Numerical computation and series solution for mathematical model of HIV/AIDS

Size: px
Start display at page:

Download "Numerical computation and series solution for mathematical model of HIV/AIDS"

Transcription

1 Journal of Applied Mathematics & Bioinformatics, vol.3, no.4, 3, ISSN: (print, (online Scienpress Ltd, 3 Numerical computation and series solution for mathematical model of HIV/AIDS Deborah O. Odulaja, L.M. Erinle-Ibrahim and Adedapo C. Loyinmi Abstract In this paper, a mathematical model of HIV/AIDS model was examined and of particular interest is the stability of equilibrium solutions. The characteristic equation which gives the Eigen values was examined. By series solution method the behaviour of the viruses and CD4 + Tcells was looked into. It was shown that if the recovery rate is high enough, the healthy CD4 + Tcell may never die out completely. Hence the patient that test HIV positive, may never develop into full-blown AIDS. Keyword: CD4 + Tcell Department of Mathematics, Tai Solarin University of Education, Ogun State. Nigeria. Department of Mathematical Sciences, University of Liverpool, England. a.c.loyinmi@liv.ac.uk Article Info: Received : August 6, 3. Revised : October 6, 3. Published online : December, 3.

2 7 Computation and series solution for mathematical model of HIV/AIDS Introduction AIDS is caused by Human Immunodeficiency Virus (HIV infection and is characterized by a severe reduction in CD4 + Tcells, which means an infected person develops a very weak immune system and becomes vulnerable to contracting life-threatening infection (such as pneumocysticcarinii pneumonia. AIDS (Acquired immunodeficiency syndrome occurs late in HIV disease. The first cares of AIDS were reported in the United States in the spring of 98. By 983 HIV had been isolated. Several mathematicians have proposed models to describe the dynamics of the HIV/AIDS infection of CD4 + Tcells. In particular Ayeni etal [,] proposed the following model: dx dy dz ( d + k V X + Y k T Z µ (. ( d + Y k T Z k V X µ (. + k Y CZ (.3 where: T Population of CD4 + T cells; T i Population of infected CD4 + T cells; V Virus; π Production rate of CD4 + T cells; d National death rate of healthy CD4 + T cells; d Death rate of infected CD4 + T cells; k Viral infection rate of CD4 + T cells; k Viral production rate for CD4 + T cells; C Viral clearance rate. Clearance Td Death of normal CD4 + T cells; Death of infected CD4 + T cells VC Viral clearance rate. Ayeni ( replaced equation (. by T i d dt V π d T + µ T i (.4 + and (. by

3 D.O. Odulaja, L.M. Erinle-Ibrahim and A.C. Loyinmi 7 dti V d Ti µ Ti + (.5 where α Disease related to death rate. The mathematical model of (. (.3 and (.4 and (.5 have not been fully established in literature. So the research goes on and on this basis we propose the following model: Mathematical Formulation A model of HIV infection similar to (. and (. but using k TV for infection CD4 + T cells is proposed. + Thus the model is dt k TV π dt + µ T, + T( T dti k TV + dv k T CV, V ( V i ( ( dt i µ Ti, Ti Ti i (. 3 Models 3. Method of Solution To obtain the critical point, we set in infected free equilibrium then, dt dt i dv. Equation (. becomes

4 7 Computation and series solution for mathematical model of HIV/AIDS V π dt + µ Ti + V dt i µ Ti + k T CV i (3. when there is no CD4 + T cells infection then V T i. And equation (3. becomes π d T, with So the un- infected equilibrium is π T. d π ( T,, (,,. d The infected equilibrium when there is CD4 + Tcells infections is V,T I. dt dti dv V π d T + µ + T i ( V d Ti µ Ti + k T i CV T T (3.a i ( Ti ( ( Then equation (3.c becomes CV k T i V C i Substituting (3. in (3.b i C dt i µ Ti. i + α C Then T ( d + µ ( C + αk T T (3.b V V (3.c (3. i (3.3 k k Substituting (3. and (3.3 in equation (3.a

5 D.O. Odulaja, L.M. Erinle-Ibrahim and A.C. Loyinmi 73 ( + µ ( + α d C k i i ( d + µ ( C+ α i kk C π d µ Ti kk i +. + α C Then the equation becomes T i Then ( + ( + + π kk Cd d µ α dk d µ kkd ( + ( + + π kk Cd d µ V α Cd d µ Ck d Now T becomes. ( d + µ C α k( d + µ π kk Cd( d + µ kk kk α dk ( d + µ + kkd T +. Then the infected equilibrium is ( ( ( + (. ( ( d + µ C α k d + µ π kk Cd d + µ π kk Cd d + µ,, kk kk α dk d µ kkd + + α dk d+ µ + kkd ( + ( π kk Cd d µ α Cd d + µ + Ckd 3. Reduction to origin x Let y T i T i z T T T x + T T y + T i i V V V z + V where ( T, Ti, V is the infected equilibrium such that

6 74 Computation and series solution for mathematical model of HIV/AIDS V π dt + µ T V + k T i + i Then dx dt µ T CV i i (3.. dt dy dti dz dv,, (3.. Substituting (3.. and (3.. in (3. k ( x+ T ( z+ V d ( x T y Ti + α ( + ( + ( + d ( y Ti µ ( y Ti + α ( + dx π + + µ ( + z V dy k x T z V z V dv + + ( ( k y+ T C z+ V i Then equation (3..3 becomes, dx dy dz So d kv z + x + y V µ + α + kv k T z x + α V + + nonlinearterms ( d + µ y + + nonlinearterms k y Cz + nonlinearterms dx kv d + µ + + dy kv dz k C Then ( d µ ( nonlinearterms (3..3

7 D.O. Odulaja, L.M. Erinle-Ibrahim and A.C. Loyinmi 75 dx x dy A y + z dz A λ I where ( nonlinearterms kv d + µ + + kv A ( d + µ + + k C kv d + λ µ + + A λ I kv ( d + µ λ + + k C λ π 5, d d., k k.3, C., µ. and α. Let Substituting the parameters in (3.4. Then ( T, T, V (857.4, 4.76, i So.49 λ..67 A λi.49. λ λ λ λ +.597λ +.55 The eigenvalues of the system are check by MATLAB function and it gives

