EOS 250 Geophysical Fields and Fluxes Volume Integrals

Size: px
Start display at page:

Download "EOS 250 Geophysical Fields and Fluxes Volume Integrals"

Transcription

1 EOS 25 Geophysical Fields and Fluxes olume Integrals February 17, 21 Overview These notes cover the following: Quantities defined per unit volume : volume integrals olume Integrals We have seen in the example of pressure variations in the atmosphere that mass is not concentrated in point particles (except at the atomic level), but distributed in space. This why we can define density ρ as mass per unit volume: as a single point has not volume, it also has no mass. In general, however, density is not a constant, but can vary in space and possibly in time (recall the example of pressure and density in the atmosphere). This means that we have to reconsider how the density field ρ(x, y, z) and the mass of a body are related. We have already touched on this in previous examples, when we considered the mass of a slice of the atmosphere, in which we assumed that ρ depends only on height. Here, we want to generalize these ideas. Before we do so, note that instead of mass, we could also consider other physical quantities that are not generally concentrated at points but distributed in space: for instance, momentum in the atmosphere or thermal energy in the Earth s interior are distributed rather than concentrated at points. We will see later that we can also describe these quantites using densities : for instance, we can define thermal energy density as heat content per unit volume of the Earth s interior, in the same way that we are about to define mass density. In general, when we have a medium in which mass, momentum, energy etc. are distributed in space, we call it a continuum. The vector calculus you will learn in this course is the essential tool for formulating physics in continua. If the density of a material varies in space, how is density defined in the first place? Clearly, we cannot take an arbitrarily-sized and shaped sample of the material, 1

2 measure its mass and volume, and define density as mass over volume: the answer would depend on precisely what the size and shape of the sample are. To define density at a point (x, y, z), consider instead the mass m of a small volume centered on (x, y, z). For small enough volumes, we expect m to be proportional to. This allows us to define density as the constant of proportionality, ρ m. Implicit here is, of course, the limit of small. So how do we go backwards: given a density field ρ(x, y, z), how do we calculate the mass M of a body occupying a known volume? As with the surface S in the mass transfer calculation, we split the total volume into small pieces of size. Then we calculate the mass of each piece as m ρ, and sum over the masses of all the small pieces that make up the whole volume : M m ρ. Again, the limit of small is implied, and we can again recognize a Riemann sum that we denote by an integral: M ρ d, where the subscript indicates the volume the integral is taken over. To calculate an integral like this, we adapt the idea of a Riemann sum in one dimension. The obvious way of splitting into small bits is into cuboids of side lengths x y z (figure 1), x y z. The mass M of the body is then the sum of ρ over all the cuboids contained in the volume (again, in the limit of small x, y and z). To keep track of all these cuboids, we can use indices i, j and k to identify their x-, y- and z-positions respectively, letting x i, y j and z k be the coordinates of the centre of the cuboid at the kth level above the base of the vertical column of cuboids with position i, j in the xy-plane. To sum, we have to sum over all indices (i, j, k) that correspond to cuboids in the volume, ρ d ρ(x i, y j, z k ) x y z. i,j,k 2

3 z zhmax( x,y) y zh y x,y min( ) yymax( x) x min yy x min( ) x max x k... k2 k1 z z index k index j j1 j... y y ( xyz i, j, k) i1 i2 i... index i. x sum over k sum over j ( xy, ) i j y sum over i x Figure 1: Breaking into small cuboids. 3

4 When taking a sum over multiple indices, the order of summing does not matter. We can therefore sum over k first, then over j and finally over i, ρ d { [ ] } ρ(x i, y j, z k ) z y x. i j k Of course, as z, the sum over k is the sum over cuboids in the (i, j)th vertical column, where we can treat i and j temporarily as constants. This sum turns into an integral over z: ρ(x i, y j, z k ) z ρ(x i, y j, z) dz. k As we just stated, the sum is formed with i and j treated as constants, so the integral over z is take, with x i and y j treated as constants. Next, the sum over j is then the sum over a row of such columns with fixed i, and turns into an integral over y taken at constant x i, so [ ] [ ρ(x i, y j, z k ) z y j k ] ρ(x i, y, z) dz dy. Here, the integral with respect to z is computed first, treating y as well as x i as constants. Subsequently, the integral with respect to y is computed, treating x i as constant. Lastly the sum over i is finally the sum over all thee rows of vertical columns, and turns into an integral over x, so ρ d { [ ] } ρ(x i, y j, z k ) z y x i j k { [ ] } ρ(x, y, z) dz dy dx As above, the integral with respect to z is computed first, treating y as well as x as constants, then the integral with respect to y is computed, treating x as constant, and lastly, the integral with respect to x is calculated. For obvious reasons, the integral over x, y and z is also known as a triple integral. Importantly, the volume occupies a finite and prescribed portion of space, so the Riemann sums above turn into definite integrals: for each index (i, j and k) we sum only over those cubes that lie within the volume (see figure 1). The hard part is therefore often to figure out what limits to use. Example 1 Let ρ 1+x 2 +y 2 +z 2, and let be the unit cube, for which < x < 1, < y < 1, < z < 1. Compute ρ d. 4

