Learning Sets of Rules. Sequential covering algorithms FOIL. Induction as inverse of deduction. Inductive Logic Programming

Size: px
Start display at page:

Download "Learning Sets of Rules. Sequential covering algorithms FOIL. Induction as inverse of deduction. Inductive Logic Programming"

Transcription

1 Learning Sets of Rules [Read Ch. 10] [Recommended exercises 10.1, 10.2, 10.5, 10.7, 10.8] Sequential covering algorithms FOIL Induction as inverse of deduction Inductive Logic Programming 229 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

2 Learning Disjunctive Sets of Rules Method 1: Learn decision tree, convert to rules Method 2: Sequential covering algorithm: 1. Learn one rule with high accuracy, anycoverage 2. Remove positive examples covered by this rule 3. Repeat 230 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

3 Sequential Covering Algorithm Sequentialcovering(Target attribute Attributes Examples T hresho Learned rules fg Rule learn-onerule(target attribute Attributes Examples) while performance(rule Examples) > T hreshold, do { Learned rules Learned rules + Rule { Examples Examples ;fexamples correctly classied by Ruleg { Rule learn-onerule(target attribute Attributes Examples) Learned rules performance over Examples return Learned rules sort Learned rules accord to 231 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

4 Learn-One-Rule IF THEN PlayTennis=yes IF Wind=weak THEN PlayTennis=yes IF Wind=strong THEN PlayTennis=no IF Humidity=normal THEN PlayTennis=yes IF Humidity=high THEN PlayTennis=no... IF Humidity=normal Wind=weak THEN PlayTennis=yes IF Humidity=normal Wind=strong THEN PlayTennis=yes IF Humidity=normal Outlook=sunny THEN PlayTennis=yes IF Humidity=normal Outlook=rain THEN PlayTennis=yes lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

5 Learn-One-Rule Pos Neg while Pos,do positive Examples negative Examples Learn a NewRule { N ewrule most general rule possible { NewRuleNeg Neg { while NewRuleNeg, do Add a new literal to specialize NewRule 1. Candidate literals generate candidates 2. Best literal argmax L2Candidate literals P erformance(specializerule(newrule L)) 3. add Best literal to N ewrule preconditions 4. NewRuleNeg subset of NewRuleNeg that satises NewRule preconditions { Learned rules Learned rules + NewRule { Pos Pos ;fmembers of Pos covered by NewRuleg Return Learned rules 233 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

6 Subtleties: Learn One Rule 1. May usebeam search 2. Easily generalizes to multi-valued target functions 3. Choose evaluation function to guide search: Entropy (i.e., information gain) Sample accuracy: n c n where n c = correct rule predictions, n = all predictions m estimate: n c + mp n + m 234 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

7 Variants of Rule Learning Programs Sequential or simultaneous covering of data? General! specic, or specic! general? Generate-and-test, or example-driven? Whether and how to post-prune? What statistical evaluation function? 235 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

8 Learning First Order Rules Why do that? Can learn sets of rules such as Ancestor(x y) Parent(x y) Ancestor(x y) Parent(x z) ^ Ancestor(z y) General purpose programming language Prolog: programs are sets of such rules 236 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

9 First Order Rule for Classifying Web Pages [Slattery, 1997] course(a) has-word(a, instructor), Not has-word(a, good), link-from(a, B), has-word(b, assign), Not link-from(b, C) Train: 31/31, Test: 31/ lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

10 FOIL(Target predicate P redicates Examples) Pos Neg while Pos,do positive Examples negative Examples Learn a NewRule { N ewrule most general rule possible { NewRuleNeg Neg { while NewRuleNeg, do Add a new literal to specialize NewRule 1. Candidate literals generate candidates 2. Best literal argmax L2Candidate literals Foil Gain(L NewRule) 3. add Best literal to N ewrule preconditions 4. NewRuleNeg subset of NewRuleNeg that satises NewRule preconditions { Learned rules Learned rules + NewRule { Pos Pos ;fmembers of Pos covered by NewRuleg Return Learned rules 238 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

11 Specializing Rules in FOIL Learning rule: P (x1 x2 ::: x k ) L1 :::L n Candidate specializations add new literal of form: Q(v1 ::: v r ), where at least one of the v i in the created literal must already exist as a variable in the rule. Equal(x j x k ), where x j and x k are variables already present in the rule The negation of either of the above forms of literals 239 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

12 Information Gain in FOIL F oil Gain(L R) t Where 0 2 p1 p1 + n1 ; log 2 L is the candidate literal to add to rule R p0 =number of positive bindings of R n0 =number of negative bindings of R p1 =number of positive bindings of R + L p0 p0 + n0 n1 =number of negative bindings of R + L t is the number of positive bindings of R also covered by R + L Note p ;log 0 2 p 0 +n 0 is optimal number of bits to indicate the class of a positive binding covered by R 1 C A 240 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

13 Induction as Inverted Deduction Induction is nding h such that (8hx i f(x i )i2d) B ^ h ^ x i ` f(x i ) where x i is ith training instance f(x i ) is the target function value for x i B is other background knowledge So let's design inductive algorithm by inverting operators for automated deduction! 241 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

14 Induction as Inverted Deduction \pairs of people, hu vi such that child of u is v," f(x i ): Child(Bob Sharon) x i : Male(Bob) F emale(sharon) F ather(sharon Bob) B : Parent(u v) F ather(u v) What satises (8hx i f(x i )i2d) B ^ h ^ x i ` f(x i )? h1 : Child(u v) F ather(v u) h2 : Child(u v) Parent(v u) 242 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

