PHYS1100 Practice problem set, Chapter 8: 5, 9, 14, 20, 22, 25, 28, 30, 34, 35, 40, 44

Size: px
Start display at page:

Download "PHYS1100 Practice problem set, Chapter 8: 5, 9, 14, 20, 22, 25, 28, 30, 34, 35, 40, 44"

Transcription

1 PHYS00 Practice problem set, Chapter 8: 5, 9, 4, 0,, 5, 8, 30, 34, 35, 40, Solve: The top figure shows the pulle (P), block A, block B, the surface S of the incline, the rope (R), and the earth (E). In indicating the various forces, we have denoted the normal (contact) forces b n r, the kinetic frictional (contact) forces b f r, and the weights b w r. All the action/reaction forces have been identified with dotted lines. The bottom figure shows the free bod diagrams of each block, the rope, and the pulle.

2 8.9. Model: The blocks are to be modeled as particles and denoted as,, and 3. The surface is frictionless and along with the earth it is a part of the environment. The three blocks are our three sstems of interest. The force applied on block is F A on = N. The acceleration for all the blocks is the same and is denoted b a. Solve: Newton s second law for the three blocks along the -direction is ( Fon ) = FA on F on = ma ( Fon ) = Fon F3 on = ma F = F = m a on 3 on 3 3 Adding these three equations and using Newton s third law (F on = F on and F 3 on = F on 3 ), we get = ( + + ) = ( + + ) F m m m a A on 3 Using this value of a, the force equation on block 3 gives Substituting into the force equation on block, N kg kg 3 kg a a = m/s F on 3 = m3a = 3 kg m/s = 6 N on N F = kg m/s F on = 0 N Assess: Because all three blocks are pushed forward b a force of N, the value of 0 N for the force that the kg block eerts on the kg block is reasonable.

3 8.4. Model: The hanging block and the rail car are separate sstems. Solve: The mass of the rope is ver small in comparison to the 000 kg block, so we will assume a massless rope. In that case, the forces T r r and T act as if the are an action/reaction pair. The hanging block is in static r equilibrium, with F net = 0 N, so T = mblockg = 9,600 N. The rail car with the pulle is also in static equilibrium: T + T3 T = 0 N Notice how the tension force in the cable pulls both the top and bottom of the pulle to the right. Now, T = T = 9,600 N b Newton s third law. Also, the cable tension is T = T3 = T. Thus, T = T = 9800 N. 3

4 8.0. Model: Sled A, sled B, and the dog (D) are treated like particles in the model of kinetic friction. a A = a B = a. Newton s second law on sled A is F r on A = na wa = 0 N na wa F r = T f = m a Solve: The acceleration constraint is Using f A = µ k n A, the -equation ields On sled B: T µ n m a on A k A A = = ( ) = F r on B = nb wb = 0 N nb wb on A on A A A 50 N kg 9.8 m/s 00 kg a a = 0.5 m/s = T on B and T on A act as if the are an action/reaction pair, so on B 50 N. ( 9.8 m/s ) = 78.4 N, we get Thus the tension T = 70 N. F r = T T f = m a on B on B B B T 50 N 78.4 N = 80 kg 0.5 m/s T = 70 N T = Using f = µ n = B k B kg 4

5 8.. The car and the ground are denoted b C and G, respectivel. Solve: (a) As the drive wheels turn the push backward against the ground. This is a static friction force F r C on G because the wheels don t slip against the ground. B Newton s third law, the ground eerts a reaction force F r G on C. This reaction force is opposite in direction to F r C on G, hence, is in the forward direction. This is the force that accelerates the car. (b) The car has an internal source of energ fuel that allows it to turn the wheels and eert the force This is an active push b the car, generating the force F r G on C F r C on G. in response. Houses do not have an internal source of energ that allows them to push sidewas against the ground. (c) The car presses down against the ground at both the drive wheels (assumed to be the front wheels F, although that is not critical) and the nondrive wheels. For this car, two-thirds of the weight rests on the front wheels. Phsicall, force F r G on C is a static friction force. The maimum acceleration of the car on the ground (or concrete surface) occurs when the static friction reaches its maimum possible value. = = µ = µ ( 3 ) F f n w G on C s ma s F s F = kg 9.8 m/s = 9800 N F 9800 N ama = = = 6.53 m/s m 500 kg G on C 5

6 8.5. Model: Assume package A and package B are particles. Use the model of kinetic friction and the constant-acceleration kinematic equations. Solve: Package B has a smaller coefficient of friction. It will tr to overtake package A and push against it. a = a = a Package A will push back on B. The acceleration constraint is Newton s second law for each package is A B. F = F + w sinθ f = m a on A B on A A ka A ( cos ) F + m gsinθ µ m g θ = m a B on A A ka A A F = F f + w sinθ = m a on B A on B kb B B ( cos ) F µ m g θ + m gsinθ = m a A on B kb B B B where we have used na = ma cos θ g and nb = mb cos θ g. Adding the two force equations, and using FA on B = FB on A because the are an action/reaction pair, we get a = gsinθ Finall, using v ( t t ) a( t t ) = + +, ( µ m + µ m )( gcosθ ) ka A kb B m A + m B ( t ) =.87 m/s m = 0 m + 0 m +.87 m/s 0 s t =.48 s 6