8 76 Computation and series solution for mathematical model of HIV/AIDS λ -.774, λ -.45, λ Therefore the Eigenvalues of this system are λ -.8, -.4 and., hence this system is asymptotically stable. The conclusion of this system is similar to Theorem (Derrick and Grossman 976 Let ( x, x x V be a lyapunov function the system, x f ( x, x x 3, x f ( x, x x 3, x f ( x, x x Then, 3, V (x x x 3 is negative semi definite the origin is stable V (x x x 3 is negative definite, the origin is asymptotically stable V (x x x 3 is positive definite the origin is unstable 4 Numerical solution dx dy dz Substituting (3.. and (3.. in (.-(.3, it becomes d kv z + x + y V µ + α + kv k T z x + α V + + nonlinearterms ( d + µ y + + nonlinearterms k y Cz + nonlinearterms

9 D.O. Odulaja, L.M. Erinle-Ibrahim and A.C. Loyinmi 77 ( + ( + + α ( + ( ( + α ( + dx k x T z V z V dy kv x x+ T z+ V z V (4. dz k y cz In order to find the approximate solution to the model, power series solution is used. Let the solution to the system ( be n x( t x + at + at + + at n n y( t y + bt + bt + + bt n n z( t z mt mt mt n Let x( t x + at y ( t y + bt z ( t z + mt x ( t a, y ( t b, z ( t m Substituting (4. and (4.. in (4., the system becomes (4. (4.. ( α α µ ( α α + α ( z + V ( + µ ( + α + α + + α ( z + V d + z + V + kv x + y + z + V z a kv x d z V y z b m k y Cz Then equation (4. can be written as ( α α µ ( α α + α ( z + V d + z + V + kv x + y + z + V z x( t x + t (4..

10 78 Computation and series solution for mathematical model of HIV/AIDS ( µ ( α α + α ( z + V kv x d+ + z + V y+ z y( t y + t ( + ( z t z k y Cz t Let ( ( ( α α µ ( α α + α ( z + V x ( t x d + z + V + kv x + y + z + V z t at + + ( µ ( α α + α ( z + V y ( t y kv x d + + z + V y + z t bt + + z t z + k y Cz t + m t Perturb (4..3 and substitute into (, we have a b ( α α + α ( z + V d( αz α V kv x µ y( αz z + α ( z + V kvx + ( d+ µ ( + αz + y+ z ( ky Cz + α( z + V ( + αz + d + z + V + kv { ( + µ ( } (4..3 { (4..4 ( + αz + d( + αz + α V + kv x + µ y( + αz + z ( + α ( z + V kvx ( d+ µ ( + αz + y+ z ( ky Cz ( d + µ + + α( z + V ( + αz + kv x ( d+ µ ( + αz + y+ z ( + α ( z + V Cz } ( } m { k ( Cky Substituting (4.. into (4..4 ( α α µ + α( z + V ( + αz + d z V kv a ( a b m + b ( a d + b + m ( µ ( + αz + ( + αz +

11 D.O. Odulaja, L.M. Erinle-Ibrahim and A.C. Loyinmi 79 m ( kb Cm Let x, y, z, T T, T, V. i Substituting case in (4.. a dx, b, m d d a ( dx x, b, m. Then the series become xt ( x + x+ x + + x n n n when x, d.. xt t t ( (. + + when x, d t xt ( ( t+ + Case Let x y z T T Ti V,,,,, Substituting case in (4.. a ( da + µ b m ( + α z b ( d + b + m ( µ ( + α z m ( kb Cm If x, y, z, T 5 and considering other parameter k k 3, d, and c. d We have the following solutions:

12 8 Computation and series solution for mathematical model of HIV/AIDS Figure : Graph of x (CD4+T cells, y (infected cells, z (virus against time at µ / 5 and α / 5 Figure : Graph of x (CD4+T cells, y (infected cells, z (virus against time at µ ½ and α /5

13 D.O. Odulaja, L.M. Erinle-Ibrahim and A.C. Loyinmi 8 Figure 3: Graph of x (CD4+T cells, y (infected cells, z (virus against time at µ and α / The graph of µ 3 / - -4,5,5,75,,5,5,75,,5,5,75,3,35,35,375,4,45,45,475,5 x y z Figure 4: Graph of x (CD4+T cells, y (infected cells, z (virus against time at µ 3 / and α / 5

14 8 Computation and series solution for mathematical model of HIV/AIDS The graph of µ ,5,5,75,,5,5,75,,5,5,75,3,35,35,375,4,45,45,475,5 x y z Figure 5: Graph of x (CD4+T cells, y (infected cells, z (virus against time at µ and α / 5 The graph of µ ,5,5,75,,5,5,75,,5,5,75,3,35,35,375,4,45,45,475,5 x y z Figure 6: Graph of x (CD4+T cells, y (infected cells, z (virus against time at µ 3 and α / 5

15 D.O. Odulaja, L.M. Erinle-Ibrahim and A.C. Loyinmi 83 5 Conclusion Figure shows that the healthy CD4+T cells are all infected around t.35, when µ. Figure shows that the healthy CD4+T cells are all infected around t.35, when µ.5 Figure 3 shows that the healthy CD4+T cells are all infected around t.365, when µ Figure 4 shows that the healthy CD4+T cells are all infected around t.3875, when µ.5 Figure 5 shows that the healthy CD4+T cells are all infected around t.4, when µ Figure 6 shows that the healthy CD4+T cells are all infected around t.4875, when µ3 The above results show that as µ increases, the duration of time for all the CD4 + T cells to get infected also increases µ is the recovery rate of the CD4 + T cells. This implies that when the recovery rate µ is high, CD4 + T cells take longer time for all to get infected. In this paper, we modified an existing HIV/AIDS model. We investigated the characteristic equation and discussed the stability of equilibrium points by finding the eigenvalues of the model that were previously considered. We solved existing characteristic equations numerically using realistic values for the parameters and we interpreted the graphs that resulted from the numerical solution. The stability criteria showed that HIV may not lead to full blown AIDS since the healthy CD4 + T cells may never die out completely.

16 84 Computation and series solution for mathematical model of HIV/AIDS References [] R.O. Ayeni, T.O. Oluyo and O.O. Ayandokun, Mathematical Analysis of the global dynamics of a model for HIV infection of CD4+ T cells, JNAMP,, (7, 3-. [] R.O. Ayeni, A.O. Popoola and J.K. Ogunmola, Some new results on affinity hemodialysis and T cell recovery, Journal of Bacteriology Research,, (, [3] W.R. Derrick and S. Grossman, Elementary Differential Equations, Addison Wesley, Reading, 976. [4] L.B. Steven and A.S. Peter, Substance Abuse Treatment For Persons with HIV/AIDS, U.S. Department of health and services, (8, 7-9. [5] D.O. Odulaja, Numerical Computation and Series solution for mathematical model of HIV/AIDS, M.ed dissertation, Tai Solarin University of Education, Ogun State, Nigeria, 3.

