Outline. Calculus for the Life Sciences. Average Height and Weight of Girls 1. Chain Rule. Lecture Notes Chain Rule

Size: px
Start display at page:

Download "Outline. Calculus for the Life Sciences. Average Height and Weight of Girls 1. Chain Rule. Lecture Notes Chain Rule"

Transcription

1 Outline Calculus for the Life Sciences Lecture Notes Joseph M. Mahaffy, Department of Mathematics an Statistics Dynamical Systems Group Computational Sciences Research Center San Diego State University San Diego, CA jmahaffy Spring Average of Girls 2 for Special Functions 3 Joseph M. Mahaffy, jmahaffy@mail.ssu.eu Lecture Notes (1/31) Joseph M. Mahaffy, jmahaffy@mail.ssu.eu Lecture Notes (2/31) Average of Girls Average of Girls Average of Girls 1 Average of Girls Functional relationships where one measurable quantity epens on another, while the secon quantity is a function of a thir quantity This functional relationship is a composite function The ifferentiation of a composite function requires the chain rule Over a range of ages the rate of growth of girls in height is constant Height an age are approximate well by a linear function Height an weight of animals satisfies an allometric moel Joseph M. Mahaffy, jmahaffy@mail.ssu.eu Lecture Notes (3/31) Joseph M. Mahaffy, jmahaffy@mail.ssu.eu Lecture Notes (4/31)

2 Average of Girls Average of Girls 2 Average of American Girls age height weight age height weight (years) (cm) (kg) (years) (cm) (kg) Joseph M. Mahaffy, jmahaffy@mail.ssu.eu Lecture Notes (5/31) Average of Girls Average of Girls 3 Least Squares Best Fit: Moel of Height as a function of age h(a) = 6.45a+73.9 Moel shows that the average girl grows about 6.45 cm/yr Height (cm) Average Height of Girls h(a) = 6.45a Age (yr) Joseph M. Mahaffy, jmahaffy@mail.ssu.eu Lecture Notes (6/31) Average of Girls Average of Girls 4 Allometric Moel: An allometric moel for the height an weight of a girl satisfies Weight (kg) W(h) =.72h 2.17 Average Weight of Girls w(h) =.72 h Height (cm) Joseph M. Mahaffy, jmahaffy@mail.ssu.eu Lecture Notes (7/31) Average of Girls Average of Girls 5 Composite Moel: The linear moel shows that the average girl grows about 6.45 cm/yr How o we fin the rate of change in weight for a girl at any particular age (between 1 an 13)? The Allometric Moel gives the weight as a function of height Create a composite function of the allometric moel an the linear moel to give a function of the weight as a function of age The chain rule gives the rate of change of weight with respect to age Joseph M. Mahaffy, jmahaffy@mail.ssu.eu Lecture Notes (8/31)

3 for Special Functions for Special Functions Example : Consier the composite function f(g(x)) Suppose that both f(u) an u = g(x) are ifferentiable functions The chain rule for ifferentiation of this composite function is given by f x = f u ux Alternately, the chain rule is written x (f(g(x))) = f (g(x))g (x) Example - : Consier the the function h(x) = (x 2 +2x 5) 5 Fin h (x) Solution: Consier the composite of the functions f(u) = u 5 an g(x) = x 2 +2x 5 The erivatives of both f an g are f (u) = 5u 4 an g (x) = 2x+2 From the chain rule h (x) = 5(g(x)) 4 (2x+2) h (x) = 5(x 2 +2x 5) 4 (2x+2) Joseph M. Mahaffy, jmahaffy@mail.ssu.eu Lecture Notes (9/31) Joseph M. Mahaffy, jmahaffy@mail.ssu.eu Lecture Notes (1/31) Example 2 for Special Functions for Special Functions for Special Functions Example 2 - : Consier the the function h(x) = e 2 x2 Fin h (x) Solution: Consier the composite of the functions f(u) = e u an g(x) = 2 x 2 The erivatives of both f an g are f (u) = e u an g (x) = 2x General Derivative of Exponential Function x ef(x) = e f(x) f (x) General Derivative of Logarithm Function x ln(f(x)) = f (x) f(x) General Derivative of Sine x sin(f(x)) = f (x)cos(f(x)) From the chain rule h (x) = e 2 x2 ( 2x) General Derivative of Cosine x cos(f(x)) = f (x)sin(f(x)) Joseph M. Mahaffy, jmahaffy@mail.ssu.eu Lecture Notes (11/31) Joseph M. Mahaffy, jmahaffy@mail.ssu.eu Lecture Notes (12/31)

4 for Special Functions Example 3: Derivative of Cosine Function for Special Functions Example 4: of Differentiation Example 3: Consier the function f(x) = e 3x cos(x 2 +4) Fin the erivative of f(x) Skip Example Solution: This erivative uses the prouct an chain rule f (x) = e 3x ( 2xsin(x 2 +4))+cos(x 2 +4)(e 3x ( 3)) f (x) = e 3x (2xsin(x 2 +4)+3cos(x 2 +4)) Example 4: Consier the function Fin the erivative of f(x) Skip Example f(x) = 3x 2 sin(ln(x+2)) Solution: This erivative uses the prouct an chain rule f (x) = ( 3x 2)( ) x sin(ln(x+2)) +6xsin(ln(x+2)) f (x) = 3x2 cos(ln(x+2)) x+2 +6xsin(ln(x+2)) Joseph M. Mahaffy, jmahaffy@mail.ssu.eu Lecture Notes (13/31) Joseph M. Mahaffy, jmahaffy@mail.ssu.eu Lecture Notes (14/31) for Special Functions Example 5: of Differentiation 1 Example 5: Consier the function f(x) = 4e cos(2x+1) Fin the erivative of f(x) Skip Example Solution: This erivative uses the chain rule f (x) = 4e cos(2x+1) (2sin(2x+1)) : The example for the weight an height of a chil given above foun The weight W as a function of height h is W(h) =.72h 2.17 The height as a function of age is h(a) = 6.45a+73.9 The composite function weight as a function of age W(a) =.72(6.45a +73.9) 2.17 Joseph M. Mahaffy, jmahaffy@mail.ssu.eu Lecture Notes (15/31) Joseph M. Mahaffy, jmahaffy@mail.ssu.eu Lecture Notes (16/31)