7 8.8. Model: Blocks and are our sstems of interest and will be treated as particles. Assume a frictionless rope and massless pulle. Solve: The blocks accelerate with the same magnitude but in opposite directions. Thus the acceleration constraint is a = a = a, where a will have a positive value. There are two real action/reaction pairs. The two tension forces will act as if the are action/reaction pairs because we are assuming a massless rope and a frictionless pulle. Make sure ou understand wh the friction forces point in the directions shown in the free-bod diagrams, especiall force f r eerted on block b block. We have quite a few pieces of information to include. First, Newton s second law for blocks and : r F = f T = µ n T = m a = m a F = n m g = 0 N n = m g net on k net on F = T f f T = T f µ n T = m a = m a net on pull pull k F = n n m g = 0 N n = n + m g net on We ve alread used the kinetic friction model in both -equations. Net, Newton s third law: n = n = mg f = f = µ kn = µ kmg T = T = T Knowing n, we can now use the -equation of block to find n. Substitute all these pieces into the two -equations, and we end up with two equations in two unknowns: µ = µ µ kmg T ma Subtract the first equation from the second to get T T m g m + m g = m a pull k k T µ 3m + m g Tpull µ k ( 3m + m ) g = ( m + m ) a a = =.77 m/s m + m pull k 7

8 8.30. Model: Masses m and m are considered particles. The string is assumed to be massless. Solve: The tension in the string causes the centripetal acceleration of the circular motion. If the hole is smooth, it acts like a pulle. Thus tension forces T r and T r act as if the were an action/reaction pair. Mass m is in circular motion of radius r, so Newton s second law for m is m v Fr = T = r Mass m is at rest, so the -equation of Newton s second law is F = T m g = 0 N T = m g Newton s third law tells us that T = T. Equating the two epressions for these quantities: m v m rg = mg v = r m 8

9 8.34. Model: Use the particle model for the block of mass M and the two massless pulles. Additionall, the rope is massless and the pulles are frictionless. The block is kept in place b an applied force F r. Solve: Since there is no friction on the pulles, T = T 3 and T = T 5. Newton s second law for mass M is T w = 0 N T = Mg = 0. kg 9.8 m/s = 00 N Newton s second law for the small pulle is T T + T3 T = 0 N T = T3 = = 50 N = T5 = F Newton s second law for the large pulle is T T T T = 0 N T = T + T + T = 50 N

10 8.35. Model: Assume the particle model for m, m, and m 3, and the model of kinetic friction. Assume the ropes to be massless, and the pulles to be frictionless and massless. Solve: Newton s second law for m is T w = m a. Newton s second law for m is Newton s second law for m 3 is ( Fon m ) n w n ( m ) = = 0 N = kg 9.8 m/s = 9.6 N F = T f T = m a T µ n T = ( kg) a on k ( m ) 3 F = T w = m a on k Since m, m, and m 3 move together, a = a = a 3 = a. The equations for the three masses thus become = = T µ n T = m a = a = = T w ma kg a k kg Subtracting the third equation from the sum of the first two equations ields: w µ kn + w3 = 6 kg a T w3 m3a 3 kg a kg 9.8 m/s N + 3 kg 9.8 m/s = 6 kg a a =.9 m/s 0

11 8.40. Model: Use the particle model for the two blocks. Assume a massless rope, and massless, frictionless pulles. Note that for ever meter block moves forward, one meter is provided to block. So each rope on m has to be lengthened b one-half meter. Thus the acceleration constraint is a = a. Solve: Newton s second law for block is T = m a. Newton s second law for block is T w = m a. Combining these two equations gives where we have used a = a. Assess: mg ( ma ) mg = m ( a ) a 4m + m = mg a = 4m + m If m = 0 kg, then a = g. This is what is epected for a freel falling object Model: Use the particle model for the wedge and the block. The block will not slip relative to the wedge if the both have the same acceleration a. Solve: The -component of Newton s second law for block m is m g cosθ ( Fon ) = n cos θ w = 0 N n = Combining this equation with the -component of Newton s second law ields: Now, Newton s second law for the wedge is n sinθ F = n = m a a = = gtanθ m ( on ) sinθ F = F n sinθ = m a on F = m a + n sinθ = m a + m a = (m + m ) a = (m + m ) g tanθ

Then, by Newton s third law: The knots are also in equilibrium. Newton s law applied to the left knot is. The y-equation gives T1 m1 g sin 1.

Then, by Newton s third law: The knots are also in equilibrium. Newton s law applied to the left knot is. The y-equation gives T1 m1 g sin 1. Chapter 7 Solutions 7.7. Model: The two hanging blocks, which can be modeled as particles, together with the two knots where rope meets with rope and rope meets with rope form a sstem. All the four objects

More information

exerted on block 2 by block 1. We have quite a few pieces of information to include. First, Newton s second law for blocks 1 and 2: r ( ) = = =

exerted on block 2 by block 1. We have quite a few pieces of information to include. First, Newton s second law for blocks 1 and 2: r ( ) = = = 8.8. Model: Blocks and are our systems of interest and will be treated as particles. Assume a frictionless rope and massless pulley. Solve: The blocks accelerate with the same magnitude but in opposite

More information

Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4. Forces and Newton s Laws of Motion. continued Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting

More information

NEWTON S THIRD LAW. Conceptual Questions

NEWTON S THIRD LAW. Conceptual Questions NEWTON S THIRD LAW 7 Conceptual Questions 7.1. If you were to throw the rocks in the opposite direction you wanted to go, you would be pushed by the rocks in the right direction. Throwing the rocks requires

More information

Friction is always opposite to the direction of motion.