STUDY OF THE DYNAMICAL MODEL OF HIV

STUDY OF THE DYNAMICAL MODEL OF HIV STUDY OF THE DYNAMICAL MODEL OF HIV M.A. Lapshova, E.A. Shchepakina Samara National Research University, Samara, Russia Abstract. The paper is devoted to the study of the dynamical model of HIV. An application

More information

Available online at J. Math. Comput. Sci. 2 (2012), No. 6, ISSN:

Available online at   J. Math. Comput. Sci. 2 (2012), No. 6, ISSN: Available online at http://scik.org J. Math. Comput. Sci. 2 (2012), No. 6, 1671-1684 ISSN: 1927-5307 A MATHEMATICAL MODEL FOR THE TRANSMISSION DYNAMICS OF HIV/AIDS IN A TWO-SEX POPULATION CONSIDERING COUNSELING

More information

OPTIMAL CONTROL OF AN HIV MODEL

OPTIMAL CONTROL OF AN HIV MODEL H. R. ERFANIAN and M. H. NOORI SKANDARI/ TMCS Vol.2 No. (211) 65-658 The ournal of Mathematics and Computer Science Available online at http://www.tmcs.com The ournal of Mathematics and Computer Science

More information

Sensitivity and Stability Analysis of Hepatitis B Virus Model with Non-Cytolytic Cure Process and Logistic Hepatocyte Growth

Sensitivity and Stability Analysis of Hepatitis B Virus Model with Non-Cytolytic Cure Process and Logistic Hepatocyte Growth Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 12, Number 3 2016), pp. 2297 2312 Research India Publications http://www.ripublication.com/gjpam.htm Sensitivity and Stability Analysis

More information

Modeling the Immune System W9. Ordinary Differential Equations as Macroscopic Modeling Tool

Modeling the Immune System W9. Ordinary Differential Equations as Macroscopic Modeling Tool Modeling the Immune System W9 Ordinary Differential Equations as Macroscopic Modeling Tool 1 Lecture Notes for ODE Models We use the lecture notes Theoretical Fysiology 2006 by Rob de Boer, U. Utrecht

More information

A Delayed HIV Infection Model with Specific Nonlinear Incidence Rate and Cure of Infected Cells in Eclipse Stage

A Delayed HIV Infection Model with Specific Nonlinear Incidence Rate and Cure of Infected Cells in Eclipse Stage Applied Mathematical Sciences, Vol. 1, 216, no. 43, 2121-213 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/1.12988/ams.216.63128 A Delayed HIV Infection Model with Specific Nonlinear Incidence Rate and

More information

Global Stability of a Computer Virus Model with Cure and Vertical Transmission

Global Stability of a Computer Virus Model with Cure and Vertical Transmission International Journal of Research Studies in Computer Science and Engineering (IJRSCSE) Volume 3, Issue 1, January 016, PP 16-4 ISSN 349-4840 (Print) & ISSN 349-4859 (Online) www.arcjournals.org Global

More information

Numerical qualitative analysis of a large-scale model for measles spread

Numerical qualitative analysis of a large-scale model for measles spread Numerical qualitative analysis of a large-scale model for measles spread Hossein Zivari-Piran Department of Mathematics and Statistics York University (joint work with Jane Heffernan) p./9 Outline Periodic

More information

M469, Fall 2010, Practice Problems for the Final

M469, Fall 2010, Practice Problems for the Final M469 Fall 00 Practice Problems for the Final The final exam for M469 will be Friday December 0 3:00-5:00 pm in the usual classroom Blocker 60 The final will cover the following topics from nonlinear systems

More information

Keywords and phrases: Syphilis, Heterogeneous, Complications Mathematics Subject Classification: 92B05; 92D25; 92D30; 93D05; 34K20; 34K25

Keywords and phrases: Syphilis, Heterogeneous, Complications Mathematics Subject Classification: 92B05; 92D25; 92D30; 93D05; 34K20; 34K25 Journal of the Vol. 36, Issue 3, pp. 479-490, 2017 Nigerian Mathematical Society c Nigerian Mathematical Society MATHEMATICAL MODELLING OF SYPHILIS IN A HETEROGENEOUS SETTING WITH COMPLICATIONS R. B. OYENIYI,

More information

Mathematical Modeling Applied to Understand the Dynamical Behavior of HIV Infection

Mathematical Modeling Applied to Understand the Dynamical Behavior of HIV Infection Open Journal of Modelling and Simulation, 217, 5, 145-157 http://wwwscirporg/journal/ojmsi ISSN Online: 2327-426 ISSN Print: 2327-418 Mathematical Modeling Applied to Understand the Dynamical Behavior

More information

Dynamics of an HIV pathogenesis model with CTL immune response and two saturated rates

Dynamics of an HIV pathogenesis model with CTL immune response and two saturated rates ISSN 746-7233 England UK World Journal of Modelling and Simulation Vol. (24) No. 3 pp. 25-223 Dynamics of an HIV pathogenesis model with CTL immune response and two saturated rates Youssef Tait Khalid

More information

Dynamics of a Hepatitis B Viral Infection Model with Logistic Hepatocyte Growth and Cytotoxic T-Lymphocyte Response

Dynamics of a Hepatitis B Viral Infection Model with Logistic Hepatocyte Growth and Cytotoxic T-Lymphocyte Response Nonlinear Analysis and Differential Equations, Vol. 4, 16, no. 3, 19-1 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/1.1988/nade.16.5164 Dynamics of a Hepatitis B Viral Infection Model with Logistic Hepatocyte

More information

Chapter 6. Intuitionistic Fuzzy PROMETHEE Technique. AIDS stands for acquired immunodeficiency syndrome. AIDS is the final stage. 6.