5 2 Composite Function: Weight as a function of age W(a) =.72(6.45a +73.9) : Weight as a function of age W(a) =.72(6.45a +73.9) 2.17 Weight (kg) Average Weight of Girls W(h) =.72(6.45a ) Age (yrs) From the chain rule, the erivative of the weight function is W a = W h h a W h = 2.17(.72)h1.17 an h a = 6.45 Combining these an substituting the expression for h W (a) =.18(6.45a +73.9) 1.17 Joseph M. Mahaffy, jmahaffy@mail.ssu.eu Lecture Notes (17/31) Joseph M. Mahaffy, jmahaffy@mail.ssu.eu Lecture Notes (18/31) 4 5 Change of Weight of Girls Graph of W (a) =.18(6.45a +73.9) 1.17 Change of Weight of Girls Graph of 6 Change of Weight of Girls W (a) =.18(6.45a +73.9) 1.17 Weight Change (kg/yr) W (h) =.18(6.45a ) 1.17 This graph is almost linear, since it is to the 1.17 power The actual average weight changes are given for the ata above We see that the moel uner preicts the weight gain for oler girls Age (yrs) Joseph M. Mahaffy, jmahaffy@mail.ssu.eu Lecture Notes (19/31) Joseph M. Mahaffy, jmahaffy@mail.ssu.eu Lecture Notes (2/31)

6 1 2 : This is an important function in statistics Gives the classic Bell curve The normal istribution function is N(x) = a σ e (x µ)2 /(2σ 2 ) a is the normalizing factor σ is the stanar eviation µ is the mean of the istribution : Consier N(x) = a /(2σ 2 ) σ e (x µ)2 Fin the maximum an points of inflection Plot this function for several values of σ Discuss the importance of the results Joseph M. Mahaffy, jmahaffy@mail.ssu.eu Lecture Notes (21/31) Joseph M. Mahaffy, jmahaffy@mail.ssu.eu Lecture Notes (22/31) 3 Solution: Consier The erivative is N x N x N(x) = a σ e (x µ)2 /(2σ 2 ) = a ( /(2σ 2 ) σ e (x µ)2 2(x µ) ) 2σ 2 = a(x µ) σ 3 e (x µ)2 /(2σ 2 ) The erivative is zero when x = µ, so there is a maximum at (µ, a σ ) 4 Solution: The erivative is The secon erivative is 2 N x 2 = a σ 3 2 N x 2 = a σ 3 N x = a(x µ) σ 3 e (x µ)2 /(2σ 2 ) ( (x µ)e (x µ)2 /(2σ 2 ) (1 (x µ)2 σ 2 ) e (x µ)2 /(2σ 2 ) The points of inflection occur at x = µ±σ with N(µ±σ) = a σ e 1 2 ( 2(x µ) ) ) 2σ 2 +e (x µ)2 /(2σ 2) 1 Joseph M. Mahaffy, jmahaffy@mail.ssu.eu Lecture Notes (23/31) Joseph M. Mahaffy, jmahaffy@mail.ssu.eu Lecture Notes (24/31)

7 5 Solution: Graph of the with µ = an σ = 1,2,3,4 N(x) σ = 2 σ = 3 σ = 4 σ = x Joseph M. Mahaffy, jmahaffy@mail.ssu.eu Lecture Notes (25/31) 6 Properties of N(x) = a σ e (x µ)2 /(2σ 2 ) As note above, the mean of the normal istribution is µ The normal istribution is a bell-shape curve centere about its mean The points of inflection occur one stanar eviation, σ, from the mean, µ It can be shown that 68% of the area uner the normal istribution occurs in the interval, [ σ, σ] The area uner a istribution function is important in measuring probabilities an confience intervals for statistics Joseph M. Mahaffy, jmahaffy@mail.ssu.eu Lecture Notes (26/31) 1 2 is often use in the stuy of insect populations Consier Hassell s Upating function: H(P) = 81P (1+.2P) 4 Fin the intercepts an any asymptotes for P Fin the erivative of H(P) an etermine all extrema Graph H(P) for P Solution: Hassell s moel satisfies: H(P) = 81P (1+.2P) 4 For H(P), the only intercept is (,) The power of P in the enominator (4) excees the power in the numerator (1), so there is a horizontal asymptote with H = Joseph M. Mahaffy, jmahaffy@mail.ssu.eu Lecture Notes (27/31) Joseph M. Mahaffy, jmahaffy@mail.ssu.eu Lecture Notes (28/31)

8 3 4 Solution: (cont) Next we fin the erivative of Hassell s moel: 81P H(P) = (1+.2P) 4 H P = 1 P 4(1+.2P) (1+.2P)4 (1+.2P) 8 H P = (1+.2P.8P) 81(1+.2P)3 (1+.2P) 8 H (1.6P) = 81 P (1+.2P) 5 Solution (cont): The erivative is H P = 81 (1.6P) (1+.2P) 5 Critical points satisfy H (P) =, so 1.6P = or P = 5 3 = With H(5/3) = , the maximum occurs at (166.7, ) Joseph M. Mahaffy, jmahaffy@mail.ssu.eu Lecture Notes (29/31) Joseph M. Mahaffy, jmahaffy@mail.ssu.eu Lecture Notes (3/31) 5 Solution (cont): The graph of H(P) = 81P (1+.2P) 4 Upating Function of 4 3 H(P) P Joseph M. Mahaffy, jmahaffy@mail.ssu.eu Lecture Notes (31/31)

