# The physics of information: from Maxwell s demon to Landauer. Eric Lutz University of Erlangen-Nürnberg

Save this PDF as:

Size: px
Start display at page:

Download "The physics of information: from Maxwell s demon to Landauer. Eric Lutz University of Erlangen-Nürnberg"

## Transcription

1 The physics of information: from Maxwell s demon to Landauer Eric Lutz University of Erlangen-Nürnberg

2 Outline 1 Information and physics Information gain: Maxwell and Szilard Information erasure: Landauer s principle 2 Recent experimental realizations Maxwell s demon and Szilard engine Landauer s erasure principle 3 Thermodynamics of small systems Jarzynski nonequilibrium work relation Information erasure in small systems

3 Maxwell s demon Gas in a partitioned box Maxwell 1867/1871 Information about particle (position/velocity) leads to sorting temperature difference (decrease of entropy without work) (could be used to run a heat engine and produce work) apparent violation of the second law

4 Szilard engine One-particle gas in a partitioned box Szilard 1929 Clear illustration of information work relation Maximum work: W = kt ln 2 (reversible process)

5 Information and physics What is information? Shannon 1948 what you don t already know! Examples: you don t learn much from "today is Friday" but you learn a lot from "oil price will double tomorrow" particle in a partitioned box Information about the system is gained by looking into the box

6 Information and physics "Information is physical " Landauer 1996 Information is transmitted by physical means e.g. electromagnetic or mechanical signals Information is stored in physical systems e.g. in a two-state system: left/right, up/down, hole/no hole, magnetization/no magnetization bit = smallest unit of information Information has to obey the laws of physics

7 Landauer erasure principle "There is a price in forgetting" Landauer 1961 Erasure of information requires minimum heat dissipation Q Q Landauer = kt ln 2 (per bit) Important because: fundamental link between information and thermodynamics resolves Maxwell s demon paradox Bennett 1982 entropy (heat) dissipated larger than entropy decrease (work gained) no violation of the 2nd law if memory reset is considered technological implications

8 Elementary derivation Memory erasure = reset to state zero or one (reinitialization) Ideal gas: P = NkT /V Work during (quasistatic) compression: W = V /2 V PdV = NkT [ln(v /2) ln V ] = NkT ln 2 Cyclic process: U = Q + W = 0 Q Q Landauer = kt ln 2 (N = 1)

9 From gedanken experiments to real experiments Demon performs single particle experiments only a gedanken experiment? "We never experiment with just one electron or atom or (small) molecule. In thought experiments we sometimes assume that we do; this invariably entails ridiculous consequences... In the first place it is fair to say that we cannot experiment with single particles, any more than we can raise ichtkyosauria in the zoo." Schrödinger 1952 Well, not quite...

10 Realization of Maxwell s demon Neutral atoms ( 87 Rb) in a dipole trap Thorn et al. PRL 2008 Potential: I/ with < 0 (> 0) for F = 1 (2) well (barrier) Demonstration of particle sorting ( atomic diode)

11 Realization of the Szilard engine Brownian particle in a tilted periodic potential Toyabe et al. Nature Phys Demonstration of information-to-work conversion

12 Verification of Landauer s principle Brownian particle in a double-well potential Berut et al. Nature 2012 Ciliberto ENS Lyon Measured erasure cycle: Landauer s original thought experiment

13 Verification of Landauer s principle Generic two-state memory: initial configuration: two states with equal probability 1/2 system can store 1 bit of information Shannon entropy: S i = n p n ln p n = ln 2 final configuration: one state with probability 1 system can store 0 bit of information Shannon entropy: S f = n p n ln p n = 0 original bit has been deleted: S = ln 2

14 More general derivation Second law of thermodynamics (for system and reservoir): S = S sys + S res 0 Reservoir always in equilibrium: Q res = T S res T S sys Equivalence between entropies: S sys = k S = k ln 2 Heat produced in reservoir: Q res kt ln 2 connection between information theory and thermodynamics (Q res = kt ln 2 in quasistatic limit i.e. long cycle duration)

15 Verification of Landauer s principle Experimental results: We measure work W and deduce heat Q = U + W = W Landauer can be bound approached but not exceeded Note: kt ln J at room temperature

16 Logical irreversibility Logical gates with more input states than output state are logically irreversible Examples: RESET TO ONE operation (information erasure) but also AND, NAND, OR, XOR,... General formulation of Landauer s principle: Any irreversible logical transformation of classical information produces at least kt ln 2 of heat per bit