15 Induction is, in fact, the inverse operation of deduction, and cannot be conceived to exist without the corresponding operation, so that the question of relative importance cannot arise. Who thinks of asking whether addition or subtraction is the more important process in arithmetic? But at the same time much dierence in diculty may exist between a direct and inverse operation ::: it must be allowed that inductive investigations are of a far higher degree of diculty and complexity than any questions of deduction:::: (Jevons 1874) 243 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

16 Induction as Inverted Deduction We have mechanical deductive operators F (A B) =C, where A ^ B ` C need inductive operators O(B D) =h where (8hx i f(x i )i2d)(b^h^x i ) ` f(x i ) 244 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

17 Induction as Inverted Deduction Positives: Subsumes earlier idea of nding h that \ts" training data Domain theory B helps dene meaning of \t" the data B ^ h ^ x i ` f(x i ) Suggests algorithms that search H guided by B 245 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

18 Induction as Inverted Deduction Negatives: Doesn't allow for noisy data. Consider (8hx i f(x i )i2d) (B ^ h ^ x i ) ` f(x i ) First order logic gives a huge hypothesis space H! overtting...! intractability of calculating all acceptable h's 246 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

19 Deduction: Resolution Rule P _ L :L _ R P _ R 1. Given initial clauses C1 and C2, nd a literal L from clause C1 such that :L occurs in clause C2 2. Form the resolvent C by including all literals from C1 and C2, except for L and :L. More precisely, the set of literals occurring in the conclusion C is C =(C1 ;flg) [ (C2 ;f:lg) where [ denotes set union, and \;" denotes set dierence. 247 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

20 Inverting Resolution C : 2 KnowMaterial V Study C : 2 KnowMaterial V Study C : 1 PassExam V KnowMaterial C : PassExam V KnowMaterial 1 C: PassExam V Study C: PassExam V Study 248 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

21 Inverted Resolution (Propositional) 1. Given initial clauses C1 and C, nd a literal L that occurs in clause C1, but not in clause C. 2. Form the second clause C2 by including the following literals C2 =(C ; (C1 ;flg)) [f:lg 249 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

22 First order resolution First order resolution: 1. Find a literal L1 from clause C1, literall2 from clause C2, and substitution such that L1 = :L2 2. Form the resolvent C by including all literals from C1 and C2, except for L1 and :L2. More precisely, the set of literals occurring in the conclusion C is C =(C1 ;fl1g) [ (C2 ;fl2g) 250 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

23 Inverting First order resolution C2 =(C ; (C1 ;fl1g)1) ;1 2 [f:l11 ;1 2 g 251 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

24 Cigol Father ( Tom, Bob ) GrandChild ( y,x ) V Father ( x,z ) V Father ( z,y) { Bob/y, Tom/z} Father ( Shannon, Tom) GrandChild ( Bob,x ) V Father ( x,tom) { Shannon/x} GrandChild ( Bob, Shannon) 252 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

25 Progol Progol: Reduce comb explosion by generating the most specic acceptable h 1. User species H by stating predicates, functions, and forms of arguments allowed for each 2. Progol uses sequential covering algorithm. For each hx i f(x i )i Find most specic hypothesis h i s.t. B ^ h i ^ x i ` f(x i ) { actually, considers only k-step entailment 3. Conduct general-to-specic search bounded by specic hypothesis h i,choosing hypothesis with minimum description length 253 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

Introduction. Decision Tree Learning. Outline. Decision Tree 9/7/2017. Decision Tree Definition

Introduction. Decision Tree Learning. Outline. Decision Tree 9/7/2017. Decision Tree Definition Introduction Decision Tree Learning Practical methods for inductive inference Approximating discrete-valued functions Robust to noisy data and capable of learning disjunctive expression ID3 earch a completely

More information

Decision Tree Learning Mitchell, Chapter 3. CptS 570 Machine Learning School of EECS Washington State University

Decision Tree Learning Mitchell, Chapter 3. CptS 570 Machine Learning School of EECS Washington State University Decision Tree Learning Mitchell, Chapter 3 CptS 570 Machine Learning School of EECS Washington State University Outline Decision tree representation ID3 learning algorithm Entropy and information gain

More information

1. Courses are either tough or boring. 2. Not all courses are boring. 3. Therefore there are tough courses. (Cx, Tx, Bx, )

1. Courses are either tough or boring. 2. Not all courses are boring. 3. Therefore there are tough courses. (Cx, Tx, Bx, ) Logic FOL Syntax FOL Rules (Copi) 1. Courses are either tough or boring. 2. Not all courses are boring. 3. Therefore there are tough courses. (Cx, Tx, Bx, ) Dealing with Time Translate into first-order

More information

Outline. [read Chapter 2] Learning from examples. General-to-specic ordering over hypotheses. Version spaces and candidate elimination.