5 In this case, the limits of integration are clear as each coordinate ranges from to 1. Computing each integral in turn, 1 { 1 [ 1 ] } ρ d 1 + x 2 + y 2 + z 2 dz dy dx 1 { 1 [ z + x 2 z + y 2 z + z 3 /3 ] } z1 dy dz z 1 { 1 } 4/3 + x 2 + y 2 dy dx [ 4y/3 + x 2 y + y 3 /3 ] y1 y dx 5/3 + x 2 dx The tricky issue is therefore the question of limits of integration for irregularlyshaped bodies. We consider only a body that has a single upper surface of the form z h max (x, y), and a lower surface z h min (x, y) (figure 1). Also, consider the projection xy of this body onto the xy-plane, and assume that this projection has an upper boundary in the xy-plane of the form y y max (x), a lower boundary y y min (x), a left-hand edge at x x min and a right-hand edge at x x max. The limits here come once more from viewing the integrals as sums. When taking the sum over k at fixed i and j, we are summing from the bottom of a vertical column to the top. This means that the range of k will depend on x i and y j, as z k must lie between h min (x i, y j ) and h max (x i, y j ). In other words, when taking the limit z, the integral is from z h min (x i, y j ) to h max (x i, y j ). The next sum, over j, must capture all the columns in a row at fixed i, that is, the integral must range from y min (x i ) to y max (x i ). Lastly, the sum over i must go over all these rows, and the x-integral must therefore range from x min to x max (figure 1). Hence [ xmax ( ymax ) ] hmax(x,y) ρ d ρ(x, y, z) dz dy dx. x min y min h min (x,y) We give an example of how to use this formula next. Example 2 Let be the tetrahedron with vertices (,, ), (1,, ), (, 1, ) and (,, 1) (figure 2), and let ρ x + y + z. Compute ρ d. From the diagram, we have h min (x, y), y min (x), x min, x max 1. We still need to find y max (x) and h max (x, y). Let us find y max (x) first. Clearly, this is the straight line connecting the vertices (, 1, ) to (1,, ). Let us write this in the form y ax+b. If the line passes through 5

6 z 1 n 1 y n 1 x Figure 2: The volume in example 2. (Ignore the vectors labelled n for now.) (, 1, ) then y 1 when x, so 1 a + b, or b 1. Similarly, y when x 1 if the line passes through (1,, ), so a 1 + b, or a b 1. Hence y max 1 x. Next, we need to write the slanted upper surface in the form z h max (x, y). This works the same way as above. We know that the triangle is part of a plane, and hence we expect that z ax + by + c. (1) describes the surface for some set of coefficients a, b and c (with a and b potentially different from above). How do we find them? We know that the plane must pass through the points (x, y, z) (1,, ), (, 1, ) and (,, 1). Hence these coordinates must satisfy the equation (1). Substituting the coordinates into (1), we get, for each of these points in turn, a + c b + c 1 c Hence c 1, a b 1 and z 1 x y. Therefore This allows us to write ρ d h max (x, y) 1 x y. 1 [ 1 x ( 1 x y 6 ) ) (x + y + z) dz dy dx.

7 But we have already stated that we will take the z-integral first, treating x and y as constant. This is done at follows: 1 x y (x + y + z) dz [ xz + yz + z 2 /2 ] z1 x y z x(1 x y) + y(1 x y) + (1 x y) 2 /2 Note that when computing the integral with respect to z we treat x and y as constants not only in the integrand, but also in the limits. Once we have completely computed the integral with respect to z, including applying the limits, we compute the integral with respect to y, treating x as constant. Last, the integral with respect to x is computed: 1 [ 1 x ( ρ d x(1 x y) + y(1 x y) + (1 x y) 2 /2 ) ] dy dx [ x(1 x)y xy 2 /2 + (1 x)y 2 /2 y 3 /3 (1 x y) 3 /6 ] y1 x y dx x(1 x) x/2 + (1 x)/2 + (1 x) 3 /6 dx [ 1/2 x 2 + (1 x) 3 /6 ] dx [ x/2 x 3 /3 (1 x) 4 /24 ] 1 1/8 Exercise 1 Let be a cuboid with rectangular base area A in the xy-plane and height h. Let density ρ be a function of height z only. Show that ρ d A h ρ(z) dz. Exercise 2 Let be the tetrahedron with vertices (,, ), (1,, ), (1, 1, ) and (,, 1). Let ρ 1 + xy + z. Compute the mass of the body. Exercise 3 What do you think the physical meaning of the integral 1 d is? Confirm your answer by computing this integral for the tetrahedron in the previous ex- ercise, and compare that answer with the volume of the tetrahedron given by 1/3 base area height. If ρ ρ constant, evaluate ρ d, if also denotes the volume of the body. (Comment?) We have seen how to relate total mass M to density in cases where density is not constant, where M ρ d. As a result, it is more useful not to think of density as being mass over volume. In fact, if we take mass over volume, we get a mean density ρ M ρ d, 7

8 but this is value depends on the particular shape of the volume and does not give any information about the local density at a point (x, y, z). An analogous concept would be to say that the definition of velocity as distance over time gives a mean velocity but not velocity at any instant in time. Take x(t) be position as a function of time, and put v x(t 2) x(t 1 ) t 2 t 1. This is the mean velocity between times t 1 and t 2, and can again be written as an integral similar to the formulat for ρ above, v t2 v(t) dt, t 2 t 1 t 1 but v does not give information about instantaneous velocity at any point in the interval from t 1 to t 2. A better way to think of the density field ρ(x, y, z) is as a measure of how concentrated mass is near a point (x, y, z). Of course, a single point (x, y, z) does not have any mass, and only a small but finite volume around that point will contain a finite amount of mass m.to get a measure of how concentrated mass is near (x, y, z), it is then natural to take the ratio of m to. The more mass is concentrated, the bigger m will be for a fixed volume, and therefore the biger density field ρ(x, y, z) m will be. 1 As we mentioned at the beginning, there are other quantities that are similar to density: for instance, the concentration of a chemical measured in moles per cubic metre, the heat content of a substance, measured in Joules per cubic metre, or charge density, measured in Coulombs per cubic metre. All of these quantities have in common that they measure some physical entity per unit volume they are essentially generalized densities, with amounts of a chemical, energy and charge taking the place of mass in the definition of ordinary density (which we could also think of as mass density ). The theory developed above can also be applied to these other densities. For instance, we would define a chemical concentration field c(x, y, z) in terms of the the number of moles n in a small volume around the point (x, y, z), c(x, y, z) n. 1 The analogue of this for velocity is of course to take velocity v(t) to be the rate of change of x with respect to t at a given point in time 8

9 Following the same steps as above, it is then clear that the number of moles N of the chemical in some fixed volume is given by N c d. Similarly, if q(x, y, z) is the charge density field, the total charge Q in a given volume is Q q d. 9

25. Chain Rule. Now, f is a function of t only. Expand by multiplication:

25. Chain Rule. Now, f is a function of t only. Expand by multiplication: 25. Chain Rule The Chain Rule is present in all differentiation. If z = f(x, y) represents a two-variable function, then it is plausible to consider the cases when x and y may be functions of other variable(s).

