2. Ch. 1, part 2. Lecture 2: Electrostatic energy, Green s theorem

Size: px
Start display at page:

Download "2. Ch. 1, part 2. Lecture 2: Electrostatic energy, Green s theorem"

Transcription

1 2. Ch., part 2 Lecture 2: Electrostatic energy, Green s theorem

2 Lecture 2 (Ch part 2) Energy, Green s theorem Electrostatic energy The work required to bring the charge q i from infinity to the point x i in the presence of existing chargesq ;:::;q i is Xi q j W i =q i jx i x j j j= The total work requiredto assemble N charges is then: W N = NX i=2 Xi q j q i jx i x j j Each pairwise interaction appears once in this double sum. f we sum overiandj independently, but exclude i= j, each pair is counted twice. Thus we can also write j= W N = 2 X i6=j q i q j jx i x j j (2.) Going to a continuum distribution, we have no way to exclude the interaction of an infinitesimal charge element with itself. o we leave it in andwrite: W = 2 ½(x)½(x 0 ) jx x 0 j d 3 xd 3 x 0 (2.2). For a smooth three dimensional charge distribution, the interaction of a charge element withthe nearby chargesis 2 ½(x)d3 x ½(x 0 ) jx x 0 j d3 x 0 ¼ 2=3 ½ 2 (x)d 3 x and vanishes for! 0. o the self-interaction does not contribute and the formula (2.2) is correct, unless ½(x) contains a point charge, or even a line charge. At the macroscopic level the charge distributions always have a finite extent, really, so there is no problem. At the fundamental level, there is a problem if the elementary particles (leptons, quarks) are truly point charges. Relativistic QED (quantum electrodynamics) deals with this difficulty by postulating a simple negative term that cancels the infinite self-energy inw. Few people believe that this renormalization procedure is the final word The field energy One reason why we like eq. (2.2) is that it can be transformed to W = jr j 2 d 3 x= jej 2 d 3 x (2.3)

3 Lecture 2 (Ch part 2) Energy, Green s theorem 3 which shows that the work done in assembling the charges is stored as field energy. To get thisexpressionwe rewrite eq. (2.2) as W = 2 ½(x) (x)d 3 x; substitute ½(x)= (=4¼)r 2 (x); and eliminate r 2 (x) by usingr ( r )= r 2 + jr j 2. What we actually get is W = jr j 2 d 3 da o it seems that eq. (2.3) is obtained only if the integral is over all space and there are no chargesat infinity, orinspecial casessuchas grounded conductors ( = 0) on the boundary. n practice, however, one can always find an such that the boundary termvanishes or is unimportant. Eq. (2.3) is a fundamental result. t is very useful to think that there really is an energy density w= jej2 that resides inthe fieldandis greaterwhere the fieldis stronger. Note that the fieldenergy isalwayspositive. Aconsequence of thisisthat An assembly of charges cannot be in equilibriumunder electrostatic forces alone. We already noted that for point charges (2.) is not the same as (2.2) or (2.3). For two unlike charges, (2.) isnegative, while (2.3) ispositive (and infinite). Jackson discusses this point ingreater detail Boundary values A number of important relations can be obtained by fiddling around with the field energy expressionand related integrals. They are very useful to discuss the properties of the E field in a confined geometry. Typically, the boundaries are made of conductors, each held at a known potential, or carrying a known total charge. The problemis to find the charge density ¾ on the surface of eachconductor andthe field E in the space betweenthem Green s first identity (Ár 2 Ã+rÁ rã)d 3 x= This is obtained simply by integrating the identity r (ÁrÃ)=Ár 2 Ã+rÁ rã da (2.4) and using the divergence theorem. t does not seem too interesting in itself, but it has many uses. Animportant corollary is the following.

4 Lecture 2 (Ch part 2) Energy, Green s theorem 4 Uniqueness theorem The solution of Poisson s equation is unique if is given on the boundary (Dirichlet boundary condition). t is unique up to an additive constant = is given on the boundary (Neumann boundary condition). t is also unique if the boundary conditions are Dirichlet on part of the boundary, Neumann on the rest. This is proven by assuming that there are two distinct solutions, and 2, and showing thatu = 2 must vanish. Just use 2.4 withá= Ã=U (Ur 2 U+rU ru)d 3 x= da and note that r 2 U =0 in all and that eitheru =0 (Dirichlet) or@u==0 (Neumann) on. t follows that jruj vanishes andu is constant in. The constant must be zero in the Dirichlet case, or for mixed boundary conditions, but is arbitrary in the pure Neumann case. By a modification of this argument one can prove that, in charge-free space, the quantity R jrªj 2 d 3 x is minimal, subject to the appropriate boundary conditions, whenªcoincides with the potential, solution of Laplace s equation r 2 =0. ee Jackson s problem Green s theorem and integral equations Write downgreen s first identity forá;ã andã;á: (Ár 2 à rá rã)d 3 x = (Ãr 2 Á rã rá)d 3 x = da da andsubtract side by side. The result is Green s secondidentity, orgreen s theorem: (Ár 2 à Ãr 2 Á)d 3 x= This gives a very useful formula if we choose Ã= R = jx x 0 j à Ã@Á da (2.5) so that r 2 Ã= 4¼±(x x 0 ), and we identifyáwith the potential. fxis inside we get 4¼ (x 0 ) à R r2 d 3 R da