Outline. [read Chapter 2] Learning from examples. General-to-specic ordering over hypotheses. Version spaces and candidate elimination. Outline [read Chapter 2] [suggested exercises 2.2, 2.3, 2.4, 2.6] Learning from examples General-to-specic ordering over hypotheses Version spaces and candidate elimination algorithm Picking new examples

More information

Outline. Training Examples for EnjoySport. 2 lecture slides for textbook Machine Learning, c Tom M. Mitchell, McGraw Hill, 1997

Outline. Training Examples for EnjoySport. 2 lecture slides for textbook Machine Learning, c Tom M. Mitchell, McGraw Hill, 1997 Outline Training Examples for EnjoySport Learning from examples General-to-specific ordering over hypotheses [read Chapter 2] [suggested exercises 2.2, 2.3, 2.4, 2.6] Version spaces and candidate elimination

More information

Classification: Decision Trees

Classification: Decision Trees Classification: Decision Trees These slides were assembled by Byron Boots, with grateful acknowledgement to Eric Eaton and the many others who made their course materials freely available online. Feel

More information

Imagine we ve got a set of data containing several types, or classes. E.g. information about customers, and class=whether or not they buy anything.

Imagine we ve got a set of data containing several types, or classes. E.g. information about customers, and class=whether or not they buy anything. Decision Trees Defining the Task Imagine we ve got a set of data containing several types, or classes. E.g. information about customers, and class=whether or not they buy anything. Can we predict, i.e

More information

[Read Ch. 5] [Recommended exercises: 5.2, 5.3, 5.4]

[Read Ch. 5] [Recommended exercises: 5.2, 5.3, 5.4] Evaluating Hypotheses [Read Ch. 5] [Recommended exercises: 5.2, 5.3, 5.4] Sample error, true error Condence intervals for observed hypothesis error Estimators Binomial distribution, Normal distribution,

More information

Decision Tree Learning and Inductive Inference

Decision Tree Learning and Inductive Inference Decision Tree Learning and Inductive Inference 1 Widely used method for inductive inference Inductive Inference Hypothesis: Any hypothesis found to approximate the target function well over a sufficiently

More information

Notes on Machine Learning for and

Notes on Machine Learning for and Notes on Machine Learning for 16.410 and 16.413 (Notes adapted from Tom Mitchell and Andrew Moore.) Learning = improving with experience Improve over task T (e.g, Classification, control tasks) with respect

More information

Classification and regression trees

Classification and regression trees Classification and regression trees Pierre Geurts p.geurts@ulg.ac.be Last update: 23/09/2015 1 Outline Supervised learning Decision tree representation Decision tree learning Extensions Regression trees

More information

Lecture 12 September 26, 2007

Lecture 12 September 26, 2007 CS 6604: Data Mining Fall 2007 Lecture: Naren Ramakrishnan Lecture 12 September 26, 2007 Scribe: Sheng Guo 1 Overview In the last lecture we began discussion of relational data mining, and described two

More information

Decision Tree Learning - ID3

Decision Tree Learning - ID3 Decision Tree Learning - ID3 n Decision tree examples n ID3 algorithm n Occam Razor n Top-Down Induction in Decision Trees n Information Theory n gain from property 1 Training Examples Day Outlook Temp.

More information

Linear Classifiers: Expressiveness

Linear Classifiers: Expressiveness Linear Classifiers: Expressiveness Machine Learning Spring 2018 The slides are mainly from Vivek Srikumar 1 Lecture outline Linear classifiers: Introduction What functions do linear classifiers express?

More information

ML techniques. symbolic techniques different types of representation value attribute representation representation of the first order

ML techniques. symbolic techniques different types of representation value attribute representation representation of the first order MACHINE LEARNING Definition 1: Learning is constructing or modifying representations of what is being experienced [Michalski 1986], p. 10 Definition 2: Learning denotes changes in the system That are adaptive

More information

Learning Classification Trees. Sargur Srihari

Learning Classification Trees. Sargur Srihari Learning Classification Trees Sargur srihari@cedar.buffalo.edu 1 Topics in CART CART as an adaptive basis function model Classification and Regression Tree Basics Growing a Tree 2 A Classification Tree

More information

Concept Learning through General-to-Specific Ordering

Concept Learning through General-to-Specific Ordering 0. Concept Learning through General-to-Specific Ordering Based on Machine Learning, T. Mitchell, McGRAW Hill, 1997, ch. 2 Acknowledgement: The present slides are an adaptation of slides drawn by T. Mitchell

More information

CSCI 5622 Machine Learning

CSCI 5622 Machine Learning CSCI 5622 Machine Learning DATE READ DUE Mon, Aug 31 1, 2 & 3 Wed, Sept 2 3 & 5 Wed, Sept 9 TBA Prelim Proposal www.rodneynielsen.com/teaching/csci5622f09/ Instructor: Rodney Nielsen Assistant Professor

More information

Introduction to ML. Two examples of Learners: Naïve Bayesian Classifiers Decision Trees

Introduction to ML. Two examples of Learners: Naïve Bayesian Classifiers Decision Trees Introduction to ML Two examples of Learners: Naïve Bayesian Classifiers Decision Trees Why Bayesian learning? Probabilistic learning: Calculate explicit probabilities for hypothesis, among the most practical

More information

Advanced Topics in LP and FP

Advanced Topics in LP and FP Lecture 1: Prolog and Summary of this lecture 1 Introduction to Prolog 2 3 Truth value evaluation 4 Prolog Logic programming language Introduction to Prolog Introduced in the 1970s Program = collection

More information

Artificial Intelligence. Topic

Artificial Intelligence. Topic Artificial Intelligence Topic What is decision tree? A tree where each branching node represents a choice between two or more alternatives, with every branching node being part of a path to a leaf node

More information

Chapter 3: Decision Tree Learning

Chapter 3: Decision Tree Learning Chapter 3: Decision Tree Learning CS 536: Machine Learning Littman (Wu, TA) Administration Books? New web page: http://www.cs.rutgers.edu/~mlittman/courses/ml03/ schedule lecture notes assignment info.