Outline. Calculus for the Life Sciences II. Introduction. Tides Introduction. Lecture Notes Differentiation of Trigonometric Functions

Outline. Calculus for the Life Sciences II. Introduction. Tides Introduction. Lecture Notes Differentiation of Trigonometric Functions Calculus for the Life Sciences II c Functions Joseph M. Mahaffy, mahaffy@math.ssu.eu Department of Mathematics an Statistics Dynamical Systems Group Computational Sciences Research Center San Diego State

More information

Math 19 Sample Final Exam Solutions

Math 19 Sample Final Exam Solutions SSEA Summer 2017 Math 19 Sample Final Exam Solutions 1. [10 points] For what value of the constant k will the function: ) 1 x 2 sin, x < 0 fx) = x, x + k coskx), x 0 be continuous at x = 0? Explain your

More information

Table of Contents Derivatives of Logarithms

Table of Contents Derivatives of Logarithms Derivatives of Logarithms- Table of Contents Derivatives of Logarithms Arithmetic Properties of Logarithms Derivatives of Logarithms Example Example 2 Example 3 Example 4 Logarithmic Differentiation Example

More information

Math Chapter 2 Essentials of Calculus by James Stewart Prepared by Jason Gaddis

Math Chapter 2 Essentials of Calculus by James Stewart Prepared by Jason Gaddis Math 231 - Chapter 2 Essentials of Calculus by James Stewart Prepare by Jason Gais Chapter 2 - Derivatives 21 - Derivatives an Rates of Change Definition A tangent to a curve is a line that intersects

More information

1 Lecture 18: The chain rule

1 Lecture 18: The chain rule 1 Lecture 18: The chain rule 1.1 Outline Comparing the graphs of sin(x) an sin(2x). The chain rule. The erivative of a x. Some examples. 1.2 Comparing the graphs of sin(x) an sin(2x) We graph f(x) = sin(x)

More information

Final Exam Study Guide and Practice Problems Solutions

Final Exam Study Guide and Practice Problems Solutions Final Exam Stuy Guie an Practice Problems Solutions Note: These problems are just some of the types of problems that might appear on the exam. However, to fully prepare for the exam, in aition to making

More information

Chapter 1. Functions, Graphs, and Limits

Chapter 1. Functions, Graphs, and Limits Review for Final Exam Lecturer: Sangwook Kim Office : Science & Tech I, 226D math.gmu.eu/ skim22 Chapter 1. Functions, Graphs, an Limits A function is a rule that assigns to each objects in a set A exactly

More information

Define each term or concept.

Define each term or concept. Chapter Differentiation Course Number Section.1 The Derivative an the Tangent Line Problem Objective: In this lesson you learne how to fin the erivative of a function using the limit efinition an unerstan

More information

Lecture 4 : General Logarithms and Exponentials. a x = e x ln a, a > 0.

Lecture 4 : General Logarithms and Exponentials. a x = e x ln a, a > 0. For a > 0 an x any real number, we efine Lecture 4 : General Logarithms an Exponentials. a x = e x ln a, a > 0. The function a x is calle the exponential function with base a. Note that ln(a x ) = x ln

More information

Differentiability, Computing Derivatives, Trig Review

Differentiability, Computing Derivatives, Trig Review Unit #3 : Differentiability, Computing Derivatives, Trig Review Goals: Determine when a function is ifferentiable at a point Relate the erivative graph to the the graph of an original function Compute

More information

February 21 Math 1190 sec. 63 Spring 2017

February 21 Math 1190 sec. 63 Spring 2017 February 21 Math 1190 sec. 63 Spring 2017 Chapter 2: Derivatives Let s recall the efinitions an erivative rules we have so far: Let s assume that y = f (x) is a function with c in it s omain. The erivative

More information

Differentiability, Computing Derivatives, Trig Review. Goals:

Differentiability, Computing Derivatives, Trig Review. Goals: Secants vs. Derivatives - Unit #3 : Goals: Differentiability, Computing Derivatives, Trig Review Determine when a function is ifferentiable at a point Relate the erivative graph to the the graph of an

More information

DERIVATIVES: LAWS OF DIFFERENTIATION MR. VELAZQUEZ AP CALCULUS

DERIVATIVES: LAWS OF DIFFERENTIATION MR. VELAZQUEZ AP CALCULUS DERIVATIVES: LAWS OF DIFFERENTIATION MR. VELAZQUEZ AP CALCULUS THE DERIVATIVE AS A FUNCTION f x = lim h 0 f x + h f(x) h Last class we examine the limit of the ifference quotient at a specific x as h 0,

More information

Calculus I Announcements

Calculus I Announcements Slie 1 Calculus I Announcements Office Hours: Amos Eaton 309, Monays 12:50-2:50 Exam 2 is Thursay, October 22n. The stuy guie is now on the course web page. Start stuying now, an make a plan to succee.

More information

d dx [xn ] = nx n 1. (1) dy dx = 4x4 1 = 4x 3. Theorem 1.3 (Derivative of a constant function). If f(x) = k and k is a constant, then f (x) = 0.

d dx [xn ] = nx n 1. (1) dy dx = 4x4 1 = 4x 3. Theorem 1.3 (Derivative of a constant function). If f(x) = k and k is a constant, then f (x) = 0. Calculus refresher Disclaimer: I claim no original content on this ocument, which is mostly a summary-rewrite of what any stanar college calculus book offers. (Here I ve use Calculus by Dennis Zill.) I

More information

Differentiation ( , 9.5)

Differentiation ( , 9.5) Chapter 2 Differentiation (8.1 8.3, 9.5) 2.1 Rate of Change (8.2.1 5) Recall that the equation of a straight line can be written as y = mx + c, where m is the slope or graient of the line, an c is the