5 Lecture 2 (Ch part 2) Energy, Green s theorem 5 Recalling that r 2 = 4¼½ and interchanging the names ofxandx 0 : There is a lot of mathematicalphysics in this equation: ½(x 0 ) R d3 x 0 + 4¼ R 0 (x0 da 0 (2.6) 0 R ² f is all of space and there are no charges at infinity, it simply gives back Coulomb s law ½(x 0 ) R d3 x 0 ² f@ = isgivenonthe boundary (Neumann), we obtainanintegralequationfor on. This equation may be easier to solve than the original Poisson equation. Once (x) is known forxon, it can be found everywhere by integration (in principle, if not in practice). ² f is given on the boundary (Dirichlet), we can similarly get an integral equation for@ = on andthenfind (x) everywhere. The integralequation = ½(x 0 R d3 x 0 @ 2 # 4¼ R 0 (x0 ) da 0 0 R ² These integral equations show that it is not possible to assign both = arbitrarily onthe boundary. Physically, could be the surface of conductorswhich are held at fixed potentials. The charges in these conductors shift about and determine the surface charge density¾, which is given by4¼¾=@ =. Note thatnis directed into the conductor (contrary to the usualpractice). ² We can view(=4¼)@ = as a surface charge density and (=4¼) as a dipole layer that cause, respectively, a discontinuity in the field and in the potential, insucha way that jumps to zero in crossing.

6 Lecture 2 (Ch part 2) Energy, Green s theorem Green s function We can solve the boundary value problem anew for every½(x), but there is a better way. Consider for instance the Dirichlet case. We can construct the general solution if we can solve the particular case when is at zero potential and½(x) is a unit point charge,½(x)=±(x x 0 ). This special solutiong(x;x 0 ) is the Green function. t obeys the equation r 2 G(x;x 0 ) = 4¼±(x x 0 ) G(x;x 0 ) = 0 whenxis on Once G has been found (this is easier said than done), we can use Green s theorem with Ã=G andá= and proceed as in the derivation of eq.(2.6). n other words, simply write G in place of =R in (2.6). What we find is anexplicit expressionfor (x): n particular, if =0 on, we get G(x;x 0 )½(x 0 )d 3 x 0 + (x 0 (2.7) 4¼ 0da0 G(x;x 0 )½(x 0 )d 3 x 0 which is very much like Coulomb s law. n fact,= jx x 0 j is nothing but the Green function for all space. imilarly, one can define and use a Green function G N (x;x 0 ) for Neumann boundary conditions. Jackson discussesthiscase indetail. f we putg==r+f and we use r 2 G= 4¼±(x x 0 ) and r 2 (=R)= 4¼±(x x 0 ), we see thatf satisfies Laplace s equation r 2 F =0everywhere in. We can regard F as an electric potential due to (fictitious) charges located outside. The idea is to continue F andgacross asif they were not discontinuousat. n some casesthis approachleadsto a simple solutionof the boundary value problem (methodof images, Chapter2). There are many applications of Green s theorems. A useful one is the mean value theorem, Jackson s Problem.0 (assigned): n charge-free space, (x) is equal to the average of on any sphere centered at x. A consequence of this is that (x) cannot have maxima or minima in charge-free space. One could say that this is obvious, because in charge-free space satisfies Laplace s equation, r 2 =0, which in cartesian coordinates =0 so that it is impossible for all the second derivatives to have the same sign. However, the mean value theorem shows that it is also impossible to have a point where all the second and third derivatives vanish but all the fourth derivatives are positive, for instance.

1 Review of Electrostatics

1 Review of Electrostatics 1 Review of Electrostatics The first 11 sections you can omit 1.1 and 1.13) of this chapter in Jackson should only be revision; little is done there that you shouldn t have seen before presumably...).

More information

Chapter 1. Introduction to Electrostatics

Chapter 1. Introduction to Electrostatics Chapter. Introduction to Electrostatics. Electric charge, Coulomb s Law, and Electric field Electric charge Fundamental and characteristic property of the elementary particles There are two and only two

More information

Lecture 13: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay. Poisson s and Laplace s Equations

Lecture 13: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay. Poisson s and Laplace s Equations Poisson s and Laplace s Equations Lecture 13: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay We will spend some time in looking at the mathematical foundations of electrostatics.

More information

PHY103A: Lecture # 9

PHY103A: Lecture # 9 Semester II, 2017-18 Department of Physics, IIT Kanpur PHY103A: Lecture # 9 (Text Book: Intro to Electrodynamics by Griffiths, 3 rd Ed.) Anand Kumar Jha 20-Jan-2018 Summary of Lecture # 8: Force per unit

More information

%#, for x = a & ' 0, for x $ a. but with the restriction that the area it encloses equals 1. Therefore, whenever it is used it is implied that

%#, for x = a & ' 0, for x $ a. but with the restriction that the area it encloses equals 1. Therefore, whenever it is used it is implied that Chapter 1. Electrostatics I Notes: Most of the material presented in this chapter is taken from Jackson, Chap. 1. Units from the ystème International (I will be used in this chapter. 1.1 Mathematical Considerations

More information

Chapter 2. Electrostatics. Introduction to Electrodynamics, 3 rd or 4 rd Edition, David J. Griffiths