Friction is always opposite to the direction of motion. 6. Forces and Motion-II Friction: The resistance between two surfaces when attempting to slide one object across the other. Friction is due to interactions at molecular level where rough edges bond together:

More information

General Physics I Spring Applying Newton s Laws

General Physics I Spring Applying Newton s Laws General Physics I Spring 2011 pplying Newton s Laws 1 Friction When you push horizontally on a heavy box at rest on a horizontal floor with a steadily increasing force, the box will remain at rest initially,

More information

Student AP Physics 1 Date. Newton s Laws B FR

Student AP Physics 1 Date. Newton s Laws B FR Student AP Physics 1 Date Newton s Laws B FR #1 A block is at rest on a rough inclined plane and is connected to an object with the same mass as shown. The rope may be considered massless; and the pulley

More information

Applying Newton s Laws

Applying Newton s Laws Chapter 5 Applying Newton s Laws PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Copyright 2008 Pearson Education Inc., publishing

More information

24/06/13 Forces ( F.Robilliard) 1

24/06/13 Forces ( F.Robilliard) 1 R Fr F W 24/06/13 Forces ( F.Robilliard) 1 Mass: So far, in our studies of mechanics, we have considered the motion of idealised particles moving geometrically through space. Why a particular particle

More information

Quiz #7. T f k m A gsinθ = m A a N m A gcosθ = 0 f k = µ k N m B g T = m B a

Quiz #7. T f k m A gsinθ = m A a N m A gcosθ = 0 f k = µ k N m B g T = m B a Quiz #7 Vector The method used in 2 Dimensions is exactly the same in 3D; just keep one more components (Pythagorean theorem also still holds in higher dimensions as long as the space is Euclidean). 1)

More information

PHYSICS 1 Forces & Newton s Laws

PHYSICS 1 Forces & Newton s Laws Advanced Placement PHYSICS 1 Forces & Newton s Laws Presenter 2014-2015 Forces & Newton s Laws What I Absolutel Have to Know to Survive the AP* Exam Force is an push or pull. It is a vector. Newton s Second

More information

Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4. Forces and Newton s Laws of Motion. continued Chapter 4 Forces and Newton s Laws of Motion continued Quiz 3 4.7 The Gravitational Force Newton s Law of Universal Gravitation Every particle in the universe exerts an attractive force on every other

More information

APPLYING NEWTON S LAWS

APPLYING NEWTON S LAWS APPLYING NEWTON S LAWS 5 igible mass. Let T r be the tension in the rope and let T c be the tension in the chain. EXECUTE: (a) The free-bod diagram for each weight is the same and is given in Figure 5.1a.

More information

Newton s 3 Laws of Motion

Newton s 3 Laws of Motion Newton s 3 Laws of Motion 1. If F = 0 No change in motion 2. = ma Change in motion Fnet 3. F = F 1 on 2 2 on 1 Newton s First Law (Law of Inertia) An object will remain at rest or in a constant state of

More information

Phys 1401: General Physics I

Phys 1401: General Physics I 1. (0 Points) What course is this? a. PHYS 1401 b. PHYS 1402 c. PHYS 2425 d. PHYS 2426 2. (0 Points) Which exam is this? a. Exam 1 b. Exam 2 c. Final Exam 3. (0 Points) What version of the exam is this?

More information

Phys 1401: General Physics I

Phys 1401: General Physics I 1. (0 Points) What course is this? a. PHYS 1401 b. PHYS 1402 c. PHYS 2425 d. PHYS 2426 2. (0 Points) Which exam is this? a. Exam 1 b. Exam 2 c. Final Exam 3. (0 Points) What version of the exam is this?

More information

Exam 1 Solutions. PHY 2048 Spring 2014 Acosta, Rinzler. Note that there are several variations of some problems, indicated by choices in parentheses.

Exam 1 Solutions. PHY 2048 Spring 2014 Acosta, Rinzler. Note that there are several variations of some problems, indicated by choices in parentheses. Exam 1 Solutions Note that there are several variations of some problems, indicated by choices in parentheses. Problem 1 Let vector a! = 4î + 3 ĵ and vector b! = î + 2 ĵ (or b! = î + 4 ĵ ). What is the

More information

A. B. C. D. E. v x. ΣF x

A. B. C. D. E. v x. ΣF x Q4.3 The graph to the right shows the velocity of an object as a function of time. Which of the graphs below best shows the net force versus time for this object? 0 v x t ΣF x ΣF x ΣF x ΣF x ΣF x 0 t 0

More information

PHYS 100 (from 221) Newton s Laws Week8. Exploring the Meaning of Equations

PHYS 100 (from 221) Newton s Laws Week8. Exploring the Meaning of Equations Exploring the Meaning of Equations Exploring the meaning of the relevant ideas and equations introduced recently. This week we ll focus mostly on Newton s second and third laws: Kinematics describes the

More information

Assignment 9. to roll without slipping, how large must F be? Ans: F = R d mgsinθ.

Assignment 9. to roll without slipping, how large must F be? Ans: F = R d mgsinθ. Assignment 9 1. A heavy cylindrical container is being rolled up an incline as shown, by applying a force parallel to the incline. The static friction coefficient is µ s. The cylinder has radius R, mass

More information

Physics 101 Lecture 5 Newton`s Laws

Physics 101 Lecture 5 Newton`s Laws Physics 101 Lecture 5 Newton`s Laws Dr. Ali ÖVGÜN EMU Physics Department The Laws of Motion q Newton s first law q Force q Mass q Newton s second law q Newton s third law qfrictional forces q Examples

More information

LAWS OF MOTION Newtons laws of motion. (i) First law: Law of inertia. Every body continues to be in its state of rest or of uniform motion in a

LAWS OF MOTION Newtons laws of motion. (i) First law: Law of inertia. Every body continues to be in its state of rest or of uniform motion in a LAWS OF MOTION Newtons laws of motion. (i) First law: Law of inertia. Every body continues to be in its state of rest or of uniform motion in a straight line unless compelled to change that state by an

More information

You may use g = 10 m/s 2, sin 60 = 0.87, and cos 60 = 0.50.

