Fluctuation response inequality out of equilibrium

Size: px
Start display at page:

Download "Fluctuation response inequality out of equilibrium"

Transcription

1 Fluctuation response inequality out of equilibrium Shin-ichi Sasa (Kyoto), Andreas Dechant (Tohoku) Non-equilibrium statistical physics of complex 2018/07/10 1

2 "The energy of the universe is constant, the entropy of the universe tends toward a maximum." (Clausius, 1865) Fundamental and Universal inequality! (The second law of thermodynamics) Beyond the second law of thermodynamics -- equalities -- (fluctuation theorem 1993-; Jarzynski equality ; and many..) Beyond the second law of thermodynamics -- inequalities -- Thermodynamic uncertain relations, thermodynamic bound, trade-off relations Frenecy bound, large deviation bound.. Barato, Seifert; Chetrite, Touchette; Gingrich, Horowitz; Maes; Shraishi,Saito, Tasaki Pietzonka, Ritort, Seifert; Pigolotti, Neri, Roldan,Julicher; Dechant, Sasa.. ( ) 2

3 A simple example : setting up A Brownian particle under a tilted potential constant external force Periodic potential Gaussian white noise V.Blickle, T. Speck, C. Lutz, U. Seifert, C. Bechinger, PRL,

4 The second law of thermodynamics Equilibrium condition External operation Heat from the bath (Sekimoto, 1997) Entropy Thermodynamic processes (from an equilibrium state to another equilibrium state) 4

5 Fluctuation theorem Total entropy production (integral) fluctuation theorem Local detailed balance The second law of thermodynamics (non-)linear response relations Reciprocity Zubarev measure External operation Jarzynksi equality,

6 Fluctuation response relation (FRR) drift velocity differential mobility Diffusion constant Einstein relation 6

7 FRR out of equilibrium (after 2000) Several versions Harada,Sasa (2005);Speck,Seifert (2006); Prost,Joanny,Parrondo (2009); Baisel,Maes,Wynants (2009).. One idea: effective temperature Cf. Cugliandolo, Kurchan, Peliti, 1997 Thermometer Hayashi,Sasa,

8 On conjectures (2003 private communication) 8

9 On conjectures (2003 private communication) Counter examples!! Sasaki, Amari, 2005 See also Nakamura,Ooguri, 2011 using holography 9

10 On conjectures (2003 private communication) Counter examples!! Sasaki, Amari, 2005 See also Nakamura,Ooguri, 2011 using holography Recent results are helpful? Entropy production ratio Its lower bound Thermodynamic uncertain relations Barato, Seifert (2015) Gingrich, Horowitz (2016) for Markov jump processes Dechant, Sasa (2018) 10 for a wide class of systems

11 In this talk, I show Dechant, Sasa Arixiv:

12 In this talk, I will show Dechant, Sasa Arixiv: (***, ***, 2005) using a special equality associated with coarse-graining 12

13 In this talk, I will show Dechant, Sasa Arixiv: (Hayashi, Sasa, 2005) using a special equality associated with coarse-graining 13

14 Highlight I show a very elegant proof so as to see (i) This inequality is closely related to thermodynamic uncertain relations and recent many inequalities (ii) This type of inequality holds for a wide class of systems such as under-damped systems, higher-dimension systems, Markov chain, flashing ratchet, Buttiker ratchet, Feynman ratchet, time-dependent driving systems,.. 14

15 Outline of my talk I. Introduction 2. Results 3. Proof of the main result 4. Summary 15

16 Main result : fluctuation response inequality Probability density of trajectory for a system a trajectory Slight modification (perturbation) of a in the sense that For any observable, 16

17 Application I: mobility bound (the simplest example) Set Consider a perturbation 17

18 Application I: mobility bound (the simplest example) Set Consider a perturbation 18

19 Set Application 2: thermodynamic uncertain relations Consider a perturbation 19

20 Rule of the game Set Consider a perturbation 20

21 Rule of the game Set Consider a perturbation You can write a paper! 21

22 Outline of my talk I. Introduction 2. Results 3. Proof of the main result 4. Summary 22

23 Main result : fluctuation response inequality Probability density of trajectory for a system a trajectory Slight modification (perturbation) of a in the sense that For any observable, 23

24 Step 1. A bound on the relative entropy 24

25 Who gave this inequality?? 25

26 Kullback! The Annals of Mathematical Statistics, 1954 ; citation 33 Kullback inequality: On information and sufficiency S Kullback, RA Leibler, The annals of mathematical statistics, 1951; citation

27 Step 2. linear response Kullback inequality: Linear response: 27

28 Outline of my talk I. Introduction 2. Results 3. Proof of the main result 4. Summary 28

29 Summary A very useful and universal inequality Arixiv: A universal inequality on mobility and effective temperature The simplest derivation of (finite time) thermodynamic uncertain relation 29

Introduction to Fluctuation Theorems

Introduction to Fluctuation Theorems Hyunggyu Park Introduction to Fluctuation Theorems 1. Nonequilibrium processes 2. Brief History of Fluctuation theorems 3. Jarzynski equality & Crooks FT 4. Experiments 5. Probability theory viewpoint