17 Technological consequences Energy dissipation per logic operation: Landauer Nature 1988 Frank Comput. Sci. Eng Pop Nano Research 2010 (Switching energy of silicon transistors) Heating main issue hindering miniaturization

18 Outline 1 Information and physics Information gain: Maxwell and Szilard Information erasure: Landauer s principle 2 Recent experimental realizations Maxwell s demon and Szilard engine Landauer s erasure principle 3 Thermodynamics of small systems Jarzynski nonequilibrium work relation Information erasure in small systems

19 Thermodynamics of large systems Equilibrium (nonequilibrium) processes: Entropy: S = (>) Q/T Work: W = (>) F (F = U TS = free energy) second law of thermodynamics Properties: valid for all large systems universal theory for large systems, fluctuations are negligible ( 1/ N) W and Q are deterministic variables

20 Thermodynamics of small systems For small systems, fluctuations are important W and Q are stochastic variables Microsphere in a static optical trap: Imparato et al. PRE (2007) second law has to be generalized (replace inequality like W F by equality)

21 Jarzynski equality Jarzynski PRL (1997) exp( βw ) = exp( β F) equilibrium free energy from nonequilibrium work P(W ) valid arbitrarily far from equilibrium (beyond linear response) Properties: on average: W F generalization of the second law however: P[W < F ε] exp( ε/(kt )) microscopic "violations" are exponentially small

22 Experiments on Jarzynski Stretching of single RNA molecule Liphardt et al. Science (2002) Mechanical torsion pendulum Douarche et al. EPL (2006) Colloid in nonharmonic potential Blickle et al. PRL (2006) Work: W = t 0 dt λ λ V (x(t ), λ) along a trajectory x(t)

23 Information erasure in small systems Applying Jarzynski to Landauer s problem: on average: Q = W F = kt ln 2 however: P[Q < Q Landauer ε] exp( ε/(kt )) full information erasure below Landauer is possible (for single realizations) Dillenschneider, Lutz PRL (2009) Measured heat distribution:

24 Summary Connection between information and thermodynamics Maxwell, Szilard and Landauer Have all been realized experimentally from gedanken to real experiments Thermal fluctuations are important at the micro/nanoscale second law has to be generalized (Jarzynski equality, fluctuation theorem,...)

25 Quantum heat engines Energetics of quantum correlations EPL 88, (2009) Single ion heat engine with maximum efficiency at maximum power Phys. Rev. Lett. 109, (2012) Efficiency of heat engines coupled to nonequilibrium reservoirs arxiv: A nano heat engine beyond the Carnot limit arxiv:

### Even if you're not burning books, destroying information generates heat.

Even if you're not burning books, destroying information generates heat. Information and Thermodynamics: Experimental verification of Landauer's erasure principle with a colloidal particle Antoine Bérut,

### Nonequilibrium thermodynamics at the microscale

Nonequilibrium thermodynamics at the microscale Christopher Jarzynski Department of Chemistry and Biochemistry and Institute for Physical Science and Technology ~1 m ~20 nm Work and free energy: a macroscopic

### DEMONS: MAXWELL S DEMON, SZILARD S ENGINE AND LANDAUER S ERASURE DISSIPATION

In: Proceedings of the first conference on Hot Topics in Physical Informatics (HoTPI, 2013 November). Paper is in press at International Journal of Modern Physics: Conference Series (2014). DEMONS: MAXWELL

### Nonequilibrium Thermodynamics of Small Systems: Classical and Quantum Aspects. Massimiliano Esposito

Nonequilibrium Thermodynamics of Small Systems: Classical and Quantum Aspects Massimiliano Esposito Paris May 9-11, 2017 Introduction Thermodynamics in the 19th century: Thermodynamics in the 21th century:

### Demons: Maxwell demon; Szilard engine; and Landauer's erasure-dissipation

"Everything should be made as simple as possible, but not simpler." Albert Einstein Demons: Maxwell demon; Szilard engine; and Landauer's erasure-dissipation Laszlo B. Kish (1), Claes-Göran Granqvist (2),

### Thermodynamic of computing. Fisica dell Energia - a.a. 2017/2018

Thermodynamic of computing Fisica dell Energia - a.a. 2017/2018 Landauer principle Minimum amount of energy required greater than zero Let assume the operation of bit reset # of initial states: 2 # of