More information

SYDE 112, LECTURE 1: Review & Antidifferentiation

SYDE 112, LECTURE 1: Review & Antidifferentiation SYDE 112, LECTURE 1: Review & Antiifferentiation 1 Course Information For a etaile breakown of the course content an available resources, see the Course Outline. Other relevant information for this section

More information

The derivative of a function f(x) is another function, defined in terms of a limiting expression: f(x + δx) f(x)

The derivative of a function f(x) is another function, defined in terms of a limiting expression: f(x + δx) f(x) Y. D. Chong (2016) MH2801: Complex Methos for the Sciences 1. Derivatives The erivative of a function f(x) is another function, efine in terms of a limiting expression: f (x) f (x) lim x δx 0 f(x + δx)

More information

Calculus for the Life Sciences

Calculus for the Life Sciences Calculus for the Life Sciences Lecture Notes and Functions Joseph M. Mahaffy, jmahaffy@mail.sdsu.edu Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research Center

More information

f(x) f(a) Limit definition of the at a point in slope notation.

f(x) f(a) Limit definition of the at a point in slope notation. Lesson 9: Orinary Derivatives Review Hanout Reference: Brigg s Calculus: Early Transcenentals, Secon Eition Topics: Chapter 3: Derivatives, p. 126-235 Definition. Limit Definition of Derivatives at a point

More information

Exam 3 Review. Lesson 19: Concavity, Inflection Points, and the Second Derivative Test. Lesson 20: Absolute Extrema on an Interval

Exam 3 Review. Lesson 19: Concavity, Inflection Points, and the Second Derivative Test. Lesson 20: Absolute Extrema on an Interval Exam 3 Review Lessons 17-18: Relative Extrema, Critical Numbers, an First Derivative Test (from exam 2 review neee for curve sketching) Critical Numbers: where the erivative of a function is zero or unefine.

More information

Math 106 Exam 2 Topics

Math 106 Exam 2 Topics Implicit ifferentiation Math 106 Exam Topics We can ifferentiate functions; what about equations? (e.g., x +y = 1) graph looks like it has tangent lines tangent line? (a,b) Iea: Preten equation efines

More information

Differentiation Rules Derivatives of Polynomials and Exponential Functions

Differentiation Rules Derivatives of Polynomials and Exponential Functions Derivatives of Polynomials an Exponential Functions Differentiation Rules Derivatives of Polynomials an Exponential Functions Let s start with the simplest of all functions, the constant function f(x)

More information

Solutions to Math 41 Second Exam November 4, 2010

Solutions to Math 41 Second Exam November 4, 2010 Solutions to Math 41 Secon Exam November 4, 2010 1. (13 points) Differentiate, using the metho of your choice. (a) p(t) = ln(sec t + tan t) + log 2 (2 + t) (4 points) Using the rule for the erivative of

More information

AP Calculus AB One Last Mega Review Packet of Stuff. Take the derivative of the following. 1.) 3.) 5.) 7.) Determine the limit of the following.

AP Calculus AB One Last Mega Review Packet of Stuff. Take the derivative of the following. 1.) 3.) 5.) 7.) Determine the limit of the following. AP Calculus AB One Last Mega Review Packet of Stuff Name: Date: Block: Take the erivative of the following. 1.) x (sin (5x)).) x (etan(x) ) 3.) x (sin 1 ( x3 )) 4.) x (x3 5x) 4 5.) x ( ex sin(x) ) 6.)

More information

Section 3.1/3.2: Rules of Differentiation

Section 3.1/3.2: Rules of Differentiation : Rules of Differentiation Math 115 4 February 2018 Overview 1 2 Four Theorem for Derivatives Suppose c is a constant an f, g are ifferentiable functions. Then 1 2 3 4 x (c) = 0 x (x n ) = nx n 1 x [cf

More information

Outline. Formic Acid

Outline. Formic Acid Outline Calculus for the Life Sciences Lecture Notes and Functions Joseph M. Mahaffy, jmahaffy@mail.sdsu.edu 1 2 Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences

More information

Math 190 Chapter 3 Lecture Notes. Professor Miguel Ornelas

Math 190 Chapter 3 Lecture Notes. Professor Miguel Ornelas Math 190 Chapter 3 Lecture Notes Professor Miguel Ornelas 1 M. Ornelas Math 190 Lecture Notes Section 3.1 Section 3.1 Derivatives of Polynomials an Exponential Functions Derivative of a Constant Function

More information

11.7. Implicit Differentiation. Introduction. Prerequisites. Learning Outcomes

11.7. Implicit Differentiation. Introduction. Prerequisites. Learning Outcomes Implicit Differentiation 11.7 Introuction This Section introuces implicit ifferentiation which is use to ifferentiate functions expresse in implicit form (where the variables are foun together). Examples

More information

Algebra/Trig Review Flash Cards. Changes. equation of a line in various forms. quadratic formula. definition of a circle

Algebra/Trig Review Flash Cards. Changes. equation of a line in various forms. quadratic formula. definition of a circle Math Flash cars Math Flash cars Algebra/Trig Review Flash Cars Changes Formula (Precalculus) Formula (Precalculus) quaratic formula equation of a line in various forms Formula(Precalculus) Definition (Precalculus)

More information

A. Incorrect! The letter t does not appear in the expression of the given integral

A. Incorrect! The letter t does not appear in the expression of the given integral AP Physics C - Problem Drill 1: The Funamental Theorem of Calculus Question No. 1 of 1 Instruction: (1) Rea the problem statement an answer choices carefully () Work the problems on paper as neee (3) Question

More information

Math 115 Section 018 Course Note

Math 115 Section 018 Course Note Course Note 1 General Functions Definition 1.1. A function is a rule that takes certain numbers as inputs an assigns to each a efinite output number. The set of all input numbers is calle the omain of