More information

CSCE 478/878 Lecture 6: Bayesian Learning

CSCE 478/878 Lecture 6: Bayesian Learning Bayesian Methods Not all hypotheses are created equal (even if they are all consistent with the training data) Outline CSCE 478/878 Lecture 6: Bayesian Learning Stephen D. Scott (Adapted from Tom Mitchell

More information

Decision Tree Learning

Decision Tree Learning 0. Decision Tree Learning Based on Machine Learning, T. Mitchell, McGRAW Hill, 1997, ch. 3 Acknowledgement: The present slides are an adaptation of slides drawn by T. Mitchell PLAN 1. Concept learning:

More information

Lecture 3: Decision Trees

Lecture 3: Decision Trees Lecture 3: Decision Trees Cognitive Systems II - Machine Learning SS 2005 Part I: Basic Approaches of Concept Learning ID3, Information Gain, Overfitting, Pruning Lecture 3: Decision Trees p. Decision

More information

Decision Tree Learning

Decision Tree Learning Topics Decision Tree Learning Sattiraju Prabhakar CS898O: DTL Wichita State University What are decision trees? How do we use them? New Learning Task ID3 Algorithm Weka Demo C4.5 Algorithm Weka Demo Implementation

More information

Decision Tree Learning

Decision Tree Learning Decision Tree Learning Berlin Chen Department of Computer Science & Information Engineering National Taiwan Normal University References: 1. Machine Learning, Chapter 3 2. Data Mining: Concepts, Models,

More information

CSE507. Introduction. Computer-Aided Reasoning for Software. Emina Torlak courses.cs.washington.edu/courses/cse507/17wi/

CSE507. Introduction. Computer-Aided Reasoning for Software. Emina Torlak courses.cs.washington.edu/courses/cse507/17wi/ Computer-Aided Reasoning for Software CSE507 courses.cs.washington.edu/courses/cse507/17wi/ Introduction Emina Torlak emina@cs.washington.edu Today What is this course about? Course logistics Review of

More information

10-701/ Machine Learning: Assignment 1

10-701/ Machine Learning: Assignment 1 10-701/15-781 Machine Learning: Assignment 1 The assignment is due September 27, 2005 at the beginning of class. Write your name in the top right-hand corner of each page submitted. No paperclips, folders,

More information

Decision Trees. Introduction. Some facts about decision trees: They represent data-classification models.

Decision Trees. Introduction. Some facts about decision trees: They represent data-classification models. Decision Trees Introduction Some facts about decision trees: They represent data-classification models. An internal node of the tree represents a question about feature-vector attribute, and whose answer

More information

Classification: Rule Induction Information Retrieval and Data Mining. Prof. Matteo Matteucci

Classification: Rule Induction Information Retrieval and Data Mining. Prof. Matteo Matteucci Classification: Rule Induction Information Retrieval and Data Mining Prof. Matteo Matteucci What is Rule Induction? The Weather Dataset 3 Outlook Temp Humidity Windy Play Sunny Hot High False No Sunny

More information

Concept Learning.

Concept Learning. . Machine Learning Concept Learning Prof. Dr. Martin Riedmiller AG Maschinelles Lernen und Natürlichsprachliche Systeme Institut für Informatik Technische Fakultät Albert-Ludwigs-Universität Freiburg Martin.Riedmiller@uos.de

More information

EECS 349:Machine Learning Bryan Pardo

EECS 349:Machine Learning Bryan Pardo EECS 349:Machine Learning Bryan Pardo Topic 2: Decision Trees (Includes content provided by: Russel & Norvig, D. Downie, P. Domingos) 1 General Learning Task There is a set of possible examples Each example

More information

CSE507. Course Introduction. Computer-Aided Reasoning for Software. Emina Torlak

CSE507. Course Introduction. Computer-Aided Reasoning for Software. Emina Torlak Computer-Aided Reasoning for Software CSE507 courses.cs.washington.edu/courses/cse507/14au/ Course Introduction Emina Torlak emina@cs.washington.edu Today What is this course about? Course logistics Review

More information

[read Chapter 2] [suggested exercises 2.2, 2.3, 2.4, 2.6] General-to-specific ordering over hypotheses

[read Chapter 2] [suggested exercises 2.2, 2.3, 2.4, 2.6] General-to-specific ordering over hypotheses 1 CONCEPT LEARNING AND THE GENERAL-TO-SPECIFIC ORDERING [read Chapter 2] [suggested exercises 2.2, 2.3, 2.4, 2.6] Learning from examples General-to-specific ordering over hypotheses Version spaces and

More information

Decision trees. Special Course in Computer and Information Science II. Adam Gyenge Helsinki University of Technology

Decision trees. Special Course in Computer and Information Science II. Adam Gyenge Helsinki University of Technology Decision trees Special Course in Computer and Information Science II Adam Gyenge Helsinki University of Technology 6.2.2008 Introduction Outline: Definition of decision trees ID3 Pruning methods Bibliography:

More information

ARTIFICIAL INTELLIGENCE. Supervised learning: classification

ARTIFICIAL INTELLIGENCE. Supervised learning: classification INFOB2KI 2017-2018 Utrecht University The Netherlands ARTIFICIAL INTELLIGENCE Supervised learning: classification Lecturer: Silja Renooij These slides are part of the INFOB2KI Course Notes available from