You may use g = 10 m/s 2, sin 60 = 0.87, and cos 60 = 0.50. 1. A child pulls a 15kg sled containing a 5kg dog along a straight path on a horizontal surface. He exerts a force of a 55N on the sled at an angle of 20º above the horizontal. The coefficient of friction

More information

Section /07/2013. PHY131H1F University of Toronto Class 12 Preclass Video by Jason Harlow. Based on Knight 3 rd edition Ch. 7, pgs.

Section /07/2013. PHY131H1F University of Toronto Class 12 Preclass Video by Jason Harlow. Based on Knight 3 rd edition Ch. 7, pgs. PHY131H1F University of Toronto Class 12 Preclass Video by Jason Harlow Section 7.1 Based on Knight 3 rd edition Ch. 7, pgs. 167-184 When a hammer hits a nail, it exerts a forward force on the nail At

More information

Physics 101: Lecture 08. Common Incorrect Forces (Spooky Rules!) Items below are NOT forces Acceleration: F Net = ma Centripetal Acceleration

Physics 101: Lecture 08. Common Incorrect Forces (Spooky Rules!) Items below are NOT forces Acceleration: F Net = ma Centripetal Acceleration Physics 101: Lecture 08 Circular Motion Review of Newton s Laws Checkpoint 4, Lecture 7 In the game of tetherball, a rope connects a ball to the top of a vertical pole as shown. In one case, a ball of

More information

Chapter 4: Newton s Second Law F = m a. F = m a (4.2)

Chapter 4: Newton s Second Law F = m a. F = m a (4.2) Lecture 7: Newton s Laws and Their Applications 1 Chapter 4: Newton s Second Law F = m a First Law: The Law of Inertia An object at rest will remain at rest unless, until acted upon by an external force.

More information

AP Physics Free Response Practice Dynamics

AP Physics Free Response Practice Dynamics AP Physics Free Response Practice Dynamics 14) In the system shown above, the block of mass M 1 is on a rough horizontal table. The string that attaches it to the block of mass M 2 passes over a frictionless

More information

Question 01. A. Incorrect! This is not Newton s second law.

Question 01. A. Incorrect! This is not Newton s second law. College Physics - Problem Drill 06: Newton s Laws of Motion Question No. 1 of 10 1. Which of the options best describes the statement: Every object continues in a state of rest or uniform motion in a straight

More information

Newton s Laws and Free-Body Diagrams General Physics I

Newton s Laws and Free-Body Diagrams General Physics I Newton s Laws and Free-Body Diagrams In the next few sections, we will be exploring some of the most fundamental laws of our universe, laws that govern the relationship actions and motion. These laws are

More information

Q16.: A 5.0 kg block is lowered with a downward acceleration of 2.8 m/s 2 by means of a rope. The force of the block on the rope is:(35 N, down)

Q16.: A 5.0 kg block is lowered with a downward acceleration of 2.8 m/s 2 by means of a rope. The force of the block on the rope is:(35 N, down) Old Exam Question Ch. 5 T072 Q13.Two blocks of mass m 1 = 24.0 kg and m 2, respectively, are connected by a light string that passes over a massless pulley as shown in Fig. 2. If the tension in the string

More information

Physics 111. Applying Newton s Laws. Lecture 9 (Walker: 5.4-5) Newton s Third Law Free Body Diagram Solving 2-D Force Problems Weight & Gravity

Physics 111. Applying Newton s Laws. Lecture 9 (Walker: 5.4-5) Newton s Third Law Free Body Diagram Solving 2-D Force Problems Weight & Gravity Phsics 111 Lecture 9 (Walker: 5.4-5) Newton s Third Law ree Bod Diagram Solving -D orce Problems Weight & Gravit Sept. 1, 009 Quiz Wednesda - Chaps. 3 & 4 Lecture 9 1/6 Newton s Third Law of Motion orces

More information

Chapter 7 Newton s Third Law

Chapter 7 Newton s Third Law Chapter 7 Newton s Third Law Chapter Goal: To use Newton s third law to understand interacting objects. Slide 7-2 Chapter 7 Preview Slide 7-3 Chapter 7 Preview Slide 7-4 Chapter 7 Preview Slide 7-6 Chapter

More information

Chapter 6. Applications of Newton s Laws

Chapter 6. Applications of Newton s Laws Chapter 6 Applications of Newton s Laws P. Lam 7_11_2018 Learning Goals for Chapter 5 Learn how to apply Newton s First Law & Second Law. Understand the cause of apparent weight and weightlessness Learn

More information

PHYS 101: Solutions to Chapter 4 Home Work

PHYS 101: Solutions to Chapter 4 Home Work PHYS 101: Solutions to Chapter 4 Home ork 3. EASONING In each case, we will appl Newton s second law. emember that it is the net force that appears in the second law. he net force is the vector sum of

More information

Phys101 Second Major-152 Zero Version Coordinator: Dr. W. Basheer Monday, March 07, 2016 Page: 1

Phys101 Second Major-152 Zero Version Coordinator: Dr. W. Basheer Monday, March 07, 2016 Page: 1 Phys101 Second Major-15 Zero Version Coordinator: Dr. W. Basheer Monday, March 07, 016 Page: 1 Q1. Figure 1 shows two masses; m 1 = 4.0 and m = 6.0 which are connected by a massless rope passing over a

More information

1. An object is fired with an initial velocity of 23 m/s [R30 U]. What are the initial components of its velocity?

1. An object is fired with an initial velocity of 23 m/s [R30 U]. What are the initial components of its velocity? Physics 304 Unit 1 - Total Review 1. An object is fired with an initial velocity of 3 m/s [R30U]. What are the initial components of its velocity?. An object rolls off the top of a horizontal table. a)

More information

B C = B 2 + C 2 2BC cosθ = (5.6)(4.8)cos79 = ) The components of vectors B and C are given as follows: B x. = 6.