More information

1. Find the equation of a line passing through point (5, -2) with slope ¾. (State your answer in slope-int. form)

1. Find the equation of a line passing through point (5, -2) with slope ¾. (State your answer in slope-int. form) INTRO TO CALCULUS REVIEW FINAL EXAM NAME: DATE: A. Equations of Lines (Review Chapter) y = m + b (Slope-Intercept Form) A + By = C (Stanar Form) y y = m( ) (Point-Slope Form). Fin the equation of a line

More information

Chapter 3 Definitions and Theorems

Chapter 3 Definitions and Theorems Chapter 3 Definitions an Theorems (from 3.1) Definition of Tangent Line with slope of m If f is efine on an open interval containing c an the limit Δy lim Δx 0 Δx = lim f (c + Δx) f (c) = m Δx 0 Δx exists,

More information

ARAB ACADEMY FOR SCIENCE TECHNOLOGY AND MARITIME TRANSPORT

ARAB ACADEMY FOR SCIENCE TECHNOLOGY AND MARITIME TRANSPORT ARAB ACADEMY FOR SCIENCE TECHNOLOGY AND MARITIME TRANSPORT Course: Math For Engineering Winter 8 Lecture Notes By Dr. Mostafa Elogail Page Lecture [ Functions / Graphs of Rational Functions] Functions

More information

Math 12 Final Exam Review 1

Math 12 Final Exam Review 1 Math 12 Final Exam Review 1 Part One Calculators are NOT PERMITTED for this part of the exam. 1. a) The sine of angle θ is 1 What are the 2 possible values of θ in the domain 0 θ 2π? 2 b) Draw these angles

More information

Math 210 Midterm #1 Review

Math 210 Midterm #1 Review Math 20 Miterm # Review This ocument is intene to be a rough outline of what you are expecte to have learne an retaine from this course to be prepare for the first miterm. : Functions Definition: A function

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Calculus I - Homework Chapter 2 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Determine whether the graph is the graph of a function. 1) 1)

More information

016A Homework 10 Solution

016A Homework 10 Solution 016A Homework 10 Solution Jae-young Park November 2, 2008 4.1 #14 Write each expression in the form of 2 kx or 3 kx, for a suitable constant k; (3 x 3 x/5 ) 5, (16 1/4 16 3/4 ) 3x Solution (3 x 3 x/5 )

More information

cosh x sinh x So writing t = tan(x/2) we have 6.4 Integration using tan(x/2) = 2 2t 1 + t 2 cos x = 1 t2 We will revisit the double angle identities:

cosh x sinh x So writing t = tan(x/2) we have 6.4 Integration using tan(x/2) = 2 2t 1 + t 2 cos x = 1 t2 We will revisit the double angle identities: 6.4 Integration using tanx/) We will revisit the ouble angle ientities: sin x = sinx/) cosx/) = tanx/) sec x/) = tanx/) + tan x/) cos x = cos x/) sin x/) tan x = = tan x/) sec x/) tanx/) tan x/). = tan

More information

Review of Differentiation and Integration for Ordinary Differential Equations

Review of Differentiation and Integration for Ordinary Differential Equations Schreyer Fall 208 Review of Differentiation an Integration for Orinary Differential Equations In this course you will be expecte to be able to ifferentiate an integrate quickly an accurately. Many stuents

More information

Handout 5, Summer 2014 Math May Consider the following table of values: x f(x) g(x) f (x) g (x)

Handout 5, Summer 2014 Math May Consider the following table of values: x f(x) g(x) f (x) g (x) Handout 5, Summer 204 Math 823-7 29 May 204. Consider the following table of values: x f(x) g(x) f (x) g (x) 3 4 8 4 3 4 2 9 8 8 3 9 4 Let h(x) = (f g)(x) and l(x) = g(f(x)). Compute h (3), h (4), l (8),

More information

1 Definition of the derivative

1 Definition of the derivative Math 20A - Calculus by Jon Rogawski Chapter 3 - Differentiation Prepare by Jason Gais Definition of the erivative Remark.. Recall our iscussion of tangent lines from way back. We now rephrase this in terms

More information

Optimization Notes. Note: Any material in red you will need to have memorized verbatim (more or less) for tests, quizzes, and the final exam.

Optimization Notes. Note: Any material in red you will need to have memorized verbatim (more or less) for tests, quizzes, and the final exam. MATH 2250 Calculus I Date: October 5, 2017 Eric Perkerson Optimization Notes 1 Chapter 4 Note: Any material in re you will nee to have memorize verbatim (more or less) for tests, quizzes, an the final

More information

23 Implicit differentiation

23 Implicit differentiation 23 Implicit ifferentiation 23.1 Statement The equation y = x 2 + 3x + 1 expresses a relationship between the quantities x an y. If a value of x is given, then a corresponing value of y is etermine. For

More information

Outline. MS121: IT Mathematics. Differentiation Rules for Differentiation: Part 1. Outline. Dublin City University 4 The Quotient Rule

Outline. MS121: IT Mathematics. Differentiation Rules for Differentiation: Part 1. Outline. Dublin City University 4 The Quotient Rule MS2: IT Mathematics Differentiation Rules for Differentiation: Part John Carroll School of Mathematical Sciences Dublin City University Pattern Observe You may have notice the following pattern when we

More information

Fall 2016: Calculus I Final

Fall 2016: Calculus I Final Answer the questions in the spaces provie on the question sheets. If you run out of room for an answer, continue on the back of the page. NO calculators or other electronic evices, books or notes are allowe

More information

Differentiation Rules and Formulas

Differentiation Rules and Formulas Differentiation Rules an Formulas Professor D. Olles December 1, 01 1 Te Definition of te Derivative Consier a function y = f(x) tat is continuous on te interval a, b]. Ten, te slope of te secant line

More information

0.1 The Chain Rule. db dt = db

0.1 The Chain Rule. db dt = db 0. The Chain Rule A basic illustration of the chain rules comes in thinking about runners in a race. Suppose two brothers, Mark an Brian, hol an annual race to see who is the fastest. Last year Mark won