Chapter 2. Electrostatics. Introduction to Electrodynamics, 3 rd or 4 rd Edition, David J. Griffiths Chapter 2. Electrostatics Introduction to Electrodynamics, 3 rd or 4 rd Edition, David J. Griffiths 2.3 Electric Potential 2.3.1 Introduction to Potential E 0 We're going to reduce a vector problem (finding

More information

EE243 Advanced Electromagnetic Theory Lec #3: Electrostatics (Apps., Form),

EE243 Advanced Electromagnetic Theory Lec #3: Electrostatics (Apps., Form), EE4 Advanced Electromagnetic Theory Lec #: Electrostatics Apps., Form, Electrostatic Boundary Conditions Energy, Force and Capacitance Electrostatic Boundary Conditions on Φ Image Solutions Eample Green

More information

EECS 117 Lecture 18: Magnetic Energy and Inductance

EECS 117 Lecture 18: Magnetic Energy and Inductance University of California, Berkeley EECS 117 Lecture 18 p. 1/2 EECS 117 Lecture 18: Magnetic Energy and Inductance Prof. Niknejad University of California, Berkeley University of California, Berkeley EECS

More information

Introduction to Electrostatics

Introduction to Electrostatics Chapter 1 Introduction to Electrostatics Problem Set #1: 1.5, 1.7, 1.12 (Due Monday Feb. 11th) 1.1 Electric field Coulomb showed experimentally that for two point charges the force is -proportionaltoeachofthecharges,

More information

Chapter (2) Gauss s Law

Chapter (2) Gauss s Law Chapter (2) Gauss s Law How you can determine the amount of charge within a closed surface by examining the electric field on the surface! What is meant by electric flux and how you can calculate it. How

More information

1 Fundamentals. 1.1 Overview. 1.2 Units: Physics 704 Spring 2018

1 Fundamentals. 1.1 Overview. 1.2 Units: Physics 704 Spring 2018 Physics 704 Spring 2018 1 Fundamentals 1.1 Overview The objective of this course is: to determine and fields in various physical systems and the forces and/or torques resulting from them. The domain of

More information

Problem Set #3: 2.11, 2.15, 2.21, 2.26, 2.40, 2.42, 2.43, 2.46 (Due Thursday Feb. 27th)

Problem Set #3: 2.11, 2.15, 2.21, 2.26, 2.40, 2.42, 2.43, 2.46 (Due Thursday Feb. 27th) Chapter Electrostatics Problem Set #3:.,.5,.,.6,.40,.4,.43,.46 (Due Thursday Feb. 7th). Coulomb s Law Coulomb showed experimentally that for two point charges the force is - proportional to each of the

More information

Electrodynamics PHY712. Lecture 3 Electrostatic potentials and fields. Reference: Chap. 1 in J. D. Jackson s textbook.

Electrodynamics PHY712. Lecture 3 Electrostatic potentials and fields. Reference: Chap. 1 in J. D. Jackson s textbook. Electrodynamics PHY712 Lecture 3 Electrostatic potentials and fields Reference: Chap. 1 in J. D. Jackson s textbook. 1. Poisson and Laplace Equations 2. Green s Theorem 3. One-dimensional examples 1 Poisson

More information

Multipoles, Electrostatics of Macroscopic Media, Dielectrics

Multipoles, Electrostatics of Macroscopic Media, Dielectrics Multipoles, Electrostatics of Macroscopic Media, Dielectrics 1 Reading: Jackson 4.1 through 4.4, 4.7 Consider a distribution of charge, confined to a region with r < R. Let's expand the resulting potential

More information

Module 2 : Electrostatics Lecture 9 : Electrostatic Potential

Module 2 : Electrostatics Lecture 9 : Electrostatic Potential Module 2 : Electrostatics Lecture 9 : Electrostatic Potential Objectives In this lecture you will learn the following Electric Dipole and field due to a dipole Torque on a dipole in an inhomogeneous electric

More information

l=0 The expansion coefficients can be determined, for example, by finding the potential on the z-axis and expanding that result in z.

l=0 The expansion coefficients can be determined, for example, by finding the potential on the z-axis and expanding that result in z. Electrodynamics I Exam - Part A - Closed Book KSU 15/11/6 Name Electrodynamic Score = 14 / 14 points Instructions: Use SI units. Where appropriate, define all variables or symbols you use, in words. Try

More information

Solutions to Laplace s Equations- II

Solutions to Laplace s Equations- II Solutions to Laplace s Equations- II Lecture 15: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay Laplace s Equation in Spherical Coordinates : In spherical coordinates

More information

Quantum Mechanics for Scientists and Engineers. David Miller

Quantum Mechanics for Scientists and Engineers. David Miller Quantum Mechanics for Scientists and Engineers David Miller The particle in a box The particle in a box Linearity and normalization Linearity and Schrödinger s equation We see that Schrödinger s equation

More information

Solutions to Laplace s Equations

Solutions to Laplace s Equations Solutions to Laplace s Equations Lecture 14: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay We have seen that in the region of space where there are no sources of charge,

More information

Potential & Potential Energy

Potential & Potential Energy Potential & Potential Energy Lecture 10: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay Electrostatic Boundary Conditions : We had seen that electric field has a discontinuity

More information

( ) by D n ( y) 1.1 Mathematical Considerations. π e nx Dirac s delta function (distribution) a) Dirac s delta function is defined such that

