Experimental and Computational Determination of Detonation Velocities

Size: px
Start display at page:

Download "Experimental and Computational Determination of Detonation Velocities"

Transcription

1 Experimental and Computational Determination of Detonation Velocities Susanne Scheutzow LMU Munich, Department of Chemistry and Biochemistry, Energetic Materials Research,

2 Overview - Definition - Theory - Determination of the detonation velocity - Experiment - Experimental and computed values of EXPLO5 -Conclusion Flinders University,

3 p 1 Definition: Detonation is defined as a process of Taylor wave R CJ supersonic propagation of a chemical p 0 reaction through an explosive material. The chemical reaction occurs in a thin chemical reaction zone under the action of a shock wave. Detonation products chemical reaction zone unreacted explosive Champan-Jouguet plane shock front Figure 1. Detonation process Flinders University,

4 Theory: Pressure 1 Adiabatic shock of explosive 2 Adiabatic shock of detonation products 3 Rayleigh Line ρ 0 D = ρ ( D W ) p = ρ DW 0 p e e0 = ( p + p )( V V ) q p 2 CJ point 1 ln p γ = lnv S V p = p V S V p p = p V V 0 0 p 0 3 v 1 v 2 v 0 specific Volume Figure 2. Steady state model of detonation D = Detonation velocity W = Mass velocity q = Heat of detonation e = Internal energy V = Specific volume (V=1/ρ) γ = Polytropic exponent Flinders University,

5 Determination of the Detonation Velocity: - Time interval needed for the detonation wave to travel through a known distance - Measurement equipment should provide: - suitable velocity probes for detection - measurement of very short time intervals - Depending on the equipment, two methods can be used: - optical methods with high speed cameras - electrical methods with different types of velocity probes Flinders University,

6 Electrical Determination of the Detonation Velocity: - Velocity probes technique using EXPLOMENT-fo Up to 6 optical fibers - 5 independent timers - Optical fiber, 1 mm diameter, PE jacket overall thickness 2.2 mm explosive confinement (e.g. Cu tube) D D (a) optical fibers fiber jacket (b) Figure 3. Optical fibers Flinders University,

7 Technical Specification: - Max. distance between main unit and probes: up to 80 m - Max. distance between two neighboring probes: 10 m - Time accuracy: ± 0.1 µs - Velocity accuracy: better than 0.2 % - Detonating velocity range: up to m/s - Time interval measurement: 0.1 µs - 10 s Figure 4. Optical fibers Flinders University,

8 Experimental Part: Detonator: detonator -Ag 2 C 2 AgNO 3 Impact: 100 J, Friction: 5 N, ESD: 4 mj - PETN Impact: 3 J, Friction: 60 N, ESD: 190 mj explosive Cu tube (confined) 2 caliber optical fibers Figure 5. Set up for VOD Flinders University,

9 Experimental Part / Detonation Chamber KV 250: - Steel detonation chamber - Detonation: 250 g TNT - Performance tests: Additional measurement of detonation pressure, heat flow, mass velocity of detonation products, propagation of the shock wave using high speed cameras - Sensitivity tests: Slow cook-off test, critical diameter test - Stability test: Large scale long term stability Figure 6. Detonation chamber Flinders University,

10 Experimental Part / Set up: Figure 7. Set up Flinders University,

11 Experimental Part / VOD: Figure 8. Measurement equipment Flinders University,

12 Experimental Part / Set up: Figure 9. Set up Flinders University,

13 Experimental Part: Figure 10. High speed measurement, 4000 fps/0.5 ms Flinders University,

14 Flinders University,

15 Comparison of Detonation Velocities: Explosive Measured [m/s] a (Density [g/cm 3 ]) Calculated [m/s] Explo5 Time [µs] (Distance [mm]) Literature (Density [g/cm 3 ]) Picric acid 5130 (0.9) (20) 7400 (1.76) (TNF) 5263 (0.9) 3.8 (20) 4615 (0.9) 5.2 (24) 4181 (1.0) (23) 7000 (1.3) (21) HMX 6000 (1.0) (21) 9100 (1.95) 6250 (1.1) (20) 9523 (1.3) (20) RDX 7600 (1.0) (19) 8700 (1.89) 4617 (1.0) 4.5 (20) a ) ± 4 % error Flinders University,

