Reaching the Extremes of Planet Formation Shockwave Experiments in the Giant Impact Regime

Size: px
Start display at page:

Download "Reaching the Extremes of Planet Formation Shockwave Experiments in the Giant Impact Regime"

Transcription

1 Reaching the Extremes of Planet Formation Shockwave Experiments in the Giant Impact Regime Sarah T. Stewart Dept. Earth & Planetary Sciences, UC Davis

2 Planet Formation Art by NASA

3 Giant Impacts Art by Na*onal Geographic

4 The Origin of the Moon Lunar transit NASA EPOXI

5 We don t know how to make the Moon Lunar transit NASA EPOXI

6 A canonical giant impact simulation: Oblique Mars mass impact at escape velocity (Asphaug & Canup 2001; Canup 2004, 2008) Smoothed particle hydrodynamics (SPH) Iron cores, silicate mantles; phase changes included in equation of state Gravity-dominated events; no material strength

7

8 Accretion of the Moon from a Disk Timescale: 1 to 100 s yr Accretion efficiency is low: 10-50% M disk Main problem: angular momentum out mass in The calculated Moons are too small. Distance (Roche radii 3R Earth ) Kokubo et al. 2010; Salmon & Canup 2012, 2015

9 Earth and Moon are Isotopic Twins Identical isotopes O Ti W Cr Si H volatile, large variations in solar nebula refractory, nucleosynthetic anomalies radiogenic (8.9 Ma), core formation radiogenic (3.7 Ma), variations in nebula moderately refractory, core formation volatile, large variations in solar nebula Each planetary body has a different isotopic signature. Lugmair & Shukolyukov 1998, Wiechert et al. 2001, Georg et al. 2007, Zhang et al. 2011, Saal et al W: Touboul et al but now Touboul et al. LPSC 2014 & Kleine et al. LPSC 2014

10 A Proposed Solution: Mix after the impact Pahlevan & Stevenson 2007

11 Why not reject the giant impact hypothesis for lunar origin?

12 A Giant Impact with High Angular Momentum 2-3 hour 2 half-earths Oblique, near V esc (Canup 2012) Fast-spinning Earth Small, fast impactor, near head-on (Ćuk & Stewart 2012) Both have post-impact Earth with 2 to 3-hr spin period. After Moon formation, an orbital resonance transfers angular momentum to the Sun. (Ćuk & Stewart 2012) Earth To Sun Moon

13

14

15 40 20 Density [g/cm 3 ] km km 20 40

16 40 20 Density [g/cm 3 ] km km 20 40

17 What was the physical state of the Earth and Lunar Disk?

18 Thermodynamics of Giant Impacts Hugoniot Hugoniot Log Pressure L Supercritical Fluid Log Pressure L Supercritical Fluid Vapor Solid Vapor Solid Temperature Entropy

19 Thermodynamics of Giant Impacts Hugoniot Hugoniot Log Pressure L Supercritical Fluid Log Pressure L Supercritical Fluid Vapor Solid Vapor Solid Ambient Pressure Temperature Entropy How much material melts or vaporizes?

20 Calculating Entropy on the Hugoniot with Static Data and Shock Temperatures Hugoniot ds= ΔV=0 de T + PdV T Log Pressure ΔS=0 L Supercritical Fluid Solid Vapor Temperature SiO 2 quartz Temperature (Hicks et al. 2006) à Entropy (Kraus et al. 2012)

21 Calculating Entropy on the Hugoniot with Static Data and Shock Temperatures Log Pressure ΔS=0 Solid L Hugoniot ΔV=0 de 113 GPa 4800 K ds= Supercritical Fluid Vapor Triple Point SiO 2 : 1996 K, ~3 Pa T + PdV T Cri*cal Point SiO K, 0.5 g/cm 3, 0.13 GPa Other Cri*cal Points MgO (SESAME) 7900 K 0.45 g/cm GPa Fe (Fortov & Lomonosov 2010) 8800 K 2.2 g/cm GPa Temperature SiO 2 quartz Temperature (Hicks et al. 2006) à Entropy (Kraus et al. 2012)

22 Simple Equation of State Models Do Not Predict the Correct Entropy Melosh 2007 Kraus et al New critical pressure for complete vaporization: 715 GPa (Kraus et al. 2012) Old value from M-ANEOS model: 1650 GPa (Melosh 2007) Onset of vaporization at impact velocities of only 7 km/s.

23 How to measure the liquid-vapor curve? Hugoniot Hugoniot Log Pressure L Supercritical Fluid Log Pressure L Supercritical Fluid Vapor Solid Vapor Solid Ambient Pressure Temperature Entropy SiO 2 MgO Fe Model Critical Points 5130 K, 0.5 g/cm 3, 0.13 GPa 7900 K, 0.45 g/cm 3, 0.3 GPa 8800 K, 2.2 g/cm 3, 1.1 GPa

24 How to determine entropy when cannot measure shock temperature directly? Hugoniot ds= ΔV=0 de T + PdV T Log Pressure ΔS=0 L Supercritical Fluid Solid Vapor Temperature A general technique is needed for opaque materials.