### arxiv: v2 [cond-mat.stat-mech] 9 Jul 2012

epl draft Stochastic thermodynamics for Maxwell demon feedbacks arxiv:1204.5671v2 [cond-mat.stat-mech] 9 Jul 2012 Massimiliano sposito 1 and Gernot Schaller 2 1 Complex Systems and Statistical Mechanics,

### Thermodynamic of computing. Fisica dell Energia - a.a. 2015/2016

Thermodynamic of computing Fisica dell Energia - a.a. 2015/2016 Landauer principle Minimum amount of energy required greater than zero Let assume the operation of bit reset # of initial states: 2 # of

### Maxwell s Demon. Kirk T. McDonald Joseph Henry Laboratories, Princeton University, Princeton, NJ (October 3, 2004)

1 Problem Maxwell s Demon Kirk T. McDonald Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (October 3, 2004) This problem is prob. 2 of [1]. One of the earliest conceptual supercomputers

### Information to energy conversion in an electronic Maxwell s demon and thermodynamics of measurements.

Information to energy conversion in an electronic Maxwell s demon and thermodynamics of measurements Stony Brook University, SUNY Dmitri V Averin and iang Deng Low-Temperature Lab, Aalto University Jukka

### Physics of switches. Luca Gammaitoni NiPS Laboratory

Physics of switches Luca Gammaitoni NiPS Laboratory Logic switches A logic switch is a device that can assume physically distinct states as a result of external inputs. Usually the output of a physical

### 04. Information and Maxwell's Demon. I. Dilemma for Information-Theoretic Exorcisms.

04. Information and Maxwell's Demon. I. Dilemma for Information-Theoretic Exorcisms. Two Options: (S) (Sound). The combination of object system and demon forms a canonical thermal system. (P) (Profound).

### Demon Dynamics: Deterministic Chaos, the Szilard Map, & the Intelligence of Thermodynamic Systems.

Demon Dynamics: Deterministic Chaos, the Szilard Map, & the Intelligence of Thermodynamic Systems http://csc.ucdavis.edu/~cmg/ Jim Crutchfield Complexity Sciences Center Physics Department University of

### Emergent Fluctuation Theorem for Pure Quantum States

Emergent Fluctuation Theorem for Pure Quantum States Takahiro Sagawa Department of Applied Physics, The University of Tokyo 16 June 2016, YITP, Kyoto YKIS2016: Quantum Matter, Spacetime and Information

### Fundamental work cost of quantum processes

1607.03104 1709.00506 Fundamental work cost of quantum processes Philippe Faist 1,2, Renato Renner 1 1 Institute for Theoretical Physics, ETH Zurich 2 Institute for Quantum Information and Matter, Caltech

### ON BROWNIAN COMPUTATION

ON BROWNIAN COMPUTATION JOHN D. NORTON Department of History and Philosophy of Science Center for Philosophy of Science University of Pittsburgh Pittsburgh PA USA 15260 jdnorton@pitt.edu Draft: October10,

### Thermodynamics for small devices: From fluctuation relations to stochastic efficiencies. Massimiliano Esposito

Thermodynamics for small devices: From fluctuation relations to stochastic efficiencies Massimiliano Esposito Beijing, August 15, 2016 Introduction Thermodynamics in the 19th century: Thermodynamics in

### Information in Biology

Information in Biology CRI - Centre de Recherches Interdisciplinaires, Paris May 2012 Information processing is an essential part of Life. Thinking about it in quantitative terms may is useful. 1 Living

### Relating Maxwell s Demon and Quantitative Analysis of Information Leakage for Practical Imperative Programs

Relating Maxwell s Demon and Quantitative Analysis of Information Leakage for Practical Imperative Programs Kushal Anjaria, Arun Mishra To cite this version: Kushal Anjaria, Arun Mishra. Relating Maxwell

### Landauer s principle in the quantum domain

Landauer s principle in the quantum domain Janet Anders Dept of Physics & Astronomy University College London London WC1E 6BT, UK j.anders@ucl.ac.uk Saroosh Shabbir Stefanie Hilt Department of Physics

### From fully quantum thermodynamical identities to a second law equality

From fully quantum thermodynamical identities to a second law equality Alvaro Alhambra, Lluis Masanes, Jonathan Oppenheim, Chris Perry Fluctuating States Phys. Rev. X 6, 041016 (2016) Fluctuating Work