16 Comparison of Detonation Velocities: Explosive Measured [m/s] a (Density [g/cm 3 ]) Calculated [m/s] Explo5 Time [µs] (Distance [mm]) Literature (Density [g/cm 3 ]) TNT 1919 (1.0) (19) 6930 (1.61) 2777 (1.0) 7.2 (20) 9130 (1.6) (21) PETN 7741 (0.9) (24) 8260 (1.76) 2238 (0.9) 20.1 (45) 8333 (1.2) (20) 7213 (1.3) (44) NGA (0.6) (23) 8895 (1.79) 8333 (0.8) (20) 6250 (1.0) (35) NGA (1.0) (20) 8750 (1.79) a ) ± 3 % error Flinders University,

17 NGA-1 Synthesis, Structure, Chemical and Energetic Characterization of 1,3-Dinitramino-2-nitroxy-propane, Thomas M. Klapötke, Alexander Penger, Susanne Scheutzow, Lukáš Vejs, ZAAC 2008, in press. Flinders University,

18 Conclusion: - Theory of error according to Gauss for picric acid, HMX, RDX: ± 4 % for VOD - Theory of error according to Gauss for TNT, PETN, NGA-1, NGA-2: ± 3 % for VOD - Problems encountered: - Measurement of experimental densities inaccurate (cf. EXPLO5 calculations) - Amount of booster affects measurement of VOD - Probes or optical fibers may tear apart thus giving a higher VOD or error - Solutions found: - Tamping with plasticine - Longer optical fibers Flinders University,

19 Acknowledgement Research group of Prof. Dr. T. M. Klapötke Prof. Dr. K. Karaghiosoff, Dr. B. Krumm, Xaver Steemann M.Sc., Alexander Penger, M.Sc., Stefan Huber Dr. Gary Chen, Pyros ARDEC, Picatinny Arsenal, NJ William H. Ruppert, Hughes Associates Inc.: Logistics & Advice Collaborations Dr. Betsy M. Rice, ARL, Aberdeen, MD: Theory Dr. Mark S. Johnson, ARL, Aberdeen, MD: Microtoxicity Dr. Gerhard Holl and Dr. Gerhard Heeb, WIWEB, Swisttal: Support, advise and many discussions Dr. Muhamed Suceska, Brodarski Institute, Zagreb, Croatia: development of EXPLO5 code Dr. Miloslav Krupka, OZM Research, Czech Republic: Development of new testing and evaluation methods for energetic materials Flinders University,

20 Thanks for your attention Flinders University,

21 Flinders University,

22 Flinders University,

Energetic Materials Research at Ludwig Maximilian University of Munich (LMU)

Energetic Materials Research at Ludwig Maximilian University of Munich (LMU) Review Article Engineering Science and Military Technologies ISS: 4530-7532 DOI:10.21608/ejmtc.2017.1410.1053 Key Words: Energetic materials, explosives, propellants Corresponding Author: Thomas M. Klapötke,

More information

Optimization of Wall Velocity Measurements Using Photonic Doppler Velocimetry (PDV) *)

Optimization of Wall Velocity Measurements Using Photonic Doppler Velocimetry (PDV) *) Optimization of Wall Velocity Measurements Using Photonic Doppler Velocimetry... 89 Central European Journal of Energetic Materials, 2015, 12(1), 89-97 ISSN 2353-1843 Optimization of Wall Velocity Measurements

More information

Theory and Detonation Products Equations of State for a New Generation of Combined Effects Explosives. Dr. Ernest L. Baker

Theory and Detonation Products Equations of State for a New Generation of Combined Effects Explosives. Dr. Ernest L. Baker Theory and Detonation Products Equations of State for a New Generation of Combined Effects Explosives Dr. Ernest L. Baker W. Balas, L.I. Stiel, C. Capellos and J. Pincay 16 OCT 2007 Outline Combined Effects