B C = B 2 + C 2 2BC cosθ = (5.6)(4.8)cos79 = ) The components of vectors B and C are given as follows: B x. = 6. 1) The components of vectors B and C are given as follows: B x = 6.1 C x = 9.8 B y = 5.8 C y = +4.6 The angle between vectors B and C, in degrees, is closest to: A) 162 B) 111 C) 69 D) 18 E) 80 B C = (

More information

Physics 1A Lecture 4B. "Fig Newton: The force required to accelerate a fig inches per second. --J. Hart

Physics 1A Lecture 4B. Fig Newton: The force required to accelerate a fig inches per second. --J. Hart Physics 1A Lecture 4B "Fig Newton: The force required to accelerate a fig 39.37 inches per second. --J. Hart Types of Forces There are many types of forces that we will apply in this class, let s discuss

More information

( ) ( ) A i ˆj. What is the unit vector  that points in the direction of A? 1) The vector A is given by = ( 6.0m ) ˆ ( 8.0m ) Solution A D) 6 E) 6

( ) ( ) A i ˆj. What is the unit vector  that points in the direction of A? 1) The vector A is given by = ( 6.0m ) ˆ ( 8.0m ) Solution A D) 6 E) 6 A i ˆj. What is the unit vector  that points in the direction of A? 1) The vector A is given b ( 6.m ) ˆ ( 8.m ) A ˆ i ˆ ˆ j A ˆ i ˆ ˆ j C) A ˆ ( 1 ) ( i ˆ ˆ j) D) Aˆ.6 iˆ+.8 ˆj E) Aˆ.6 iˆ.8 ˆj A) (.6m

More information

Chapter 6. Applications of Newton s Laws

Chapter 6. Applications of Newton s Laws Chapter 6 Applications of Newton s Laws Applications of Newton s Laws Friction Drag Forces Motion Along a Curved Path The Center of Mass MFMcGraw - PHY 2425 Chap_06H-More Newton-Revised 1/11/2012 2 Microscopic

More information

CHAPTER 4 NEWTON S LAWS OF MOTION

CHAPTER 4 NEWTON S LAWS OF MOTION 62 CHAPTER 4 NEWTON S LAWS O MOTION CHAPTER 4 NEWTON S LAWS O MOTION 63 Up to now we have described the motion of particles using quantities like displacement, velocity and acceleration. These quantities

More information

Forces on an inclined plane. And a little friction too

Forces on an inclined plane. And a little friction too Forces on an inclined plane And a little friction too The Takeaway } You should be able to: } 2.2.2 Identify the forces acting on an object } Forces on non-horizontal surfaces } Including Friction } 2.2.8

More information

Welcome back to Physics 211

Welcome back to Physics 211 Welcome back to Physics 211 Today s agenda: Weight Friction Tension 07-1 1 Current assignments Thursday prelecture assignment. HW#7 due this Friday at 5 pm. 07-1 2 Summary To solve problems in mechanics,

More information

Reading Quiz. Chapter 5. Physics 111, Concordia College

Reading Quiz. Chapter 5. Physics 111, Concordia College Reading Quiz Chapter 5 1. The coefficient of static friction is A. smaller than the coefficient of kinetic friction. B. equal to the coefficient of kinetic friction. C. larger than the coefficient of kinetic

More information

Physics 111. Lecture 10 (Walker: 5.5-6) Free Body Diagram Solving 2-D Force Problems Weight & Gravity. February 18, Quiz Monday - Chaps.

Physics 111. Lecture 10 (Walker: 5.5-6) Free Body Diagram Solving 2-D Force Problems Weight & Gravity. February 18, Quiz Monday - Chaps. Phsics 111 Lecture 10 (Walker: 5.5-6) Free Bod Diagram Solving -D Force Problems Weight & Gravit Februar 18, 009 Quiz Monda - Chaps. 4 & 5 Lecture 10 1/6 Third Law Review A small car is pushing a larger

More information

= C. on q 1 to the left. Using Coulomb s law, on q 2 to the right, and the charge q 2 exerts a force F 2 on 1 ( )

= C. on q 1 to the left. Using Coulomb s law, on q 2 to the right, and the charge q 2 exerts a force F 2 on 1 ( ) Phsics Solutions to Chapter 5 5.. Model: Use the charge model. Solve: (a) In the process of charging b rubbing, electrons are removed from one material and transferred to the other because the are relativel

More information

Isaac Newton ( ) 1687 Published Principia Invented Calculus 3 Laws of Motion Universal Law of Gravity

Isaac Newton ( ) 1687 Published Principia Invented Calculus 3 Laws of Motion Universal Law of Gravity Isaac Newton (1642-1727) 1687 Published Principia Invented Calculus 3 Laws of Motion Universal Law of Gravity Newton s First Law (Law of Inertia) An object will remain at rest or in a constant state of

More information

Midterm Exam 2 October 30, 2012

Midterm Exam 2 October 30, 2012 Midterm Exam 2 October 30, 2012 Name: Instructions 1. This examination is closed book and closed notes. All your belongings except a pen or pencil and a calculator should be put away and your bookbag should

More information

PSI AP Physics B Dynamics

PSI AP Physics B Dynamics PSI AP Physics B Dynamics Multiple-Choice questions 1. After firing a cannon ball, the cannon moves in the opposite direction from the ball. This an example of: A. Newton s First Law B. Newton s Second

More information

Lecture Outline Chapter 6. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 6. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 6 Physics, 4 th Edition James S. Walker Chapter 6 Applications of Newton s Laws Units of Chapter 6 Frictional Forces Strings and Springs Translational Equilibrium Connected Objects

More information

Exercises on Newton s Laws of Motion

Exercises on Newton s Laws of Motion Exercises on Newton s Laws of Motion Problems created by: Raditya 1. A pendulum is hanging on a ceiling of a plane which is initially at rest. When the plane prepares to take off, it accelerates with a

More information

Lecture 6. Applying Newton s Laws Free body diagrams Friction

Lecture 6. Applying Newton s Laws Free body diagrams Friction Lecture 6 Applying Newton s Laws Free body diagrams Friction ACT: Bowling on the Moon An astronaut on Earth kicks a bowling ball horizontally and hurts his foot. A year later, the same astronaut kicks

More information

Mini Exam # 1. You get them back in the the recitation section for which you are officially enrolled.