Chapter 6. Intuitionistic Fuzzy PROMETHEE Technique. AIDS stands for acquired immunodeficiency syndrome. AIDS is the final stage. 6. Chapter 6 Intuitionistic Fuzzy PROMETHEE Technique 6.1 Introduction AIDS stands for acquired immunodeficiency syndrome. AIDS is the final stage of HIV infection, and not everyone who has HIV advances to

More information

Intermediate Differential Equations. John A. Burns

Intermediate Differential Equations. John A. Burns Intermediate Differential Equations Delay Differential Equations John A. Burns jaburns@vt.edu Interdisciplinary Center for Applied Mathematics Virginia Polytechnic Institute and State University Blacksburg,

More information

Interactions. Yuan Gao. Spring Applied Mathematics University of Washington

Interactions. Yuan Gao. Spring Applied Mathematics University of Washington Interactions Yuan Gao Applied Mathematics University of Washington yuangao@uw.edu Spring 2015 1 / 27 Nonlinear System Consider the following coupled ODEs: dx = f (x, y). dt dy = g(x, y). dt In general,

More information

Qualitative Analysis of Tumor-Immune ODE System

Qualitative Analysis of Tumor-Immune ODE System of Tumor-Immune ODE System L.G. de Pillis and A.E. Radunskaya August 15, 2002 This work was supported in part by a grant from the W.M. Keck Foundation 0-0 QUALITATIVE ANALYSIS Overview 1. Simplified System

More information

Matrix Theory and Differential Equations Practice For the Final in BE1022 Thursday 14th December 2006 at 8.00am

Matrix Theory and Differential Equations Practice For the Final in BE1022 Thursday 14th December 2006 at 8.00am Matrix Theory and Differential Equations Practice For the Final in BE1022 Thursday 14th December 2006 at 8.00am Question 1 A Mars lander is approaching the moon at a speed of five kilometers per second.

More information

A Stochastic Viral Infection Model with General Functional Response

A Stochastic Viral Infection Model with General Functional Response Nonlinear Analysis and Differential Equations, Vol. 4, 16, no. 9, 435-445 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/1.1988/nade.16.664 A Stochastic Viral Infection Model with General Functional Response

More information

Global Analysis of a HCV Model with CTL, Antibody Responses and Therapy

Global Analysis of a HCV Model with CTL, Antibody Responses and Therapy Applied Mathematical Sciences Vol 9 205 no 8 3997-4008 HIKARI Ltd wwwm-hikaricom http://dxdoiorg/02988/ams20554334 Global Analysis of a HCV Model with CTL Antibody Responses and Therapy Adil Meskaf Department

More information

Dynamical systems. January 10, 2016

Dynamical systems. January 10, 2016 Dynamical systems January 10, 2016 1 Introduction In this text the term dynamical system means nothing else than a system of ordinary differential equations. Why is this term used here? The aim is to emphasize

More information

Calculus for the Life Sciences II Assignment 6 solutions. f(x, y) = 3π 3 cos 2x + 2 sin 3y

Calculus for the Life Sciences II Assignment 6 solutions. f(x, y) = 3π 3 cos 2x + 2 sin 3y Calculus for the Life Sciences II Assignment 6 solutions Find the tangent plane to the graph of the function at the point (0, π f(x, y = 3π 3 cos 2x + 2 sin 3y Solution: The tangent plane of f at a point

More information

Analysis and Dynamic Active Subspaces for a Long Term Model of HIV

Analysis and Dynamic Active Subspaces for a Long Term Model of HIV Analysis and Dynamic Active Subspaces for a Long Term Model of HIV by Tyson S. Loudon A thesis submitted to the Faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment

More information

Dynamical Modeling of Viral Spread

Dynamical Modeling of Viral Spread Dynamics at the Horsetooth Volume 2, 21. Dynamical Modeling of Viral Spread Department of Mathematics Colorado State University chepusht@math.colostate.edu Report submitted to Prof. P. Shipman for Math

More information

Modeling with differential equations

Modeling with differential equations Mathematical Modeling Lia Vas Modeling with differential equations When trying to predict the future value, one follows the following basic idea. Future value = present value + change. From this idea,

More information

CDS 101/110a: Lecture 2.1 Dynamic Behavior

CDS 101/110a: Lecture 2.1 Dynamic Behavior CDS 11/11a: Lecture 2.1 Dynamic Behavior Richard M. Murray 6 October 28 Goals: Learn to use phase portraits to visualize behavior of dynamical systems Understand different types of stability for an equilibrium

More information

AN IMPROVED OPTIMISTIC THREE-STAGE MODEL FOR THE SPREAD OF HIV AMONGST INJECTING INTRAVENOUS DRUG USERS. David Greenhalgh and Wafa Al-Fwzan

AN IMPROVED OPTIMISTIC THREE-STAGE MODEL FOR THE SPREAD OF HIV AMONGST INJECTING INTRAVENOUS DRUG USERS. David Greenhalgh and Wafa Al-Fwzan Manuscript submitted to AIMS Journals Volume X, Number 0X, XX 200X Website: http://aimsciences.org pp. X XX AN IMPROVED OPTIMISTIC THREE-STAGE MODEL FOR THE SPREAD OF HIV AMONGST INJECTING INTRAVENOUS

More information

Math 234. What you should know on day one. August 28, You should be able to use general principles like. x = cos t, y = sin t, 0 t π.

Math 234. What you should know on day one. August 28, You should be able to use general principles like. x = cos t, y = sin t, 0 t π. Math 234 What you should know on day one August 28, 2001 1 You should be able to use general principles like Length = ds, Area = da, Volume = dv For example the length of the semi circle x = cos t, y =

More information

Global Analysis for an HIV Infection Model with CTL Immune Response and Infected Cells in Eclipse Phase

Global Analysis for an HIV Infection Model with CTL Immune Response and Infected Cells in Eclipse Phase Article Global Analysis for an HIV Infection Model with CTL Immune Response and Infected Cells in Eclipse Phase Karam Allali 1 ID Jaouad Danane 1 ID and Yang Kuang 2 * ID 1 Laboratory of Mathematics and

More information

Fuzzy modeling and control of HIV infection

Fuzzy modeling and control of HIV infection Fuy modeling and control of HIV infection Petrehuş Paul, Zsófia Lendek Department of Automation Technical University of Cluj Napoca Memorandumului 28, 4114, Cluj Napoca, Romania Emails: {paul.petrehus,

More information

Stability analysis of a non-linear HIV/AIDS epidemic model with vaccination and antiretroviral therapy