More information

Thermodynamic Computing. Forward Through Backwards Time by RocketBoom

Thermodynamic Computing. Forward Through Backwards Time by RocketBoom Thermodynamic Computing 1 14 Forward Through Backwards Time by RocketBoom The 2nd Law of Thermodynamics Clausius inequality (1865) S total 0 Total Entropy increases as time progresses Cycles of time R.Penrose

More information

Information Thermodynamics on Causal Networks

Information Thermodynamics on Causal Networks 1/39 Information Thermodynamics on Causal Networks FSPIP 2013, July 12 2013. Sosuke Ito Dept. of Phys., the Univ. of Tokyo (In collaboration with T. Sagawa) ariv:1306.2756 The second law of thermodynamics

More information

Contrasting measures of irreversibility in stochastic and deterministic dynamics

Contrasting measures of irreversibility in stochastic and deterministic dynamics Contrasting measures of irreversibility in stochastic and deterministic dynamics Ian Ford Department of Physics and Astronomy and London Centre for Nanotechnology UCL I J Ford, New J. Phys 17 (2015) 075017

More information

Nonequilibrium thermodynamics at the microscale

Nonequilibrium thermodynamics at the microscale Nonequilibrium thermodynamics at the microscale Christopher Jarzynski Department of Chemistry and Biochemistry and Institute for Physical Science and Technology ~1 m ~20 nm Work and free energy: a macroscopic

More information

Introduction to Stochastic Thermodynamics: Application to Thermo- and Photo-electricity in small devices

Introduction to Stochastic Thermodynamics: Application to Thermo- and Photo-electricity in small devices Université Libre de Bruxelles Center for Nonlinear Phenomena and Complex Systems Introduction to Stochastic Thermodynamics: Application to Thermo- and Photo-electricity in small devices Massimiliano Esposito

More information

Maxwell's Demon in Biochemical Signal Transduction

Maxwell's Demon in Biochemical Signal Transduction Maxwell's Demon in Biochemical Signal Transduction Takahiro Sagawa Department of Applied Physics, University of Tokyo New Frontiers in Non-equilibrium Physics 2015 28 July 2015, YITP, Kyoto Collaborators

More information

Stochastic thermodynamics

Stochastic thermodynamics University of Ljubljana Faculty of Mathematics and Physics Seminar 1b Stochastic thermodynamics Author: Luka Pusovnik Supervisor: prof. dr. Primož Ziherl Abstract The formulation of thermodynamics at a

More information

arxiv: v1 [cond-mat.stat-mech] 14 Apr 2016

arxiv: v1 [cond-mat.stat-mech] 14 Apr 2016 Infimum Law and First-Passage-Time Fluctuation Theorem for Entropy Production arxiv:64.459v [cond-mat.stat-mech] 4 Apr 26 Izaak Neri,, 2 Édgar Roldán, and Frank Jülicher Max Planck Institute for the Physics

More information

arxiv: v1 [cond-mat.stat-mech] 3 Apr 2018

arxiv: v1 [cond-mat.stat-mech] 3 Apr 2018 April 4, 2018 0:28 ws-rv9x6 Book Title Final page 1 arxiv:1804.00859v1 [cond-mat.stat-mech] 3 Apr 2018 Chapter 1 A case study of thermodynamic bounds for chemical kinetics K. Proesmans Hasselt University,

More information

arxiv: v2 [cond-mat.stat-mech] 3 Mar 2018

arxiv: v2 [cond-mat.stat-mech] 3 Mar 2018 Arcsine Laws in Stochastic Thermodynamics Andre C. Barato, Édgar Roldán,, Ignacio A. Martínez 3, and Simone Pigolotti 4 Max Planck Institute for the Physics of Complex Systems, Nöthnizer Strasse 38, 87

More information

Beyond the Second Law of Thermodynamics

Beyond the Second Law of Thermodynamics Beyond the Second Law of Thermodynamics C. Van den Broeck R. Kawai J. M. R. Parrondo Colloquium at University of Alabama, September 9, 2007 The Second Law of Thermodynamics There exists no thermodynamic

More information

Fluctuation theorems: where do we go from here?

Fluctuation theorems: where do we go from here? Fluctuation theorems: where do we go from here? D. Lacoste Laboratoire Physico-Chimie Théorique, UMR Gulliver, ESPCI, Paris Outline of the talk 1. Fluctuation theorems for systems out of equilibrium 2.

More information

Emergent Fluctuation Theorem for Pure Quantum States

Emergent Fluctuation Theorem for Pure Quantum States Emergent Fluctuation Theorem for Pure Quantum States Takahiro Sagawa Department of Applied Physics, The University of Tokyo 16 June 2016, YITP, Kyoto YKIS2016: Quantum Matter, Spacetime and Information

More information

Nonequilibrium Response in a Model for Sensory Adapta8on

Nonequilibrium Response in a Model for Sensory Adapta8on The 7 th KIAS Conference on Sta8s8cal Physics, 4-7 July 2016 Nonequilibrium Sta8s8cal Physics of Complex Systems Nonequilibrium Response in a Model for Sensory Adapta8on Shouwen Wang and Lei- Han Tang

More information

arxiv:cond-mat/ v2 [cond-mat.stat-mech] 25 Sep 2000

arxiv:cond-mat/ v2 [cond-mat.stat-mech] 25 Sep 2000 technical note, cond-mat/0009244 arxiv:cond-mat/0009244v2 [cond-mat.stat-mech] 25 Sep 2000 Jarzynski Relations for Quantum Systems and Some Applications Hal Tasaki 1 1 Introduction In a series of papers