Mini Exam # 1. You get them back in the the recitation section for which you are officially enrolled. Mini Exam # 1 You get them back in the the recitation section for which you are officially enrolled. One third of you did very well ( 18 points out of 20). The average was 13.4. If you stay in average,

More information

Test Corrections Use these concepts to explain corrected answers. Make sure you apply the concepts to the specific situation in each problem.

Test Corrections Use these concepts to explain corrected answers. Make sure you apply the concepts to the specific situation in each problem. Test Corrections Use these concepts to explain corrected answers. Make sure you apply the concepts to the specific situation in each problem. Circular Motion Concepts When an object moves in a circle,

More information

Phys101 Second Major-162 Zero Version Coordinator: Dr. Kunwar S. Saturday, March 25, 2017 Page: 1

Phys101 Second Major-162 Zero Version Coordinator: Dr. Kunwar S. Saturday, March 25, 2017 Page: 1 Coordinator: Dr. Kunwar S. Saturday, March 25, 2017 Page: 1 Q1. Only two horizontal forces act on a 3.0 kg body that can move over a frictionless floor. One force is 20 N, acting due east, and the other

More information

AP Physics. Chapters 7 & 8 Review

AP Physics. Chapters 7 & 8 Review AP Physics Chapters 7 & 8 Review 1.A particle moves along the x axis and is acted upon by a single conservative force given by F x = ( 20 4.0x)N where x is in meters. The potential energy associated with

More information

Force 10/01/2010. (Weight) MIDTERM on 10/06/10 7:15 to 9:15 pm Bentley 236. (Tension)

Force 10/01/2010. (Weight) MIDTERM on 10/06/10 7:15 to 9:15 pm Bentley 236. (Tension) Force 10/01/2010 = = Friction Force (Weight) (Tension), coefficient of static and kinetic friction MIDTERM on 10/06/10 7:15 to 9:15 pm Bentley 236 2008 midterm posted for practice. Help sessions Mo, Tu

More information

Chapter 5. The Laws of Motion

Chapter 5. The Laws of Motion Chapter 5 The Laws of Motion The Laws of Motion The description of an object in motion included its position, velocity, and acceleration. There was no consideration of what might influence that motion.

More information

Phys101 Lecture 5 Dynamics: Newton s Laws of Motion

Phys101 Lecture 5 Dynamics: Newton s Laws of Motion Phys101 Lecture 5 Dynamics: Newton s Laws of Motion Key points: Newton s second law is a vector equation Action and reaction are acting on different objects Free-Body Diagrams Ref: 4-1,2,3,4,5,6,7. Page

More information

Answers !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Answers !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 11 th Grade Phsics Workbook METU Development Foundation High School 1 Answers 11th Grade Chapter-1 Newton s Laws Motion Activit - 1.3.1 Applications of Newton s Laws 1. 2. Three blocks of masses 5 kg,

More information

Solution 11. Kinetics of rigid body(newton s Second Law)

Solution 11. Kinetics of rigid body(newton s Second Law) Solution () urpose and Requirement Solution Kinetics of rigid bod(newton s Second Law) In rob, kinematics stud regarding acceleration of mass center should be done before Newton s second law is used to

More information

August 05, Chapter 4 - Dynamics - WHY things move Newton has THREE laws of motion

August 05, Chapter 4 - Dynamics - WHY things move Newton has THREE laws of motion Chapter 4 - Dynamics - WHY things move Newton has THREE laws of motion 1st Law Law of Inertia - An object in CONSTANT motion remains in CONSTANT motion and an object at rest remains at rest UNLESS acted

More information

dt 2 x = r cos(θ) y = r sin(θ) r = x 2 + y 2 tan(θ) = y x A circle = πr 2

dt 2 x = r cos(θ) y = r sin(θ) r = x 2 + y 2 tan(θ) = y x A circle = πr 2 v = v i + at a dv dt = d2 x dt 2 A sphere = 4πr 2 x = x i + v i t + 1 2 at2 x = r cos(θ) V sphere = 4 3 πr3 v 2 = v 2 i + 2a x F = ma R = v2 sin(2θ) g y = r sin(θ) r = x 2 + y 2 tan(θ) = y x a c = v2 r

More information

Physics 2211 ABC Quiz #3 Solutions Spring 2017

Physics 2211 ABC Quiz #3 Solutions Spring 2017 Physics 2211 ABC Quiz #3 Solutions Spring 2017 I. (16 points) A block of mass m b is suspended vertically on a ideal cord that then passes through a frictionless hole and is attached to a sphere of mass

More information

Physics B Newton s Laws AP Review Packet

Physics B Newton s Laws AP Review Packet Force A force is a push or pull on an object. Forces cause an object to accelerate To speed up To slow down To change direction Unit: Newton (SI system) Newton s First Law The Law of Inertia. A body in

More information

LECTURE 12 FRICTION, STRINGS & SPRINGS. Instructor: Kazumi Tolich

LECTURE 12 FRICTION, STRINGS & SPRINGS. Instructor: Kazumi Tolich LECTURE 12 FRICTION, STRINGS & SPRINGS Instructor: Kazumi Tolich Lecture 12 2! Reading chapter 6-1 to 6-4! Friction " Static friction " Kinetic friction! Strings! Pulleys! Springs Origin of friction 3!!

