universität Graz With Christian Lang and Markus

More information

Why? How? to test strong QCD! SU(3) Chiral Perturbation Theory Threshold γn ΚΛ amplitudes K +, K 0, Λ form factors, polarizabilities Lattice QCD

Why? How? to test strong QCD! SU(3) Chiral Perturbation Theory Threshold γn ΚΛ amplitudes K +, K 0, Λ form factors, polarizabilities Lattice QCD Why? to test strong QCD! How? SU(3) Chiral Perturbation Theory Threshold γn ΚΛ amplitudes K +, K 0, Λ form factors, polarizabilities Lattice QCD Cornelius Bennhold George Washington University Excitation

More information

Scattering amplitudes from lattice QCD

Scattering amplitudes from lattice QCD Scattering amplitudes from lattice QCD David Wilson Old Dominion University Based on work in collaboration with J.J. Dudek, R.G. Edwards and C.E. Thomas. Jefferson lab theory center 20th October 2014.

More information

Nuclear Force from Lattice QCD

Nuclear Force from Lattice QCD Department of Physics, University of Tokyo, Tokyo 113 0033, JAPAN E-mail: ishii@rarfaxp.riken.jp Sinya AOKI Graduate School of Pure and Applied Science, University of Tsukuba, Tukuba 305 8571, Ibaraki,

More information

Quarks and the Baryons

Quarks and the Baryons Quarks and the Baryons A Review of Chapter 15 of Particles and Nuclei by Povh Evan Phelps University of South Carolina Department of Physics and Astronomy phelps@physics.sc.edu March 18, 2009 Evan Phelps

More information

Omega baryon electromagnetic form factors from lattice QCD

Omega baryon electromagnetic form factors from lattice QCD Omega baryon electromagnetic form factors from lattice QCD C. Alexandrou Department of Physics, University of Cyprus, P.O. Box 2057, 1678 Nicosia, Cyprus and Computation-based Science and Technology Research

More information

Nuclear Structure and Reactions using Lattice Effective Field Theory

Nuclear Structure and Reactions using Lattice Effective Field Theory Nuclear Structure and Reactions using Lattice Effective Field Theory Dean Lee North Carolina State University Nuclear Lattice EFT Collaboration Frontiers of Nuclear Physics Kavli Institute for Theoretical

More information

Baryon Spectroscopy: what do we learn, what do we need?

Baryon Spectroscopy: what do we learn, what do we need? Baryon Spectroscopy: what do we learn, what do we need? E. Klempt Helmholtz-Institut für Strahlen und Kernphysik Universität Bonn Nußallee 14-16, D-53115 Bonn, GERMANY e-mail: klempt@hiskp.uni-bonn.de

More information

spectroscopy overview Jozef Dudek Old Dominion University & Jefferson Lab thanks for inviting a whinging pom

spectroscopy overview Jozef Dudek Old Dominion University & Jefferson Lab thanks for inviting a whinging pom spectroscopy overview Jozef Dudek Old Dominion University & Jefferson Lab thanks for inviting a whinging pom spectroscopy? will touch only lightly on precision spectroscopy - masses of (QCD)-stable hadrons

More information

arxiv:hep-lat/ v1 1 Apr 2003

arxiv:hep-lat/ v1 1 Apr 2003 Spin-3/ Nucleon and Baryons in Lattice QCD J.M. Zanotti, D.B. Leinweber, A.G. Williams and J.B. Zhang (CSSM Lattice Collaboration) Department of Physics and Mathematical Physics, and Special Research Centre

More information

Comparing and Improving Quark Models for the Triply Bottom Baryon Spectrum

Comparing and Improving Quark Models for the Triply Bottom Baryon Spectrum Comparing and Improving Quark Models for the Triply Bottom Baryon Spectrum A thesis submitted in partial fulfillment of the requirements for the degree of Bachelor of Science degree in Physics from the

More information

Hadronic Resonances in a Hadronic Picture. Daisuke Jido (Nuclear physics group)

Hadronic Resonances in a Hadronic Picture. Daisuke Jido (Nuclear physics group) Daisuke Jido (Nuclear physics group) Hadrons (particles interacting with strong interactions) are composite objects of quarks and gluons. It has been recently suggested that the structures of some hadrons