More information

Chapter 2. Reductions and NP. 2.1 Reductions Continued The Satisfiability Problem (SAT) SAT 3SAT. CS 573: Algorithms, Fall 2013 August 29, 2013

Chapter 2. Reductions and NP. 2.1 Reductions Continued The Satisfiability Problem (SAT) SAT 3SAT. CS 573: Algorithms, Fall 2013 August 29, 2013 Chapter 2 Reductions and NP CS 573: Algorithms, Fall 2013 August 29, 2013 2.1 Reductions Continued 2.1.1 The Satisfiability Problem SAT 2.1.1.1 Propositional Formulas Definition 2.1.1. Consider a set of

More information

Midterm: CS 6375 Spring 2015 Solutions

Midterm: CS 6375 Spring 2015 Solutions Midterm: CS 6375 Spring 2015 Solutions The exam is closed book. You are allowed a one-page cheat sheet. Answer the questions in the spaces provided on the question sheets. If you run out of room for an

More information

1. True/False (40 points) total

1. True/False (40 points) total Name: 1 2 3 4 5 6 7 total 40 20 45 45 20 15 15 200 UMBC CMSC 671 Final Exam December 20, 2009 Please write all of your answers on this exam. The exam is closed book and has seven problems that add up to

More information

Classification Using Decision Trees

Classification Using Decision Trees Classification Using Decision Trees 1. Introduction Data mining term is mainly used for the specific set of six activities namely Classification, Estimation, Prediction, Affinity grouping or Association

More information

Inductive Logic Programming: The Problem Specification

Inductive Logic Programming: The Problem Specification Inductive Logic Programming: The Problem Specification Given: Examples: first-order atoms or definite clauses, each labeled positive or negative. Background knowledge: in the form of a definite clause

More information

Data classification (II)

Data classification (II) Lecture 4: Data classification (II) Data Mining - Lecture 4 (2016) 1 Outline Decision trees Choice of the splitting attribute ID3 C4.5 Classification rules Covering algorithms Naïve Bayes Classification

More information

Logic. Knowledge Representation & Reasoning Mechanisms. Logic. Propositional Logic Predicate Logic (predicate Calculus) Automated Reasoning

Logic. Knowledge Representation & Reasoning Mechanisms. Logic. Propositional Logic Predicate Logic (predicate Calculus) Automated Reasoning Logic Knowledge Representation & Reasoning Mechanisms Logic Logic as KR Propositional Logic Predicate Logic (predicate Calculus) Automated Reasoning Logical inferences Resolution and Theorem-proving Logic

More information

Logic and machine learning review. CS 540 Yingyu Liang

Logic and machine learning review. CS 540 Yingyu Liang Logic and machine learning review CS 540 Yingyu Liang Propositional logic Logic If the rules of the world are presented formally, then a decision maker can use logical reasoning to make rational decisions.

More information

Ch 3.2: Direct proofs

Ch 3.2: Direct proofs Math 299 Lectures 8 and 9: Chapter 3 0. Ch3.1 A trivial proof and a vacuous proof (Reading assignment) 1. Ch3.2 Direct proofs 2. Ch3.3 Proof by contrapositive 3. Ch3.4 Proof by cases 4. Ch3.5 Proof evaluations

More information

Lecture 3: Decision Trees

Lecture 3: Decision Trees Lecture 3: Decision Trees Cognitive Systems - Machine Learning Part I: Basic Approaches of Concept Learning ID3, Information Gain, Overfitting, Pruning last change November 26, 2014 Ute Schmid (CogSys,

More information

Decision Tree Learning Lecture 2

Decision Tree Learning Lecture 2 Machine Learning Coms-4771 Decision Tree Learning Lecture 2 January 28, 2008 Two Types of Supervised Learning Problems (recap) Feature (input) space X, label (output) space Y. Unknown distribution D over

More information

100 inference steps doesn't seem like enough. Many neuron-like threshold switching units. Many weighted interconnections among units

100 inference steps doesn't seem like enough. Many neuron-like threshold switching units. Many weighted interconnections among units Connectionist Models Consider humans: Neuron switching time ~ :001 second Number of neurons ~ 10 10 Connections per neuron ~ 10 4 5 Scene recognition time ~ :1 second 100 inference steps doesn't seem like

More information

Introduction to machine learning. Concept learning. Design of a learning system. Designing a learning system

Introduction to machine learning. Concept learning. Design of a learning system. Designing a learning system Introduction to machine learning Concept learning Maria Simi, 2011/2012 Machine Learning, Tom Mitchell Mc Graw-Hill International Editions, 1997 (Cap 1, 2). Introduction to machine learning When appropriate

More information

COMP9414: Artificial Intelligence Propositional Logic: Automated Reasoning

COMP9414: Artificial Intelligence Propositional Logic: Automated Reasoning COMP9414, Monday 26 March, 2012 Propositional Logic 2 COMP9414: Artificial Intelligence Propositional Logic: Automated Reasoning Overview Proof systems (including soundness and completeness) Normal Forms

More information

Rule Generation using Decision Trees

Rule Generation using Decision Trees Rule Generation using Decision Trees Dr. Rajni Jain 1. Introduction A DT is a classification scheme which generates a tree and a set of rules, representing the model of different classes, from a given

More information

Decision-Tree Learning. Chapter 3: Decision Tree Learning. Classification Learning. Decision Tree for PlayTennis