More information

Nonequilibrium Thermodynamics of Small Systems: Classical and Quantum Aspects. Massimiliano Esposito

Nonequilibrium Thermodynamics of Small Systems: Classical and Quantum Aspects. Massimiliano Esposito Nonequilibrium Thermodynamics of Small Systems: Classical and Quantum Aspects Massimiliano Esposito Paris May 9-11, 2017 Introduction Thermodynamics in the 19th century: Thermodynamics in the 21th century:

More information

LANGEVIN EQUATION AND THERMODYNAMICS

LANGEVIN EQUATION AND THERMODYNAMICS LANGEVIN EQUATION AND THERMODYNAMICS RELATING STOCHASTIC DYNAMICS WITH THERMODYNAMIC LAWS November 10, 2017 1 / 20 MOTIVATION There are at least three levels of description of classical dynamics: thermodynamic,

More information

arxiv: v2 [cond-mat.stat-mech] 3 Jun 2018

arxiv: v2 [cond-mat.stat-mech] 3 Jun 2018 Marginal and Conditional Second Laws of Thermodynamics Gavin E. Crooks 1 and Susanne Still 2 1 Theoretical Institute for Theoretical Science 2 University of Hawai i at Mānoa Department of Information and

More information

Optimal quantum driving of a thermal machine

Optimal quantum driving of a thermal machine Optimal quantum driving of a thermal machine Andrea Mari Vasco Cavina Vittorio Giovannetti Alberto Carlini Workshop on Quantum Science and Quantum Technologies ICTP, Trieste, 12-09-2017 Outline 1. Slow

More information

Fluctuation theorem between non-equilibrium states in an RC circuit

Fluctuation theorem between non-equilibrium states in an RC circuit arxiv:1502.00571v3 [cond-mat.stat-mech] 20 Apr 2015 Fluctuation theorem between non-equilibrium states in an RC circuit Léo Granger 1,5, Jumna Mehlis 2,3, Édgar Roldán3,5, Sergio Ciliberto 4, and Holger

More information

arxiv: v3 [cond-mat.stat-mech] 7 Jan 2015

arxiv: v3 [cond-mat.stat-mech] 7 Jan 2015 Journal of Statistical Physics manuscript No. (will be inserted by the editor) Nonequilibrium Statistical Mechanics for Adiabatic Piston Problem Masato Itami Shin-ichi Sasa arxiv:1405.1874v3 [cond-mat.stat-mech]

More information

arxiv: v2 [cond-mat.stat-mech] 16 Mar 2012

arxiv: v2 [cond-mat.stat-mech] 16 Mar 2012 arxiv:119.658v2 cond-mat.stat-mech] 16 Mar 212 Fluctuation theorems in presence of information gain and feedback Sourabh Lahiri 1, Shubhashis Rana 2 and A. M. Jayannavar 3 Institute of Physics, Bhubaneswar

More information

arxiv: v4 [cond-mat.stat-mech] 17 Dec 2015

arxiv: v4 [cond-mat.stat-mech] 17 Dec 2015 Decision Making in the Arrow of Time arxiv:158.218v4 [cond-mat.stat-mech] 17 Dec 215 Édgar Roldán 1,5, Izaak Neri 1,2,5, Meik Dörpinghaus 3,5, Heinrich Meyr 3,4,5, and Frank Jülicher 1,5 1 Max Planck Institute

More information

Effective Temperatures in Driven Systems near Jamming

Effective Temperatures in Driven Systems near Jamming Effective Temperatures in Driven Systems near Jamming Andrea J. Liu Department of Physics & Astronomy University of Pennsylvania Tom Haxton Yair Shokef Tal Danino Ian Ono Corey S. O Hern Douglas Durian

More information

C.W. Gardiner. P. Zoller. Quantum Nois e. A Handbook of Markovian and Non-Markovia n Quantum Stochastic Method s with Applications to Quantum Optics

C.W. Gardiner. P. Zoller. Quantum Nois e. A Handbook of Markovian and Non-Markovia n Quantum Stochastic Method s with Applications to Quantum Optics C.W. Gardiner P. Zoller Quantum Nois e A Handbook of Markovian and Non-Markovia n Quantum Stochastic Method s with Applications to Quantum Optics 1. A Historical Introduction 1 1.1 Heisenberg's Uncertainty

More information

arxiv: v2 [cond-mat.stat-mech] 23 Jul 2018

arxiv: v2 [cond-mat.stat-mech] 23 Jul 2018 Nonequilibrium uncertainty principle from information geometry arxiv:1801.04v [cond-mat.stat-mech] 3 Jul 018 Schuyler B. Nicholson, 1 Adolfo del Campo,, 3 1,, 3, and Jason R. Green 1 Department of Chemistry,

More information

Tightening the uncertainty principle for stochastic currents

Tightening the uncertainty principle for stochastic currents PHYSICAL REVIEW E 9, 05210 (2016) Tightening the uncertainty principle for stochastic currents Matteo Polettini, * Alexandre Lazarescu, and Massimiliano Esposito Complex Systems and Statistical Mechanics,