25 Planar Geometry Shock-and-Release Experiments Flyer Plate Veloci*es > several km/s Laser drive >100 s J VISAR For transparent targets: Flyer Velocity Target shock Releasing material Impacts window Quartz Shock Velocity Pyrometry For transparent targets: Shock Temperature Release Temperature Technique development in Kraus et al Gas gun: Boslough 1988, Stewart et al. 2008; Laser: Kraus et al. 2012; Z-machine: Kraus et al. revised

26 Shock-and-Release Experiments to Measure the Liquid-Vapor Boundary Log Pressure Vap Liq+Vap Isentrope Liq B Hugoniot A Solid Time Shocked A Stuck on Liquid-Vapor Dome B Shock Wave Unshocked Vaporizing Material Vacuum Density Lagrangian Position

27 Shock-and-Release Experiment Fe Target Al Flyer Quartz window 18 km/s (µm)

28 Shock-and-Release Experiment (µm)

29 Shock-and-Release Experiment Fe liquid branch density Log Pressure Isentrope Hugoniot Al Flyer V L+V L Density Solid Quartz window Measure emission temperature of liquid layer (e.g., Kraus et al. 2012) (µm)

30 Shock-and-Release Experiment Hugoniot Log Pressure Isentrope V L+V L Solid Density (µm)

31 Shock-and-Release Experiment Fe Quartz window Measure steady shock in quartz window. Al Flyer Solve for density of the liquid iron as in a reverse impact experiment. (µm)

32 First Shock-and-Release Density Measurements Fundamental Science Program at the Sandia Z Machine & NNSA HEDLP Richard G. Kraus, Seth Root, Raymond W. Lemke, Sarah T. Stewart, Stein B. Jacobsen, and Thomas R. Malsson

33 Shock and Release in Entropy-Density Space MgO Solid Solid+Vapor S+L +V L+V Liquid Vapor Kraus et al., in prep.

34 Shock and Release in Entropy-Density Space MgO 389 GPa 788 GPa Kraus et al., in prep.

35 Shock and Release in Entropy-Density Space MgO 389 GPa 788 GPa Isentropic Release Kraus et al., in prep. MgO SESAME 7460 liquid- vapor curve

36 Iron Shock and Release Density Data GPa Isentropic Release Kraus et al., revised.

37 10 Iron Density Data Liquid Branch of Liquid-Vapor Curve Liquid Branch Densities Hugoniot Liquid Density [g/cm 3 ] Log Pressure V L+V Isentrope L Solid Shock Pressure [GPa] Density Kraus et al., revised.

38 Liquid Density [g/cm 3 ] Iron Liquid Branch Density Data Constrains Entropy on the Hugoniot Liquid Branch Densities Boiling Point Density (6.01 g/cm 3 ) Log Pressure V 1 bar L+V Isentrope L Hugoniot 507 GPa Solid Shock Pressure [GPa] Density Post- shock densi*es *e the 1 bar boiling point to the shock state Shock pressure to induce vaporiza*on: 507 GPa (13 km/s impact by a differen*ated asteroid) Kraus et al., revised.

39 Thermal State on the Hugoniot of an Opaque Material Pressure [GPa] Fe-ANEOS Fe bar Boiling Point This work Entropy [J/kg/K] Method for Hugoniot entropy is completely general. Kraus et al., revised.

40 Shock-induced Phase Changes: A Planetary Process Hugoniot Log Pressure L Supercritical Fluid Vapor Solid Ambient Pressure Entropy New experimental techniques to measure states of the liquid- vapor curve Impact- induced vaporiza*on is a common process during planet forma*on.

41 What was the physical state of the Earth and Lunar Disk? Hugoniot Log Pressure L Supercritical Fluid Vapor Solid Ambient Pressure Entropy

42 Collision of 2 half- Earths (Canup 2012)

43

44 Reaching the Extremes of Planet Formation Gas Guns LLNL NIF Laser Sandia Z Machine

45 View on Oct 30 by Chang e 4 spacecrax

46

47 Shock-and-Release Temperature Measurements LLNL Jupiter Laser Facility User Program and NNSA SSGF R. G. Kraus, S. T. Stewart, D. C. Swix, C. A. Bolme, R. F. Smith, S. Hamel, B. D. Hammel, D. K. Spaulding, D. G. Hicks, J. H. Eggert, and G. W. Collins J. Geophysical Research Planets, 2012

48 Quartz Shock Vaporization Experiments Temperature [1000K] This Work Lyzenga et al. 1983, Boslough GPa Liquid 318 GPa Hugoniot Vapor Entropy [J/kg/K] 7000 Kraus et al. 2012

49 Quartz Shock Vaporization Experiments Temperature [1000K] This Work Lyzenga et al. 1983, Boslough GPa Liquid 318 GPa Hugoniot Vapor Entropy [J/kg/K] 7000 Kraus et al. 2012

50 Quartz Shock Vaporization Experiments Temperature [1000K] This Work Lyzenga et al. 1983, Boslough GPa Liquid 318 GPa Expanding Silica Silica Liquid Fluid Predicted post-shock temperatures for 100, 500, 1000 nm droplets Vapor-Droplet Mixture Vapor Streaked Optical Pyrometer Entropy [J/kg/K] 7000 Kraus et al. 2012

51 Quartz Shock Vaporization Experiments Temperature [1000K] This Work Lyzenga et al. 1983, Boslough GPa Liquid 318 GPa Predicted temperatures Hugoniot Vapor Entropy [J/kg/K] 7000 Cri*cal point for SiO 2 : 5130 K and 0.13 Gpa Impact- induced vaporiza*on starts at 7 km/s Kraus et al. 2012

A non-traditional stable isotope perspective

A non-traditional stable isotope perspective The origins of the Moon: A non-traditional stable isotope perspective Fang-Zhen Teng Department of Earth and Space Sciences From the beginning: The Universe: 13.8 Ga The Milky Way Galaxy The Solar System

More information

The Earth-Moon system. Origin of the Moon. Mark Wyatt

The Earth-Moon system. Origin of the Moon. Mark Wyatt Origin of the Moon Mark Wyatt The Earth-Moon system The Moon orbits the Earth at a moon = 385,000 km with an eccentricity of 0.05, inclination to ecliptic of 5 o The Earth orbits the Sun at a earth = 150,000,000