### Does Information Have Mass?

Does Information Have Mass? LASZLO B. KISH 1, CLAES G. GRANQVIST 2 1 Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843-3128, USA 2 Department of Engineering

### General formula for the efficiency of quantum-mechanical analog of the Carnot engine

General formula for the efficiency of quantum-mechanical analog of the Carnot engine Sumiyoshi Abe Department of Physical Engineering, Mie University, Mie 514-8507, Japan Abstract: An analog of the Carnot

### Efficiency at Maximum Power in Weak Dissipation Regimes

Efficiency at Maximum Power in Weak Dissipation Regimes R. Kawai University of Alabama at Birmingham M. Esposito (Brussels) C. Van den Broeck (Hasselt) Delmenhorst, Germany (October 10-13, 2010) Contents

### General Formula for the Efficiency of Quantum-Mechanical Analog of the Carnot Engine

Entropy 2013, 15, 1408-1415; doi:103390/e15041408 Article OPEN ACCESS entropy ISSN 1099-4300 wwwmdpicom/journal/entropy General Formula for the Efficiency of Quantum-Mechanical Analog of the Carnot Engine

### The End of the Thermodynamics of Computation: A No Go Result

December 22, 28, 2011 June 20, 2012 March 31, August 20, 2013 The End of the Thermodynamics of Computation: A No Go Result John D. Norton Department of History and Philosophy of Science Center for Philosophy

### Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences

PHYSICAL REVIEW E VOLUME 60, NUMBER 3 SEPTEMBER 1999 Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences Gavin E. Crooks* Department of Chemistry, University

### Optimal Thermodynamic Control and the Riemannian Geometry of Ising magnets

Optimal Thermodynamic Control and the Riemannian Geometry of Ising magnets Gavin Crooks Lawrence Berkeley National Lab Funding: Citizens Like You! MURI threeplusone.com PRE 92, 060102(R) (2015) NSF, DOE

### 2.2 Classical circuit model of computation

Chapter 2 Classical Circuit Models for Computation 2. Introduction A computation is ultimately performed by a physical device. Thus it is a natural question to ask what are the fundamental limitations

### arxiv:quant-ph/ v1 12 Dec 1996

A quantum-mechanical Maxwell s demon arxiv:quant-ph/9612034v1 12 Dec 1996 Seth Lloyd d Arbeloff Laboratory for Information Systems and Technology Department of Mechanical Engineering Massachusetts Institute

### Lecture Outline Chapter 18. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 18 Physics, 4 th Edition James S. Walker Chapter 18 The Laws of Thermodynamics Units of Chapter 18 The Zeroth Law of Thermodynamics The First Law of Thermodynamics Thermal Processes

### Entropy. Physics 1425 Lecture 36. Michael Fowler, UVa

Entropy Physics 1425 Lecture 36 Michael Fowler, UVa First and Second Laws of A quick review. Thermodynamics First Law: total energy conserved in any process: joules in = joules out Second Law: heat only

### Chapter 20. Heat Engines, Entropy and the Second Law of Thermodynamics. Dr. Armen Kocharian

Chapter 20 Heat Engines, Entropy and the Second Law of Thermodynamics Dr. Armen Kocharian First Law of Thermodynamics Review Review: The first law states that a change in internal energy in a system can

### General Physics I. New Lecture 27: Carnot Cycle, The 2nd Law, Entropy and Information. Prof. WAN, Xin

General Pysics I New Lecture 27: Carnot Cycle, e 2nd Law, Entropy and Information Prof. AN, Xin xinwan@zju.edu.cn ttp://zimp.zju.edu.cn/~xinwan/ Carnot s Engine Efficiency of a Carnot Engine isotermal

### Notes on Landauer s principle, reversible computation, and Maxwell s Demon

Studies in History and Philosophy of Modern Physics 34 (2003) 501 510 Notes on Landauer s principle, reversible computation, and Maxwell s Demon Charles H. Bennett IBM Research Division, Yorktown Heights,

### Axiomatic Information Thermodynamics. Received: 1 February 2018; Accepted: 26 March 2018; Published: 29 March 2018

entropy Article Axiomatic Information Thermodynamics Austin Hulse 1, Benjamin Schumacher 1, * and Michael D. Westmoreland 2 1 Department of Physics, Kenyon College, Gambier, OH 43022, USA; hulsea@kenyon.edu