More information

arxiv: v2 [quant-ph] 2 Oct 2016

arxiv: v2 [quant-ph] 2 Oct 2016 Regularized Boltzmann entropy determines macroscopic adiabatic accessibility Hiroyasu Tajima and Eyuri Wakakuwa 2 Center for Emergent Matter Science (CEMS), RIKEN, Wako, Saitama 35-098 Japan 2 Graduate

More information

arxiv: v3 [cond-mat.stat-mech] 15 Nov 2017

arxiv: v3 [cond-mat.stat-mech] 15 Nov 2017 Limits of Predictions in Thermodynamic Systems: A Review Robert Marsland III Department of Physics, Boston University, 590 Comm. Ave., Boston, Massachusetts 02215, USA Jeremy England Physics of Living

More information

Control Theory in Physics and other Fields of Science

Control Theory in Physics and other Fields of Science Michael Schulz Control Theory in Physics and other Fields of Science Concepts, Tools, and Applications With 46 Figures Sprin ger 1 Introduction 1 1.1 The Aim of Control Theory 1 1.2 Dynamic State of Classical

More information

Information Dynamics Foundations and Applications

Information Dynamics Foundations and Applications Gustavo Deco Bernd Schürmann Information Dynamics Foundations and Applications With 89 Illustrations Springer PREFACE vii CHAPTER 1 Introduction 1 CHAPTER 2 Dynamical Systems: An Overview 7 2.1 Deterministic

More information

Table of Contents [ntc]

Table of Contents [ntc] Table of Contents [ntc] 1. Introduction: Contents and Maps Table of contents [ntc] Equilibrium thermodynamics overview [nln6] Thermal equilibrium and nonequilibrium [nln1] Levels of description in statistical

More information

Fluctuation Theorems of Work and Entropy in Hamiltonian Systems

Fluctuation Theorems of Work and Entropy in Hamiltonian Systems Fluctuation Theorems of Work and Entropy in Hamiltonian Systems Sourabh Lahiri and Arun M Jayannavar Fluctuation theorems are a group of exact relations that remain valid irrespective of how far the system

More information

Statistical properties of entropy production derived from fluctuation theorems

Statistical properties of entropy production derived from fluctuation theorems Statistical properties of entropy production derived from fluctuation theorems Neri Merhav (1) and Yariv Kafri (2) (1) Department of Electrical Engineering, Technion, Haifa 32, Israel. (2) Department of

More information

Experimental Rectification of Entropy Production by Maxwell s Demon in a Quantum System

Experimental Rectification of Entropy Production by Maxwell s Demon in a Quantum System Experimental Rectification of Entropy Production by Maxwell s Demon in a Quantum System Tiago Barbin Batalhão SUTD, Singapore Work done while at UFABC, Santo André, Brazil Singapore, January 11th, 2017

More information

Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences

Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences PHYSICAL REVIEW E VOLUME 60, NUMBER 3 SEPTEMBER 1999 Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences Gavin E. Crooks* Department of Chemistry, University

More information

MD Thermodynamics. Lecture 12 3/26/18. Harvard SEAS AP 275 Atomistic Modeling of Materials Boris Kozinsky

MD Thermodynamics. Lecture 12 3/26/18. Harvard SEAS AP 275 Atomistic Modeling of Materials Boris Kozinsky MD Thermodynamics Lecture 1 3/6/18 1 Molecular dynamics The force depends on positions only (not velocities) Total energy is conserved (micro canonical evolution) Newton s equations of motion (second order

More information

Entropy Production and Fluctuation Relations in NonMarkovian Systems

Entropy Production and Fluctuation Relations in NonMarkovian Systems Entropy Production and Fluctuation Relations in NonMarkovian Systems Tapio Ala-Nissilä Department of Applied Physics and COMP CoE, Aalto University School of Science (formerly Helsinki University of Technology),

More information

STOCHASTIC PROCESSES IN PHYSICS AND CHEMISTRY

STOCHASTIC PROCESSES IN PHYSICS AND CHEMISTRY STOCHASTIC PROCESSES IN PHYSICS AND CHEMISTRY Third edition N.G. VAN KAMPEN Institute for Theoretical Physics of the University at Utrecht ELSEVIER Amsterdam Boston Heidelberg London New York Oxford Paris

More information

arxiv: v1 [cond-mat.stat-mech] 13 Oct 2017

arxiv: v1 [cond-mat.stat-mech] 13 Oct 2017 Thermodynamic Bounds on Precision in Ballistic Multi-Terminal Transport Kay Brandner, Taro Hanazato 2, and Keiji Saito 2 Department of Applied Physics, Aalto University, 76 Aalto, Finland 2 Department

More information

Modeling with Itô Stochastic Differential Equations

Modeling with Itô Stochastic Differential Equations Modeling with Itô Stochastic Differential Equations 2.4-2.6 E. Allen presentation by T. Perälä 27.0.2009 Postgraduate seminar on applied mathematics 2009 Outline Hilbert Space of Stochastic Processes (

More information

Even if you're not burning books, destroying information generates heat.