More information

The Earth-Moon system. Origin of the Moon. Mark Wyatt

The Earth-Moon system. Origin of the Moon. Mark Wyatt Origin of the Moon Mark Wyatt The Earth-Moon system The Moon orbits the Earth at a moon = 385,000 km with an eccentricity of 0.05, inclination to ecliptic of 5 o The Earth orbits the Sun at a earth = 150,000,000

More information

A hit-and-run Giant Impact scenario

A hit-and-run Giant Impact scenario *Manuscript Click here to view linked References 1 A hit-and-run Giant Impact scenario 2 3 4 5 6 Andreas Reufer 1, Matthias M. M. Meier 2,3, Willy Benz 1 and Rainer Wieler 2 1 Physikalisches Institut &

More information

New results on the formation of the Moon

New results on the formation of the Moon New results on the formation of the Moon Julien Salmon 1, Robin M. Canup 1 ESLAB Symposium - Formation and Evolution of Moons 26 June 2012 ESTEC, Noordwijk, The Netherlands 1 Southwest Research Institute,

More information

HIGH-RESOLUTION SIMULATIONS OF A MOON-FORMING IMPACT AND POSTIMPACT EVOLUTION

HIGH-RESOLUTION SIMULATIONS OF A MOON-FORMING IMPACT AND POSTIMPACT EVOLUTION The Astrophysical Journal, 638:1180 1186, 2006 February 20 # 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A. HIGH-RESOLUTION SIMULATIONS OF A MOON-FORMING IMPACT AND POSTIMPACT

More information

Constructing the Moon

Constructing the Moon Constructing the Solar System: A Smashing Success Constructing the Moon Thomas M. Davison Department of the Geophysical Sciences Compton Lecture Series Autumn 2012 T. M. Davison Constructing the Solar

More information

Nanosecond Broadband Spectroscopy For Laser-Driven Compression Experiments

Nanosecond Broadband Spectroscopy For Laser-Driven Compression Experiments Nanosecond Broadband Spectroscopy For Laser-Driven Compression Experiments Dylan K. Spaulding, R. Jeanloz Department of Earth and Planetary Science, University of California, Berkeley307 McCone Hall, Berkeley,

More information

On the origin and composition of Theia: Constraints from new models of the Giant Impact

On the origin and composition of Theia: Constraints from new models of the Giant Impact On the origin and composition of Theia: Constraints from new models of the Giant Impact M. M. M. Meier* 1,2, A. Reufer 3, R. Wieler 2 1 CRPG CNRS Nancy, France 2 Department of Earth Sciences, ETH Zurich,

More information

arxiv: v2 [astro-ph.ep] 12 Nov 2017

arxiv: v2 [astro-ph.ep] 12 Nov 2017 On the Origin of Earth s Moon Amy C. Barr 1 1 Planetary Science Institute, 1700 E. Ft. Lowell, Suite 106, Tucson, AZ, 85719, USA (amy@psi.edu) Accepted for publication in Journal of Geophysical Research

More information

General Introduction. The Earth as an evolving geologic body

General Introduction. The Earth as an evolving geologic body General Introduction The Earth as an evolving geologic body Unique/important attributes of Planet Earth 1. Rocky planet w/ strong magnetic field Mercury has a weak field, Mars has a dead field 1 Unique/important

More information

Forming terrestrial planets & impacts

Forming terrestrial planets & impacts Lecture 11 Forming terrestrial planets & impacts Lecture Universität Heidelberg WS 11/12 Dr. C. Mordasini Based partially on script of Prof. W. Benz Mentor Prof. T. Henning Lecture 11 overview 1. Terrestrial

More information

arxiv: v1 [astro-ph.ep] 23 Mar 2010

arxiv: v1 [astro-ph.ep] 23 Mar 2010 Formation of Terrestrial Planets from Protoplanets under a Realistic Accretion Condition arxiv:1003.4384v1 [astro-ph.ep] 23 Mar 2010 Eiichiro Kokubo Division of Theoretical Astronomy, National Astronomical

More information

On the Origin of the Rocky Planets, Fugue in Venus Megacollision

On the Origin of the Rocky Planets, Fugue in Venus Megacollision On the Origin of the Rocky Planets, Fugue in Venus Megacollision Simon Porter October 30, 2009 And art thou, then, a world like ours, Flung from the orb that whirled our own A molten pebble from its zone?

More information

Astronomy 405 Solar System and ISM

Astronomy 405 Solar System and ISM Astronomy 405 Solar System and ISM Lecture 17 Planetary System Formation and Evolution February 22, 2013 grav collapse opposed by turbulence, B field, thermal Cartoon of Star Formation isolated, quasi-static,

More information

Volatiles in the terrestrial planets. Sujoy Mukhopadhyay University of California, Davis CIDER, 2014

Volatiles in the terrestrial planets. Sujoy Mukhopadhyay University of California, Davis CIDER, 2014 Volatiles in the terrestrial planets Sujoy Mukhopadhyay University of California, Davis CIDER, 2014 Atmophiles: Elements I will talk about rock-loving iron-loving sulfur-loving Temperatures in Protoplanetary

More information

Origin of the Earth Moon system

Origin of the Earth Moon system Origin of the Earth Moon system EMGalimovand AMKrivtsov V. I. Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Kosygin str., 19, Moscow 119 991, Russia. e-mail:

More information

What is it like? When did it form? How did it form. The Solar System. Fall, 2005 Astronomy 110 1

What is it like? When did it form? How did it form. The Solar System. Fall, 2005 Astronomy 110 1 What is it like? When did it form? How did it form The Solar System Fall, 2005 Astronomy 110 1 Fall, 2005 Astronomy 110 2 The planets all orbit the sun in the same direction. The Sun spins in the same

More information

Dr. Steven Ball LeTourneau University

Dr. Steven Ball LeTourneau University Dr. Steven Ball LeTourneau University 1. The Tides Earth s ocean levels rise and fall, replenishing nutrients Tidal distortion of Earth s shape causes the Moon to spiral away from the Earth, now at 4 cm