Stability analysis of a non-linear HIV/AIDS epidemic model with vaccination and antiretroviral therapy Int. J. Adv. Appl. Math. and Mech. ( (7 (IN: 7-9 IJAAMM Journal homepage: www.ijaamm.com International Journal of Advances in Applied Mathematics and Mechanics tability analysis of a non-linear HIV/AID

More information

Mathematical Analysis of Epidemiological Models: Introduction

Mathematical Analysis of Epidemiological Models: Introduction Mathematical Analysis of Epidemiological Models: Introduction Jan Medlock Clemson University Department of Mathematical Sciences 8 February 2010 1. Introduction. The effectiveness of improved sanitation,

More information

AN EXTENDED ROSENZWEIG-MACARTHUR MODEL OF A TRITROPHIC FOOD CHAIN. Nicole Rocco

AN EXTENDED ROSENZWEIG-MACARTHUR MODEL OF A TRITROPHIC FOOD CHAIN. Nicole Rocco AN EXTENDED ROSENZWEIG-MACARTHUR MODEL OF A TRITROPHIC FOOD CHAIN Nicole Rocco A Thesis Submitted to the University of North Carolina Wilmington in Partial Fulfillment of the Requirements for the Degree

More information

Homework #4 Solutions

Homework #4 Solutions MAT 303 Spring 03 Problems Section.: 0,, Section.:, 6,, Section.3:,, 0,, 30 Homework # Solutions..0. Suppose that the fish population P(t) in a lake is attacked by a disease at time t = 0, with the result

More information

Introduction to Stochastic SIR Model

Introduction to Stochastic SIR Model Introduction to Stochastic R Model Chiu- Yu Yang (Alex), Yi Yang R model is used to model the infection of diseases. It is short for Susceptible- Infected- Recovered. It is important to address that R

More information

Stochastic Viral Dynamics with Beddington-DeAngelis Functional Response

Stochastic Viral Dynamics with Beddington-DeAngelis Functional Response Stochastic Viral Dynamics with Beddington-DeAngelis Functional Response Junyi Tu, Yuncheng You University of South Florida, USA you@mail.usf.edu IMA Workshop in Memory of George R. Sell June 016 Outline

More information

Impact of Heterosexuality and Homosexuality on the transmission and dynamics of HIV/AIDS

Impact of Heterosexuality and Homosexuality on the transmission and dynamics of HIV/AIDS IOSR Journal of Mathematics (IOSR-JM) e-issn: 2278-5728, p-issn: 2319-765X. Volume 12, Issue 6 Ver. V (Nov. - Dec.216), PP 38-49 www.iosrjournals.org Impact of Heterosexuality and Homosexuality on the

More information

Stochastic Modelling of Specific modes of HIV/AIDS Epidemic. Olorunsola E. Olowofeso

Stochastic Modelling of Specific modes of HIV/AIDS Epidemic. Olorunsola E. Olowofeso Stochastic Modelling of Specific modes of HIV/AIDS Epidemic Olorunsola E. Olowofeso Mathematical Sciences Department, Federal University of Technology, P.M.B. 704, Akure, Ondo State, Nigeria. Abstract

More information

UNIVERSITY OF WATERLOO FINAL EXAMINATION FALL TERM 2005

UNIVERSITY OF WATERLOO FINAL EXAMINATION FALL TERM 2005 UNIVERSITY OF WATERLOO FINAL EXAMINATION FALL TERM 2005 COURSE NUMBER AMATH 250 COURSE TITLE Introduction to Differential Equations DATE OF EXAM Tuesday December 20, 2005 TIME PERIOD DURATION OF EXAM NUMBER

More information

CDS 101/110a: Lecture 2.1 Dynamic Behavior

CDS 101/110a: Lecture 2.1 Dynamic Behavior CDS 11/11a: Lecture.1 Dynamic Behavior Richard M. Murray 6 October 8 Goals: Learn to use phase portraits to visualize behavior of dynamical systems Understand different types of stability for an equilibrium

More information

Australian Journal of Basic and Applied Sciences. Effect of Personal Hygiene Campaign on the Transmission Model of Hepatitis A

Australian Journal of Basic and Applied Sciences. Effect of Personal Hygiene Campaign on the Transmission Model of Hepatitis A Australian Journal of Basic and Applied Sciences, 9(13) Special 15, Pages: 67-73 ISSN:1991-8178 Australian Journal of Basic and Applied Sciences Journal home page: wwwajbaswebcom Effect of Personal Hygiene

More information

Spotlight on Modeling: The Possum Plague

Spotlight on Modeling: The Possum Plague 70 Spotlight on Modeling: The Possum Plague Reference: Sections 2.6, 7.2 and 7.3. The ecological balance in New Zealand has been disturbed by the introduction of the Australian possum, a marsupial the

More information

C2 Differential Equations : Computational Modeling and Simulation Instructor: Linwei Wang

C2 Differential Equations : Computational Modeling and Simulation Instructor: Linwei Wang C2 Differential Equations 4040-849-03: Computational Modeling and Simulation Instructor: Linwei Wang Part IV Dynamic Systems Equilibrium: Stable or Unstable? Equilibrium is a state of a system which does

More information

Available online at Commun. Math. Biol. Neurosci. 2015, 2015:29 ISSN:

Available online at   Commun. Math. Biol. Neurosci. 2015, 2015:29 ISSN: Available online at http://scik.org Commun. Math. Biol. Neurosci. 215, 215:29 ISSN: 252-2541 AGE-STRUCTURED MATHEMATICAL MODEL FOR HIV/AIDS IN A TWO-DIMENSIONAL HETEROGENEOUS POPULATION PRATIBHA RANI 1,

More information

Global Properties for Virus Dynamics Model with Beddington-DeAngelis Functional Response

Global Properties for Virus Dynamics Model with Beddington-DeAngelis Functional Response Global Properties for Virus Dynamics Model with Beddington-DeAngelis Functional Response Gang Huang 1,2, Wanbiao Ma 2, Yasuhiro Takeuchi 1 1,Graduate School of Science and Technology, Shizuoka University,

More information

The death of an epidemic

The death of an epidemic LECTURE 2 Equilibrium Stability Analysis & Next Generation Method The death of an epidemic In SIR equations, let s divide equation for dx/dt by dz/ dt:!! dx/dz = - (β X Y/N)/(γY)!!! = - R 0 X/N Integrate

More information

Compartmental modeling

Compartmental modeling Compartmental modeling This is a very short summary of the notes from my two-hour lecture. These notes were not originally meant to be distributed, and so they are far from being complete. A comprehensive