Even if you're not burning books, destroying information generates heat. Even if you're not burning books, destroying information generates heat. Information and Thermodynamics: Experimental verification of Landauer's erasure principle with a colloidal particle Antoine Bérut,

More information

Continuum Limit of Forward Kolmogorov Equation Friday, March 06, :04 PM

Continuum Limit of Forward Kolmogorov Equation Friday, March 06, :04 PM Continuum Limit of Forward Kolmogorov Equation Friday, March 06, 2015 2:04 PM Please note that one of the equations (for ordinary Brownian motion) in Problem 1 was corrected on Wednesday night. And actually

More information

Mesoscale fluid simulation of colloidal systems

Mesoscale fluid simulation of colloidal systems Mesoscale fluid simulation of colloidal systems Mingcheng Yang Institute of Physics, CAS Outline (I) Background (II) Simulation method (III) Applications and examples (IV) Summary Background Soft matter

More information

The physics of information: from Maxwell s demon to Landauer. Eric Lutz University of Erlangen-Nürnberg

The physics of information: from Maxwell s demon to Landauer. Eric Lutz University of Erlangen-Nürnberg The physics of information: from Maxwell s demon to Landauer Eric Lutz University of Erlangen-Nürnberg Outline 1 Information and physics Information gain: Maxwell and Szilard Information erasure: Landauer

More information

On Gibbs-Shannon Entropy

On Gibbs-Shannon Entropy On Gibbs-Shannon Entropy Raphael Chetrite CNRS J.A Dieudonne Nice. Graduate School of Science, Kyoto. LARGE DEVIATION THEORY IN STATISTICAL PHYSICS : RECENT ADVANCES AND FUTURE CHALLENGES M. Gavrilov,

More information

Thermodynamic Cost Due to Changing the Initial Distribution Over States

Thermodynamic Cost Due to Changing the Initial Distribution Over States Thermodynamic Cost Due to Changing the Initial Distribution Over States Artemy Kolchinsky David H. Wolpert SFI WORKING AER: 2016-07-014 SFI Working apers contain accounts of scienti5ic work of the author(s)

More information

Dynamics of Quantum Dissipative Systems: The Example of Quantum Brownian Motors

Dynamics of Quantum Dissipative Systems: The Example of Quantum Brownian Motors Dynamics of Quantum Dissipative Systems: The Example of Quantum Brownian Motors Joël Peguiron Department of Physics and Astronomy, University of Basel, Switzerland Work done with Milena Grifoni at Kavli

More information

J. Stat. Mech. (2011) P07008

J. Stat. Mech. (2011) P07008 Journal of Statistical Mechanics: Theory and Experiment On thermodynamic and microscopic reversibility Gavin E Crooks Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA

More information

Entropy and Free Energy in Biology

Entropy and Free Energy in Biology Entropy and Free Energy in Biology Energy vs. length from Phillips, Quake. Physics Today. 59:38-43, 2006. kt = 0.6 kcal/mol = 2.5 kj/mol = 25 mev typical protein typical cell Thermal effects = deterministic

More information

Design of Oscillator Networks for Generating Signal with Prescribed Statistical Property

Design of Oscillator Networks for Generating Signal with Prescribed Statistical Property Journal of Physics: Conference Series PAPER OPEN ACCESS Design of Oscillator Networks for Generating Signal with Prescribed Statistical Property To cite this article: Tatsuo Yanagita 2017 J. Phys.: Conf.

More information

The dynamics of small particles whose size is roughly 1 µmt or. smaller, in a fluid at room temperature, is extremely erratic, and is

The dynamics of small particles whose size is roughly 1 µmt or. smaller, in a fluid at room temperature, is extremely erratic, and is 1 I. BROWNIAN MOTION The dynamics of small particles whose size is roughly 1 µmt or smaller, in a fluid at room temperature, is extremely erratic, and is called Brownian motion. The velocity of such particles

More information

Suriyanarayanan Vaikuntanathan

Suriyanarayanan Vaikuntanathan Assistant Professor University of Chicago Suriyanarayanan Vaikuntanathan Google Scholar citations: http://scholar.google.com/citations?user=qws4178aaaaj Personal Information Address Department of Chemistry

More information

Thermodynamics for small devices: From fluctuation relations to stochastic efficiencies. Massimiliano Esposito

Thermodynamics for small devices: From fluctuation relations to stochastic efficiencies. Massimiliano Esposito Thermodynamics for small devices: From fluctuation relations to stochastic efficiencies Massimiliano Esposito Beijing, August 15, 2016 Introduction Thermodynamics in the 19th century: Thermodynamics in

More information

Let's transfer our results for conditional probability for events into conditional probabilities for random variables.