More information

P(x) = 1 + x n. (20.11) n n φ n(x) = exp(x) = lim φ (x) (20.8) Our first task for the chain rule is to find the derivative of the exponential

P(x) = 1 + x n. (20.11) n n φ n(x) = exp(x) = lim φ (x) (20.8) Our first task for the chain rule is to find the derivative of the exponential 20. Derivatives of compositions: the chain rule At the en of the last lecture we iscovere a nee for the erivative of a composition. In this lecture we show how to calculate it. Accoringly, let P have omain

More information

1 Lecture 13: The derivative as a function.

1 Lecture 13: The derivative as a function. 1 Lecture 13: Te erivative as a function. 1.1 Outline Definition of te erivative as a function. efinitions of ifferentiability. Power rule, erivative te exponential function Derivative of a sum an a multiple

More information

Mathematics 1210 PRACTICE EXAM II Fall 2018 ANSWER KEY

Mathematics 1210 PRACTICE EXAM II Fall 2018 ANSWER KEY Mathematics 1210 PRACTICE EXAM II Fall 2018 ANSWER KEY 1. Calculate the following: a. 2 x, x(t) = A sin(ωt φ) t2 Solution: Using the chain rule, we have x (t) = A cos(ωt φ)ω = ωa cos(ωt φ) x (t) = ω 2

More information

Calculus I Sec 2 Practice Test Problems for Chapter 4 Page 1 of 10

Calculus I Sec 2 Practice Test Problems for Chapter 4 Page 1 of 10 Calculus I Sec 2 Practice Test Problems for Chapter 4 Page 1 of 10 This is a set of practice test problems for Chapter 4. This is in no way an inclusive set of problems there can be other types of problems

More information

1 Limits Finding limits graphically. 1.3 Finding limits analytically. Examples 1. f(x) = x3 1. f(x) = f(x) =

1 Limits Finding limits graphically. 1.3 Finding limits analytically. Examples 1. f(x) = x3 1. f(x) = f(x) = Theorem 13 (i) If p(x) is a polynomial, then p(x) = p(c) 1 Limits 11 12 Fining its graphically Examples 1 f(x) = x3 1, x 1 x 1 The behavior of f(x) as x approximates 1 x 1 f(x) = 3 x 2 f(x) = x+1 1 f(x)

More information

You should also review L Hôpital s Rule, section 3.6; follow the homework link above for exercises.

You should also review L Hôpital s Rule, section 3.6; follow the homework link above for exercises. BEFORE You Begin Calculus II If it has been awhile since you ha Calculus, I strongly suggest that you refresh both your ifferentiation an integration skills. I woul also like to remin you that in Calculus,

More information

Lectures - Week 10 Introduction to Ordinary Differential Equations (ODES) First Order Linear ODEs

Lectures - Week 10 Introduction to Ordinary Differential Equations (ODES) First Order Linear ODEs Lectures - Week 10 Introuction to Orinary Differential Equations (ODES) First Orer Linear ODEs When stuying ODEs we are consiering functions of one inepenent variable, e.g., f(x), where x is the inepenent

More information

Lecture 3 Notes. Dan Sheldon. September 17, 2012

Lecture 3 Notes. Dan Sheldon. September 17, 2012 Lecture 3 Notes Dan Shelon September 17, 2012 0 Errata Section 4, Equation (2): yn 2 shoul be x2 N. Fixe 9/17/12 Section 5.3, Example 3: shoul rea w 0 = 0, w 1 = 1. Fixe 9/17/12. 1 Review: Linear Regression

More information

First Order Linear Differential Equations

First Order Linear Differential Equations LECTURE 6 First Orer Linear Differential Equations A linear first orer orinary ifferential equation is a ifferential equation of the form ( a(xy + b(xy = c(x. Here y represents the unknown function, y

More information

2.5 SOME APPLICATIONS OF THE CHAIN RULE

2.5 SOME APPLICATIONS OF THE CHAIN RULE 2.5 SOME APPLICATIONS OF THE CHAIN RULE The Chain Rule will help us etermine the erivatives of logarithms an exponential functions a x. We will also use it to answer some applie questions an to fin slopes

More information

By writing (1) as y (x 5 1). (x 5 1), we can find the derivative using the Product Rule: y (x 5 1) 2. we know this from (2)

By writing (1) as y (x 5 1). (x 5 1), we can find the derivative using the Product Rule: y (x 5 1) 2. we know this from (2) 3.5 Chain Rule 149 3.5 Chain Rule Introuction As iscusse in Section 3.2, the Power Rule is vali for all real number exponents n. In this section we see that a similar rule hols for the erivative of a power

More information

2.5 The Chain Rule Brian E. Veitch

2.5 The Chain Rule Brian E. Veitch 2.5 The Chain Rule This is our last ifferentiation rule for this course. It s also one of the most use. The best way to memorize this (along with the other rules) is just by practicing until you can o

More information

MATHEMATICAL METHODS

MATHEMATICAL METHODS Victorian Certificate of Eucation 207 SUPERVISOR TO ATTACH PROCESSING LABEL HERE Letter STUDENT NUMBER MATHEMATICAL METHODS Written examination Wenesay 8 November 207 Reaing time: 9.00 am to 9.5 am (5

More information

Chapter 3 Notes, Applied Calculus, Tan

Chapter 3 Notes, Applied Calculus, Tan Contents 3.1 Basic Rules of Differentiation.............................. 2 3.2 The Prouct an Quotient Rules............................ 6 3.3 The Chain Rule...................................... 9 3.4

More information

Derivative Methods: (csc(x)) = csc(x) cot(x)