More information

SIR Epidemic Model with total Population size

SIR Epidemic Model with total Population size Advances in Applied Mathematical Biosciences. ISSN 2248-9983 Volume 7, Number 1 (2016), pp. 33-39 International Research Publication House http://www.irphouse.com SIR Epidemic Model with total Population

More information

OPTIMIZING CHEMOTHERAPY IN AN HIV MODEL. K. Renee Fister Suzanne Lenhart Joseph Scott McNally

OPTIMIZING CHEMOTHERAPY IN AN HIV MODEL. K. Renee Fister Suzanne Lenhart Joseph Scott McNally Electronic Journal of Differential Equations, Vol. 19981998, No. 32, pp. 1 12. ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu ftp 147.26.103.110 or 129.120.3.113 login: ftp

More information

1. Find the solution of the following uncontrolled linear system. 2 α 1 1

1. Find the solution of the following uncontrolled linear system. 2 α 1 1 Appendix B Revision Problems 1. Find the solution of the following uncontrolled linear system 0 1 1 ẋ = x, x(0) =. 2 3 1 Class test, August 1998 2. Given the linear system described by 2 α 1 1 ẋ = x +

More information

Hepatitis C Mathematical Model

Hepatitis C Mathematical Model Hepatitis C Mathematical Model Syed Ali Raza May 18, 2012 1 Introduction Hepatitis C is an infectious disease that really harms the liver. It is caused by the hepatitis C virus. The infection leads to

More information

The Effect of Stochastic Migration on an SIR Model for the Transmission of HIV. Jan P. Medlock

The Effect of Stochastic Migration on an SIR Model for the Transmission of HIV. Jan P. Medlock The Effect of Stochastic Migration on an SIR Model for the Transmission of HIV A Thesis Presented to The Faculty of the Division of Graduate Studies by Jan P. Medlock In Partial Fulfillment of the Requirements

More information

Stability and hybrid synchronization of a time-delay financial hyperchaotic system

Stability and hybrid synchronization of a time-delay financial hyperchaotic system ISSN 76-7659 England UK Journal of Information and Computing Science Vol. No. 5 pp. 89-98 Stability and hybrid synchronization of a time-delay financial hyperchaotic system Lingling Zhang Guoliang Cai

More information

Australian Journal of Basic and Applied Sciences. Effect of Education Campaign on Transmission Model of Conjunctivitis

Australian Journal of Basic and Applied Sciences. Effect of Education Campaign on Transmission Model of Conjunctivitis ISSN:99-878 Australian Journal of Basic and Applied Sciences Journal home page: www.ajbasweb.com ffect of ducation Campaign on Transmission Model of Conjunctivitis Suratchata Sangthongjeen, Anake Sudchumnong

More information

Consider a network of two genes, A and B, that inhibit each others production. da dt = db 1 + B A 1 + A B

Consider a network of two genes, A and B, that inhibit each others production. da dt = db 1 + B A 1 + A B Question 1 Consider a network of two genes, A and B, that inhibit each others production. A B da dt = db dt = ρ 1 + B A ρ 1 + A B This is similar to the model we considered in class. The first term in

More information

Mechanical Translational Systems

Mechanical Translational Systems QUESTION 1 For the system in Figure 1.1, the springs are at their free lengths when the mass displacements are zero. Complete the following: Figure 1.1 QUESTION 2 For the system in Figure 2.1, the mass

More information

ODE Math 3331 (Summer 2014) June 16, 2014

ODE Math 3331 (Summer 2014) June 16, 2014 Page 1 of 12 Please go to the next page... Sample Midterm 1 ODE Math 3331 (Summer 2014) June 16, 2014 50 points 1. Find the solution of the following initial-value problem 1. Solution (S.O.V) dt = ty2,

More information

TheHarmonicOscillator

TheHarmonicOscillator TheHarmonicOscillator S F Ellermeyer October 9, The differential equation describing the motion of a bob on a spring (a harmonic oscillator) is m d y dt + bdy + ky () dt In this equation, y denotes the

More information

A Mathematical Analysis on the Transmission Dynamics of Neisseria gonorrhoeae. Yk j N k j

A Mathematical Analysis on the Transmission Dynamics of Neisseria gonorrhoeae. Yk j N k j North Carolina Journal of Mathematics and Statistics Volume 3, Pages 7 20 (Accepted June 23, 2017, published June 30, 2017 ISSN 2380-7539 A Mathematical Analysis on the Transmission Dynamics of Neisseria

More information

Modelling of the Hand-Foot-Mouth-Disease with the Carrier Population

Modelling of the Hand-Foot-Mouth-Disease with the Carrier Population Modelling of the Hand-Foot-Mouth-Disease with the Carrier Population Ruzhang Zhao, Lijun Yang Department of Mathematical Science, Tsinghua University, China. Corresponding author. Email: lyang@math.tsinghua.edu.cn,

More information

Figure The Threshold Theorem of epidemiology

Figure The Threshold Theorem of epidemiology K/a Figure 3 6. Assurne that K 1/ a < K 2 and K 2 / ß < K 1 (a) Show that the equilibrium solution N 1 =0, N 2 =0 of (*) is unstable. (b) Show that the equilibrium solutions N 2 =0 and N 1 =0, N 2 =K 2

More information

Introduction: What one must do to analyze any model Prove the positivity and boundedness of the solutions Determine the disease free equilibrium

Introduction: What one must do to analyze any model Prove the positivity and boundedness of the solutions Determine the disease free equilibrium Introduction: What one must do to analyze any model Prove the positivity and boundedness of the solutions Determine the disease free equilibrium point and the model reproduction number Prove the stability

More information

Math 2250 Lab 3 Due September 18, Name:

Math 2250 Lab 3 Due September 18, Name: Math 2250 Lab 3 Due September 18, 2014 Name: 1. Consider the differential equation dx dt = 4x4 x 2 (a) Find the equilbria and draw the phase diagram. (b) Classify the equilibria as stable, unstable, or

More information

Viral evolution model with several time scales

Viral evolution model with several time scales Viral evolution model with several time scales AA Archibasov Samara National Research University, 4 Moskovskoe Shosse, 4486, Samara, Russia Abstract In this paper a viral evolution model with specific