Let's transfer our results for conditional probability for events into conditional probabilities for random variables. Kolmogorov/Smoluchowski equation approach to Brownian motion Tuesday, February 12, 2013 1:53 PM Readings: Gardiner, Secs. 1.2, 3.8.1, 3.8.2 Einstein Homework 1 due February 22. Conditional probability

More information

Fokker-Planck Equation with Detailed Balance

Fokker-Planck Equation with Detailed Balance Appendix E Fokker-Planck Equation with Detailed Balance A stochastic process is simply a function of two variables, one is the time, the other is a stochastic variable X, defined by specifying: a: the

More information

NPTEL

NPTEL NPTEL Syllabus Nonequilibrium Statistical Mechanics - Video course COURSE OUTLINE Thermal fluctuations, Langevin dynamics, Brownian motion and diffusion, Fokker-Planck equations, linear response theory,

More information

Information Landscape and Flux, Mutual Information Rate Decomposition and Connections to Entropy Production

Information Landscape and Flux, Mutual Information Rate Decomposition and Connections to Entropy Production entropy Article Information Landscape and Flux, Mutual Information Rate Decomposition and Connections to Entropy Production Qian Zeng and Jin Wang,2, * State Key Laboratory of Electroanalytical Chemistry,

More information

Linear Response and Onsager Reciprocal Relations

Linear Response and Onsager Reciprocal Relations Linear Response and Onsager Reciprocal Relations Amir Bar January 1, 013 Based on Kittel, Elementary statistical physics, chapters 33-34; Kubo,Toda and Hashitsume, Statistical Physics II, chapter 1; and

More information

Optimal Thermodynamic Control and the Riemannian Geometry of Ising magnets

Optimal Thermodynamic Control and the Riemannian Geometry of Ising magnets Optimal Thermodynamic Control and the Riemannian Geometry of Ising magnets Gavin Crooks Lawrence Berkeley National Lab Funding: Citizens Like You! MURI threeplusone.com PRE 92, 060102(R) (2015) NSF, DOE

More information

Deriving Thermodynamics from Linear Dissipativity Theory

Deriving Thermodynamics from Linear Dissipativity Theory Deriving Thermodynamics from Linear Dissipativity Theory Jean-Charles Delvenne Université catholique de Louvain Belgium Henrik Sandberg KTH Sweden IEEE CDC 2015, Osaka, Japan «Every mathematician knows

More information

Fluctuation theorems. Proseminar in theoretical physics Vincent Beaud ETH Zürich May 11th 2009

Fluctuation theorems. Proseminar in theoretical physics Vincent Beaud ETH Zürich May 11th 2009 Fluctuation theorems Proseminar in theoretical physics Vincent Beaud ETH Zürich May 11th 2009 Outline Introduction Equilibrium systems Theoretical background Non-equilibrium systems Fluctuations and small

More information

II Relationship of Classical Theory to Quantum Theory A Quantum mean occupation number

II Relationship of Classical Theory to Quantum Theory A Quantum mean occupation number Appendix B Some Unifying Concepts Version 04.AppB.11.1K [including mostly Chapters 1 through 11] by Kip [This appendix is in the very early stages of development] I Physics as Geometry A Newtonian Physics

More information

Theory of fractional Lévy diffusion of cold atoms in optical lattices

Theory of fractional Lévy diffusion of cold atoms in optical lattices Theory of fractional Lévy diffusion of cold atoms in optical lattices, Erez Aghion, David Kessler Bar-Ilan Univ. PRL, 108 230602 (2012) PRX, 4 011022 (2014) Fractional Calculus, Leibniz (1695) L Hospital:

More information

PHYS 352. Noise. Noise. fluctuations in voltage (or current) about zero average voltage = 0 average V 2 is not zero

PHYS 352. Noise. Noise. fluctuations in voltage (or current) about zero average voltage = 0 average V 2 is not zero PHYS 352 Noise Noise fluctuations in voltage (or current) about zero average voltage = 0 average V 2 is not zero so, we talk about rms voltage for noise V=0 1 Sources of Intrinsic Noise sometimes noise

More information

Entropy and Free Energy in Biology

Entropy and Free Energy in Biology Entropy and Free Energy in Biology Energy vs. length from Phillips, Quake. Physics Today. 59:38-43, 2006. kt = 0.6 kcal/mol = 2.5 kj/mol = 25 mev typical protein typical cell Thermal effects = deterministic

More information

Major Concepts Lecture #11 Rigoberto Hernandez. TST & Transport 1

Major Concepts Lecture #11 Rigoberto Hernandez. TST & Transport 1 Major Concepts Onsager s Regression Hypothesis Relaxation of a perturbation Regression of fluctuations Fluctuation-Dissipation Theorem Proof of FDT & relation to Onsager s Regression Hypothesis Response

More information

This is a Gaussian probability centered around m = 0 (the most probable and mean position is the origin) and the mean square displacement m 2 = n,or

This is a Gaussian probability centered around m = 0 (the most probable and mean position is the origin) and the mean square displacement m 2 = n,or Physics 7b: Statistical Mechanics Brownian Motion Brownian motion is the motion of a particle due to the buffeting by the molecules in a gas or liquid. The particle must be small enough that the effects

More information

Preface. Preface to the Third Edition. Preface to the Second Edition. Preface to the First Edition. 1 Introduction 1

Preface. Preface to the Third Edition. Preface to the Second Edition. Preface to the First Edition. 1 Introduction 1 xi Contents Preface Preface to the Third Edition Preface to the Second Edition Preface to the First Edition v vii viii ix 1 Introduction 1 I GENERAL THEORY OF OPEN QUANTUM SYSTEMS 5 Diverse limited approaches:

More information

Symmetry of the linearized Boltzmann equation: Entropy production and Onsager-Casimir relation

Symmetry of the linearized Boltzmann equation: Entropy production and Onsager-Casimir relation Symmetry of the linearized Boltzmann equation: Entropy production and Onsager-Casimir relation Shigeru TAKATA ( 髙田滋 ) Department of Mechanical Engineering and Science, (also Advanced Research Institute