Decision-Tree Learning. Chapter 3: Decision Tree Learning. Classification Learning. Decision Tree for PlayTennis Decision-Tree Learning Chapter 3: Decision Tree Learning CS 536: Machine Learning Littman (Wu, TA) [read Chapter 3] [some of Chapter 2 might help ] [recommended exercises 3.1, 3.2] Decision tree representation

More information

Machine Learning (CS 567) Lecture 2

Machine Learning (CS 567) Lecture 2 Machine Learning (CS 567) Lecture 2 Time: T-Th 5:00pm - 6:20pm Location: GFS118 Instructor: Sofus A. Macskassy (macskass@usc.edu) Office: SAL 216 Office hours: by appointment Teaching assistant: Cheol

More information

Bayesian Learning Features of Bayesian learning methods:

Bayesian Learning Features of Bayesian learning methods: Bayesian Learning Features of Bayesian learning methods: Each observed training example can incrementally decrease or increase the estimated probability that a hypothesis is correct. This provides a more

More information

Version Spaces.

Version Spaces. . Machine Learning Version Spaces Prof. Dr. Martin Riedmiller AG Maschinelles Lernen und Natürlichsprachliche Systeme Institut für Informatik Technische Fakultät Albert-Ludwigs-Universität Freiburg riedmiller@informatik.uni-freiburg.de

More information

Learning Goals of CS245 Logic and Computation

Learning Goals of CS245 Logic and Computation Learning Goals of CS245 Logic and Computation Alice Gao April 27, 2018 Contents 1 Propositional Logic 2 2 Predicate Logic 4 3 Program Verification 6 4 Undecidability 7 1 1 Propositional Logic Introduction

More information

brainlinksystem.com $25+ / hr AI Decision Tree Learning Part I Outline Learning 11/9/2010 Carnegie Mellon

brainlinksystem.com $25+ / hr AI Decision Tree Learning Part I Outline Learning 11/9/2010 Carnegie Mellon I Decision Tree Learning Part I brainlinksystem.com $25+ / hr Illah Nourbakhsh s version Chapter 8, Russell and Norvig Thanks to all past instructors Carnegie Mellon Outline Learning and philosophy Induction

More information

Deductive Systems. Lecture - 3

Deductive Systems. Lecture - 3 Deductive Systems Lecture - 3 Axiomatic System Axiomatic System (AS) for PL AS is based on the set of only three axioms and one rule of deduction. It is minimal in structure but as powerful as the truth

More information

The 30 Years War. Wheeler Ruml (UNH) Lecture 11, CS / 24. Leibniz. Logic in Practice. Satisfiability ILP

The 30 Years War. Wheeler Ruml (UNH) Lecture 11, CS / 24. Leibniz. Logic in Practice. Satisfiability ILP The 30 Years War reduction in German population 15 30% in some terrirories 3/4 of the population died male population reduced by almost half population of Czech lands reduced by 1/3 Wheeler Ruml (UNH)

More information

Decision Tree Learning. Dr. Xiaowei Huang

Decision Tree Learning. Dr. Xiaowei Huang Decision Tree Learning Dr. Xiaowei Huang https://cgi.csc.liv.ac.uk/~xiaowei/ After two weeks, Remainders Should work harder to enjoy the learning procedure slides Read slides before coming, think them

More information

Concept Learning Mitchell, Chapter 2. CptS 570 Machine Learning School of EECS Washington State University

Concept Learning Mitchell, Chapter 2. CptS 570 Machine Learning School of EECS Washington State University Concept Learning Mitchell, Chapter 2 CptS 570 Machine Learning School of EECS Washington State University Outline Definition General-to-specific ordering over hypotheses Version spaces and the candidate

More information

Computational Learning Theory

Computational Learning Theory 09s1: COMP9417 Machine Learning and Data Mining Computational Learning Theory May 20, 2009 Acknowledgement: Material derived from slides for the book Machine Learning, Tom M. Mitchell, McGraw-Hill, 1997

More information

Machine Learning Recitation 8 Oct 21, Oznur Tastan

Machine Learning Recitation 8 Oct 21, Oznur Tastan Machine Learning 10601 Recitation 8 Oct 21, 2009 Oznur Tastan Outline Tree representation Brief information theory Learning decision trees Bagging Random forests Decision trees Non linear classifier Easy

More information

Module Contact: Dr Pierre Chardaire, CMP Copyright of the University of East Anglia Version 1

Module Contact: Dr Pierre Chardaire, CMP Copyright of the University of East Anglia Version 1 UNIVERSITY OF EAST ANGLIA School of Computing Sciences Main Series PG Examination 2012-13 ARTIFICIAL INTELLIGENCE AND ALGORITHMICS CMPSMA24 Time allowed: 3 hours Answer THREE questions. Notes are not permitted

More information

Disjunctive Bottom Set and Its Computation

Disjunctive Bottom Set and Its Computation Disjunctive Bottom Set and Its Computation Wenjin Lu and Ross King Department of Computer Science, University of Wales, Aberystwyth Ceredigion, SY23 3DB, Wales, UK e-mail:{wwl, rdk}@aber.ac.uk Abstract

More information

Question of the Day? Machine Learning 2D1431. Training Examples for Concept Enjoy Sport. Outline. Lecture 3: Concept Learning

Question of the Day? Machine Learning 2D1431. Training Examples for Concept Enjoy Sport. Outline. Lecture 3: Concept Learning Question of the Day? Machine Learning 2D43 Lecture 3: Concept Learning What row of numbers comes next in this series? 2 2 22 322 3222 Outline Training Examples for Concept Enjoy Sport Learning from examples

More information

BITS F464: MACHINE LEARNING

BITS F464: MACHINE LEARNING BITS F464: MACHINE LEARNING Lecture-09: Concept Learning Dr. Kamlesh Tiwari Assistant Professor Department of Computer Science and Information Systems Engineering, BITS Pilani, Rajasthan-333031 INDIA Jan

More information

Decision Trees.