More information

The Solar System consists of

The Solar System consists of The Universe The Milky Way Galaxy, one of billions of other galaxies in the universe, contains about 400 billion stars and countless other objects. Why is it called the Milky Way? Welcome to your Solar

More information

Planetary Formation OUTLINE

Planetary Formation OUTLINE Planetary Formation Reading this week: White p474-490 OUTLINE Today 1.Accretion 2.Planetary composition 1 11/1/17 Building Earth 2 things are important: Accretion means the assembly of Earth from smaller

More information

The History of the Earth

The History of the Earth The History of the Earth We have talked about how the universe and sun formed, but what about the planets and moons? Review: Origin of the Universe The universe began about 13.7 billion years ago The Big

More information

Atmospheric Chemistry During the Accretion of Earth-like Exoplanets

Atmospheric Chemistry During the Accretion of Earth-like Exoplanets Atmospheric Chemistry During the Accretion of Earth-like Exoplanets Bruce Fegley, Jr. Planetary Chemistry Laboratory McDonnell Center for the Space Sciences Department of Earth and Planetary Sciences Washington

More information

Astr 1050 Fri., Feb. 24, 2017

Astr 1050 Fri., Feb. 24, 2017 Astr 1050 Fri., Feb. 24, 2017 Chapter 7 & 8: Overview & Formation of the Solar System Reading: Chapters 7 on Solar System Chapter 8: Earth & Terrestrial Planets Reminders: New homework on MA up this afternoon,

More information

Origin of the Solar System

Origin of the Solar System Origin of the Solar System Look for General Properties Dynamical Regularities Orbits in plane, nearly circular Orbit sun in same direction (CCW from N.P.) Rotation Axes to orbit plane (Sun & most planets;

More information

Forma&on of the Solar System

Forma&on of the Solar System Forma&on of the Solar System Overview We can explain the observed trends in our solar system through the nebular theory The laws of physics (Chapter 4) come into play here. The major dis&nc&on between

More information

Astronomy 405 Solar System and ISM

Astronomy 405 Solar System and ISM Astronomy 405 Solar System and ISM Lecture 18 Planetary System Formation and Evolution February 25, 2013 grav collapse opposed by turbulence, B field, thermal Cartoon of Star Formation isolated, quasi-static,

More information

Properties of the Pluto-Charon binary

Properties of the Pluto-Charon binary roperties o the luto-haron binary The orbital period, = 6.3876±0.00007 days, and semi-major axis o haron s orbit, a = 19636 ± 8 km, imply a total mass M = 1.471 ± 0.00 10 5 g (S1). luto s motion relative

More information

OCN 201: Origin of the Earth and Oceans. Waimea Bay, Jan 2002

OCN 201: Origin of the Earth and Oceans. Waimea Bay, Jan 2002 OCN 201: Origin of the Earth and Oceans Waimea Bay, Jan 2002 Periodic Table of the Elements Noble IA IIA IIIA IVA VA VIA VIIA VIIIA IB IIB IIIB IVB VB VIB VIIB gases H He Li Be B C N O F Ne Na Mg Al Si

More information

Composition. by OCT 2. Sean M. Wahl. at the. May Department of Earth and Planetary Science, Department of Physics May 6, 2011 Certified by.

Composition. by OCT 2. Sean M. Wahl. at the. May Department of Earth and Planetary Science, Department of Physics May 6, 2011 Certified by. Impact Modification of Mercury's Mantle Composition M ASS HIS rts INSTITUTE by OCT 2 Sean M. Wahl LIBRP RIES Submitted to the Department of Earth, Atmospheric and Planetary ARCHIVES Science in partial

More information

Today. Solar System Formation. a few more bits and pieces. Homework due

Today. Solar System Formation. a few more bits and pieces. Homework due Today Solar System Formation a few more bits and pieces Homework due Pluto Charon 3000 km Asteroids small irregular rocky bodies Comets icy bodies Formation of the Solar System How did these things come

More information

Theories of Moon Formation

Theories of Moon Formation Theories of Moon Formation 9/14/16 Question: How was the moon formed? What are the 4 different theories of moon formation? https://www.youtube.com/watch?v=sjestosgiig List 10 facts about the Moon: Describe

More information

Differentiation of planetary interiors. Rocky Planets Interiors and surface geophysics

Differentiation of planetary interiors. Rocky Planets Interiors and surface geophysics Differentiation of planetary interiors Rocky Planets Interiors and surface geophysics Process of separation of internal planetary layers that takes place as a result of the physical and chemical properties

More information

Shock-Wave Equation-of-State Measurements in Fused Silica up to 1600 GPa

Shock-Wave Equation-of-State Measurements in Fused Silica up to 1600 GPa Shock-Wave Equation-of-State Measurements in Fused Silica up to 1600 GPa Introduction Silica is the single most-abundant compound in the earth s mantle and crust and an end member of the MgO-FeO-SiO2 system

More information

Mercury = Hermes Mythology. Planet Mercury, Element, Mercredi God of Commerce, Messenger God, guide to Hades Winged sandals and staff

Mercury = Hermes Mythology. Planet Mercury, Element, Mercredi God of Commerce, Messenger God, guide to Hades Winged sandals and staff Mercury = Hermes Mythology Planet Mercury, Element, Mercredi God of Commerce, Messenger God, guide to Hades Winged sandals and staff Mercury s Orbit Mercury never seen more than 28 from the sun Revolves/orbits

More information

Moon Obs #1 Due! Moon visible: early morning through afternoon. 6 more due June 13 th. 15 total due June 25 th. Final Report Due June 28th

Moon Obs #1 Due! Moon visible: early morning through afternoon. 6 more due June 13 th. 15 total due June 25 th. Final Report Due June 28th Moon Obs #1 Due! Moon visible: early morning through afternoon 6 more due June 13 th 15 total due June 25 th Final Report Due June 28th Our Solar System Objectives Overview of what is in our solar system