( ) by D n ( y) 1.1 Mathematical Considerations. π e nx Dirac s delta function (distribution) a) Dirac s delta function is defined such that Chapter 1. Electrostatics I Notes: Most of the material presented in this chapter is taken from Jackson, Chap. 1. Units from the ystème International (I) will be used in this chapter. 1.1 Mathematical

More information

Lecture: Scattering theory

Lecture: Scattering theory Lecture: Scattering theory 30.05.2012 SS2012: Introduction to Nuclear and Particle Physics, Part 2 2 1 Part I: Scattering theory: Classical trajectoriest and cross-sections Quantum Scattering 2 I. Scattering

More information

Lecture 3 (Limits and Derivatives)

Lecture 3 (Limits and Derivatives) Lecture 3 (Limits and Derivatives) Continuity In the previous lecture we saw that very often the limit of a function as is just. When this is the case we say that is continuous at a. Definition: A function

More information

Chapter 4. Electrostatic Fields in Matter

Chapter 4. Electrostatic Fields in Matter Chapter 4. Electrostatic Fields in Matter 4.1. Polarization 4.2. The Field of a Polarized Object 4.3. The Electric Displacement 4.4. Linear Dielectrics 4.5. Energy in dielectric systems 4.6. Forces on

More information

Comment about Didactical formulation of the

Comment about Didactical formulation of the Comment about Didactical formulation of the Ampère law Hendrik van Hees Institute for Theoretical Physics, Goethe University Frankfurt, Max-von-Laue-Str. 1, D-60438 Frankfurt, Germany Frankfurt Institute

More information

Average Electrostatic Potential over a Spherical Surface

Average Electrostatic Potential over a Spherical Surface Average Electrostatic Potential over a Spherical Surface EE 141 Lecture Notes Topic 8 Professor K. E. Oughstun School of Engineering College of Engineering & Mathematical Sciences University of Vermont

More information

CHAPTER 3 POTENTIALS 10/13/2016. Outlines. 1. Laplace s equation. 2. The Method of Images. 3. Separation of Variables. 4. Multipole Expansion

CHAPTER 3 POTENTIALS 10/13/2016. Outlines. 1. Laplace s equation. 2. The Method of Images. 3. Separation of Variables. 4. Multipole Expansion CHAPTER 3 POTENTIALS Lee Chow Department of Physics University of Central Florida Orlando, FL 32816 Outlines 1. Laplace s equation 2. The Method of Images 3. Separation of Variables 4. Multipole Expansion

More information

page 78, Problem 2.19:... of Sect Refer to Prob if you get stuck.

page 78, Problem 2.19:... of Sect Refer to Prob if you get stuck. Some corrections in blue to Pearson New International Edition Introduction to Electrodynamics David J. Griffiths Fourth Edition Chapter 2 page 78, Problem 2.19:... of Sect. 2.2.2. Refer to Prob. 1.63 if

More information

Essential University Physics

Essential University Physics Essential University Physics Richard Wolfson 21 Gauss s Law PowerPoint Lecture prepared by Richard Wolfson Slide 21-1 In this lecture you ll learn To represent electric fields using field-line diagrams

More information

Physics 342 Lecture 30. Solids. Lecture 30. Physics 342 Quantum Mechanics I

Physics 342 Lecture 30. Solids. Lecture 30. Physics 342 Quantum Mechanics I Physics 342 Lecture 30 Solids Lecture 30 Physics 342 Quantum Mechanics I Friday, April 18th, 2008 We can consider simple models of solids these highlight some special techniques. 30.1 An Electron in a

More information

Classical Field Theory: Electrostatics-Magnetostatics

Classical Field Theory: Electrostatics-Magnetostatics Classical Field Theory: Electrostatics-Magnetostatics April 27, 2010 1 1 J.D.Jackson, Classical Electrodynamics, 2nd Edition, Section 1-5 Electrostatics The behavior of an electrostatic field can be described

More information

Chapter 4. Electric Fields in Matter

Chapter 4. Electric Fields in Matter Chapter 4. Electric Fields in Matter 4.1.2 Induced Dipoles What happens to a neutral atom when it is placed in an electric field E? The atom now has a tiny dipole moment p, in the same direction as E.

More information

Introduction to Electrostatics

Introduction to Electrostatics Introduction to Electrostatics Charles Augustin de Coulomb (1736-1806) December 23, 2000 Contents 1 Coulomb s Law 2 2 Electric Field 4 3 Gauss s Law 7 4 Differential Form of Gauss s Law 9 5 An Equation

More information

In this chapter we study elliptical PDEs. That is, PDEs of the form. 2 u = lots,

In this chapter we study elliptical PDEs. That is, PDEs of the form. 2 u = lots, Chapter 8 Elliptic PDEs In this chapter we study elliptical PDEs. That is, PDEs of the form 2 u = lots, where lots means lower-order terms (u x, u y,..., u, f). Here are some ways to think about the physical

More information

Lecture notes for QFT I (662)

Lecture notes for QFT I (662) Preprint typeset in JHEP style - PAPER VERSION Lecture notes for QFT I (66) Martin Kruczenski Department of Physics, Purdue University, 55 Northwestern Avenue, W. Lafayette, IN 47907-036. E-mail: markru@purdue.edu

More information

Salmon: Lectures on partial differential equations

Salmon: Lectures on partial differential equations 4 Burger s equation In Lecture 2 we remarked that if the coefficients in u x, y,! "! "x + v x,y,! "! "y = 0 depend not only on x,y but also on!, then the characteristics may cross and the solutions become