More information

Kern- und Teilchenphysik I Lecture 13:Quarks and QCD

Kern- und Teilchenphysik I Lecture 13:Quarks and QCD Kern- und Teilchenphysik I Lecture 13:Quarks and QCD (adapted from the Handout of Prof. Mark Thomson) Prof. Nico Serra Dr. Patrick Owen, Dr. Silva Coutinho http://www.physik.uzh.ch/de/lehre/phy211/hs2016.html

More information

Lattice QCD investigation of heavy-light four-quark systems

Lattice QCD investigation of heavy-light four-quark systems Lattice QCD investigation of heavy-light four-quark systems Antje Peters peters@th.physik.uni-frankfurt.de Goethe-Universität Frankfurt am Main in collaboration with Pedro Bicudo, Krzysztof Cichy, Luka

More information

PoS(LATTICE 2013)248. Charmed Bottom Baryon Spectroscopy. Zachary S. Brown

PoS(LATTICE 2013)248. Charmed Bottom Baryon Spectroscopy. Zachary S. Brown The College of William & Mary E-mail: zsbrown@email.wm.edu William Detmold Massachusetts Institute of Technology E-mail: wdetmold@mit.edu Stefan Meinel Massachusetts Institute of Technology E-mail: smeinel@mit.edu

More information

Baryon correlators containing different diquarks from lattice simulations

Baryon correlators containing different diquarks from lattice simulations Baryon correlators containing different diquarks from lattice simulations and Thomas DeGrand Department of Physics, University of Colorado, Boulder, CO 80309 USA E-mail: zhaofeng.liu@colorado.edu, degrand@pizero.colorado.edu

More information

2012 JSA Graduate Fellowship Progress Report

2012 JSA Graduate Fellowship Progress Report 2012 JSA Graduate Fellowship Progress Report Zachary S. Brown September 27, 2012 1 Research This report details my reseach progress through the academic year 2011-2012 while supported by the Jefferson

More information

lattice QCD and the hadron spectrum Jozef Dudek ODU/JLab

lattice QCD and the hadron spectrum Jozef Dudek ODU/JLab lattice QCD and the hadron spectrum Jozef Dudek ODU/JLab a black box? QCD lattice QCD observables (scattering amplitudes?) in these lectures, hope to give you a look inside the box 2 these lectures how

More information

Hadronic physics from the lattice

Hadronic physics from the lattice Hadronic physics from the lattice Chris Michael c.michael@liv.ac.uk University of Liverpool Hadronic physics from the lattice p.1/24 Hadronic Structure - Introduction What are hadrons made of? Is a meson

More information

arxiv: v1 [hep-lat] 7 Oct 2007

arxiv: v1 [hep-lat] 7 Oct 2007 Charm and bottom heavy baryon mass spectrum from lattice QCD with 2+1 flavors arxiv:0710.1422v1 [hep-lat] 7 Oct 2007 and Steven Gottlieb Department of Physics, Indiana University, Bloomington, Indiana

More information

The Quark Parton Model

The Quark Parton Model The Quark Parton Model Quark Model Pseudoscalar J P = 0 Mesons Vector J P = 1 Mesons Meson Masses J P = 3 /2 + Baryons J P = ½ + Baryons Resonances Resonance Detection Discovery of the ω meson Dalitz Plots

More information

Λ(1405) and Negative-Parity Baryons in Lattice QCD. Y.Nemoto (RIKEN-BNL) N.Nakajima (Kochi U.) H.Matsufuru (KEK) H.Suganuma (Tokyo Inst.Tech.

Λ(1405) and Negative-Parity Baryons in Lattice QCD. Y.Nemoto (RIKEN-BNL) N.Nakajima (Kochi U.) H.Matsufuru (KEK) H.Suganuma (Tokyo Inst.Tech. Λ(1405) and Negative-Parity Baryons in Lattice QCD Y.Nemoto (RIKEN-BNL) N.Nakajima (Kochi U.) H.Matsufuru (KEK) H.Suganuma (Tokyo Inst.Tech.) The Λ(1405) Particle Mass: ~1406.5 MeV Width: ~50 MeV I=0,

More information

Quark tensor and axial charges within the Schwinger-Dyson formalism

Quark tensor and axial charges within the Schwinger-Dyson formalism Quark tensor and axial charges within the Schwinger-Dyson formalism, Takahiro M. Doi, Shotaro Imai, Hideo Suganuma Department of Physics, Graduate School of Science, Kyoto University, Kitashirakawa-oiwake,