More information

Growth of terrestrial planets

Growth of terrestrial planets Growth of terrestrial planets Wilhelm Kley Institut für Astronomie & Astrophysik & Kepler Center for Astro and Particle Physics Tübingen March 2015 2. Growth to terrestrial planets: Organisation Lecture

More information

Class Exercise. Today s Class: The Origin & Evolution of the Moon. Space in the News: NASA and Russia Partner Up for Crewed Deep-Space Missions

Class Exercise. Today s Class: The Origin & Evolution of the Moon. Space in the News: NASA and Russia Partner Up for Crewed Deep-Space Missions Today s Class: The Origin & Evolution of the Moon 1. 2. 3. 4. Homework. Read: Sections 9.2-9.3 in Cosmic Perspective. Next class is at Fiske Planetarium! Need volunteers for Space in the News. Exam #2

More information

Constraints on the pre-impact orbits of Solar system giant impactors

Constraints on the pre-impact orbits of Solar system giant impactors Advance Access publication 2017 November 14 doi:10.1093/mnras/stx2901 Constraints on the pre-impact orbits of Solar system giant impactors Alan P. Jackson, 1,2 Travis S. J. Gabriel 2 and Erik I. Asphaug

More information

Silicate Atmospheres, Clouds, and Fractional Vaporization of Hot Earth-like Exoplanets

Silicate Atmospheres, Clouds, and Fractional Vaporization of Hot Earth-like Exoplanets Silicate Atmospheres, Clouds, and Fractional Vaporization of Hot Earth-like Exoplanets Laura Schaefer and Bruce Fegley, Jr. Planetary Chemistry Laboratory Department of Earth and Planetary Sciences Washington

More information

Refractive-Index Measurements of LiF Ramp Compressed to 800 GPa

Refractive-Index Measurements of LiF Ramp Compressed to 800 GPa Refractive-Index Measurements of LiF Ramp Compressed to 8 GPa Pressure (GPa) 1 4 68 1.6 1.55 Refractive index D. E. Fratanduono Lawrence Livermore National Laboratory 1.5 1.45 1.4 1.35 Weighted mean Wise

More information

LETTER. A primordial origin for the compositional similarity between the Earth and the Moon

LETTER. A primordial origin for the compositional similarity between the Earth and the Moon doi:1.138/nature14333 A primordial origin for the compositional similarity between the Earth and the Moon Alessandra Mastrobuono-Battisti 1, Hagai B. Perets 1 & Sean N. Raymond 2,3 Most of the properties

More information

Lab 5: An Investigation of Meteorites Geology 202: Earth s Interior

Lab 5: An Investigation of Meteorites Geology 202: Earth s Interior Lab 5: An Investigation of Meteorites Geology 202: Earth s Interior Asteroids and Meteorites: What is the difference between asteroids and meteorites? Asteroids are rocky and metallic objects that orbit

More information

Transits of planets: mean densities

Transits of planets: mean densities Chapter 3 Transits of planets: mean densities Close-in (short period) planets have a relatively high chance to transit in front of the star. A transit introduces a small periodic dimming of the star which

More information

Planets Everywhere. Dave Stevenson Caltech. Insight Cruises, January 21, 2018

Planets Everywhere. Dave Stevenson Caltech. Insight Cruises, January 21, 2018 Planets Everywhere Dave Stevenson Caltech Insight Cruises, January 21, 2018 Galileo s notebook (1610) Detecting Planets by the Transit Method Conclusion (So Far) Planets are common Most

More information

Planet Formation: theory and observations. Sean Raymond University of Colorado (until Friday) Observatoire de Bordeaux

Planet Formation: theory and observations. Sean Raymond University of Colorado (until Friday) Observatoire de Bordeaux Planet Formation: theory and observations Sean Raymond University of Colorado (until Friday) Observatoire de Bordeaux Outline Stages of Planet Formation Solar System Formation Cores to disks (c2d) Observational

More information

B.S., 1970, Geology, Michigan State University. M.A., 1972, Geology, Princeton University. Post-doctoral fellow, , Stanford University

B.S., 1970, Geology, Michigan State University. M.A., 1972, Geology, Princeton University. Post-doctoral fellow, , Stanford University B.S., 1970, Geology, Michigan State University M.A., 1972, Geology, Princeton University Ph.D., 1976, Geology, Harvard University Post-doctoral fellow, 1976-77, Stanford University Scientist, 1977-86,

More information

Evidence of Earth s Interior Direct and Indirect Evidence

Evidence of Earth s Interior Direct and Indirect Evidence Into Which Layer Have We Drilled? Evidence of Earth s Interior Direct and Indirect Evidence 1. Crust 2. Mantle 3. Outer Core 4. Inner Core Why?? How Many Types of Crust Exist? Which of the following is

More information

Planetary Interiors. Earth s Interior Structure Hydrostatic Equilibrium Heating Constituent Relations Gravitational Fields Isostasy Magnetism

Planetary Interiors. Earth s Interior Structure Hydrostatic Equilibrium Heating Constituent Relations Gravitational Fields Isostasy Magnetism Planetary Interiors Earth s Interior Structure Hydrostatic Equilibrium Heating Constituent Relations Gravitational Fields Isostasy Magnetism Isostasy Courtesy of U of Leeds Now apply this idea to topography

More information

When Asteroids Collide

When Asteroids Collide Constructing the Solar System: A Smashing Success When Asteroids Collide Thomas M. Davison Department of the Geophysical Sciences Compton Lecture Series Autumn 2012 T. M. Davison Constructing the Solar