More information

The Particle in a Box

The Particle in a Box Page 324 Lecture 17: Relation of Particle in a Box Eigenstates to Position and Momentum Eigenstates General Considerations on Bound States and Quantization Continuity Equation for Probability Date Given:

More information

Page 404. Lecture 22: Simple Harmonic Oscillator: Energy Basis Date Given: 2008/11/19 Date Revised: 2008/11/19

Page 404. Lecture 22: Simple Harmonic Oscillator: Energy Basis Date Given: 2008/11/19 Date Revised: 2008/11/19 Page 404 Lecture : Simple Harmonic Oscillator: Energy Basis Date Given: 008/11/19 Date Revised: 008/11/19 Coordinate Basis Section 6. The One-Dimensional Simple Harmonic Oscillator: Coordinate Basis Page

More information

CONSIDER a simply connected magnetic body of permeability

CONSIDER a simply connected magnetic body of permeability IEEE TRANSACTIONS ON MAGNETICS, VOL. 50, NO. 1, JANUARY 2014 7000306 Scalar Potential Formulations for Magnetic Fields Produced by Arbitrary Electric Current Distributions in the Presence of Ferromagnetic

More information

Definition 2.3. We define addition and multiplication of matrices as follows.

Definition 2.3. We define addition and multiplication of matrices as follows. 14 Chapter 2 Matrices In this chapter, we review matrix algebra from Linear Algebra I, consider row and column operations on matrices, and define the rank of a matrix. Along the way prove that the row

More information

Conductors: External Electric Field 1/28/2018 1

Conductors: External Electric Field 1/28/2018 1 Conductors: External Electric Field 1/28/2018 1 Two Parallel Conducting Sheets Find the electric field to the left of the sheets, between the sheets and to the right of the sheets. 1/28/2018 2 Uniform

More information

Electric Field Lines. lecture 4.1.1

Electric Field Lines. lecture 4.1.1 Electric Field Lines Two protons, A and B, are in an electric field. Which proton has the larger acceleration? A. Proton A B. Proton B C. Both have the same acceleration. lecture 4.1.1 Electric Field Lines

More information

Dielectrics. Lecture 20: Electromagnetic Theory. Professor D. K. Ghosh, Physics Department, I.I.T., Bombay

Dielectrics. Lecture 20: Electromagnetic Theory. Professor D. K. Ghosh, Physics Department, I.I.T., Bombay What are dielectrics? Dielectrics Lecture 20: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay So far we have been discussing electrostatics in either vacuum or in a conductor.

More information

Boundary value problems

Boundary value problems 1 Introduction Boundary value problems Lecture 5 We have found that the electric potential is a solution of the partial differential equation; 2 V = ρ/ǫ 0 The above is Poisson s equation where ρ is the

More information

Physics 342 Lecture 23. Radial Separation. Lecture 23. Physics 342 Quantum Mechanics I

Physics 342 Lecture 23. Radial Separation. Lecture 23. Physics 342 Quantum Mechanics I Physics 342 Lecture 23 Radial Separation Lecture 23 Physics 342 Quantum Mechanics I Friday, March 26th, 2010 We begin our spherical solutions with the simplest possible case zero potential. Aside from

More information

DIVERGENCE AND CURL THEOREMS

DIVERGENCE AND CURL THEOREMS This document is stored in Documents/4C/Gausstokes.tex. with LaTex. Compile it November 29, 2014 Hans P. Paar DIVERGENCE AND CURL THEOREM 1 Introduction We discuss the theorems of Gauss and tokes also

More information

CHAPTER 4. Introduction to the. Heat Conduction Model

CHAPTER 4. Introduction to the. Heat Conduction Model A SERIES OF CLASS NOTES FOR 005-006 TO INTRODUCE LINEAR AND NONLINEAR PROBLEMS TO ENGINEERS, SCIENTISTS, AND APPLIED MATHEMATICIANS DE CLASS NOTES 4 A COLLECTION OF HANDOUTS ON PARTIAL DIFFERENTIAL EQUATIONS

More information

Basics Quantum Mechanics Prof. Ajoy Ghatak Department of physics Indian Institute of Technology, Delhi

Basics Quantum Mechanics Prof. Ajoy Ghatak Department of physics Indian Institute of Technology, Delhi Basics Quantum Mechanics Prof. Ajoy Ghatak Department of physics Indian Institute of Technology, Delhi Module No. # 03 Linear Harmonic Oscillator-1 Lecture No. # 04 Linear Harmonic Oscillator (Contd.)

More information

Quantum Conductance. John Carroll. March 22, 2009

Quantum Conductance. John Carroll. March 22, 2009 Quantum Conductance John Carroll March 22, 2009 Introduction The concept of conductance is used to explain the manner in which electrical current flows though a material. The original theory of conductance

More information

10.8 Further Applications of the Divergence Theorem

10.8 Further Applications of the Divergence Theorem 10.8 Further Applications of the Divergence Theorem Let D be an open subset of R 3, and let f : D R. Recall that the Laplacian of f, denoted by 2 f, is defined by We say that f is harmonic on D provided

More information

FIELD LINES. Gauss s Law. Consider an arbitrary volume bounded by a closed surface. The volume contains an assortment of charges.