More information

Circular Motion. A car is traveling around a curve at a steady 45 mph. Is the car accelerating? A. Yes B. No

Circular Motion. A car is traveling around a curve at a steady 45 mph. Is the car accelerating? A. Yes B. No Circular Motion A car is traveling around a curve at a steady 45 mph. Is the car accelerating? A. Yes B. No Circular Motion A car is traveling around a curve at a steady 45 mph. Which vector shows the

More information

Physics 23 Exam 2 March 3, 2009

Physics 23 Exam 2 March 3, 2009 Use the following to answer question 1: A stationary 4-kg shell explodes into three pieces. Two of the fragments have a mass of 1 kg each and move along the paths shown with a speed of 10 m/s. The third

More information

Newton s Laws of Motion

Newton s Laws of Motion Newton s Laws of Motion Observation #1 An object at rest remains at rest, unless something makes it move. Observation #2 A object in motion continues in motion with constant velocity, unless something

More information

Physics 111 Lecture 4 Newton`s Laws

Physics 111 Lecture 4 Newton`s Laws Physics 111 Lecture 4 Newton`s Laws Dr. Ali ÖVGÜN EMU Physics Department www.aovgun.com he Laws of Motion q Newton s first law q Force q Mass q Newton s second law q Newton s third law q Examples Isaac

More information

PHYSICS. Chapter 7 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 7 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 7 Lecture RANDALL D. KNIGHT Chapter 7 Newton s Third Law IN THIS CHAPTER, you will use Newton s third law to understand how objects

More information

Chapter 4. Forces and Newton s Laws of Motion. F=ma; gravity

Chapter 4. Forces and Newton s Laws of Motion. F=ma; gravity Chapter 4 Forces and Newton s Laws of Motion F=ma; gravity 0) Background Galileo inertia (horizontal motion) constant acceleration (vertical motion) Descartes & Huygens Conservation of momentum: mass x

More information

CHAPTER 4 TEST REVIEW -- Answer Key

CHAPTER 4 TEST REVIEW -- Answer Key AP PHYSICS Name: Period: Date: DEVIL PHYSICS BADDEST CLASS ON CAMPUS 50 Multiple Choice 45 Single Response 5 Multi-Response Free Response 3 Short Free Response 2 Long Free Response AP EXAM CHAPTER TEST

More information

Chapter 3 The Laws of motion. The Laws of motion

Chapter 3 The Laws of motion. The Laws of motion Chapter 3 The Laws of motion The Laws of motion The Concept of Force. Newton s First Law. Newton s Second Law. Newton s Third Law. Some Applications of Newton s Laws. 1 5.1 The Concept of Force Force:

More information

Chapter 6 Dynamics I: Motion Along a Line

Chapter 6 Dynamics I: Motion Along a Line Chapter 6 Dynamics I: Motion Along a Line Chapter Goal: To learn how to solve linear force-and-motion problems. Slide 6-2 Chapter 6 Preview Slide 6-3 Chapter 6 Preview Slide 6-4 Chapter 6 Preview Slide

More information

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3 1. A sphere with a radius of 1.7 cm has a volume of: A) 2.1 10 5 m 3 B) 9.1 10 4 m 3 C) 3.6 10 3 m 3 D) 0.11 m 3 E) 21 m 3 2. A 25-N crate slides down a frictionless incline that is 25 above the horizontal.

More information

Tuesday February 7. Topics for this Lecture: Forces: Friction on Planes, Tension With Pulleys

Tuesday February 7. Topics for this Lecture: Forces: Friction on Planes, Tension With Pulleys Tuesday February 7 Topics for this Lecture: Forces: Friction on Planes, Tension With Pulleys Write these equations in your notes if they re not already there. You will want them for Exam 1 & the Final.

More information

Newton s Laws III: The Friction Force Physics

Newton s Laws III: The Friction Force Physics Newton s Laws III: The Friction Force Physics i) Discover what factors determine the friction acting between the object and the surface ii) Practice various cases of motion using ΣF = ma when friction

More information

Applying Newton s Laws

Applying Newton s Laws Chapter 5 Applying Newton s Laws PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Goals for Chapter 5 To use and apply Newton s Laws

More information

iat is the minimum coe cient of static friction necessary to keep the top block from slipping on " % e bottom block?

iat is the minimum coe cient of static friction necessary to keep the top block from slipping on  % e bottom block? 1. Which one ofthe following terms is used to indicate the natural tendency of an object to remain at rest or in motion at a constant speed along a straight line? A) force B) acceleration C) equilibrium

More information

Gravitational potential energy

Gravitational potential energy Gravitational potential energ m1 Consider a rigid bod of arbitrar shape. We want to obtain a value for its gravitational potential energ. O r1 1 x The gravitational potential energ of an assembl of N point-like

More information

Physics 101 Lecture 7 Kinetic Energy and Work

Physics 101 Lecture 7 Kinetic Energy and Work Phsics 101 Lecture 7 Kinetic Energ and Work Dr. Ali ÖVGÜN EMU Phsics Department www.aovgun.com Wh Energ? q Wh do we need a concept of energ? q The energ approach to describing motion is particularl useful

More information

Phys101 Second Major-162 Zero Version Coordinator: Dr. Kunwar S. Saturday, March 25, 2017 Page: N Ans:

Phys101 Second Major-162 Zero Version Coordinator: Dr. Kunwar S. Saturday, March 25, 2017 Page: N Ans: Coordinator: Dr. Kunwar S. Saturday, March 25, 2017 Page: 1 Q1. Only two horizontal forces act on a 3.0 kg body that can move over a frictionless floor. One force is 20 N, acting due east, and the other