More information

Written by G. Jeffrey Taylor Hawai'i Institute of Geophysics and Planetology

Written by G. Jeffrey Taylor Hawai'i Institute of Geophysics and Planetology 1 of 7 May 30, 2012 --- The titanium isotopic mix is essentially identical in Earth and Moon, important new information with implications for the origin of the planets. Written by G. Jeffrey Taylor Hawai'i

More information

Geochemical constraints on the core formation and composition

Geochemical constraints on the core formation and composition Geochemical constraints on the core formation and composition Bernard Bourdon ENS Lyon with: Mathieu Touboul, Caroline Fitoussi, John Rudge and Thorsten Kleine Collège de France November 25 th Core formation

More information

IMPACT-INDUCED MELTING OF NEAR-SURFACE WATER ICE ON MARS

IMPACT-INDUCED MELTING OF NEAR-SURFACE WATER ICE ON MARS in 13 th APS Topical Conference on Shock-Compression of Condensed Matter 2003, edited by M. D. Furnish, Y. M. Gupta, and J. W. Forbes, pp. 1484-1487, Amer. Inst. Phys., New York, 2004 IMPACT-INDUCED MELTING

More information

Moon Formation. Capture Hypothesis Many Hypothesis Fission Hypothesis Double Impact Hypothesis Giant Impact Hypothesis

Moon Formation. Capture Hypothesis Many Hypothesis Fission Hypothesis Double Impact Hypothesis Giant Impact Hypothesis Moon Formation Capture Hypothesis Many Hypothesis Fission Hypothesis Double Impact Hypothesis Giant Impact Hypothesis Capture Hypothesis Earth seized a pre-formed moon Disproved when lunar samples showed

More information

Brooks Observatory telescope observing this week

Brooks Observatory telescope observing this week Brooks Observatory telescope observing this week Mon. - Thurs., 7:30 9:15 PM MW, 7:30 8:45 PM TR See the class web page for weather updates. This evening s session is cancelled. Present your blue ticket

More information

Composition and the Early History of the Earth

Composition and the Early History of the Earth Composition and the Early History of the Earth Sujoy Mukhopadhyay CIDER 2006 What we will cover in this lecture Composition of Earth Short lived nuclides and differentiation of the Earth Atmosphere and

More information

Minimum Radii of Super-Earths: Constraints from Giant Impacts

Minimum Radii of Super-Earths: Constraints from Giant Impacts Minimum Radii of Super-Earths: Constraints from Giant Impacts Robert A. Marcus 1,a, Dimitar Sasselov 1, Lars Hernquist 1, Sarah T. Stewart 2 1 Astronomy Department, Harvard University, Cambridge, MA 02138

More information

Introduction to the Solar System

Introduction to the Solar System Introduction to the Solar System Sep. 11, 2002 1) Introduction 2) Angular Momentum 3) Formation of the Solar System 4) Cowboy Astronomer Review Kepler s Laws empirical description of planetary motion Newton

More information

Meteorites free samples from the solar system

Meteorites free samples from the solar system Meteorites free samples from the solar system It is easier to believe that Yankee professors would lie, than that stones would fall from heaven [Thomas Jefferson, 3rd president of the USA] 2.1 Collection

More information

Tungsten isotopic evolution during late-stage accretion: constraints on Earth-Moon equilibration

Tungsten isotopic evolution during late-stage accretion: constraints on Earth-Moon equilibration Tungsten isotopic evolution during late-stage accretion: constraints on Earth-Moon equilibration F. Nimmo Department of Earth and Planetary Sciences, University of California Santa Cruz, Santa Cruz CA

More information

Overview of Solar System

Overview of Solar System Overview of Solar System The solar system is a disk Rotation of sun, orbits of planets all in same direction. Most planets rotate in this same sense. (Venus, Uranus, Pluto are exceptions). Angular momentum

More information

Solar System Forma-on

Solar System Forma-on Solar System Forma-on The processes by which stars and planets form are ac-ve areas of research in modern astrophysics The forma-on of our own solar system is central to the first half of our course, and

More information

Planetary Interiors. Ulrich Christensen

Planetary Interiors. Ulrich Christensen Planetary Interiors Ulrich Christensen Earth as a prototype planet Informations from shape, gravity and rotation Internal structure of terrestrial planets and icy moons The interior of gas planets Introduction

More information

Laser-Driven Shock Compression Studies of Planetary Compositions. Dylan Kenneth Spaulding

Laser-Driven Shock Compression Studies of Planetary Compositions. Dylan Kenneth Spaulding Laser-Driven Shock Compression Studies of Planetary Compositions By Dylan Kenneth Spaulding A dissertation submitted in partial satisfaction of the Requirements for the degree of Doctor of Philosophy in

More information

Our Planetary System & the Formation of the Solar System

Our Planetary System & the Formation of the Solar System Our Planetary System & the Formation of the Solar System Chapters 7 & 8 Comparative Planetology We learn about the planets by comparing them and assessing their similarities and differences Similarities

More information

Formation of the Earth and Solar System

Formation of the Earth and Solar System Formation of the Earth and Solar System a. Supernova and formation of primordial dust cloud. NEBULAR HYPOTHESIS b. Condensation of primordial dust. Forms disk-shaped nubular cloud rotating counterclockwise.