More information

Double Integrals. P. Sam Johnson. February 4, P. Sam Johnson (NIT Karnataka) (NIT Karnataka) Double Integrals February 4, / 57

Double Integrals. P. Sam Johnson. February 4, P. Sam Johnson (NIT Karnataka) (NIT Karnataka) Double Integrals February 4, / 57 Double Integrals P. Sam Johnson February 4, 2018 P. Sam Johnson (NIT Karnataka) (NIT Karnataka) Double Integrals February 4, 2018 1 / 57 Overview We defined the definite integral of a continuous function

More information

2 dimensions Area Under a Curve Added up rectangles length (f lies in 2-dimensional space) 3-dimensional Volume

2 dimensions Area Under a Curve Added up rectangles length (f lies in 2-dimensional space) 3-dimensional Volume 12.7 Triple Integrals HW do integrations manually except for the applications Single integral Functions of 1 variable, f ( x ) *Integrated over interval of x f ( x ) 2 dimensions Area Under a Curve f (

More information

Integrals. D. DeTurck. January 1, University of Pennsylvania. D. DeTurck Math A: Integrals 1 / 61

Integrals. D. DeTurck. January 1, University of Pennsylvania. D. DeTurck Math A: Integrals 1 / 61 Integrals D. DeTurck University of Pennsylvania January 1, 2018 D. DeTurck Math 104 002 2018A: Integrals 1 / 61 Integrals Start with dx this means a little bit of x or a little change in x If we add up

More information

Chain Rule. MATH 311, Calculus III. J. Robert Buchanan. Spring Department of Mathematics

Chain Rule. MATH 311, Calculus III. J. Robert Buchanan. Spring Department of Mathematics 3.33pt Chain Rule MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Spring 2019 Single Variable Chain Rule Suppose y = g(x) and z = f (y) then dz dx = d (f (g(x))) dx = f (g(x))g (x)

More information

14.1. Multiple Integration. Iterated Integrals and Area in the Plane. Iterated Integrals. Iterated Integrals. MAC2313 Calculus III - Chapter 14

14.1. Multiple Integration. Iterated Integrals and Area in the Plane. Iterated Integrals. Iterated Integrals. MAC2313 Calculus III - Chapter 14 14 Multiple Integration 14.1 Iterated Integrals and Area in the Plane Objectives Evaluate an iterated integral. Use an iterated integral to find the area of a plane region. Copyright Cengage Learning.

More information

Coulombs Law and Electric Field Intensity

Coulombs Law and Electric Field Intensity Coulombs Law and Electric Field Intensity 2.1 Coulomb s law Coulomb stated that the force between two very small objects separated in a vacuum or free space by a distance, which is large compared to their

More information

PRACTICE PROBLEMS. Please let me know if you find any mistakes in the text so that i can fix them. 1. Mixed partial derivatives.

PRACTICE PROBLEMS. Please let me know if you find any mistakes in the text so that i can fix them. 1. Mixed partial derivatives. PRACTICE PROBLEMS Please let me know if you find any mistakes in the text so that i can fix them. 1.1. Let Show that f is C 1 and yet How is that possible? 1. Mixed partial derivatives f(x, y) = {xy x

More information

Physics 6303 Lecture 2 August 22, 2018

Physics 6303 Lecture 2 August 22, 2018 Physics 6303 Lecture 2 August 22, 2018 LAST TIME: Coordinate system construction, covariant and contravariant vector components, basics vector review, gradient, divergence, curl, and Laplacian operators

More information

29.3. Integral Vector Theorems. Introduction. Prerequisites. Learning Outcomes

29.3. Integral Vector Theorems. Introduction. Prerequisites. Learning Outcomes Integral ector Theorems 9. Introduction arious theorems exist relating integrals involving vectors. Those involving line, surface and volume integrals are introduced here. They are the multivariable calculus

More information

Tangent Plane. Linear Approximation. The Gradient

Tangent Plane. Linear Approximation. The Gradient Calculus 3 Lia Vas Tangent Plane. Linear Approximation. The Gradient The tangent plane. Let z = f(x, y) be a function of two variables with continuous partial derivatives. Recall that the vectors 1, 0,

More information

18.02 Multivariable Calculus Fall 2007

18.02 Multivariable Calculus Fall 2007 MIT OpenCourseWare http://ocw.mit.edu 18.02 Multivariable Calculus Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. V9. Surface Integrals Surface

More information

Multiple Integrals and Vector Calculus (Oxford Physics) Synopsis and Problem Sets; Hilary 2015

Multiple Integrals and Vector Calculus (Oxford Physics) Synopsis and Problem Sets; Hilary 2015 Multiple Integrals and Vector Calculus (Oxford Physics) Ramin Golestanian Synopsis and Problem Sets; Hilary 215 The outline of the material, which will be covered in 14 lectures, is as follows: 1. Introduction

More information

Instructions: No books. No notes. Non-graphing calculators only. You are encouraged, although not required, to show your work.