More information

Contents. Preface to the First Edition Preface to the Second Edition

Contents. Preface to the First Edition Preface to the Second Edition Contents Preface to the First Edition Preface to the Second Edition Notes xiii xv xvii 1 Basic Concepts 1 1.1 History 1 1.1.1 The Origins of Nuclear Physics 1 1.1.2 The Emergence of Particle Physics: the

More information

NUCLEAR FORCES. Historical perspective

NUCLEAR FORCES. Historical perspective NUCLEAR FORCES Figure 1: The atomic nucleus made up from protons (yellow) and neutrons (blue) and held together by nuclear forces. Nuclear forces (also known as nuclear interactions or strong forces) are

More information

The heavy-light sector of N f = twisted mass lattice QCD

The heavy-light sector of N f = twisted mass lattice QCD The heavy-light sector of N f = 2 + 1 + 1 twisted mass lattice QCD Marc Wagner Humboldt-Universität zu Berlin, Institut für Physik mcwagner@physik.hu-berlin.de http://people.physik.hu-berlin.de/ mcwagner/

More information

Pion couplings to the scalar B meson. Antoine Gérardin

Pion couplings to the scalar B meson. Antoine Gérardin Antoine Gérardin 1 Pion couplings to the scalar B meson Pion couplings to the scalar B meson Antoine Gérardin In collaboration with B. Blossier and N. Garron Based on [arxiv:141.349] LPT Orsay January

More information

Nuclear forces and their impact on structure, reactions and astrophysics

Nuclear forces and their impact on structure, reactions and astrophysics Nuclear forces and their impact on structure, reactions and astrophysics Lectures for Week 2 Dick Furnstahl Ohio State University July, 213 M. Chiral EFT 1 (as); χ-symmetry in NN scattering, QCD 2 (rjf)

More information

Nucleon form factors and moments of GPDs in twisted mass lattice QCD

Nucleon form factors and moments of GPDs in twisted mass lattice QCD Nucleon form factors and moments of GPDs in twisted mass lattice QCD European Collab ora tion M. Constantinou, C. Alexandrou, M. Brinet, J. Carbonell P. Harraud, P. Guichon, K. Jansen, C. Kallidonis, T.

More information

CHIRAL SYMMETRY OF EXCITED HADRONS FROM PHENOMENOLOGY, THEORY AND LATTICE

CHIRAL SYMMETRY OF EXCITED HADRONS FROM PHENOMENOLOGY, THEORY AND LATTICE CHIRAL SYMMETRY OF EXCITED HADRONS FROM PHENOMENOLOGY, THEORY AND LATTICE L. Ya. Glozman Institut für Physik, FB Theoretische Physik, Universität Graz L.Ya. Glozman Contents of the Talk Chiral symmetry

More information

arxiv: v1 [hep-lat] 6 Nov 2015

arxiv: v1 [hep-lat] 6 Nov 2015 Department of Physics, University of California, Berkeley E-mail: anicholson@berkeley.edu arxiv:1511.02262v1 [hep-lat] 6 Nov 2015 Evan Berkowitz, Enrico Rinaldi, Pavlos Vranas Physics Division, Lawrence

More information

arxiv: v1 [hep-lat] 30 Oct 2018

arxiv: v1 [hep-lat] 30 Oct 2018 E-mail: genwang27@uky.edu arxiv:1810.12824v1 [hep-lat] 30 Oct 2018 Jian Liang E-mail: jian.liang@uky.edu Terrence Draper E-mail: draper@pa.uky.edu Keh-Fei Liu E-mail: liu@pa.uky.edu Yi-Bo Yang Institute

More information

The symmetries of QCD (and consequences)

The symmetries of QCD (and consequences) The symmetries of QCD (and consequences) Sinéad M. Ryan Trinity College Dublin Quantum Universe Symposium, Groningen, March 2018 Understand nature in terms of fundamental building blocks The Rumsfeld

More information

Meson Radiative Transitions on the Lattice hybrids and charmonium. Jo Dudek, Robert Edwards, David Richards & Nilmani Mathur Jefferson Lab

Meson Radiative Transitions on the Lattice hybrids and charmonium. Jo Dudek, Robert Edwards, David Richards & Nilmani Mathur Jefferson Lab Meson Radiative Transitions on the Lattice hybrids and charmonium Jo Dudek, Robert Edwards, David Richards & Nilmani Mathur Jefferson Lab 1 JLab, GlueX and photocouplings GlueX plans to photoproduce mesons