More information

A Beta-Viscosity Model

A Beta-Viscosity Model A Beta-Viscosity Model for the Evolving Solar Nebula Sanford S Davis Workshop on Modeling the Structure, Chemistry, and Appearance of Protoplanetary Disks 13-17 April, 2004 Ringberg, Baveria, Germany 1

More information

Origin of the Solar System

Origin of the Solar System Origin of the Solar System Current Properties of the Solar System Look for General Properties Dynamical Regularities Orbits in plane, nearly circular Orbit sun in same direction (CCW from North pole) Rotation

More information

Formation of the Solar System. What We Know. What We Know

Formation of the Solar System. What We Know. What We Know Formation of the Solar System Many of the characteristics of the planets we discussed last week are a direct result of how the Solar System formed Until recently, theories for solar system formation were

More information

The structure of rocky planets

The structure of rocky planets he structure of rocky planets Christophe Sotin Iron planets (Mercury) errestrial planets Ocean / Icy planets Icy Moons Uranus and Neptune Giant planets References: Sotin et al. (21) errestrial Planet Interiors;

More information

Terrestrial World Surfaces

Terrestrial World Surfaces 1 Terrestrial World Surfaces Solid rocky surfaces shaped (to varying degrees) by: Impact cratering Volcanism Tectonics (gross movement of surface by interior forces) Erosion (by impacts or by weather)

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution

More information

GG101 Dynamic Earth Dr. Fletcher, POST 802A Text Fletcher, WileyPLUS

GG101 Dynamic Earth Dr. Fletcher, POST 802A Text Fletcher, WileyPLUS GG101 Dynamic Earth Dr. Fletcher, POST 802A fletcher@soest.hawaii.edu 956-2582 Text Fletcher, 2011 WileyPLUS Three exams, 50% total 20 to 25 homeworks, 50% total All homeworks done on-line Assignments

More information

What does the solar system look like?

What does the solar system look like? What does the solar system look like? The solar system exhibits clear patterns of composition and motion. These patterns are far more important and interesting than numbers, names, and other trivia. Relative

More information

Lecture 31. Planetary Accretion the raw materials and the final compositions

Lecture 31. Planetary Accretion the raw materials and the final compositions Lecture 31 Planetary Accretion the raw materials and the final compositions Reading this week: White Ch 11 (sections 11.1-11.4) Today 1. Boundary conditions for Planetary Accretion Growth and Differentiation

More information

Lecture Outlines. Chapter 15. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 15. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 15 Astronomy Today 7th Edition Chaisson/McMillan Chapter 15 The Formation of Planetary Systems Units of Chapter 15 15.1 Modeling Planet Formation 15.2 Terrestrial and Jovian Planets

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI: 10.1038/NGEO1828 Projectile Remnants in Central Peaks of Lunar Impact Craters Authors: Z. Yue 1, 2, B. C. Johnson 3, D. A. Minton 2, H. J. Melosh 2,3 *, K. Di 1, W. Hu 1,

More information

The Sun and Planets Lecture Notes 5. The Moon

The Sun and Planets Lecture Notes 5. The Moon The Sun and Planets Lecture Notes 5. Spring Semester 2019 Prof Dr Ravit Helled The Moon Definitions Escape Velocity Escape velocity is the minimum speed needed for an object to escape a massive body. The

More information

Comparative Planetology II: The Origin of Our Solar System. Chapter Eight

Comparative Planetology II: The Origin of Our Solar System. Chapter Eight Comparative Planetology II: The Origin of Our Solar System Chapter Eight ASTR 111 003 Fall 2007 Lecture 07 Oct. 15, 2007 Introduction To Modern Astronomy I: Solar System Introducing Astronomy (chap. 1-6)

More information

Class Exercise. Today s Class: The History & Evolution of the Moon

Class Exercise. Today s Class: The History & Evolution of the Moon Today s Class: The History & Evolution of the Moon 1. Homework. Read: Sections 9.2-9.3 in Cosmic Perspective. 2. Homework #6 due next Monday, March 19 th. 3. Exam 2 on Wednesday, March 21, covers telescopes

More information

Available online at ScienceDirect. Procedia Engineering 103 (2015 )

Available online at  ScienceDirect. Procedia Engineering 103 (2015 ) Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 103 (2015 ) 499 506 The 13 th Hypervelocity Impact Symposium Analysis of Impact Melt and Vapor Production in CTH for Planetary

More information

Importance of the study of extrasolar planets. Exoplanets Introduction. Importance of the study of extrasolar planets

Importance of the study of extrasolar planets. Exoplanets Introduction. Importance of the study of extrasolar planets Importance of the study of extrasolar planets Exoplanets Introduction Planets and Astrobiology (2017-2018) G. Vladilo Technological and scientific spin-offs Exoplanet observations are driving huge technological

More information

Remote Sensing of the Earth s Interior

Remote Sensing of the Earth s Interior Remote Sensing of the Earth s Interior Earth s interior is largely inaccessible Origin and Layering of the Earth: Geochemical Perspectives Composition of Earth cannot be understood in isolation Sun and

More information

Solar System Scales. PTYS/ASTR 206 The Golden Age of Planetary Exploration Shane Byrne

Solar System Scales. PTYS/ASTR 206 The Golden Age of Planetary Exploration Shane Byrne Solar System Scales PTYS/ASTR 206 The Golden Age of Planetary Exploration Shane Byrne shane@lpl.arizona.edu PYTS/ASTR 206 Solar System Scales 2 In this lecture Measuring length, mass and time Angular sizes

More information

Origin of heavier elements, origin of universe

Origin of heavier elements, origin of universe Origin of heavier elements, origin of universe Like we said earlier It takes higher and higher temperatures to make larger and larger nuclei fuse together What happens when a star cannot maintain fusion

More information

The Cosmic Perspective Seventh Edition. Asteroids, Comets, and Dwarf Planets: Their Natures, Orbits, and Impacts. Chapter 12 Review Clickers

The Cosmic Perspective Seventh Edition. Asteroids, Comets, and Dwarf Planets: Their Natures, Orbits, and Impacts. Chapter 12 Review Clickers Review Clickers The Cosmic Perspective Seventh Edition Asteroids, Comets, and Dwarf Planets: Their Natures, Orbits, and Impacts Asteroids a) are rocky and small typically the size of a grain of rice or

More information

arxiv: v1 [astro-ph.ep] 15 Mar 2013

arxiv: v1 [astro-ph.ep] 15 Mar 2013 ApJ Letters, in press, March, 203 Preprint typeset using L A TEX style emulateapj v. 5/2/ CHEMISTRY F IMPACT-GENERATED SILICATE MELT-VAPR DEBRIS DISS Channon Visscher Department of Space Studies, Southwest

More information

B ν (T) = 2hν3 c 3 1. e hν/kt 1. (4) For the solar radiation λ = 20µm photons are in the Rayleigh-Jean region, e hν/kt 1+hν/kT.