Instructions: No books. No notes. Non-graphing calculators only. You are encouraged, although not required, to show your work. Exam 3 Math 850-007 Fall 04 Odenthal Name: Instructions: No books. No notes. Non-graphing calculators only. You are encouraged, although not required, to show your work.. Evaluate the iterated integral

More information

Chapter 1. Vector Algebra and Vector Space

Chapter 1. Vector Algebra and Vector Space 1. Vector Algebra 1.1. Scalars and vectors Chapter 1. Vector Algebra and Vector Space The simplest kind of physical quantity is one that can be completely specified by its magnitude, a single number, together

More information

z 2 = 1 4 (x 2) + 1 (y 6)

z 2 = 1 4 (x 2) + 1 (y 6) MA 5 Fall 007 Exam # Review Solutions. Consider the function fx, y y x. a Sketch the domain of f. For the domain, need y x 0, i.e., y x. - - - 0 0 - - - b Sketch the level curves fx, y k for k 0,,,. The

More information

Vector Calculus, Maths II

Vector Calculus, Maths II Section A Vector Calculus, Maths II REVISION (VECTORS) 1. Position vector of a point P(x, y, z) is given as + y and its magnitude by 2. The scalar components of a vector are its direction ratios, and represent

More information

1 + f 2 x + f 2 y dy dx, where f(x, y) = 2 + 3x + 4y, is

1 + f 2 x + f 2 y dy dx, where f(x, y) = 2 + 3x + 4y, is 1. The value of the double integral (a) 15 26 (b) 15 8 (c) 75 (d) 105 26 5 4 0 1 1 + f 2 x + f 2 y dy dx, where f(x, y) = 2 + 3x + 4y, is 2. What is the value of the double integral interchange the order

More information

Math Boot Camp: Integration

Math Boot Camp: Integration Math Boot Camp: Integration You can skip this boot camp if you can answer the following questions: What is the line integral of 1 r 2 r along a radial path starting from r = and ending at r = R? Prove

More information

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r (t) = 3 cos t, 0, 3 sin t, r ( 3π

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r (t) = 3 cos t, 0, 3 sin t, r ( 3π 1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P 3, 3π, r t) 3 cos t, 4t, 3 sin t 3 ). b) 5 points) Find curvature of the curve at the point P. olution:

More information

2x (x 2 + y 2 + 1) 2 2y. (x 2 + y 2 + 1) 4. 4xy. (1, 1)(x 1) + (1, 1)(y + 1) (1, 1)(x 1)(y + 1) 81 x y y + 7.

2x (x 2 + y 2 + 1) 2 2y. (x 2 + y 2 + 1) 4. 4xy. (1, 1)(x 1) + (1, 1)(y + 1) (1, 1)(x 1)(y + 1) 81 x y y + 7. Homework 8 Solutions, November 007. (1 We calculate some derivatives: f x = f y = x (x + y + 1 y (x + y + 1 x = (x + y + 1 4x (x + y + 1 4 y = (x + y + 1 4y (x + y + 1 4 x y = 4xy (x + y + 1 4 Substituting

More information

4 Partial Differentiation

4 Partial Differentiation 4 Partial Differentiation Many equations in engineering, physics and mathematics tie together more than two variables. For example Ohm s Law (V = IR) and the equation for an ideal gas, PV = nrt, which

More information

Coulomb s Law and Electric Field Intensity

Coulomb s Law and Electric Field Intensity Unit 2 Coulomb s Law and Electric Field Intensity While some properties of electricity and magnetism have been observed for many centuries, the eighteenth and nineteenth centuries really mark the beginning

More information

16.2 Line Integrals. Lukas Geyer. M273, Fall Montana State University. Lukas Geyer (MSU) 16.2 Line Integrals M273, Fall / 21

16.2 Line Integrals. Lukas Geyer. M273, Fall Montana State University. Lukas Geyer (MSU) 16.2 Line Integrals M273, Fall / 21 16.2 Line Integrals Lukas Geyer Montana State University M273, Fall 211 Lukas Geyer (MSU) 16.2 Line Integrals M273, Fall 211 1 / 21 Scalar Line Integrals Definition f (x) ds = lim { s i } N f (P i ) s

More information

Calculus Workshop. Calculus Workshop 1

Calculus Workshop. Calculus Workshop 1 Physics 251 Laboratory Calculus Workshop For the next three lab periods we will be reviewing the concept of density and learning the calculus techniques necessary to succeed in Physics 251. The first week

More information

The Volume of a Hypersphere

The Volume of a Hypersphere The hypersphere has the equation The Volume of a Hypersphere x 2 y 2 x 2 w 2 = 2 if centered at the origin (,,,) and has a radius of in four dimensional space. We approach the project of determining its

More information

Vectors and Fields. Vectors versus scalars

Vectors and Fields. Vectors versus scalars C H A P T E R 1 Vectors and Fields Electromagnetics deals with the study of electric and magnetic fields. It is at once apparent that we need to familiarize ourselves with the concept of a field, and in

More information

Terminology and notation

Terminology and notation Roberto s Notes on Integral Calculus Chapter 1: Indefinite integrals Section Terminology and notation For indefinite integrals What you need to know already: What indefinite integrals are. Indefinite integrals

More information

Math Review for Exam 3

Math Review for Exam 3 1. ompute oln: (8x + 36xy)ds = Math 235 - Review for Exam 3 (8x + 36xy)ds, where c(t) = (t, t 2, t 3 ) on the interval t 1. 1 (8t + 36t 3 ) 1 + 4t 2 + 9t 4 dt = 2 3 (1 + 4t2 + 9t 4 ) 3 2 1 = 2 3 ((14)

More information

Section 14.8 Maxima & minima of functions of two variables. Learning outcomes. After completing this section, you will inshaallah be able to

Section 14.8 Maxima & minima of functions of two variables. Learning outcomes. After completing this section, you will inshaallah be able to Section 14.8 Maxima & minima of functions of two variables 14.8 1 Learning outcomes After completing this section, you will inshaallah be able to 1. explain what is meant by relative maxima or relative

More information

Related Rates In each related rate problem there can be variations in the details. The problems, however, have the same general structure.