FIELD LINES. Gauss s Law. Consider an arbitrary volume bounded by a closed surface. The volume contains an assortment of charges. FIELD LINES We now consider an alternative method of graphically displaying vectors as directed by arrows where the length of the arrow gives the magnitude of the vector and it s direction gives the direction

More information

Chapter 5. Magnetostatics

Chapter 5. Magnetostatics Chapter 5. Magnetostatics 5.4 Magnetic Vector Potential 5.1.1 The Vector Potential In electrostatics, E Scalar potential (V) In magnetostatics, B E B V A Vector potential (A) (Note) The name is potential,

More information

Chapter 2: Fluid Dynamics Review

Chapter 2: Fluid Dynamics Review 7 Chapter 2: Fluid Dynamics Review This chapter serves as a short review of basic fluid mechanics. We derive the relevant transport equations (or conservation equations), state Newton s viscosity law leading

More information

Welcome. to Electrostatics

Welcome. to Electrostatics Welcome to Electrostatics Outline 1. Coulomb s Law 2. The Electric Field - Examples 3. Gauss Law - Examples 4. Conductors in Electric Field Coulomb s Law Coulomb s law quantifies the magnitude of the electrostatic

More information

Image by MIT OpenCourseWare.

Image by MIT OpenCourseWare. 8.07 Lecture 37: December 12, 2012 (THE LAST!) RADIATION Radiation: infinity. Electromagnetic fields that carry energy off to At large distances, E ~ and B ~ fall off only as 1=r, so the Poynting vector

More information

Maxwell's Equations and Conservation Laws

Maxwell's Equations and Conservation Laws Maxwell's Equations and Conservation Laws 1 Reading: Jackson 6.1 through 6.4, 6.7 Ampère's Law, since identically. Although for magnetostatics, generally Maxwell suggested: Use Gauss's Law to rewrite continuity

More information

3. Calculating Electrostatic Potential

3. Calculating Electrostatic Potential 3. Calculating Electrostatic Potential 3. Laplace s Equation 3. The Method of Images 3.3 Separation of Variables 3.4 Multipole Expansion 3.. Introduction The primary task of electrostatics is to study

More information

Physics 1202: Lecture 3 Today s Agenda

Physics 1202: Lecture 3 Today s Agenda Physics 1202: Lecture 3 Today s Agenda Announcements: Lectures posted on: www.phys.uconn.edu/~rcote/ HW assignments, solutions etc. Homework #1: On Masterphysics: due this coming Friday Go to the syllabus

More information

Physics 212: Statistical mechanics II Lecture XI

Physics 212: Statistical mechanics II Lecture XI Physics 212: Statistical mechanics II Lecture XI The main result of the last lecture was a calculation of the averaged magnetization in mean-field theory in Fourier space when the spin at the origin is

More information

13 PDEs on spatially bounded domains: initial boundary value problems (IBVPs)

13 PDEs on spatially bounded domains: initial boundary value problems (IBVPs) 13 PDEs on spatially bounded domains: initial boundary value problems (IBVPs) A prototypical problem we will discuss in detail is the 1D diffusion equation u t = Du xx < x < l, t > finite-length rod u(x,

More information

Physics 342 Lecture 22. The Hydrogen Atom. Lecture 22. Physics 342 Quantum Mechanics I

Physics 342 Lecture 22. The Hydrogen Atom. Lecture 22. Physics 342 Quantum Mechanics I Physics 342 Lecture 22 The Hydrogen Atom Lecture 22 Physics 342 Quantum Mechanics I Friday, March 28th, 2008 We now begin our discussion of the Hydrogen atom. Operationally, this is just another choice

More information

Junior-level Electrostatics Content Review

Junior-level Electrostatics Content Review Junior-level Electrostatics Content Review Please fill out the following exam to the best of your ability. This will not count towards your final grade in the course. Do your best to get to all the questions

More information

5 Set Operations, Functions, and Counting

5 Set Operations, Functions, and Counting 5 Set Operations, Functions, and Counting Let N denote the positive integers, N 0 := N {0} be the non-negative integers and Z = N 0 ( N) the positive and negative integers including 0, Q the rational numbers,

More information

MATH COURSE NOTES - CLASS MEETING # Introduction to PDEs, Fall 2011 Professor: Jared Speck

MATH COURSE NOTES - CLASS MEETING # Introduction to PDEs, Fall 2011 Professor: Jared Speck MATH 8.52 COURSE NOTES - CLASS MEETING # 6 8.52 Introduction to PDEs, Fall 20 Professor: Jared Speck Class Meeting # 6: Laplace s and Poisson s Equations We will now study the Laplace and Poisson equations

More information

MATH COURSE NOTES - CLASS MEETING # Introduction to PDEs, Spring 2018 Professor: Jared Speck

MATH COURSE NOTES - CLASS MEETING # Introduction to PDEs, Spring 2018 Professor: Jared Speck MATH 8.52 COURSE NOTES - CLASS MEETING # 6 8.52 Introduction to PDEs, Spring 208 Professor: Jared Speck Class Meeting # 6: Laplace s and Poisson s Equations We will now study the Laplace and Poisson equations

More information

September Math Course: First Order Derivative

September Math Course: First Order Derivative September Math Course: First Order Derivative Arina Nikandrova Functions Function y = f (x), where x is either be a scalar or a vector of several variables (x,..., x n ), can be thought of as a rule which

More information

Chapter 21: Gauss s Law

Chapter 21: Gauss s Law Chapter 21: Gauss s Law Electric field lines Electric field lines provide a convenient and insightful way to represent electric fields. A field line is a curve whose direction at each point is the direction

More information

Notes on Row Reduction

Notes on Row Reduction Notes on Row Reduction Francis J. Narcowich Department of Mathematics Texas A&M University September The Row-Reduction Algorithm The row-reduced form of a matrix contains a great deal of information, both

More information

Notes: Most of the material presented in this chapter is taken from Jackson, Chap. 2, 3, and 4, and Di Bartolo, Chap. 2. 2π nx i a. ( ) = G n.