B ν (T) = 2hν3 c 3 1. e hν/kt 1. (4) For the solar radiation λ = 20µm photons are in the Rayleigh-Jean region, e hν/kt 1+hν/kT. Name: Astronomy 18 - Problem Set 8 1. Fundamental Planetary Science problem 14.4 a) Calculate the ratio of the light reflected by Earth at 0.5 µm to that emitted by the Sun at the same wavelength. The

More information

Structure and evolution of (giant) exoplanets: some news from the theoretical front. I. Baraffe University of Exeter

Structure and evolution of (giant) exoplanets: some news from the theoretical front. I. Baraffe University of Exeter Structure and evolution of (giant) exoplanets: some news from the theoretical front I. Baraffe University of Exeter I) Structure of Jupiter and Saturn II) Exoplanets: Interior structure and evolutionary

More information

The Coriolis effect. Why does the cloud spin? The Solar Nebula. Origin of the Solar System. Gravitational Collapse

The Coriolis effect. Why does the cloud spin? The Solar Nebula. Origin of the Solar System. Gravitational Collapse Origin of the Solar System Our theory must explain the data 1. Large bodies in the Solar System have orderly motions. 2. There are two types of planets. small, rocky terrestrial planets large, hydrogen-rich

More information

Meteorite Shock Ages, Early Bombardment, and the Age of the Moon

Meteorite Shock Ages, Early Bombardment, and the Age of the Moon Meteorite Shock Ages, Early Bombardment, and the Age of the Moon William Bottke 1, David Vokrouhlicky 1, Simone Marchi 1, Tim Swindle (U. Arizona), Ed Scott (U. Hawaii), A. Jackson (ASU) John Weirich (U.

More information

Wed. Sept. 20, Today: For Monday Sept. 25 and following days read Chapter 4 (The Moon) of Christiansen and Hamblin (on reserve).

Wed. Sept. 20, Today: For Monday Sept. 25 and following days read Chapter 4 (The Moon) of Christiansen and Hamblin (on reserve). Wed. Sept. 20, 2017 Reading: For Friday: Connelly et al. 2012, "The Absolute Chronology and Thermal Processing of Solids in the Solar Protoplanetary Disk." 338: 651-665. Simon et al., 2011, "Oxygen Isotope

More information

PTYS 214 Spring Announcements. Next midterm 3/1!

PTYS 214 Spring Announcements. Next midterm 3/1! PTYS 214 Spring 2018 Announcements Next midterm 3/1! 1 Previously Solar flux decreases as radiation spreads out away from the Sun Planets are exposed to some small amount of the total solar radiation A

More information

The History of the Earth

The History of the Earth The History of the Earth Origin of the Universe The universe began about 13.9 billion years ago According to Big Bang theory almost all matter was in the form of energy E = MC 2 E = energy, M = mass and

More information

THE PLANETARY SCIENTIST'S COMPANION

THE PLANETARY SCIENTIST'S COMPANION THE PLANETARY SCIENTIST'S COMPANION Katharina Lodders Bruce Fegley, Jr. New York Oxford Oxford University Press 1998 Contents 1 Technical data Table 1.1 The Greek alphabet 1 Table 1.2 Prefixes used with

More information

Phys 214. Planets and Life

Phys 214. Planets and Life Phys 214. Planets and Life Dr. Cristina Buzea Department of Physics Room 259 E-mail: cristi@physics.queensu.ca (Please use PHYS214 in e-mail subject) Lecture 28. Search for life on jovian moons. March

More information

Stardust and Hayabusa Missions. Mike Zolensky NASA JSC

Stardust and Hayabusa Missions. Mike Zolensky NASA JSC Stardust and Hayabusa Missions Mike Zolensky NASA JSC 150 km from nucleus ΔV= 6.1 km/s January 2, 2004 Wild 2 (81P) A Jupiter family comet captured into present orbit in 1973 after a 0.006 AU Jupiter encounter

More information

Shock-wave equation-of-state measurements in fused silica up to 1600 GPa. Rochester, NY , USA. Rochester, NY 14620, USA

Shock-wave equation-of-state measurements in fused silica up to 1600 GPa. Rochester, NY , USA. Rochester, NY 14620, USA Shock-wave equation-of-state measurements in fused silica up to 1600 GPa C. A. McCoy, 1,2 M. C. Gregor, 1,3 D. N. Polsin, 1,3 D. E. Fratanduono, 4 P. M. Celliers, 4 T. R. Boehly, 1 and D. D. Meyerhofer

More information

Accretionary Disk Model

Accretionary Disk Model Accretionary Disk Model SOLAR NEBULAR THEORY a large cloud of gas began eventually forming the Sun at its center while the outer, cooler, parts created the planets. SOLAR NEBULA A cloud of gasses and

More information

THE FEEDING ZONES OF TERRESTRIAL PLANETS AND INSIGHTS INTO MOON FORMATION

THE FEEDING ZONES OF TERRESTRIAL PLANETS AND INSIGHTS INTO MOON FORMATION Draft version February 4, 2015 Preprint typeset using L TEX style emulateapj v. 5/2/11 THE FEEDING ZONES OF TERRESTRIL PLNETS ND INSIGHTS INTO MOON FORMTION Nathan. Kaib 1,3 & Nicolas. Cowan 2,3 Draft

More information