Related Rates In each related rate problem there can be variations in the details. The problems, however, have the same general structure. Lab 6 Math 111 Spring 019 Related Rates In each related rate problem there can be variations in the details. The problems, however, have the same general structure. I. Relating Quantities: Independent

More information

Math 23b Practice Final Summer 2011

Math 23b Practice Final Summer 2011 Math 2b Practice Final Summer 211 1. (1 points) Sketch or describe the region of integration for 1 x y and interchange the order to dy dx dz. f(x, y, z) dz dy dx Solution. 1 1 x z z f(x, y, z) dy dx dz

More information

Calculus - II Multivariable Calculus. M.Thamban Nair. Department of Mathematics Indian Institute of Technology Madras

Calculus - II Multivariable Calculus. M.Thamban Nair. Department of Mathematics Indian Institute of Technology Madras Calculus - II Multivariable Calculus M.Thamban Nair epartment of Mathematics Indian Institute of Technology Madras February 27 Revised: January 29 Contents Preface v 1 Functions of everal Variables 1 1.1

More information

February 4, 2019 LECTURE 4: THE DERIVATIVE.

February 4, 2019 LECTURE 4: THE DERIVATIVE. February 4, 29 LECTURE 4: THE DERIVATIVE 2 HONORS MULTIVARIABLE CALCULUS PROFESSOR RICHARD BROWN Synopsis Today, we finish our discussion on its and pass through the concept of continuity Really, there

More information

Permutations and Polynomials Sarah Kitchen February 7, 2006

Permutations and Polynomials Sarah Kitchen February 7, 2006 Permutations and Polynomials Sarah Kitchen February 7, 2006 Suppose you are given the equations x + y + z = a and 1 x + 1 y + 1 z = 1 a, and are asked to prove that one of x,y, and z is equal to a. We

More information

Review Sheet for the Final

Review Sheet for the Final Review Sheet for the Final Math 6-4 4 These problems are provided to help you study. The presence of a problem on this handout does not imply that there will be a similar problem on the test. And the absence

More information

Mathematical Notes for E&M Gradient, Divergence, and Curl

Mathematical Notes for E&M Gradient, Divergence, and Curl Mathematical Notes for E&M Gradient, Divergence, and Curl In these notes I explain the differential operators gradient, divergence, and curl (also known as rotor), the relations between them, the integral

More information

e x2 dxdy, e x2 da, e x2 x 3 dx = e

e x2 dxdy, e x2 da, e x2 x 3 dx = e STS26-4 Calculus II: The fourth exam Dec 15, 214 Please show all your work! Answers without supporting work will be not given credit. Write answers in spaces provided. You have 1 hour and 2minutes to complete

More information

Math 207 Honors Calculus III Final Exam Solutions

Math 207 Honors Calculus III Final Exam Solutions Math 207 Honors Calculus III Final Exam Solutions PART I. Problem 1. A particle moves in the 3-dimensional space so that its velocity v(t) and acceleration a(t) satisfy v(0) = 3j and v(t) a(t) = t 3 for

More information

Review for the Final Exam

Review for the Final Exam Calculus 3 Lia Vas Review for the Final Exam. Sequences. Determine whether the following sequences are convergent or divergent. If they are convergent, find their limits. (a) a n = ( 2 ) n (b) a n = n+

More information

Archive of Calculus IV Questions Noel Brady Department of Mathematics University of Oklahoma

Archive of Calculus IV Questions Noel Brady Department of Mathematics University of Oklahoma Archive of Calculus IV Questions Noel Brady Department of Mathematics University of Oklahoma This is an archive of past Calculus IV exam questions. You should first attempt the questions without looking

More information

g(t) = f(x 1 (t),..., x n (t)).

g(t) = f(x 1 (t),..., x n (t)). Reading: [Simon] p. 313-333, 833-836. 0.1 The Chain Rule Partial derivatives describe how a function changes in directions parallel to the coordinate axes. Now we shall demonstrate how the partial derivatives

More information

x + ye z2 + ze y2, y + xe z2 + ze x2, z and where T is the

x + ye z2 + ze y2, y + xe z2 + ze x2, z and where T is the 1.(8pts) Find F ds where F = x + ye z + ze y, y + xe z + ze x, z and where T is the T surface in the pictures. (The two pictures are two views of the same surface.) The boundary of T is the unit circle

More information

53. Flux Integrals. Here, R is the region over which the double integral is evaluated.

53. Flux Integrals. Here, R is the region over which the double integral is evaluated. 53. Flux Integrals Let be an orientable surface within 3. An orientable surface, roughly speaking, is one with two distinct sides. At any point on an orientable surface, there exists two normal vectors,

More information

5.5 Linearization & Differentials (NO CALCULATOR CALCULUS 30L OUTCOME)

5.5 Linearization & Differentials (NO CALCULATOR CALCULUS 30L OUTCOME) 5.5 Linearization & Differentials (NO CALCULATOR CALCULUS 30L OUTCOME) Calculus I CAN USE LINEAR APPROXIMATION TO ESTIMATE THE VALUE OF A FUNCTION NEAR A POINT OF TANGENCY & FIND THE DIFFERENTIAL OF A

More information

MAT 211 Final Exam. Spring Jennings. Show your work!

MAT 211 Final Exam. Spring Jennings. Show your work! MAT 211 Final Exam. pring 215. Jennings. how your work! Hessian D = f xx f yy (f xy ) 2 (for optimization). Polar coordinates x = r cos(θ), y = r sin(θ), da = r dr dθ. ylindrical coordinates x = r cos(θ),

More information

Multiple Integrals and Vector Calculus: Synopsis

Multiple Integrals and Vector Calculus: Synopsis Multiple Integrals and Vector Calculus: Synopsis Hilary Term 28: 14 lectures. Steve Rawlings. 1. Vectors - recap of basic principles. Things which are (and are not) vectors. Differentiation and integration

More information

Applications of Integration to Physics and Engineering

Applications of Integration to Physics and Engineering Applications of Integration to Physics and Engineering MATH 211, Calculus II J Robert Buchanan Department of Mathematics Spring 2018 Mass and Weight mass: quantity of matter (units: kg or g (metric) or

More information

Exercises for Multivariable Differential Calculus XM521

Exercises for Multivariable Differential Calculus XM521 This document lists all the exercises for XM521. The Type I (True/False) exercises will be given, and should be answered, online immediately following each lecture. The Type III exercises are to be done