Notes: Most of the material presented in this chapter is taken from Jackson, Chap. 2, 3, and 4, and Di Bartolo, Chap. 2. 2π nx i a. ( ) = G n. Chapter. Electrostatic II Notes: Most of the material presented in this chapter is taken from Jackson, Chap.,, and 4, and Di Bartolo, Chap... Mathematical Considerations.. The Fourier series and the Fourier

More information

PH 222-2A Spring 2015

PH 222-2A Spring 2015 PH 222-2A Spring 215 Electric Potential Lectures 5-6 Chapter 24 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition) 1 Chapter 24 Electric Potential In this chapter we will define the electric

More information

1 Multiplicity of the ideal gas

1 Multiplicity of the ideal gas Reading assignment. Schroeder, section.6. 1 Multiplicity of the ideal gas Our evaluation of the numbers of microstates corresponding to each macrostate of the two-state paramagnet and the Einstein model

More information

PHY752, Fall 2016, Assigned Problems

PHY752, Fall 2016, Assigned Problems PHY752, Fall 26, Assigned Problems For clarification or to point out a typo (or worse! please send email to curtright@miami.edu [] Find the URL for the course webpage and email it to curtright@miami.edu

More information

This is known as charge quantization. Neutral particles, like neutron and photon have zero charge.

This is known as charge quantization. Neutral particles, like neutron and photon have zero charge. Electrostatics Quantization of Charge Objectives In this lecture you will learn the following Quantization Of Charge and its measurement Coulomb's Law of force between electric charge Superposition principle

More information

TUTORIAL 7. Discussion of Quiz 2 Solution of Electrostatics part 1

TUTORIAL 7. Discussion of Quiz 2 Solution of Electrostatics part 1 TUTORIAL 7 Discussion of Quiz 2 Solution of Electrostatics part 1 Quiz 2 - Question 1! Postulations of Electrostatics %&''()(*+&,-$'.)/ : % (1)!! E # $$$$$$$$$$ & # (2)!" E # #! Static Electric field is

More information

lim = F F = F x x + F y y + F z

lim = F F = F x x + F y y + F z Physics 361 Summary of Results from Lecture Physics 361 Derivatives of Scalar and Vector Fields The gradient of a scalar field f( r) is given by g = f. coordinates f g = ê x x + ê f y y + ê f z z Expressed

More information

On Exponential Decay and the Riemann Hypothesis

On Exponential Decay and the Riemann Hypothesis On Exponential Decay and the Riemann Hypothesis JEFFREY N. COOK ABSTRACT. A Riemann operator is constructed in which sequential elements are removed from a decaying set by means of prime factorization,

More information

3 Chapter. Gauss s Law

3 Chapter. Gauss s Law 3 Chapter Gauss s Law 3.1 Electric Flux... 3-2 3.2 Gauss s Law (see also Gauss s Law Simulation in Section 3.10)... 3-4 Example 3.1: Infinitely Long Rod of Uniform Charge Density... 3-9 Example 3.2: Infinite

More information

Electric flux. You must be able to calculate the electric flux through a surface.

Electric flux. You must be able to calculate the electric flux through a surface. Today s agenda: Announcements. lectric field lines. You must be able to draw electric field lines, and interpret diagrams that show electric field lines. A dipole in an external electric field. You must

More information

Validity of expressions

Validity of expressions E&M Lecture 8 Topics: (1)Validity of expressions ()Electrostatic energy (in a capacitor?) (3)Collection of point charges (4)Continuous charge distribution (5)Energy in terms of electric field (6)Energy

More information

Jun-ichi Takada

Jun-ichi Takada Wave Theory II Numerical Simulation of Waves 2) Representation of Wave Function by Using Green Function I) Green s Theorem and Free Space Green Function Jun-ichi Takada takada@ide.titech.ac.jp)) This lecture

More information

PRACTICE PROBLEMS: SET 1

PRACTICE PROBLEMS: SET 1 PRACTICE PROBLEMS: SET MATH 437/537: PROF. DRAGOS GHIOCA. Problems Problem. Let a, b N. Show that if gcd(a, b) = lcm[a, b], then a = b. Problem. Let n, k N with n. Prove that (n ) (n k ) if and only if

More information

FOURIER TRANSFORMS. At, is sometimes taken as 0.5 or it may not have any specific value. Shifting at

FOURIER TRANSFORMS. At, is sometimes taken as 0.5 or it may not have any specific value. Shifting at Chapter 2 FOURIER TRANSFORMS 2.1 Introduction The Fourier series expresses any periodic function into a sum of sinusoids. The Fourier transform is the extension of this idea to non-periodic functions by

More information

1. Overview of the relations among charge, field and potential Gauss law Integrate charge to get potential More about energy Laplace and Poisson