### İlke Ercan, PhD Assistant Professor, Electrical & Electronics Eng. Dep. Boğaziçi University, İstanbul, Turkey

ENERGY EFFICIENCY LIMITS IN BROWNIAN CIRCUITS A PHYSICAL-INFORMATION-THEORETIC APPROACH, PhD Assistant Professor, Electrical & Electronics Eng. Dep. Boğaziçi University, İstanbul, Turkey Micro Energy 2017

### The Kelvin-Planck statement of the second law

The Kelvin-Planck statement of the second law It is impossible for any device that operates on a cycle to receive heat from a single reservoir and produce a net amount of work Q W E =ΔE net net net, mass

### Thermal Fluctuation-Induced Electricity Generation across a. Non-Ideal Diode

Thermal Fluctuation-Induced Electricity Generation across a Non-Ideal Diode Guoan Tai, 1,2 Jinsong Liu, 1,3 Tian Zeng, 1,3 Jizhou Kong, 1,4 and Fuyong Lv 5 1 The State Key Laboratory of Mechanics and Control

### arxiv: v2 [cond-mat.stat-mech] 16 Mar 2012

arxiv:119.658v2 cond-mat.stat-mech] 16 Mar 212 Fluctuation theorems in presence of information gain and feedback Sourabh Lahiri 1, Shubhashis Rana 2 and A. M. Jayannavar 3 Institute of Physics, Bhubaneswar

### 8 Lecture 8: Thermodynamics: Principles

8. LECTURE 8: THERMODYNMICS: PRINCIPLES 69 8 Lecture 8: Thermodynamics: Principles Summary Phenomenological approach is a respectable way of understanding the world, especially when we cannot expect microscopic

### Optimum protocol for fast-switching free-energy calculations

PHYSICAL REVIEW E 8, 7 Optimum protocol for fast-switching free-energy calculations Philipp Geiger and Christoph Dellago* Faculty of Physics, University of Vienna, Boltzmanngasse 5, 9 Vienna, Austria Received

### Physics 218: Waves and Thermodynamics Fall 2002, James P. Sethna Homework 12, due Wednesday Dec. 4 Latest revision: November 26, 2002, 10:45 am

Physics 218: Waves and Thermodynamics Fall 2002, James P. Sethna Homework 12, due Wednesday Dec. 4 Latest revision: November 26, 2002, 10:45 am Reading Feynman, I.44 Laws of Thermodynamics, I.45 Illustrations

### Weak Ergodicity Breaking WCHAOS 2011

Weak Ergodicity Breaking Eli Barkai Bar-Ilan University Bel, Burov, Korabel, Margolin, Rebenshtok WCHAOS 211 Outline Single molecule experiments exhibit weak ergodicity breaking. Blinking quantum dots,

### Thermal Noise Driven Heat Engines

The important thing is not to stop questioning. uriosity has its own reason for existing. (Albert Einstein) Thermal Noise Driven Heat Engines L.B. Kish Department of Electrical and omputer Engineering,

### Chapter 12. The Laws of Thermodynamics. First Law of Thermodynamics

Chapter 12 The Laws of Thermodynamics First Law of Thermodynamics The First Law of Thermodynamics tells us that the internal energy of a system can be increased by Adding energy to the system Doing work

### Chapter 4: Going from microcanonical to canonical ensemble, from energy to temperature.

Chapter 4: Going from microcanonical to canonical ensemble, from energy to temperature. All calculations in statistical mechanics can be done in the microcanonical ensemble, where all copies of the system

### arxiv: v1 [cond-mat.stat-mech] 6 Jul 2015

Santa Fe Institute Working Paper 15-07-XXX arxiv.org:1507.xxxx [cond-mat.stat-mech] Identifying Functional Thermodynamics in Autonomous Maxwellian Ratchets arxiv:1507.01537v1 [cond-mat.stat-mech] 6 Jul

### Demons, Engines and the Second Law

Demons, Engines and the Second Law Since 1871 physicists have been trying to resolve the conundrum of Maxwell's demon: a creature that seems to violate the second law of thermodynamics. An answer comes

### T s change via collisions at boundary (not mechanical interaction)

Lecture 14 Interaction of 2 systems at different temperatures Irreversible processes: 2nd Law of Thermodynamics Chapter 19: Heat Engines and Refrigerators Thermal interactions T s change via collisions

### Physics 408 Final Exam

Physics 408 Final Exam Name You are graded on your work (with partial credit where it is deserved) so please do not just write down answers with no explanation (or skip important steps)! Please give clear,