More information

Practice Exam 1 Solutions

Practice Exam 1 Solutions Practice Exam 1 Solutions 1a. Let S be the region bounded by y = x 3, y = 1, and x. Find the area of S. What is the volume of the solid obtained by rotating S about the line y = 1? Area A = Volume 1 1

More information

DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS. MATH 233 SOME SOLUTIONS TO EXAM 1 Fall 2018

DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS. MATH 233 SOME SOLUTIONS TO EXAM 1 Fall 2018 DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS MATH SOME SOLUTIONS TO EXAM 1 Fall 018 Version A refers to the regular exam and Version B to the make-up 1. Version A. Find the center

More information

Chapter 17: Double and Triple Integrals

Chapter 17: Double and Triple Integrals Chapter 17: Double and Triple Integrals Section 17.1 Multiple Sigma Notation a. Double Sigma Notation b. Properties Section 17.2 Double Integrals a. Double Integral Over a Rectangle b. Partitions c. More

More information

MATH 280 Multivariate Calculus Fall Integrating a vector field over a surface

MATH 280 Multivariate Calculus Fall Integrating a vector field over a surface MATH 280 Multivariate Calculus Fall 2011 Definition Integrating a vector field over a surface We are given a vector field F in space and an oriented surface in the domain of F as shown in the figure below

More information

Solutions to old Exam 3 problems

Solutions to old Exam 3 problems Solutions to old Exam 3 problems Hi students! I am putting this version of my review for the Final exam review here on the web site, place and time to be announced. Enjoy!! Best, Bill Meeks PS. There are

More information

Downloaded from

Downloaded from Question 1.1: What is the force between two small charged spheres having charges of 2 10 7 C and 3 10 7 C placed 30 cm apart in air? Repulsive force of magnitude 6 10 3 N Charge on the first sphere, q

More information

Final exam (practice 1) UCLA: Math 32B, Spring 2018

Final exam (practice 1) UCLA: Math 32B, Spring 2018 Instructor: Noah White Date: Final exam (practice 1) UCLA: Math 32B, Spring 218 This exam has 7 questions, for a total of 8 points. Please print your working and answers neatly. Write your solutions in

More information

Math 210, Final Exam, Spring 2010 Problem 1 Solution

Math 210, Final Exam, Spring 2010 Problem 1 Solution Problem Solution. The position vector r (t) t3î+8tĵ+3t ˆk, t describes the motion of a particle. (a) Find the position at time t. (b) Find the velocity at time t. (c) Find the acceleration at time t. (d)

More information

MATH2111 Higher Several Variable Calculus Integration

MATH2111 Higher Several Variable Calculus Integration MATH2 Higher Several Variable Calculus Integration Dr. Jonathan Kress School of Mathematics and Statistics University of New South Wales Semester, 26 [updated: April 3, 26] JM Kress (UNSW Maths & Stats)

More information

A Mathematical Trivium

A Mathematical Trivium A Mathematical Trivium V.I. Arnold 1991 1. Sketch the graph of the derivative and the graph of the integral of a function given by a freehand graph. 2. Find the limit lim x 0 sin tan x tan sin x arcsin

More information

MULTIVARIABLE INTEGRATION

MULTIVARIABLE INTEGRATION MULTIVARIABLE INTEGRATION (SPHERICAL POLAR COORDINATES) Question 1 a) Determine with the aid of a diagram an expression for the volume element in r, θ, ϕ. spherical polar coordinates, ( ) [You may not

More information

Derivatives and Integrals

Derivatives and Integrals Derivatives and Integrals Definition 1: Derivative Formulas d dx (c) = 0 d dx (f ± g) = f ± g d dx (kx) = k d dx (xn ) = nx n 1 (f g) = f g + fg ( ) f = f g fg g g 2 (f(g(x))) = f (g(x)) g (x) d dx (ax

More information

Updated: January 16, 2016 Calculus II 7.4. Math 230. Calculus II. Brian Veitch Fall 2015 Northern Illinois University

Updated: January 16, 2016 Calculus II 7.4. Math 230. Calculus II. Brian Veitch Fall 2015 Northern Illinois University Math 30 Calculus II Brian Veitch Fall 015 Northern Illinois University Integration of Rational Functions by Partial Fractions From algebra, we learned how to find common denominators so we can do something

More information

McGill University April 20, Advanced Calculus for Engineers

McGill University April 20, Advanced Calculus for Engineers McGill University April 0, 016 Faculty of Science Final examination Advanced Calculus for Engineers Math 64 April 0, 016 Time: PM-5PM Examiner: Prof. R. Choksi Associate Examiner: Prof. A. Hundemer Student

More information

Solutions for the Practice Final - Math 23B, 2016

Solutions for the Practice Final - Math 23B, 2016 olutions for the Practice Final - Math B, 6 a. True. The area of a surface is given by the expression d, and since we have a parametrization φ x, y x, y, f x, y with φ, this expands as d T x T y da xy

More information

M273Q Multivariable Calculus Spring 2017 Review Problems for Exam 3

M273Q Multivariable Calculus Spring 2017 Review Problems for Exam 3 M7Q Multivariable alculus Spring 7 Review Problems for Exam Exam covers material from Sections 5.-5.4 and 6.-6. and 7.. As you prepare, note well that the Fall 6 Exam posted online did not cover exactly

More information

Functions of Several Variables

Functions of Several Variables Functions of Several Variables Partial Derivatives Philippe B Laval KSU March 21, 2012 Philippe B Laval (KSU) Functions of Several Variables March 21, 2012 1 / 19 Introduction In this section we extend

More information

6. Vector Integral Calculus in Space

6. Vector Integral Calculus in Space 6. Vector Integral alculus in pace 6A. Vector Fields in pace 6A-1 Describegeometricallythefollowingvectorfields: a) xi +yj +zk ρ b) xi zk 6A-2 Write down the vector field where each vector runs from (x,y,z)