Derivative Methods: (csc(x)) = csc(x) cot(x) EXAM 2 IS TUESDAY IN QUIZ SECTION Allowe:. A Ti-30x IIS Calculator 2. An 8.5 by inch sheet of hanwritten notes (front/back) 3. A pencil or black/blue pen Covers: 3.-3.6, 0.2, 3.9, 3.0, 4. Quick Review

More information

Section 6.1: Composite Functions

Section 6.1: Composite Functions Section 6.1: Composite Functions Def: Given two function f and g, the composite function, which we denote by f g and read as f composed with g, is defined by (f g)(x) = f(g(x)). In other words, the function

More information

Using the definition of the derivative of a function is quite tedious. f (x + h) f (x)

Using the definition of the derivative of a function is quite tedious. f (x + h) f (x) Derivative Rules Using te efinition of te erivative of a function is quite teious. Let s prove some sortcuts tat we can use. Recall tat te efinition of erivative is: Given any number x for wic te limit

More information

Some functions and their derivatives

Some functions and their derivatives Chapter Some functions an their erivatives. Derivative of x n for integer n Recall, from eqn (.6), for y = f (x), Also recall that, for integer n, Hence, if y = x n then y x = lim δx 0 (a + b) n = a n

More information

Question Instructions Read today's Notes and Learning Goals.

Question Instructions Read today's Notes and Learning Goals. 63 Proucts an Quotients (13051836) Question 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Instructions Rea toay's Notes an Learning Goals. 1. Question Details fa15 62 chain 1 [3420817] Fin all

More information

4.2 First Differentiation Rules; Leibniz Notation

4.2 First Differentiation Rules; Leibniz Notation .. FIRST DIFFERENTIATION RULES; LEIBNIZ NOTATION 307. First Differentiation Rules; Leibniz Notation In this section we erive rules which let us quickly compute the erivative function f (x) for any polynomial

More information

Implicit Differentiation

Implicit Differentiation Implicit Differentiation Implicit Differentiation Using the Chain Rule In the previous section we focuse on the erivatives of composites an saw that THEOREM 20 (Chain Rule) Suppose that u = g(x) is ifferentiable

More information

Math 180, Exam 2, Fall 2012 Problem 1 Solution. (a) The derivative is computed using the Chain Rule twice. 1 2 x x

Math 180, Exam 2, Fall 2012 Problem 1 Solution. (a) The derivative is computed using the Chain Rule twice. 1 2 x x . Fin erivatives of the following functions: (a) f() = tan ( 2 + ) ( ) 2 (b) f() = ln 2 + (c) f() = sin() Solution: Math 80, Eam 2, Fall 202 Problem Solution (a) The erivative is compute using the Chain

More information

Mathematical Review Problems

Mathematical Review Problems Fall 6 Louis Scuiero Mathematical Review Problems I. Polynomial Equations an Graphs (Barrante--Chap. ). First egree equation an graph y f() x mx b where m is the slope of the line an b is the line's intercept

More information

Math 106 Exam 2 Topics. du dx

Math 106 Exam 2 Topics. du dx The Chain Rule Math 106 Exam 2 Topics Composition (g f)(x 0 ) = g(f(x 0 )) ; (note: we on t know what g(x 0 ) is.) (g f) ought to have something to o with g (x) an f (x) in particular, (g f) (x 0 ) shoul

More information

8/28/2017 Assignment Previewer

8/28/2017 Assignment Previewer Proucts an Quotients (10862446) Due: Mon Sep 25 2017 07:31 AM MDT Question 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Instructions Rea toay's Notes an Learning Goals. 1. Question Details

More information

Hello Future Calculus Level One Student,

Hello Future Calculus Level One Student, Hello Future Calculus Level One Student, This assignment must be completed and handed in on the first day of class. This assignment will serve as the main review for a test on this material. The test will

More information

Calculus 221 worksheet

Calculus 221 worksheet Calculus 221 worksheet Graphing A function has a global maximum at some a in its domain if f(x) f(a) for all other x in the domain of f. Global maxima are sometimes also called absolute maxima. A function

More information

Strauss PDEs 2e: Section Exercise 6 Page 1 of 5

Strauss PDEs 2e: Section Exercise 6 Page 1 of 5 Strauss PDEs 2e: Section 4.3 - Exercise 6 Page 1 of 5 Exercise 6 If a 0 = a l = a in the Robin problem, show that: (a) There are no negative eigenvalues if a 0, there is one if 2/l < a < 0, an there are

More information

Math 1131 Final Exam Review Spring 2013

Math 1131 Final Exam Review Spring 2013 University of Connecticut Department of Mathematics Math 1131 Final Exam Review Spring 2013 Name: Instructor Name: TA Name: 4 th February 2010 Section: Discussion Section: Read This First! Please read

More information

Derivatives and Its Application

Derivatives and Its Application Chapter 4 Derivatives an Its Application Contents 4.1 Definition an Properties of erivatives; basic rules; chain rules 3 4. Derivatives of Inverse Functions; Inverse Trigonometric Functions; Hyperbolic

More information

Math 1271 Solutions for Fall 2005 Final Exam

Math 1271 Solutions for Fall 2005 Final Exam Math 7 Solutions for Fall 5 Final Eam ) Since the equation + y = e y cannot be rearrange algebraically in orer to write y as an eplicit function of, we must instea ifferentiate this relation implicitly

More information

Math Numerical Analysis

Math Numerical Analysis Math 541 - Numerical Analysis Joseph M. Mahaffy, jmahaffy@mail.sdsu.edu Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research Center San Diego State University

More information

NAME: DATE: CLASS: AP CALCULUS AB SUMMER MATH 2018

NAME: DATE: CLASS: AP CALCULUS AB SUMMER MATH 2018 NAME: DATE: CLASS: AP CALCULUS AB SUMMER MATH 2018 A] Refer to your pre-calculus notebook, the internet, or the sheets/links provided for assistance. B] Do not wait until the last minute to complete this