### Spring_#8. Thermodynamics. Youngsuk Nam

Spring_#8 Thermodynamics Youngsuk Nam ysnam1@khu.ac.krac kr Ch.7: Entropy Apply the second law of thermodynamics to processes. Define a new property called entropy to quantify the secondlaw effects. Establish

### 8.21 The Physics of Energy Fall 2009

MIT OpenCourseWare http://ocw.mit.edu 8.21 The Physics of Energy Fall 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 8.21 Lecture 9 Heat Engines

### Entanglement. arnoldzwicky.org. Presented by: Joseph Chapman. Created by: Gina Lorenz with adapted PHYS403 content from Paul Kwiat, Brad Christensen

Entanglement arnoldzwicky.org Presented by: Joseph Chapman. Created by: Gina Lorenz with adapted PHYS403 content from Paul Kwiat, Brad Christensen PHYS403, July 26, 2017 Entanglement A quantum object can

### Thermal and Statistical Physics Department Exam Last updated November 4, L π

Thermal and Statistical Physics Department Exam Last updated November 4, 013 1. a. Define the chemical potential µ. Show that two systems are in diffusive equilibrium if µ 1 =µ. You may start with F =

### Chapter 12. The Laws of Thermodynamics

Chapter 12 The Laws of Thermodynamics First Law of Thermodynamics The First Law of Thermodynamics tells us that the internal energy of a system can be increased by Adding energy to the system Doing work

### Conditioning, Correlation and Entropy Generation in Maxwell s Demon

Entropy 2013, 15, 4243-4265; doi:10.3390/e15104243 Article Conditioning, Correlation and Entropy Generation in Maxwell s Demon Neal G. Anderson OPEN ACCESS entropy ISSN 1099-4300 www.mdpi.com/journal/entropy

### Stochastic equations for thermodynamics

J. Chem. Soc., Faraday Trans. 93 (1997) 1751-1753 [arxiv 1503.09171] Stochastic equations for thermodynamics Roumen Tsekov Department of Physical Chemistry, University of Sofia, 1164 Sofia, ulgaria The

### arxiv: v2 [cond-mat.stat-mech] 28 Mar 2013

Distribution of Entropy Production in a Single-Electron Box arxiv:303.6405v2 [cond-mat.stat-mech] 28 Mar 203 J. V. Koski, T. Sagawa, 2 O.-P. Saira,,3 Y. Yoon, A. Kutvonen, 4 P. Solinas,,4 M. Möttönen,,5

### Thermodynamics of nuclei in thermal contact

Thermodynamics of nuclei in thermal contact Karl-Heinz Schmidt, Beatriz Jurado CENBG, CNRS/IN2P3, Chemin du Solarium B.P. 120, 33175 Gradignan, France Abstract: The behaviour of a di-nuclear system in

### Lecture 27 Thermodynamics: Enthalpy, Gibbs Free Energy and Equilibrium Constants

Physical Principles in Biology Biology 3550 Fall 2017 Lecture 27 Thermodynamics: Enthalpy, Gibbs Free Energy and Equilibrium Constants Wednesday, 1 November c David P. Goldenberg University of Utah goldenberg@biology.utah.edu

### Control gates as building blocks for reversible computers

Control gates as building blocks for reversible computers A. De Vos 1, B. Desoete 2, F. Janiak 3, and A. Nogawski 3 1 Universiteit Gent and Imec v.z.w., B-9000 Gent, Belgium 2 Universiteit Gent, B-9000

### arxiv: v3 [cond-mat.stat-mech] 13 Nov 2007

Work and heat probability distribution of an optically driven Brownian particle: Theory and experiments arxiv:77.439v3 [cond-mat.stat-mech] 13 Nov 27 A. Imparato, 1 L. Peliti, 2, 3, 4 G. Pesce, 2,5 G.