More information

Physics 1100: 2D Kinematics Solutions

Physics 1100: 2D Kinematics Solutions Questions: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Physics 1100: 2D Kinematics Solutions 1. In the diagrams below, a ball is on a flat horizontal surface. The initial velocity

More information

Discussion Session 6 Newton s Second & Third Laws Week 07. The Plan

Discussion Session 6 Newton s Second & Third Laws Week 07. The Plan PHYS 100 Discussion Session 6 Newton s Second & Third Laws Week 07 The Plan This week we use Newton s Third Law ( F A on B = F B on A ) to relate the forces between two different objects. We can use this

More information

Chapter Test A. Teacher Notes and Answers Forces and the Laws of Motion. Assessment

Chapter Test A. Teacher Notes and Answers Forces and the Laws of Motion. Assessment Assessment Chapter Test A Teacher Notes and Answers Forces and the Laws of Motion CHAPTER TEST A (GENERAL) 1. c 2. d 3. d 4. c 5. c 6. c 7. c 8. b 9. d 10. d 11. c 12. a 13. d 14. d 15. b 16. d 17. c 18.

More information

Physics for Scientists and Engineers. Chapter 6 Dynamics I: Motion Along a Line

Physics for Scientists and Engineers. Chapter 6 Dynamics I: Motion Along a Line Physics for Scientists and Engineers Chapter 6 Dynamics I: Motion Along a Line Spring, 008 Ho Jung Paik Applications of Newton s Law Objects can be modeled as particles Masses of strings or ropes are negligible

More information

= M. L 2. T 3. = = cm 3

= M. L 2. T 3. = = cm 3 Phys101 First Major-1 Zero Version Sunday, March 03, 013 Page: 1 Q1. Work is defined as the scalar product of force and displacement. Power is defined as the rate of change of work with time. The dimension

More information

March 10, P12 Inclined Planes.notebook. Physics 12. Inclined Planes. Push it Up Song

March 10, P12 Inclined Planes.notebook. Physics 12. Inclined Planes. Push it Up Song Physics 12 Inclined Planes Push it Up Song 1 Bell Work A box is pushed up a ramp at constant velocity. Draw a neatly labeled FBD showing all of the forces acting on the box. direction of motion θ F p F

More information

Physics 2211 M Quiz #2 Solutions Summer 2017

Physics 2211 M Quiz #2 Solutions Summer 2017 Physics 2211 M Quiz #2 Solutions Summer 2017 I. (16 points) A block with mass m = 10.0 kg is on a plane inclined θ = 30.0 to the horizontal, as shown. A balloon is attached to the block to exert a constant

More information

AP Physics 1 - Test 05 - Force and Motion

AP Physics 1 - Test 05 - Force and Motion P Physics 1 - Test 05 - Force and Motion Score: 1. brick slides on a horizontal surface. Which of the following will increase the magnitude of the frictional force on it? Putting a second brick on top

More information

AP Physics First Nine Weeks Review

AP Physics First Nine Weeks Review AP Physics First Nine Weeks Review 1. If F1 is the magnitude of the force exerted by the Earth on a satellite in orbit about the Earth and F2 is the magnitude of the force exerted by the satellite on the

More information

Solution of HW4. and m 2

Solution of HW4. and m 2 Solution of HW4 9. REASONING AND SOLUION he magnitude of the gravitational force between any two of the particles is given by Newton's law of universal gravitation: F = Gm 1 m / r where m 1 and m are the

More information

Review for 3 rd Midterm

Review for 3 rd Midterm Review for 3 rd Midterm Midterm is on 4/19 at 7:30pm in the same rooms as before You are allowed one double sided sheet of paper with any handwritten notes you like. The moment-of-inertia about the center-of-mass

More information

The Force Table Introduction: Theory:

The Force Table Introduction: Theory: 1 The Force Table Introduction: "The Force Table" is a simple tool for demonstrating Newton s First Law and the vector nature of forces. This tool is based on the principle of equilibrium. An object is

More information

2. F = ma. Newton s Laws. 1. Bodies stay at constant velocity unless acted on by outside force!

2. F = ma. Newton s Laws. 1. Bodies stay at constant velocity unless acted on by outside force! Newton s Laws review 1. Bodies stay at constant velocity unless acted on by outside force! Defines mass, m, as 2. F ma all that act on the body parameter reflecting body s resistance to motion 3. Action

More information

8.01x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology. Problem Set 2

8.01x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology. Problem Set 2 8.01x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology 1. Stacked Blocks Problem Set 2 Consider two blocks that are resting one on top of the other. The lower block has mass m 2 = 4.8

More information

Physics 204A FINAL EXAM Chapters 1-14 Fall 2005

Physics 204A FINAL EXAM Chapters 1-14 Fall 2005 Name: Solve the following problems in the space provided Use the back of the page if needed Each problem is worth 10 points You must show our work in a logical fashion starting with the correctl applied

More information

AP Q1 Practice Questions Kinematics, Forces and Circular Motion

AP Q1 Practice Questions Kinematics, Forces and Circular Motion AP Q1 Practice Questions Kinematics, Forces and Circular Motion Q1 1999B1. (REDUCED 9 mins) The Sojourner rover vehicle shown in the sketch above was used to explore the surface of Mars as part of the

More information

Kinematics and Dynamics

Kinematics and Dynamics AP PHYS 1 Test Review Kinematics and Dynamics Name: Other Useful Site: http://www.aplusphysics.com/ap1/ap1- supp.html 2015-16 AP Physics: Kinematics Study Guide The study guide will help you review all

More information