More information

Biasing Brownian motion from thermal ratchets

Biasing Brownian motion from thermal ratchets Mayra Vega MAE 216- Statistical Thermodynamics June 18, 2012 Introduction Biasing Brownian motion from thermal ratchets Brownian motion is the random movement of small particles however, by understanding

More information

From fully quantum thermodynamical identities to a second law equality

From fully quantum thermodynamical identities to a second law equality From fully quantum thermodynamical identities to a second law equality Alvaro Alhambra, Lluis Masanes, Jonathan Oppenheim, Chris Perry Fluctuating States Phys. Rev. X 6, 041016 (2016) Fluctuating Work

More information

Statistical Mechanics and Thermodynamics of Small Systems

Statistical Mechanics and Thermodynamics of Small Systems Statistical Mechanics and Thermodynamics of Small Systems Luca Cerino Advisors: A. Puglisi and A. Vulpiani Final Seminar of PhD course in Physics Cycle XXIX Rome, October, 26 2016 Outline of the talk 1.

More information

arxiv: v6 [cond-mat.stat-mech] 7 May 2018

arxiv: v6 [cond-mat.stat-mech] 7 May 2018 Stochastic thermoynamic interpretation of information geometry Sosuke Ito RIES, Hokkaio University, N20 W10, Kita-ku, Sapporo, Hokkaio 001-0020, Japan Date: May 8, 2018 arxiv:1712.04311v6 [con-mat.stat-mech]

More information

fiziks Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

fiziks Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES Content-Thermodynamics & Statistical Mechanics 1. Kinetic theory of gases..(1-13) 1.1 Basic assumption of kinetic theory 1.1.1 Pressure exerted by a gas 1.2 Gas Law for Ideal gases: 1.2.1 Boyle s Law 1.2.2

More information

CHAPTER V. Brownian motion. V.1 Langevin dynamics

CHAPTER V. Brownian motion. V.1 Langevin dynamics CHAPTER V Brownian motion In this chapter, we study the very general paradigm provided by Brownian motion. Originally, this motion is that a heavy particle, called Brownian particle, immersed in a fluid

More information

Gaussian Process Approximations of Stochastic Differential Equations

Gaussian Process Approximations of Stochastic Differential Equations Gaussian Process Approximations of Stochastic Differential Equations Cédric Archambeau Centre for Computational Statistics and Machine Learning University College London c.archambeau@cs.ucl.ac.uk CSML

More information

5 Mutual Information and Channel Capacity

5 Mutual Information and Channel Capacity 5 Mutual Information and Channel Capacity In Section 2, we have seen the use of a quantity called entropy to measure the amount of randomness in a random variable. In this section, we introduce several

More information

Suriyanarayanan Vaikuntanathan

Suriyanarayanan Vaikuntanathan Suriyanarayanan Vaikuntanathan Postdoctoral Fellow svaikunt@berkeley.edu University of California, Berkeley 240-274-3192 Google Scholar citations: http://scholar.google.com/citations?user=qws4178aaaaj

More information

Non equilibrium thermodynamic transformations. Giovanni Jona-Lasinio

Non equilibrium thermodynamic transformations. Giovanni Jona-Lasinio Non equilibrium thermodynamic transformations Giovanni Jona-Lasinio Kyoto, July 29, 2013 1. PRELIMINARIES 2. RARE FLUCTUATIONS 3. THERMODYNAMIC TRANSFORMATIONS 1. PRELIMINARIES Over the last ten years,

More information

arxiv: v1 [cond-mat.stat-mech] 10 Oct 2012

arxiv: v1 [cond-mat.stat-mech] 10 Oct 2012 arxiv:121.342v1 [cond-mat.stat-mech] 1 Oct 212 Large deviation function for the entropy production: Optimal trajectory and role of fluctuations Thomas Speck Institut für Theoretische Physik II, Heinrich-Heine-Universität

More information

A Brownian ratchet driven by Coulomb friction

A Brownian ratchet driven by Coulomb friction XCIX Congresso Nazionale SIF Trieste, 23 September 2013 A Brownian ratchet driven by Coulomb friction Alberto Petri CNR - ISC Roma Tor Vergata and Roma Sapienza Andrea Gnoli Fergal Dalton Giorgio Pontuale

More information

TOWARD THERMODYNAMICS FOR NONEQUILIBRIUM STEADY STATES OR TWO TWISTS IN THERMODYNAMICS FOR NONEQUILBRIUM STEADY STATES

TOWARD THERMODYNAMICS FOR NONEQUILIBRIUM STEADY STATES OR TWO TWISTS IN THERMODYNAMICS FOR NONEQUILBRIUM STEADY STATES TOWARD THERMODYNAMICS FOR NONEQUILIBRIUM STEADY STATES OR TWO TWISTS IN THERMODYNAMICS FOR NONEQUILBRIUM STEADY STATES HAL TASAKI WITH T.S.KOMATSU, N.NAKAGAWA, S.SASA PRL 100, 230602 (2008) and papers

More information

Breaking and restoring the

Breaking and restoring the Breaking and restoring the fluctuation-response theorem. J. Parrondo, J.F. Joanny, J. Prost J. Barral, L. Dinis, P. Martin Outline Example of fluctuation-dissipation theorem breaking: Hair cells The Hatano