More information

Dr. Allen Back. Nov. 5, 2014

Dr. Allen Back. Nov. 5, 2014 Dr. Allen Back Nov. 5, 2014 12 lectures, 4 recitations left including today. a Most of what remains is vector integration and the integral theorems. b We ll start 7.1, 7.2,4.2 on Friday. c If you are not

More information

Math 210, Final Exam, Fall 2010 Problem 1 Solution. v cosθ = u. v Since the magnitudes of the vectors are positive, the sign of the dot product will

Math 210, Final Exam, Fall 2010 Problem 1 Solution. v cosθ = u. v Since the magnitudes of the vectors are positive, the sign of the dot product will Math, Final Exam, Fall Problem Solution. Let u,, and v,,3. (a) Is the angle between u and v acute, obtuse, or right? (b) Find an equation for the plane through (,,) containing u and v. Solution: (a) The

More information

11.1 Three-Dimensional Coordinate System

11.1 Three-Dimensional Coordinate System 11.1 Three-Dimensional Coordinate System In three dimensions, a point has three coordinates: (x,y,z). The normal orientation of the x, y, and z-axes is shown below. The three axes divide the region into

More information

Part 8: Rigid Body Dynamics

Part 8: Rigid Body Dynamics Document that contains homework problems. Comment out the solutions when printing off for students. Part 8: Rigid Body Dynamics Problem 1. Inertia review Find the moment of inertia for a thin uniform rod

More information

14.4. Lengths of Curves and Surfaces of Revolution. Introduction. Prerequisites. Learning Outcomes

14.4. Lengths of Curves and Surfaces of Revolution. Introduction. Prerequisites. Learning Outcomes Lengths of Curves and Surfaces of Revolution 4.4 Introduction Integration can be used to find the length of a curve and the area of the surface generated when a curve is rotated around an axis. In this

More information

Math 53 Spring 2018 Practice Midterm 2

Math 53 Spring 2018 Practice Midterm 2 Math 53 Spring 218 Practice Midterm 2 Nikhil Srivastava 8 minutes, closed book, closed notes 1. alculate 1 y 2 (x 2 + y 2 ) 218 dxdy Solution. Since the type 2 region D = { y 1, x 1 y 2 } is a quarter

More information

1. Determine the limit (if it exists). + lim A) B) C) D) E) Determine the limit (if it exists).

1. Determine the limit (if it exists). + lim A) B) C) D) E) Determine the limit (if it exists). Please do not write on. Calc AB Semester 1 Exam Review 1. Determine the limit (if it exists). 1 1 + lim x 3 6 x 3 x + 3 A).1 B).8 C).157778 D).7778 E).137778. Determine the limit (if it exists). 1 1cos

More information

CHMC: Finite Fields 9/23/17

CHMC: Finite Fields 9/23/17 CHMC: Finite Fields 9/23/17 1 Introduction This worksheet is an introduction to the fascinating subject of finite fields. Finite fields have many important applications in coding theory and cryptography,

More information

(a) The points (3, 1, 2) and ( 1, 3, 4) are the endpoints of a diameter of a sphere.

(a) The points (3, 1, 2) and ( 1, 3, 4) are the endpoints of a diameter of a sphere. MATH 4 FINAL EXAM REVIEW QUESTIONS Problem. a) The points,, ) and,, 4) are the endpoints of a diameter of a sphere. i) Determine the center and radius of the sphere. ii) Find an equation for the sphere.

More information

Vector calculus background

Vector calculus background Vector calculus background Jiří Lebl January 18, 2017 This class is really the vector calculus that you haven t really gotten to in Calc III. Let us start with a very quick review of the concepts from

More information

This exam will be over material covered in class from Monday 14 February through Tuesday 8 March, corresponding to sections in the text.

This exam will be over material covered in class from Monday 14 February through Tuesday 8 March, corresponding to sections in the text. Math 275, section 002 (Ultman) Spring 2011 MIDTERM 2 REVIEW The second midterm will be held in class (1:40 2:30pm) on Friday 11 March. You will be allowed one half of one side of an 8.5 11 sheet of paper

More information

Solutions to Sample Questions for Final Exam

Solutions to Sample Questions for Final Exam olutions to ample Questions for Final Exam Find the points on the surface xy z 3 that are closest to the origin. We use the method of Lagrange Multipliers, with f(x, y, z) x + y + z for the square of the

More information

Major Ideas in Calc 3 / Exam Review Topics

Major Ideas in Calc 3 / Exam Review Topics Major Ideas in Calc 3 / Exam Review Topics Here are some highlights of the things you should know to succeed in this class. I can not guarantee that this list is exhaustive!!!! Please be sure you are able

More information

Covariant Formulation of Electrodynamics

Covariant Formulation of Electrodynamics Chapter 7. Covariant Formulation of Electrodynamics Notes: Most of the material presented in this chapter is taken from Jackson, Chap. 11, and Rybicki and Lightman, Chap. 4. Starting with this chapter,

More information

Directional Derivative and the Gradient Operator

Directional Derivative and the Gradient Operator Chapter 4 Directional Derivative and the Gradient Operator The equation z = f(x, y) defines a surface in 3 dimensions. We can write this as z f(x, y) = 0, or g(x, y, z) = 0, where g(x, y, z) = z f(x, y).