More information

Bethe Salpeter studies of mesons beyond rainbow-ladder

Bethe Salpeter studies of mesons beyond rainbow-ladder Bethe Salpeter studies of mesons beyond rainbow-ladder Richard Williams 1 st June 2010 12th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon College of William and Mary,

More information

Spectrum and Bethe-Salpeter amplitudes of Ω baryons from lattice QCD

Spectrum and Bethe-Salpeter amplitudes of Ω baryons from lattice QCD Chinese Physics C LETTERS OPEN ACCESS Spectrum and Bethe-Salpeter amplitudes of Ω baryons from lattice QCD To cite this article: Jian Liang et al 016 Chinese Phys. C 40 041001 View the article online for

More information

1 Introduction. 2 The hadronic many body problem

1 Introduction. 2 The hadronic many body problem Models Lecture 18 1 Introduction In the next series of lectures we discuss various models, in particluar models that are used to describe strong interaction problems. We introduce this by discussing the

More information

Lattice QCD From Nucleon Mass to Nuclear Mass

Lattice QCD From Nucleon Mass to Nuclear Mass At the heart of most visible m Lattice QCD From Nucleon Mass to Nuclear Mass Martin J Savage The Proton Mass: At the Heart of Most Visible Matter, Temple University, Philadelphia, March 28-29 (2016) 1

More information

arxiv:hep-ph/ v1 18 Mar 2006

arxiv:hep-ph/ v1 18 Mar 2006 Radiative decays of B c mesons in a Bethe-Salpeter model arxiv:hep-ph/0603139v1 18 Mar 2006 A. Abd El-Hady a,1, J. R. Spence b and J. P. Vary b a) Physics Department, King Khalid University, Abha 9004,

More information

Introduction to Particle Physics. HST July 2016 Luis Alvarez Gaume 1

Introduction to Particle Physics. HST July 2016 Luis Alvarez Gaume 1 Introduction to Particle Physics HST July 2016 Luis Alvarez Gaume 1 Basics Particle Physics describes the basic constituents of matter and their interactions It has a deep interplay with cosmology Modern

More information

Chiral effective field theory on the lattice: Ab initio calculations of nuclei

Chiral effective field theory on the lattice: Ab initio calculations of nuclei Chiral effective field theory on the lattice: Ab initio calculations of nuclei Nuclear Lattice EFT Collaboration Evgeny Epelbaum (Bochum) Hermann Krebs (Bochum) Timo Lähde (Jülich) Dean Lee (NC State)

More information

University of Athens, Institute of Accelerating Systems and Applications, Athens, Greece

University of Athens, Institute of Accelerating Systems and Applications, Athens, Greece A study of the N to transition form factors in full QCD Constantia Alexandrou Department of Physics, University of Cyprus, CY-1678 Nicosia, Cyprus E-mail: alexand@ucy.ac.cy Robert Edwards Thomas Jefferson

More information

FYS 3510 Subatomic physics with applications in astrophysics. Nuclear and Particle Physics: An Introduction

FYS 3510 Subatomic physics with applications in astrophysics. Nuclear and Particle Physics: An Introduction FYS 3510 Subatomic physics with applications in astrophysics Nuclear and Particle Physics: An Introduction Nuclear and Particle Physics: An Introduction, 2nd Edition Professor Brian Martin ISBN: 978-0-470-74275-4

More information

CHARMED BOTTOM BARYON SPECTROSCOPY. Zachary S. Brown, William Detmold, Stefan Meinel, Konstantinos Orginos

CHARMED BOTTOM BARYON SPECTROSCOPY. Zachary S. Brown, William Detmold, Stefan Meinel, Konstantinos Orginos CHARMED BOTTOM BARYON SPECTROSCOPY Zachary S. Brown, William Detmold, Stefan Meinel, Konstantinos Orginos 1 OUTLINE Landscape of heavy baryon spectroscopy Details of our calculation Extrapolations Results

More information

arxiv: v2 [nucl-th] 9 Jan 2017

arxiv: v2 [nucl-th] 9 Jan 2017 Structure of the Λ(145) from Hamiltonian effective field theory ADP-16-29/T984 arxiv:167.5856v2 [nucl-th] 9 Jan 217 Zhan-Wei Liu, 1 Jonathan M. M. Hall, 1 Derek B. Leinweber, 1 Anthony W. Thomas, 1, 2