More information

LAW OF LARGE NUMBERS FOR THE SIRS EPIDEMIC

LAW OF LARGE NUMBERS FOR THE SIRS EPIDEMIC LAW OF LARGE NUMBERS FOR THE SIRS EPIDEMIC R. G. DOLGOARSHINNYKH Abstract. We establish law of large numbers for SIRS stochastic epidemic processes: as the population size increases the paths of SIRS epidemic

More information

The Existence and Stability Analysis of the Equilibria in Dengue Disease Infection Model

The Existence and Stability Analysis of the Equilibria in Dengue Disease Infection Model Journal of Physics: Conference Series PAPER OPEN ACCESS The Existence and Stability Analysis of the Equilibria in Dengue Disease Infection Model Related content - Anomalous ion conduction from toroidal

More information

Mathematical Analysis of HIV/AIDS Prophylaxis Treatment Model

Mathematical Analysis of HIV/AIDS Prophylaxis Treatment Model Applied Mathematical Sciences, Vol. 12, 2018, no. 18, 893-902 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2018.8689 Mathematical Analysis of HIV/AIDS Prophylaxis Treatment Model F. K. Tireito,

More information

Princeton University Press, all rights reserved. Chapter 10: Dynamics of Class-Structured Populations

Princeton University Press, all rights reserved. Chapter 10: Dynamics of Class-Structured Populations Supplementary material to: Princeton University Press, all rights reserved From: Chapter 10: Dynamics of Class-Structured Populations A Biologist s Guide to Mathematical Modeling in Ecology and Evolution

More information

Jordan Journal of Mathematics and Statistics (JJMS) 9(2), 2016, pp

Jordan Journal of Mathematics and Statistics (JJMS) 9(2), 2016, pp Jordan Journal of Mathematics and Statistics JJMS) 92), 2016, pp 93-115 HOPF BIFURCATION ANALYSIS IN A SYSTEM FOR CANCER VIROTHERAPY WITH EFFECT OF THE IMMUNE SYSTEM A. ASHYANI 1), H.M. MOHAMMADINEJAD

More information

Mathematical Models of Biological Systems

Mathematical Models of Biological Systems Mathematical Models of Biological Systems CH924 November 25, 2012 Course outline Syllabus: Week 6: Stability of first-order autonomous differential equation, genetic switch/clock, introduction to enzyme

More information

Even-Numbered Homework Solutions

Even-Numbered Homework Solutions -6 Even-Numbered Homework Solutions Suppose that the matric B has λ = + 5i as an eigenvalue with eigenvector Y 0 = solution to dy = BY Using Euler s formula, we can write the complex-valued solution Y

More information

Stability and Control of dc Micro-grids

Stability and Control of dc Micro-grids Stability and Control of dc Micro-grids Alexis Kwasinski Thank you to Mr. Chimaobi N. Onwuchekwa (who has been working on boundary controllers) May, 011 1 Alexis Kwasinski, 011 Overview Introduction Constant-power-load

More information

Georgia Institute of Technology Nonlinear Controls Theory Primer ME 6402

Georgia Institute of Technology Nonlinear Controls Theory Primer ME 6402 Georgia Institute of Technology Nonlinear Controls Theory Primer ME 640 Ajeya Karajgikar April 6, 011 Definition Stability (Lyapunov): The equilibrium state x = 0 is said to be stable if, for any R > 0,

More information

Dynamics of a Population Model Controlling the Spread of Plague in Prairie Dogs

Dynamics of a Population Model Controlling the Spread of Plague in Prairie Dogs Dynamics of a opulation Model Controlling the Spread of lague in rairie Dogs Catalin Georgescu The University of South Dakota Department of Mathematical Sciences 414 East Clark Street, Vermillion, SD USA

More information

Stability of SEIR Model of Infectious Diseases with Human Immunity

Stability of SEIR Model of Infectious Diseases with Human Immunity Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 13, Number 6 (2017), pp. 1811 1819 Research India Publications http://www.ripublication.com/gjpam.htm Stability of SEIR Model of Infectious

More information

1 Introduction Definitons Markov... 2

1 Introduction Definitons Markov... 2 Compact course notes Dynamic systems Fall 2011 Professor: Y. Kudryashov transcribed by: J. Lazovskis Independent University of Moscow December 23, 2011 Contents 1 Introduction 2 1.1 Definitons...............................................

More information

A Stability Analysis on Models of Cooperative and Competitive Species

A Stability Analysis on Models of Cooperative and Competitive Species Research Journal of Mathematical and Statistical Sciences ISSN 2320 6047 A Stability Analysis on Models of Cooperative and Competitive Species Abstract Gideon Kwadzo Gogovi 1, Justice Kwame Appati 1 and

More information

Student s Printed Name:

Student s Printed Name: Student s Printed Name: Instructor: CUID: Section # : You are not permitted to use a calculator on any part of this test. You are not allowed to use any textbook, notes, cell phone, laptop, PDA, or any

More information

Global Dynamics of B Cells and Anti-Idiotipic B Cells and its Application to Autoimmunity

Global Dynamics of B Cells and Anti-Idiotipic B Cells and its Application to Autoimmunity Japan J. Indust. Appl. Math., 24 (2007), 105 118 Area 1 Global Dynamics of B Cells and Anti-Idiotipic B Cells and its Application to Autoimmunity Toru Sasaki and Tsuyoshi Kajiwara Okayama University E-mail:

More information

Models of Infectious Disease Formal Demography Stanford Summer Short Course James Holland Jones, Instructor. August 15, 2005

Models of Infectious Disease Formal Demography Stanford Summer Short Course James Holland Jones, Instructor. August 15, 2005 Models of Infectious Disease Formal Demography Stanford Summer Short Course James Holland Jones, Instructor August 15, 2005 1 Outline 1. Compartmental Thinking 2. Simple Epidemic (a) Epidemic Curve 1:

More information

Mathematical Model for the Epidemiology of Fowl Pox Infection Transmission That Incorporates Discrete Delay

Mathematical Model for the Epidemiology of Fowl Pox Infection Transmission That Incorporates Discrete Delay IOSR Journal of Mathematics (IOSR-JM) e-issn: 78-578, p-issn: 39-765X. Volume, Issue 4 Ver. V (Jul-Aug. 4), PP 8-6 Mathematical Model for the Epidemiology of Fowl Pox Infection Transmission That Incorporates

More information

We have two possible solutions (intersections of null-clines. dt = bv + muv = g(u, v). du = au nuv = f (u, v),