More information

3 Algebraic Methods. we can differentiate both sides implicitly to obtain a differential equation involving x and y:

3 Algebraic Methods. we can differentiate both sides implicitly to obtain a differential equation involving x and y: 3 Algebraic Methods b The first appearance of the equation E Mc 2 in Einstein s handwritten notes. So far, the only general class of differential equations that we know how to solve are directly integrable

More information

Multivariable Calculus and Matrix Algebra-Summer 2017

Multivariable Calculus and Matrix Algebra-Summer 2017 Multivariable Calculus and Matrix Algebra-Summer 017 Homework 4 Solutions Note that the solutions below are for the latest version of the problems posted. For those of you who worked on an earlier version

More information

MATH 302 Partial Differential Equations Fall Density

MATH 302 Partial Differential Equations Fall Density MATH 3 Partial Differential Equations Fall 11 Density Most of us first learned about density as mass divided by volume. This made sense in considering a specific object of uniform composition. We can separately

More information

On Cauchy s theorem and Green s theorem

On Cauchy s theorem and Green s theorem MA 525 On Cauchy s theorem and Green s theorem 1. Introduction No doubt the most important result in this course is Cauchy s theorem. There are many ways to formulate it, but the most simple, direct and

More information

3. On the grid below, sketch and label graphs of the following functions: y = sin x, y = cos x, and y = sin(x π/2). π/2 π 3π/2 2π 5π/2

3. On the grid below, sketch and label graphs of the following functions: y = sin x, y = cos x, and y = sin(x π/2). π/2 π 3π/2 2π 5π/2 AP Physics C Calculus C.1 Name Trigonometric Functions 1. Consider the right triangle to the right. In terms of a, b, and c, write the expressions for the following: c a sin θ = cos θ = tan θ =. Using

More information

Sept , 17, 23, 29, 37, 41, 45, 47, , 5, 13, 17, 19, 29, 33. Exam Sept 26. Covers Sept 30-Oct 4.

Sept , 17, 23, 29, 37, 41, 45, 47, , 5, 13, 17, 19, 29, 33. Exam Sept 26. Covers Sept 30-Oct 4. MATH 23, FALL 2013 Text: Calculus, Early Transcendentals or Multivariable Calculus, 7th edition, Stewart, Brooks/Cole. We will cover chapters 12 through 16, so the multivariable volume will be fine. WebAssign

More information

Quantum Number. i. Degeneracy is when orbitals have the same value of n.

Quantum Number. i. Degeneracy is when orbitals have the same value of n. Quantum Number 1. Principal Quantum Number a. Is represented by n b. Has values from ranging from 1 c. Indicates the size and energy level in which the electron is housed. The bigger the n value, the further

More information

MATH 280 Multivariate Calculus Fall Integration over a curve

MATH 280 Multivariate Calculus Fall Integration over a curve dr dr y MATH 28 Multivariate Calculus Fall 211 Integration over a curve Given a curve C in the plane or in space, we can (conceptually) break it into small pieces each of which has a length ds. In some

More information

3 2 6 Solve the initial value problem u ( t) 3. a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1

3 2 6 Solve the initial value problem u ( t) 3. a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1 Math Problem a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1 3 6 Solve the initial value problem u ( t) = Au( t) with u (0) =. 3 1 u 1 =, u 1 3 = b- True or false and why 1. if A is

More information

QUALIFYING EXAMINATION, Part 1. Solutions. Problem 1: Mathematical Methods. x 2. 1 (1 + 2x 2 /3!) ] x 2 1 2x 2 /3

QUALIFYING EXAMINATION, Part 1. Solutions. Problem 1: Mathematical Methods. x 2. 1 (1 + 2x 2 /3!) ] x 2 1 2x 2 /3 QUALIFYING EXAMINATION, Part 1 Solutions Problem 1: Mathematical Methods (a) Keeping only the lowest power of x needed, we find 1 x 1 sin x = 1 x 1 (x x 3 /6...) = 1 ) 1 (1 x 1 x /3 = 1 [ 1 (1 + x /3!)

More information

Mathematical Tripos Part IA Lent Term Example Sheet 1. Calculate its tangent vector dr/du at each point and hence find its total length.

Mathematical Tripos Part IA Lent Term Example Sheet 1. Calculate its tangent vector dr/du at each point and hence find its total length. Mathematical Tripos Part IA Lent Term 205 ector Calculus Prof B C Allanach Example Sheet Sketch the curve in the plane given parametrically by r(u) = ( x(u), y(u) ) = ( a cos 3 u, a sin 3 u ) with 0 u

More information

MA424, S13 HW #6: Homework Problems 1. Answer the following, showing all work clearly and neatly. ONLY EXACT VALUES WILL BE ACCEPTED.

MA424, S13 HW #6: Homework Problems 1. Answer the following, showing all work clearly and neatly. ONLY EXACT VALUES WILL BE ACCEPTED. MA424, S13 HW #6: 44-47 Homework Problems 1 Answer the following, showing all work clearly and neatly. ONLY EXACT VALUES WILL BE ACCEPTED. NOTATION: Recall that C r (z) is the positively oriented circle

More information

5 Symmetries and point group in a nut shell

5 Symmetries and point group in a nut shell 30 Phys520.nb 5 Symmetries and point group in a nut shell 5.1. Basic ideas: 5.1.1. Symmetry operations Symmetry: A system remains invariant under certain operation. These operations are called symmetry

More information

18.02 Multivariable Calculus Fall 2007

18.02 Multivariable Calculus Fall 2007 MIT OpenourseWare http://ocw.mit.edu 18.02 Multivariable alculus Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 18.02 Lecture 30. Tue, Nov

More information

Calculus Math 21B, Winter 2009 Final Exam: Solutions

Calculus Math 21B, Winter 2009 Final Exam: Solutions Calculus Math B, Winter 9 Final Exam: Solutions. (a) Express the area of the region enclosed between the x-axis and the curve y = x 4 x for x as a definite integral. (b) Find the area by evaluating the

More information

Fundamental Theorems of Vector

Fundamental Theorems of Vector Chapter 17 Analysis Fundamental Theorems of Vector Useful Tip: If you are reading the electronic version of this publication formatted as a Mathematica Notebook, then it is possible to view 3-D plots generated

More information

Calculus II Lecture Notes

Calculus II Lecture Notes Calculus II Lecture Notes David M. McClendon Department of Mathematics Ferris State University 206 edition Contents Contents 2 Review of Calculus I 5. Limits..................................... 7.2 Derivatives...................................3

More information

Module 2: Reflecting on One s Problems

Module 2: Reflecting on One s Problems MATH55 Module : Reflecting on One s Problems Main Math concepts: Translations, Reflections, Graphs of Equations, Symmetry Auxiliary ideas: Working with quadratics, Mobius maps, Calculus, Inverses I. Transformations

More information