More information

HIGH-NITROGEN COMPOUNDS FOR USE IN LOW-EROSIVITY GUN PROPELLANTS

HIGH-NITROGEN COMPOUNDS FOR USE IN LOW-EROSIVITY GUN PROPELLANTS 1 IG-ITROGE COMPOUDS FOR USE I LOW-EROSIVITY GU PROPELLATS Thomas M. Klapötke* and Jörg Stierstorfer Ludwig-Maximilian University Munich, Department of Chemistry and Biochemistry, Energetic Materials Research,

More information

INFLUENCE OF INITIAL DENSITY ON THE REACTION ZONE FOR STEADY-STATE DETONATION OF HIGH EXPLOSIVES

INFLUENCE OF INITIAL DENSITY ON THE REACTION ZONE FOR STEADY-STATE DETONATION OF HIGH EXPLOSIVES INFLUENCE OF INITIAL DENSITY ON THE REACTION ZONE FOR STEADY-STATE DETONATION OF HIGH EXPLOSIVES Alexander V. Utkin, Sergey A. Kolesnikov, Sergey V. Pershin, and Vladimir E. Fortov Institute of Problems

More information

III. PLASMA DYNAMICS

III. PLASMA DYNAMICS III. PLASMA DYNAMICS Prof. S. C. Brown Prof. H. H. Woodson D. T. Kyrazis Prof. O. K. Mawardi Dr. I. C. T. Nisbet A. T. Lewis Prof. D. O. Akhurst D. A. East J. K. Oddson Prof. D. C. Pridmore-Brown Z. J.

More information

Numerical Analysis of the Deflagration to Detonation Transition in Primary Explosives

Numerical Analysis of the Deflagration to Detonation Transition in Primary Explosives Numerical Analysis of the Deflagration to Detonation Transition in Primary Explosives 7 Central European Journal of Energetic Materials,, 9(), 7-38 ISSN 733-778 Numerical Analysis of the Deflagration to

More information

Bistetrazoles: Nitrogen-Rich, High-Performing, Insensitive Energetic Compounds

Bistetrazoles: Nitrogen-Rich, High-Performing, Insensitive Energetic Compounds Chem. Mater. 2008, 20, 3629 3637 3629 Bistetrazoles: Nitrogen-Rich, High-Performing, Insensitive Energetic Compounds Thomas M. Klapötke* and Carles Miró Sabaté Department of Chemistry and Biochemistry,

More information

Numerical simulation of air blast waves

Numerical simulation of air blast waves Numerical simulation of air blast waves M. Arrigoni, S. Kerampran, ENSTA Bretagne, France J.-B. Mouillet, Altair Engineering France B. Simoens, M. Lefebvre, S. Tuilard, Ecole Royal Militaire de Bruxelles,

More information

Army Research Laboratory

Army Research Laboratory Army Research Laboratory Detonator-Effects Investigation of AXEUMM Experiments by Matthew M. Biss, Richard Benjamin, Ronnie Thompson, and William Sickels ARL-TN-537 June 203 Approved for public release;

More information

SMALL EXPLOSION CHAMBER DESIGN AND OPTIMIZED CONSTRUCTION BASED IN BLAST PARAMETERS for production of new metal-oxide materials

SMALL EXPLOSION CHAMBER DESIGN AND OPTIMIZED CONSTRUCTION BASED IN BLAST PARAMETERS for production of new metal-oxide materials XIII INTERNATIONAL SYMPOSIUM ON EXPLOSIVE PRODUCYION OF NEW MATERIALS: SCIENCE, TECHNOLOGY, BUSINESS, AND INNOVATIONS JUNE 20th-24th, 2016 COIMBRA PORTUGAL Explosive Production of New Materials SMALL EXPLOSION

More information

With-Fracture Gurney Model to Estimate both Fragment and Blast Impulses

With-Fracture Gurney Model to Estimate both Fragment and Blast Impulses With-Fracture Gurney Model to Estimate both Fragment and Blast Impulses 175 Central European Journal of Energetic Materials, 2010, 7(2), 175-186 ISSN 1733-7178 With-Fracture Gurney Model to Estimate both