We have two possible solutions (intersections of null-clines. dt = bv + muv = g(u, v). du = au nuv = f (u, v), Let us apply the approach presented above to the analysis of population dynamics models. 9. Lotka-Volterra predator-prey model: phase plane analysis. Earlier we introduced the system of equations for prey

More information

Dynamics of Disease Spread. in a Predator-Prey System

Dynamics of Disease Spread. in a Predator-Prey System Advanced Studies in Biology, vol. 6, 2014, no. 4, 169-179 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/asb.2014.4845 Dynamics of Disease Spread in a Predator-Prey System Asrul Sani 1, Edi Cahyono

More information

Stability Analysis of Predator- Prey Models via the Liapunov Method

Stability Analysis of Predator- Prey Models via the Liapunov Method Stability Analysis of Predator- Prey Models via the Liapunov Method Gatto, M. and Rinaldi, S. IIASA Research Memorandum October 1975 Gatto, M. and Rinaldi, S. (1975) Stability Analysis of Predator-Prey

More information

SIS epidemics on Networks

SIS epidemics on Networks SIS epidemics on etworks Piet Van Mieghem in collaboration with Eric Cator, Ruud van de Bovenkamp, Cong Li, Stojan Trajanovski, Dongchao Guo, Annalisa Socievole and Huijuan Wang 1 EURADOM 30 June-2 July,

More information

TMA 4195 Mathematical Modelling December 12, 2007 Solution with additional comments

TMA 4195 Mathematical Modelling December 12, 2007 Solution with additional comments Problem TMA 495 Mathematical Modelling December, 007 Solution with additional comments The air resistance, F, of a car depends on its length, L, cross sectional area, A, its speed relative to the air,

More information

UMAP. Module 791. Immunological and Epidemiological HIV/AIDS Modeling

UMAP. Module 791. Immunological and Epidemiological HIV/AIDS Modeling UMAP Modules in Undergraduate Mathematics and Its Applications Published in cooperation with The Society for Industrial and Applied Mathematics, Module 791 Immunological and Epidemiological HIV/AIDS Modeling

More information

Multiple Integrals. Chapter 4. Section 7. Department of Mathematics, Kookmin Univerisity. Numerical Methods.

Multiple Integrals. Chapter 4. Section 7. Department of Mathematics, Kookmin Univerisity. Numerical Methods. 4.7.1 Multiple Integrals Chapter 4 Section 7 4.7.2 Double Integral R f ( x, y) da 4.7.3 Double Integral Apply Simpson s rule twice R [ a, b] [ c, d] a x, x,..., x b, c y, y,..., y d 0 1 n 0 1 h ( b a)

More information

Research Article Nonlinear Dynamics and Chaos in a Fractional-Order HIV Model

Research Article Nonlinear Dynamics and Chaos in a Fractional-Order HIV Model Mathematical Problems in Engineering Volume 29, Article ID 378614, 12 pages doi:1.1155/29/378614 Research Article Nonlinear Dynamics and Chaos in a Fractional-Order HIV Model Haiping Ye 1, 2 and Yongsheng

More information

6. Well-Stirred Reactors III

6. Well-Stirred Reactors III 6. Well-Stirred Reactors III Reactors reaction rate or reaction velocity defined for a closed system of uniform pressure, temperature, and composition situation in a real reactor is usually quite different

More information

GLOBAL STABILITY AND SPATIAL SPREAD OF THE NONLINEAR EPIDEMIC MODEL

GLOBAL STABILITY AND SPATIAL SPREAD OF THE NONLINEAR EPIDEMIC MODEL European Scientific Journal February 3 edition vol9, No6 ISSN: 857 788 (Print) e - ISSN 857-743 GLOBAL STABILITY AND SPATIAL SPREAD OF THE NONLINEAR EPIDEMIC MODEL Laid Chahrazed, PhD Rahmani Fouad Lazhar,

More information

Ordinary Differential Equations

Ordinary Differential Equations Ordinary Differential Equations Michael H. F. Wilkinson Institute for Mathematics and Computing Science University of Groningen The Netherlands December 2005 Overview What are Ordinary Differential Equations

More information

Do not write in this space. Problem Possible Score Number Points Total 48

Do not write in this space. Problem Possible Score Number Points Total 48 MTH 337. Name MTH 337. Differential Equations Exam II March 15, 2019 T. Judson Do not write in this space. Problem Possible Score Number Points 1 8 2 10 3 15 4 15 Total 48 Directions Please Read Carefully!

More information

6.2 Brief review of fundamental concepts about chaotic systems

6.2 Brief review of fundamental concepts about chaotic systems 6.2 Brief review of fundamental concepts about chaotic systems Lorenz (1963) introduced a 3-variable model that is a prototypical example of chaos theory. These equations were derived as a simplification

More information

Stability Analysis and Numerical Solution for. the Fractional Order Biochemical Reaction Model

Stability Analysis and Numerical Solution for. the Fractional Order Biochemical Reaction Model Nonlinear Analysis and Differential Equations, Vol. 4, 16, no. 11, 51-53 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/1.1988/nade.16.6531 Stability Analysis and Numerical Solution for the Fractional

More information

Math 216 First Midterm 19 October, 2017

Math 216 First Midterm 19 October, 2017 Math 6 First Midterm 9 October, 7 This sample exam is provided to serve as one component of your studying for this exam in this course. Please note that it is not guaranteed to cover the material that

More information

STABILITY. Phase portraits and local stability

STABILITY. Phase portraits and local stability MAS271 Methods for differential equations Dr. R. Jain STABILITY Phase portraits and local stability We are interested in system of ordinary differential equations of the form ẋ = f(x, y), ẏ = g(x, y),

More information

( ) in the interaction picture arises only

( ) in the interaction picture arises only Physics 606, Quantum Mechanics, Final Exam NAME 1 Atomic transitions due to time-dependent electric field Consider a hydrogen atom which is in its ground state for t < 0 For t > 0 it is subjected to a

More information

Introduction to SEIR Models

Introduction to SEIR Models Department of Epidemiology and Public Health Health Systems Research and Dynamical Modelling Unit Introduction to SEIR Models Nakul Chitnis Workshop on Mathematical Models of Climate Variability, Environmental

More information

Lyapunov functions and stability problems

Lyapunov functions and stability problems Lyapunov functions and stability problems Gunnar Söderbacka, Workshop Ghana, 29.5-10.5, 2013 1 Introduction In these notes we explain the power of Lyapunov functions in determining stability of equilibria

More information