1. Overview of the relations among charge, field and potential Gauss law Integrate charge to get potential More about energy Laplace and Poisson 1. Overview of the relations among charge, field and potential Gauss law Integrate charge to get potential More about energy Laplace and Poisson equations 2. Intro to conductors Field inside is zero BEFORE

More information

with a proper choice of the potential U(r). Clearly, we should include the potential of the ions, U ion (r):.

with a proper choice of the potential U(r). Clearly, we should include the potential of the ions, U ion (r):. The Hartree Equations So far we have ignored the effects of electron-electron (e-e) interactions by working in the independent electron approximation. In this lecture, we shall discuss how this effect

More information

14 September 2013 On the paper by Loss et al. about stabilizing the toric code by coupling to a scalar field. (arxiv: )

14 September 2013 On the paper by Loss et al. about stabilizing the toric code by coupling to a scalar field. (arxiv: ) 14 September 2013 On the paper by Loss et al. about stabilizing the toric code by coupling to a scalar field. (arxiv:1309.0621) Consider the Hamiltonian (where w(x) is a classical source for a massless

More information

Math 342 Partial Differential Equations «Viktor Grigoryan

Math 342 Partial Differential Equations «Viktor Grigoryan Math 342 Partial ifferential Equations «Viktor Grigoryan 3 Green s first identity Having studied Laplace s equation in regions with simple geometry, we now start developing some tools, which will lead

More information

The 3 dimensional Schrödinger Equation

The 3 dimensional Schrödinger Equation Chapter 6 The 3 dimensional Schrödinger Equation 6.1 Angular Momentum To study how angular momentum is represented in quantum mechanics we start by reviewing the classical vector of orbital angular momentum

More information

Review of Electrostatics

Review of Electrostatics Review of Electrostatics 1 Gradient Define the gradient operation on a field F = F(x, y, z) by; F = ˆx F x + ŷ F y + ẑ F z This operation forms a vector as may be shown by its transformation properties

More information

Electric Field Lines

Electric Field Lines Electric Field Lines Electric forces Electric fields: - Electric field lines emanate from positive charges - Electric field lines disappear at negative charges If you see a bunch of field lines emanating

More information

Gaußian Elimination and Echelon Form

Gaußian Elimination and Echelon Form Chapter 5 Gaußian Elimination and Echelon Form A linear equation in variables x 1, x 2,, x n is of the form a 1 x 1 + a 2 x 2 + + a n x n = d, where a 1, a 2,, a n, d are scalars The x 1 -term a 1 x 1

More information

The Particle-Field Hamiltonian

The Particle-Field Hamiltonian The Particle-Field Hamiltonian For a fundamental understanding of the interaction of a particle with the electromagnetic field we need to know the total energy of the system consisting of particle and

More information

Why quantum field theory?

Why quantum field theory? Why quantum field theory? It is often said that quantum field theory is the natural marriage of Einstein s special theory of relativity and the quantum theory. The point of this section will be to motivate

More information

Poisson s Equation in Electrostatics

Poisson s Equation in Electrostatics Poisson s Equation in Electrostatics Jinn-Liang Liu Department of Applied Mathematics, National Hsinchu University of Education, Hsinchu 00, Taiwan. E-mail: jinnliu@mail.nhcue.edu.tw 2007/2/4, 2010, 2011

More information

Elementary realization of BRST symmetry and gauge fixing

Elementary realization of BRST symmetry and gauge fixing Elementary realization of BRST symmetry and gauge fixing Martin Rocek, notes by Marcelo Disconzi Abstract This are notes from a talk given at Stony Brook University by Professor PhD Martin Rocek. I tried

More information

Partial differential equations

Partial differential equations Partial differential equations Many problems in science involve the evolution of quantities not only in time but also in space (this is the most common situation)! We will call partial differential equation

More information

Mechanics, Heat, Oscillations and Waves Prof. V. Balakrishnan Department of Physics Indian Institute of Technology, Madras

Mechanics, Heat, Oscillations and Waves Prof. V. Balakrishnan Department of Physics Indian Institute of Technology, Madras Mechanics, Heat, Oscillations and Waves Prof. V. Balakrishnan Department of Physics Indian Institute of Technology, Madras Lecture - 21 Central Potential and Central Force Ready now to take up the idea

More information

Lecture Introduction

Lecture Introduction Lecture 1 1.1 Introduction The theory of Partial Differential Equations (PDEs) is central to mathematics, both pure and applied. The main difference between the theory of PDEs and the theory of Ordinary

More information

LECTURE-15 : LOGARITHMS AND COMPLEX POWERS

LECTURE-15 : LOGARITHMS AND COMPLEX POWERS LECTURE-5 : LOGARITHMS AND COMPLEX POWERS VED V. DATAR The purpose of this lecture is twofold - first, to characterize domains on which a holomorphic logarithm can be defined, and second, to show that

More information

Two common difficul:es with HW 2: Problem 1c: v = r n ˆr

Two common difficul:es with HW 2: Problem 1c: v = r n ˆr Two common difficul:es with HW : Problem 1c: For what values of n does the divergence of v = r n ˆr diverge at the origin? In this context, diverge means becomes arbitrarily large ( goes to infinity ).

More information

Maxwell s equations for electrostatics

Maxwell s equations for electrostatics Maxwell s equations for electrostatics October 6, 5 The differential form of Gauss s law Starting from the integral form of Gauss s law, we treat the charge as a continuous distribution, ρ x. Then, letting

More information