Decision Trees. . Machine Learning Decision Trees Prof. Dr. Martin Riedmiller AG Maschinelles Lernen und Natürlichsprachliche Systeme Institut für Informatik Technische Fakultät Albert-Ludwigs-Universität Freiburg riedmiller@informatik.uni-freiburg.de

More information

Relationship between Least Squares Approximation and Maximum Likelihood Hypotheses

Relationship between Least Squares Approximation and Maximum Likelihood Hypotheses Relationship between Least Squares Approximation and Maximum Likelihood Hypotheses Steven Bergner, Chris Demwell Lecture notes for Cmpt 882 Machine Learning February 19, 2004 Abstract In these notes, a

More information

Knowledge base (KB) = set of sentences in a formal language Declarative approach to building an agent (or other system):

Knowledge base (KB) = set of sentences in a formal language Declarative approach to building an agent (or other system): Logic Knowledge-based agents Inference engine Knowledge base Domain-independent algorithms Domain-specific content Knowledge base (KB) = set of sentences in a formal language Declarative approach to building

More information

Decision Trees. Common applications: Health diagnosis systems Bank credit analysis

Decision Trees. Common applications: Health diagnosis systems Bank credit analysis Decision Trees Rodrigo Fernandes de Mello Invited Professor at Télécom ParisTech Associate Professor at Universidade de São Paulo, ICMC, Brazil http://www.icmc.usp.br/~mello mello@icmc.usp.br Decision

More information

Machine Learning

Machine Learning Machine Learning 10-601 Tom M. Mitchell Machine Learning Department Carnegie Mellon University January 14, 2015 Today: The Big Picture Overfitting Review: probability Readings: Decision trees, overfiting

More information

Lecture 2: Foundations of Concept Learning

Lecture 2: Foundations of Concept Learning Lecture 2: Foundations of Concept Learning Cognitive Systems II - Machine Learning WS 2005/2006 Part I: Basic Approaches to Concept Learning Version Space, Candidate Elimination, Inductive Bias Lecture

More information

CS 6375 Machine Learning

CS 6375 Machine Learning CS 6375 Machine Learning Decision Trees Instructor: Yang Liu 1 Supervised Classifier X 1 X 2. X M Ref class label 2 1 Three variables: Attribute 1: Hair = {blond, dark} Attribute 2: Height = {tall, short}

More information

Decision Tree Learning

Decision Tree Learning Decision Tree Learning Goals for the lecture you should understand the following concepts the decision tree representation the standard top-down approach to learning a tree Occam s razor entropy and information

More information

Bayesian Learning. Reading: Tom Mitchell, Generative and discriminative classifiers: Naive Bayes and logistic regression, Sections 1-2.

Bayesian Learning. Reading: Tom Mitchell, Generative and discriminative classifiers: Naive Bayes and logistic regression, Sections 1-2. Bayesian Learning Reading: Tom Mitchell, Generative and discriminative classifiers: Naive Bayes and logistic regression, Sections 1-2. (Linked from class website) Conditional Probability Probability of

More information

Propositional and Predicate Logic - V

Propositional and Predicate Logic - V Propositional and Predicate Logic - V Petr Gregor KTIML MFF UK WS 2016/2017 Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - V WS 2016/2017 1 / 21 Formal proof systems Hilbert s calculus

More information

Machine Learning

Machine Learning Machine Learning 10-601 Tom M. Mitchell Machine Learning Department Carnegie Mellon University October 11, 2012 Today: Computational Learning Theory Probably Approximately Coorrect (PAC) learning theorem

More information

Lecture 24: Other (Non-linear) Classifiers: Decision Tree Learning, Boosting, and Support Vector Classification Instructor: Prof. Ganesh Ramakrishnan

Lecture 24: Other (Non-linear) Classifiers: Decision Tree Learning, Boosting, and Support Vector Classification Instructor: Prof. Ganesh Ramakrishnan Lecture 24: Other (Non-linear) Classifiers: Decision Tree Learning, Boosting, and Support Vector Classification Instructor: Prof Ganesh Ramakrishnan October 20, 2016 1 / 25 Decision Trees: Cascade of step

More information

Machine Learning (CS 567) Lecture 3

Machine Learning (CS 567) Lecture 3 Machine Learning (CS 567) Lecture 3 Time: T-Th 5:00pm - 6:20pm Location: GFS 118 Instructor: Sofus A. Macskassy (macskass@usc.edu) Office: SAL 216 Office hours: by appointment Teaching assistant: Cheol

More information

Machine Learning

Machine Learning Machine Learning 10-701 Tom M. Mitchell Machine Learning Department Carnegie Mellon University January 13, 2011 Today: The Big Picture Overfitting Review: probability Readings: Decision trees, overfiting