More information

Lecture PowerPoint. Chapter 32 Physics: Principles with Applications, 6 th edition Giancoli

Lecture PowerPoint. Chapter 32 Physics: Principles with Applications, 6 th edition Giancoli Lecture PowerPoint Chapter 32 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the

More information

The Lattice QCD Program at Jefferson Lab. Huey-Wen Lin. JLab 7n cluster

The Lattice QCD Program at Jefferson Lab. Huey-Wen Lin. JLab 7n cluster The Lattice QCD Program at Jefferson Lab Huey-Wen Lin JLab 7n cluster 1 Theoretical Support for Our Experimental Agenda 2 Theoretical Support for Our Experimental Agenda JLab Staff Joint appointments and

More information

New Frontiers in Nuclear Structure Theory

New Frontiers in Nuclear Structure Theory New Frontiers in Nuclear Structure Theory From Realistic Interactions to the Nuclear Chart Robert Roth Institut für Kernphysik Technical University Darmstadt Overview Motivation Nucleon-Nucleon Interactions

More information

Bethe Salpeter studies of mesons beyond rainbow-ladder Complutense Unviversity of Madrid

Bethe Salpeter studies of mesons beyond rainbow-ladder Complutense Unviversity of Madrid Bethe Salpeter studies of mesons beyond rainbow-ladder Complutense Unviversity of Madrid Richard Williams C. S. Fischer and RW, Phys. Rev. D 78 2008 074006, [arxiv:0808.3372] C. S. Fischer and RW, Phys.

More information

Nuclear Structure V: Application to Time-Reversal Violation (and Atomic Electric Dipole Moments)

Nuclear Structure V: Application to Time-Reversal Violation (and Atomic Electric Dipole Moments) T Symmetry EDM s Octupole Deformation Other Nuclei Nuclear Structure V: Application to Time-Reversal Violation (and Atomic Electric Dipole Moments) J. Engel University of North Carolina June 16, 2005 T

More information

Hadron structure from lattice QCD

Hadron structure from lattice QCD Hadron structure from lattice QCD Giannis Koutsou Computation-based Science and Technology Research Centre () The Cyprus Institute EINN2015, 5th Nov. 2015, Pafos Outline Short introduction to lattice calculations

More information

3. Introductory Nuclear Physics 1; The Liquid Drop Model

3. Introductory Nuclear Physics 1; The Liquid Drop Model 3. Introductory Nuclear Physics 1; The Liquid Drop Model Each nucleus is a bound collection of N neutrons and Z protons. The mass number is A = N + Z, the atomic number is Z and the nucleus is written

More information

Pseudovector versus pseudoscalar coupling. in kaon photoproduction revisited. Abstract

Pseudovector versus pseudoscalar coupling. in kaon photoproduction revisited. Abstract Pseudovector versus pseudoscalar coupling in kaon photoproduction revisited S.S. Hsiao 1, D.H. Lu 2 and Shin Nan Yang 2 1 Department of physics, Soo Chow University, Taipei, Taiwan 11102 2 Department of

More information

Hadron Structure from Lattice QCD

Hadron Structure from Lattice QCD Hadron Structure from Lattice QCD Huey-Wen Lin University of Washington 1 Outline Lattice QCD Overview Nucleon Structure PDF, form factors, GPDs Hyperons Axial coupling constants, charge radii... Summary

More information

A.A. Godizov. Institute for High Energy Physics, Protvino, Russia

A.A. Godizov. Institute for High Energy Physics, Protvino, Russia arxiv:1410.886v1 [hep-ph] 0 Oct 2014 QCD and nuclear physics. How to explain the coincidence between the radius of the strong interaction of nucleons and the characteristic scale of neutron-neutron electrostatic

More information

Nucleon Deformation from Lattice QCD Antonios Tsapalis

Nucleon Deformation from Lattice QCD Antonios Tsapalis Nucleon Deformation from Lattice QCD Antonios Tsapalis National Technical University of Athens School of Applied Mathematics and Physical Sciences & Hellenic Naval Academy 5 th Vienna Central European