More information

1. Which one of the following points is a singular point of. f(x) = (x 1) 2/3? f(x) = 3x 3 4x 2 5x + 6? (C)

1. Which one of the following points is a singular point of. f(x) = (x 1) 2/3? f(x) = 3x 3 4x 2 5x + 6? (C) Math 1120 Calculus Test 3 November 4, 1 Name In the first 10 problems, each part counts 5 points (total 50 points) and the final three problems count 20 points each Multiple choice section Circle the correct

More information

1 Lecture 20: Implicit differentiation

1 Lecture 20: Implicit differentiation Lecture 20: Implicit ifferentiation. Outline The technique of implicit ifferentiation Tangent lines to a circle Derivatives of inverse functions by implicit ifferentiation Examples.2 Implicit ifferentiation

More information

Unit #4 - Inverse Trig, Interpreting Derivatives, Newton s Method

Unit #4 - Inverse Trig, Interpreting Derivatives, Newton s Method Unit #4 - Inverse Trig, Interpreting Derivatives, Newton s Metho Some problems an solutions selecte or aapte from Hughes-Hallett Calculus. Computing Inverse Trig Derivatives. Starting with the inverse

More information

Calculus for the Life Sciences

Calculus for the Life Sciences Calculus for the Life Sciences Joseph M. Mahaffy, jmahaffy@mail.sdsu.edu Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research Center San Diego State University

More information

AP Calculus. Derivatives and Their Applications. Presenter Notes

AP Calculus. Derivatives and Their Applications. Presenter Notes AP Calculus Derivatives an Their Applications Presenter Notes 2017 2018 EDITION Copyright 2017 National Math + Science Initiative, Dallas, Texas. All rights reserve. Visit us online at www.nms.org Copyright

More information

d dx But have you ever seen a derivation of these results? We ll prove the first result below. cos h 1

d dx But have you ever seen a derivation of these results? We ll prove the first result below. cos h 1 Lecture 5 Some ifferentiation rules Trigonometric functions (Relevant section from Stewart, Seventh Eition: Section 3.3) You all know that sin = cos cos = sin. () But have you ever seen a erivation of

More information

Calculus I Practice Problems 8: Answers

Calculus I Practice Problems 8: Answers Calculus I Practice Problems : Answers. Let y x x. Find the intervals in which the function is increasing and decreasing, and where it is concave up and concave down. Sketch the graph. Answer. Differentiate

More information

Derivative formulas. September 29, Derivative formulas

Derivative formulas. September 29, Derivative formulas September 29, 2013 Derivative of a constant function Derivative is the slope of the graph. The graph of a constant function is a horizontal line with the slope 0 everywhere. Derivative of a constant function

More information

December 2, 1999 Multiple choice section. Circle the correct choice. You do not need to show your work on these problems.

December 2, 1999 Multiple choice section. Circle the correct choice. You do not need to show your work on these problems. December 2, 1999 Multiple choice section Circle the correct choice You o not nee to show your work on these problems 1 Let f(x) = e 2x+1 What is f (0)? (A) 0 (B) e (C) 2e (D) e 2 (E) 2e 2 1b Let f(x) =

More information

Differentiation Rules. Oct

Differentiation Rules. Oct Differentiation Rules Oct 10 2011 Differentiability versus Continuity Theorem If f (a) exists, then f is continuous at a. A function whose erivative exists at every point of an interval is continuous an

More information

Section 2.1 The Derivative and the Tangent Line Problem

Section 2.1 The Derivative and the Tangent Line Problem Chapter 2 Differentiation Course Number Section 2.1 The Derivative an the Tangent Line Problem Objective: In this lesson you learne how to fin the erivative of a function using the limit efinition an unerstan

More information

The Explicit Form of a Function

The Explicit Form of a Function Section 3 5 Implicit Differentiation The Eplicit Form of a Function The normal way we see function notation has f () on one sie of an equation an an epression in terms of on the other sie. We know the

More information

Math 251 Notes. Part I.

Math 251 Notes. Part I. Math 251 Notes. Part I. F. Patricia Meina May 6, 2013 Growth Moel.Consumer price inex. [Problem 20, page 172] The U.S. consumer price inex (CPI) measures the cost of living base on a value of 100 in the

More information

MA123, Supplement: Exponential and logarithmic functions (pp , Gootman)

MA123, Supplement: Exponential and logarithmic functions (pp , Gootman) MA23, Supplement: Exponential an logarithmic functions pp. 35-39, Gootman) Chapter Goals: Review properties of exponential an logarithmic functions. Learn how to ifferentiate exponential an logarithmic

More information

Campus Academic Resource Program Chain Rule

Campus Academic Resource Program Chain Rule This handout will: Provide a strategy to identify composite functions Provide a strategy to find chain rule by using a substitution method. Identifying Composite Functions This section will provide a strategy

More information

Math 111 lecture for Friday, Week 10

Math 111 lecture for Friday, Week 10 Math lecture for Friday, Week Finding antiderivatives mean reversing the operation of taking derivatives. Today we ll consider reversing the chain rule and the product rule. Substitution technique. Recall

More information

Flash Card Construction Instructions

Flash Card Construction Instructions Flash Car Construction Instructions *** THESE CARDS ARE FOR CALCULUS HONORS, AP CALCULUS AB AND AP CALCULUS BC. AP CALCULUS BC WILL HAVE ADDITIONAL CARDS FOR THE COURSE (IN A SEPARATE FILE). The left column

More information

Unit #6 - Families of Functions, Taylor Polynomials, l Hopital s Rule

Unit #6 - Families of Functions, Taylor Polynomials, l Hopital s Rule Unit # - Families of Functions, Taylor Polynomials, l Hopital s Rule Some problems an solutions selecte or aapte from Hughes-Hallett Calculus. Critical Points. Consier the function f) = 54 +. b) a) Fin

More information