More information

Decision Tree Learning

Decision Tree Learning Topics Decision Tree Learning Sattiraju Prabhakar CS898O: DTL Wichita State University What are decision trees? How do we use them? New Learning Task ID3 Algorithm Weka Demo C4.5 Algorithm Weka Demo Implementation

More information

1 FUNDAMENTALS OF LOGIC NO.10 HERBRAND THEOREM Tatsuya Hagino hagino@sfc.keio.ac.jp lecture URL https://vu5.sfc.keio.ac.jp/slide/ 2 So Far Propositional Logic Logical connectives (,,, ) Truth table Tautology

More information

Using DNA to Solve NP-Complete Problems. Richard J. Lipton y. Princeton University. Princeton, NJ 08540

Using DNA to Solve NP-Complete Problems. Richard J. Lipton y. Princeton University. Princeton, NJ 08540 Using DNA to Solve NP-Complete Problems Richard J. Lipton y Princeton University Princeton, NJ 08540 rjl@princeton.edu Abstract: We show how to use DNA experiments to solve the famous \SAT" problem of

More information

Decision Trees. Robot Image Credit: Viktoriya Sukhanova 123RF.com

Decision Trees. Robot Image Credit: Viktoriya Sukhanova 123RF.com Decision Trees These slides were assembled by Eric Eaton, with grateful acknowledgement of the many others who made their course materials freely available online. Feel free to reuse or adapt these slides

More information

Learning Decision Trees

Learning Decision Trees Learning Decision Trees Machine Learning Fall 2018 Some slides from Tom Mitchell, Dan Roth and others 1 Key issues in machine learning Modeling How to formulate your problem as a machine learning problem?

More information

CS6375: Machine Learning Gautam Kunapuli. Decision Trees

CS6375: Machine Learning Gautam Kunapuli. Decision Trees Gautam Kunapuli Example: Restaurant Recommendation Example: Develop a model to recommend restaurants to users depending on their past dining experiences. Here, the features are cost (x ) and the user s

More information

Machine Learning 3. week

Machine Learning 3. week Machine Learning 3. week Entropy Decision Trees ID3 C4.5 Classification and Regression Trees (CART) 1 What is Decision Tree As a short description, decision tree is a data classification procedure which

More information

Propositional Logic Language

Propositional Logic Language Propositional Logic Language A logic consists of: an alphabet A, a language L, i.e., a set of formulas, and a binary relation = between a set of formulas and a formula. An alphabet A consists of a finite

More information

Exercises 1 - Solutions

Exercises 1 - Solutions Exercises 1 - Solutions SAV 2013 1 PL validity For each of the following propositional logic formulae determine whether it is valid or not. If it is valid prove it, otherwise give a counterexample. Note

More information

Solutions to Sample Problems for Midterm

Solutions to Sample Problems for Midterm Solutions to Sample Problems for Midterm Problem 1. The dual of a proposition is defined for which contains only,,. It is For a compound proposition that only uses,, as operators, we obtained the dual

More information

Splitting a Default Theory. Hudson Turner. University of Texas at Austin.

Splitting a Default Theory. Hudson Turner. University of Texas at Austin. Splitting a Default Theory Hudson Turner Department of Computer Sciences University of Texas at Austin Austin, TX 7872-88, USA hudson@cs.utexas.edu Abstract This paper presents mathematical results that

More information

Classification and Regression Trees

Classification and Regression Trees Classification and Regression Trees Ryan P Adams So far, we have primarily examined linear classifiers and regressors, and considered several different ways to train them When we ve found the linearity

More information

Fundamentals of Concept Learning

Fundamentals of Concept Learning Aims 09s: COMP947 Macine Learning and Data Mining Fundamentals of Concept Learning Marc, 009 Acknowledgement: Material derived from slides for te book Macine Learning, Tom Mitcell, McGraw-Hill, 997 ttp://www-.cs.cmu.edu/~tom/mlbook.tml

More information

Decision Trees.

Decision Trees. . Machine Learning Decision Trees Prof. Dr. Martin Riedmiller AG Maschinelles Lernen und Natürlichsprachliche Systeme Institut für Informatik Technische Fakultät Albert-Ludwigs-Universität Freiburg riedmiller@informatik.uni-freiburg.de

More information

Machine Learning

Machine Learning Machine Learning 10-601 Tom M. Mitchell Machine Learning Department Carnegie Mellon University August 30, 2017 Today: Decision trees Overfitting The Big Picture Coming soon Probabilistic learning MLE,

More information

Machine Learning & Data Mining

Machine Learning & Data Mining Group M L D Machine Learning M & Data Mining Chapter 7 Decision Trees Xin-Shun Xu @ SDU School of Computer Science and Technology, Shandong University Top 10 Algorithm in DM #1: C4.5 #2: K-Means #3: SVM

More information

SAT, NP, NP-Completeness

SAT, NP, NP-Completeness CS 473: Algorithms, Spring 2018 SAT, NP, NP-Completeness Lecture 22 April 13, 2018 Most slides are courtesy Prof. Chekuri Ruta (UIUC) CS473 1 Spring 2018 1 / 57 Part I Reductions Continued Ruta (UIUC)

More information

Tutorial 6. By:Aashmeet Kalra

Tutorial 6. By:Aashmeet Kalra Tutorial 6 By:Aashmeet Kalra AGENDA Candidate Elimination Algorithm Example Demo of Candidate Elimination Algorithm Decision Trees Example Demo of Decision Trees Concept and Concept Learning A Concept

More information