### CHAPTER 7 ENTROPY. Copyright Hany A. Al-Ansary and S. I. Abdel-Khalik (2014) 1

CHAPTER 7 ENTROPY S. I. Abdel-Khalik (2014) 1 ENTROPY The Clausius Inequality The Clausius inequality states that for for all cycles, reversible or irreversible, engines or refrigerators: For internally-reversible

### 12 The Laws of Thermodynamics

June 14, 1998 12 The Laws of Thermodynamics Using Thermal Energy to do Work Understanding the laws of thermodynamics allows us to use thermal energy in a practical way. The first law of thermodynamics

### Thermodynamical cost of accuracy and stability of information processing

Thermodynamical cost of accuracy and stability of information processing Robert Alicki Instytut Fizyki Teoretycznej i Astrofizyki Uniwersytet Gdański, Poland e-mail: fizra@univ.gda.pl Fields Institute,

### Probing quantum entanglement in hadron collisions

NPA seminar, Yale University, September 21, 2017 Probing quantum entanglement in hadron collisions D. Kharzeev Based on DK, E. Levin, Phys Rev D 95 (2017) 114008 1 The parton model: 50 years of success

### Implementation of Optimized Reversible Sequential and Combinational Circuits for VLSI Applications

V. G. Santhi Swaroop et al Int. Journal of Engineering Research and Applications RESEARCH ARTICLE OPEN ACCESS Implementation of Optimized Reversible Sequential and Combinational Circuits for VLSI Applications

### Thermoelectricity with cold atoms?

Thermoelectricity with cold atoms? Ch. Grenier, C. Kollath & A. Georges Centre de physique Théorique - Université de Genève - Collège de France Université de Lorraine Séminaire du groupe de physique statistique

### !W "!#U + T#S, where. !U = U f " U i and!s = S f " S i. ! W. The maximum amount of work is therefore given by =!"U + T"S. !W max

1 Appendix 6: The maximum wk theem (Hiroshi Matsuoka) 1. Question and answer: the maximum amount of wk done by a system Suppose we are given two equilibrium states of a macroscopic system. Consider all

### Irreversible Processes

Irreversible Processes Examples: Block sliding on table comes to rest due to friction: KE converted to heat. Heat flows from hot object to cold object. Air flows into an evacuated chamber. Reverse process

### ...Thermodynamics. Entropy: The state function for the Second Law. Entropy ds = d Q. Central Equation du = TdS PdV

...Thermodynamics Entropy: The state function for the Second Law Entropy ds = d Q T Central Equation du = TdS PdV Ideal gas entropy s = c v ln T /T 0 + R ln v/v 0 Boltzmann entropy S = klogw Statistical

### Basic Thermodynamics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Basic Thermodynamics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 09 Second Law and its Corollaries-IV Good afternoon to all of you to this session

### Lecture 23. CMOS Logic Gates and Digital VLSI I

ecture 3 CMOS ogic Gates and Digital SI I In this lecture you will learn: Digital ogic The CMOS Inverter Charge and Discharge Dynamics Power Dissipation Digital evels and Noise NFET Inverter Cut-off Saturation

### arxiv: v2 [quant-ph] 27 Jun 2011

The thermodynamic meaning of negative entropy Lídia del Rio, 1 Johan Åberg, 1 Renato Renner, 1 Oscar Dahlsten, 1, 2, 3 and Vlatko Vedral 2, 3 1 Institute for Theoretical Physics, ETH Zurich, Switzerland.

### Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris

Exploring the quantum dynamics of atoms and photons in cavities Serge Haroche, ENS and Collège de France, Paris Experiments in which single atoms and photons are manipulated in high Q cavities are modern

### Part II: Statistical Physics

Chapter 6: Boltzmann Statistics SDSMT, Physics Fall Semester: Oct. - Dec., 2014 1 Introduction: Very brief 2 Boltzmann Factor Isolated System and System of Interest Boltzmann Factor The Partition Function

### Doing small systems: Fluctuation Relations and the Arrow of Time

Doing small systems: Fluctuation Relations and the Arrow of Time Peter Hänggi, Institut für Physik, Universität Augsburg M. Campisi, P. Hänggi, and P. Talkner Colloquium: Quantum fluctuation relations:

### Quantum Fluctuation Relations and the Arrow of Time

Quantum Fluctuation Relations and the Arrow of Time Peter Hänggi, Institut für Physik, Universität Augsburg M. Campisi, P. Hänggi, and P. Talkner Colloquium: Quantum fluctuation relations: Foundations

### Do Organisms Contravene the Second Law?

CHAPTER 2 Do Organisms Contravene the Second Law? Life and the Second Law Many scientists have remarked that whereas the physical world runs down according to the Second Law of thermodynamics such that

### Free energy simulations

Free energy simulations Marcus Elstner and Tomáš Kubař January 14, 2013 Motivation a physical quantity that is of most interest in chemistry? free energies Helmholtz F or Gibbs G holy grail of computational

### Floating Point Representation and Digital Logic. Lecture 11 CS301

Floating Point Representation and Digital Logic Lecture 11 CS301 Administrative Daily Review of today s lecture w Due tomorrow (10/4) at 8am Lab #3 due Friday (9/7) 1:29pm HW #5 assigned w Due Monday 10/8

### First Law showed the equivalence of work and heat. Suggests engine can run in a cycle and convert heat into useful work.