More information

Zeroth law of thermodynamics for nonequilibrium steady states in contact

Zeroth law of thermodynamics for nonequilibrium steady states in contact Zeroth law of thermodynamics for nonequilibrium steady states in contact Sayani Chatterjee 1, Punyabrata Pradhan 1 and P. K. Mohanty 2,3 1 Department of Theoretical Sciences, S. N. Bose National Centre

More information

Continuous quantum measurement process in stochastic phase-methods of quantum dynamics: Classicality from quantum measurement

Continuous quantum measurement process in stochastic phase-methods of quantum dynamics: Classicality from quantum measurement Continuous quantum measurement process in stochastic phase-methods of quantum dynamics: Classicality from quantum measurement Janne Ruostekoski University of Southampton Juha Javanainen University of Connecticut

More information

Suggestions for Further Reading

Suggestions for Further Reading Contents Preface viii 1 From Microscopic to Macroscopic Behavior 1 1.1 Introduction........................................ 1 1.2 Some Qualitative Observations............................. 2 1.3 Doing

More information

The Jarzynski Equation and the Fluctuation Theorem

The Jarzynski Equation and the Fluctuation Theorem The Jarzynski Equation and the Fluctuation Theorem Kirill Glavatskiy Trial lecture for PhD degree 24 September, NTNU, Trondheim The Jarzynski equation and the fluctuation theorem Fundamental concepts Statiscical

More information

Statistical Mechanics of Active Matter

Statistical Mechanics of Active Matter Statistical Mechanics of Active Matter Umberto Marini Bettolo Marconi University of Camerino, Italy Naples, 24 May,2017 Umberto Marini Bettolo Marconi (2017) Statistical Mechanics of Active Matter 2017

More information

Experimental realization of Feynman s ratchet

Experimental realization of Feynman s ratchet Experimental realization of Feynman s ratchet Jaehoon Bang, 1, Rui Pan, 2, Thai M. Hoang, 3, Jonghoon Ahn, 1 Christopher Jarzynski, 4 H. T. Quan, 2, 5, 1, 3, 6, 7, and Tongcang Li 1 School of Electrical

More information

Author(s) Igarashi, A; Tsukamoto, S; Goko, H. Citation PHYSICAL REVIEW E (2001), 64(5)

Author(s) Igarashi, A; Tsukamoto, S; Goko, H. Citation PHYSICAL REVIEW E (2001), 64(5) Title Transport properties and efficiency Brownian motors Author(s) Igarashi, A; Tsukamoto, S; Goko, H Citation PHYSICAL REVIEW E (2001), 64(5) Issue Date 2001-11 URL http://hdl.handle.net/2433/50297 RightCopyright

More information

Thermodynamics of computation.

Thermodynamics of computation. Thermodynamics of computation. Dominique Chu School of Computing University of Kent, UK D.F.Chu@kent.ac.uk C 3 Symposium December 11, 2017 Outline 1 Computation and Life itself 2 Living computers 3 Energy

More information

Statistical Mechanics

Statistical Mechanics Statistical Mechanics Entropy, Order Parameters, and Complexity James P. Sethna Laboratory of Atomic and Solid State Physics Cornell University, Ithaca, NY OXFORD UNIVERSITY PRESS Contents List of figures

More information

Introduction to nonequilibrium physics

Introduction to nonequilibrium physics Introduction to nonequilibrium physics Jae Dong Noh December 19, 2016 Preface This is a note for the lecture given in the 2016 KIAS-SNU Physics Winter Camp which is held at KIAS in December 17 23, 2016.

More information

arxiv: v2 [cond-mat.stat-mech] 9 Jul 2012

arxiv: v2 [cond-mat.stat-mech] 9 Jul 2012 epl draft Stochastic thermodynamics for Maxwell demon feedbacks arxiv:1204.5671v2 [cond-mat.stat-mech] 9 Jul 2012 Massimiliano sposito 1 and Gernot Schaller 2 1 Complex Systems and Statistical Mechanics,

More information

Eulerian (Probability-Based) Approach

Eulerian (Probability-Based) Approach Eulerian (Probability-Based) Approach Tuesday, March 03, 2015 1:59 PM Office hours for Wednesday, March 4 shifted to 5:30-6:30 PM. Homework 2 posted, due Tuesday, March 17 at 2 PM. correction: the drifts

More information

Chapter 2 Non-Equilibrium Steady States

Chapter 2 Non-Equilibrium Steady States Chapter 2 Non-Equilibrium Steady States Abstract In this chapter a brief collection of the results present in literature and used in this work is described. We starts with a derivation of the Langevin

More information

Molecular Driving Forces

Molecular Driving Forces Molecular Driving Forces Statistical Thermodynamics in Chemistry and Biology SUBGfittingen 7 At 216 513 073 / / Ken A. Dill Sarina Bromberg With the assistance of Dirk Stigter on the Electrostatics chapters

More information

Lectures of Dénes Petz ( )

Lectures of Dénes Petz ( ) In 2001: Lectures of Dénes Petz (2001 2011) 1. Covariance and Fisher information in quantum mechanics: CIRM-Volterra Quantum probability Workshop. Levico, January 20-25. 2. Capacity of quantum channels

More information