More information

arxiv:hep-lat/ v2 13 Oct 1998

arxiv:hep-lat/ v2 13 Oct 1998 Preprint numbers: BI-TP 98/15 UUHEP 98/3 String Breaking in Lattice Quantum Chromodynamics Carleton DeTar Department of Physics, University of Utah Salt Lake City, UT 84112, USA arxiv:hep-lat/9808028v2

More information

Lattice studies of multiply charmed baryons

Lattice studies of multiply charmed baryons Lattice studies of multiply charmed baryons Gunnar Bali (Regensburg) QWG13, IHEP Beijing, 23.4.2013 Outline Motivation Simulation parameters Multiply charmed baryons Summary Gunnar Bali (Uni Regensburg)

More information

πn Multi-πN Scattering in the 1/N c Expansion (HJK, Richard Lebed, Phys.Rev.D75:016002,2007)

πn Multi-πN Scattering in the 1/N c Expansion (HJK, Richard Lebed, Phys.Rev.D75:016002,2007) N Multi-N Scattering in the 1/N c Expansion (HJK, Richard Lebed, Phys.Rev.D75:01600,007) Herry Kwee Arizona State University JLAB, May 3, 007 1 Outline 1. Introduction. Scattering Amplitudes and N c power

More information

Nuclear structure Anatoli Afanasjev Mississippi State University

Nuclear structure Anatoli Afanasjev Mississippi State University Nuclear structure Anatoli Afanasjev Mississippi State University 1. Nuclear theory selection of starting point 2. What can be done exactly (ab-initio calculations) and why we cannot do that systematically?

More information

Covariance, dynamics and symmetries, and hadron form factors

Covariance, dynamics and symmetries, and hadron form factors Covariance, dynamics and symmetries, and hadron form factors Craig D. Roberts cdroberts@anl.gov Physics Division Argonne National Laboratory Exclusive Reactions at High Momentum Transfer, 21-24May/07,

More information

Exotic baryon resonances in the chiral dynamics

Exotic baryon resonances in the chiral dynamics Exotic baryon resonances in the chiral dynamics Tetsuo Hyodo a A. Hosaka a, D. Jido b, S.I. Nam a, E. Oset c, A. Ramos d and M. J. Vicente Vacas c a RCNP, Osaka b ECT* c IFIC, Valencia d Barcelona Univ.

More information

Lattice Studies of Baryon Resonances

Lattice Studies of Baryon Resonances Lattice Studies of Baryon Resonances HADRON SPECTRUM COLLABORATION J. Bulava, J. Dudek, R. Edwards, E. Engelson, Justin Foley, Bálint Joó, J. Juge, A. Lichtl,H.- W Lin, N. Mathur, C. Morningstar, D. Richards,

More information

Ab Initio Nuclear Structure Theory

Ab Initio Nuclear Structure Theory Ab Initio Nuclear Structure Theory Lecture 1: Hamiltonian Robert Roth Overview Lecture 1: Hamiltonian Prelude Many-Body Quantum Mechanics Nuclear Hamiltonian Matrix Elements Lecture 2: Correlations Two-Body

More information

Covariant quark-diquark model for the N N electromagnetic transitions

Covariant quark-diquark model for the N N electromagnetic transitions Covariant quark-diquark model for the N N electromagnetic transitions Gilberto Ramalho CFTP, Instituto Superior Técnico, Lisbon In collaboration with F. Gross, M.T. Peña and K. Tsushima Nucleon Resonance

More information

Nuclear Physics from Lattice Effective Field Theory

Nuclear Physics from Lattice Effective Field Theory Nuclear Physics from Lattice Effective Field Theory Dean Lee (NCSU/Bonn) work done in collaboration with Evgeny Epelbaum (Bochum) Hermann Krebs (Bochum) Ulf-G. Meißner (Bonn/Jülich) Buḡra Borasoy (now

More information

Nuclear Force from Lattice QCD. [1] Why nuclear force now? [2] NN force from lattice QCD [3] BB and BM forces from lattice QCD [4] Summary and Future

Nuclear Force from Lattice QCD. [1] Why nuclear force now? [2] NN force from lattice QCD [3] BB and BM forces from lattice QCD [4] Summary and Future Nuclear Force from Lattice QCD [1] Why nuclear force now? [2] NN force from lattice QCD [3] BB and BM forces from lattice QCD [4] Summary and Future Tetsuo Hatsuda (Univ. Tokyo) NFQCD, Feb 17, 2010 The

More information