0.0J /.77J / 5.60J hermodynamics of Biomolecular Systems 0.0/5.60 Fall 005 Lecture #6 page he Second Law First Law showed the euivalence of work and heat U = + w, du = 0 for cyclic process = w Suggests

### Brownian Motion and Langevin Equations

1 Brownian Motion and Langevin Equations 1.1 Langevin Equation and the Fluctuation- Dissipation Theorem The theory of Brownian motion is perhaps the simplest approximate way to treat the dynamics of nonequilibrium

### Symmetry of the Dielectric Tensor

Symmetry of the Dielectric Tensor Curtis R. Menyuk June 11, 2010 In this note, I derive the symmetry of the dielectric tensor in two ways. The derivations are taken from Landau and Lifshitz s Statistical

### Mathematical Modeling of the Brusselator

Mathematical Modeling of the Brusselator prepared by: Matthew P. McDowell prepared for: Joseph M. Powers, AME 36099-01 Department of Aerospace and Mechanical Engineering University of Notre Dame Notre

### Section 3 Entropy and Classical Thermodynamics

Section 3 Entropy and Classical Thermodynamics 3.1 Entropy in thermodynamics and statistical mechanics 3.1.1 The Second Law of Thermodynamics There are various statements of the second law of thermodynamics.

### Adiabatic Expansion (DQ = 0)

Adiabatic Expansion (DQ = 0) Occurs if: change is made sufficiently quickly and/or with good thermal isolation. Governing formula: PV g = constant where g = C P /C V Adiabat P Isotherms V Because PV/T

### Lecture Notes 2014March 13 on Thermodynamics A. First Law: based upon conservation of energy

Dr. W. Pezzaglia Physics 8C, Spring 2014 Page 1 Lecture Notes 2014March 13 on Thermodynamics A. First Law: based upon conservation of energy 1. Work 1 Dr. W. Pezzaglia Physics 8C, Spring 2014 Page 2 (c)

### Recall the essence of data transmission: How Computers Work Lecture 11

Recall the essence of data transmission: How Computers Work Lecture 11 Q: What form does information take during transmission? Introduction to the Physics of Computation A: Energy Energy How Computers

### Collective Effects. Equilibrium and Nonequilibrium Physics

Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 1, 17 March 2006 1 Collective Effects in Equilibrium and Nonequilibrium Physics Website: http://cncs.bnu.edu.cn/mccross/course/ Collective

### Dissipation and the Relaxation to Equilibrium

1 Dissipation and the Relaxation to Equilibrium Denis J. Evans, 1 Debra J. Searles 2 and Stephen R. Williams 1 1 Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia

### 18.13 Review & Summary

5/2/10 10:04 PM Print this page 18.13 Review & Summary Temperature; Thermometers Temperature is an SI base quantity related to our sense of hot and cold. It is measured with a thermometer, which contains

### Collective Effects. Equilibrium and Nonequilibrium Physics

1 Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 1, 17 March 2006 1 Collective Effects in Equilibrium and Nonequilibrium Physics Website: http://cncs.bnu.edu.cn/mccross/course/ Collective

### Energy Barriers and Rates - Transition State Theory for Physicists

Energy Barriers and Rates - Transition State Theory for Physicists Daniel C. Elton October 12, 2013 Useful relations 1 cal = 4.184 J 1 kcal mole 1 = 0.0434 ev per particle 1 kj mole 1 = 0.0104 ev per particle

### Data Provided: A formula sheet and table of physical constants are attached to this paper.

Data Provided: A formula sheet and table of physical constants are attached to this paper. DEPARTMENT OF PHYSICS AND ASTRONOMY Spring Semester (2016-2017) From Thermodynamics to Atomic and Nuclear Physics

### Adiabats and entropy (Hiroshi Matsuoka) In this section, we will define the absolute temperature scale and entropy.

1184 Adiabats and entropy (Hiroshi Matsuoka In this section, we will define the absolute temperature scale and entropy Quasi-static adiabatic processes and adiabats Suppose that we have two equilibrium