More information

CHAPTER 5 TNT EQUIVALENCE OF FIREWORKS

CHAPTER 5 TNT EQUIVALENCE OF FIREWORKS 109 CHAPTER 5 TNT EQUIVALENCE OF FIREWORKS 5.1 INTRODUCTION 5.1.1 Explosives and Fireworks Explosives are reactive substances that can release high amount of energy when initiated (Meyer 1987). Explosive

More information

Thermal Stability and Detonation Characteristics of Pressed and Elastic Explosives on the Basis of Selected Cyclic Nitramines *)

Thermal Stability and Detonation Characteristics of Pressed and Elastic Explosives on the Basis of Selected Cyclic Nitramines *) Thermal Stability and Detonation Characteristics of Pressed and Elastic Explosives... 217 Central European Journal of Energetic Materials, 2010, 7(3), 217-232 ISSN 1733-7178 Thermal Stability and Detonation

More information

Applicability of Non-isothermal DSC and Ozawa Method for Studying Kinetics of Double Base Propellant Decomposition

Applicability of Non-isothermal DSC and Ozawa Method for Studying Kinetics of Double Base Propellant Decomposition 233 Central European Journal of Energetic Materials, 2010, 7(3), 233-251 ISSN 1733-7178 Applicability of Non-isothermal DSC and Ozawa Method for Studying Kinetics of Double Base Propellant Decomposition

More information

Lab Session #2 VOD Measurements Part I Dautriche s Method

Lab Session #2 VOD Measurements Part I Dautriche s Method Lab Session #2 VOD Measurements Part I Dautriche s Method The main goal of this laboratory session is to provide a practical experience in the measure of the velocity of detonation of different types of

More information

Tube Testing For IM Assessment Of The Booster Explosives PBXN-5 And ITEX-07. Dr Helmut Zöllner A Presentation to: IM/EM Technology Symposium 2012

Tube Testing For IM Assessment Of The Booster Explosives PBXN-5 And ITEX-07. Dr Helmut Zöllner A Presentation to: IM/EM Technology Symposium 2012 Tube Testing For IM Assessment Of The Booster Explosives PBXN-5 And ITEX-07 Dr Helmut Zöllner A Presentation to: IM/EM Technology Symposium 2012 16 th May 2012 1 Contents 1 Introduction 2 Testing 3 Results

More information

Results/Discussion. Basis Set Optimization

Results/Discussion. Basis Set Optimization OPTIMIZATION OF DFT METHODS AND BASIS SETS TO INVESTIGATE THE DECOMPOSITION OF NOVEL HEDMS Lenora K. Harper, and Craig A. Bayse* Department of Chemistry and Biochemistry, Old Dominion University, Norfolk,

More information

Metal Angle Correction in the Cylinder Test

Metal Angle Correction in the Cylinder Test LLNL-TR-455651 Metal Angle Correction in the Cylinder Test P. C. Souers, R. Garza, H. Hornig, L. Lauderbach, C. Owens, P. Vitello September 15, 2010 Disclaimer This document was prepared as an account

More information

SHOCK WAVE PRESSURE IN FREE WATER AS A FUNCTION OF EXPLOSIVE COMPOSITION

SHOCK WAVE PRESSURE IN FREE WATER AS A FUNCTION OF EXPLOSIVE COMPOSITION SHOCK WAVE PRESSURE IN FREE WATER AS A FUNCTION OF EXPLOSIVE COMPOSITION G. W. Lawrence Indian Head Division Naval Surface Warfare Center Research and Technology Department Indian Head, MD 20640 Free field

More information

Simulation of sympathetic detonation by a CIP Eulerian code

Simulation of sympathetic detonation by a CIP Eulerian code Computational Ballistics II 107 Simulation of sympathetic detonation by a CIP Eulerian code S. Kubota 1, Z. Liu 2, T. Saburi 1, Y. Ogata 1 & M. Yoshida 1 1 Research Center for Explosion Safety, National

More information

AA210A Fundamentals of Compressible Flow. Chapter 13 - Unsteady Waves in Compressible Flow

AA210A Fundamentals of Compressible Flow. Chapter 13 - Unsteady Waves in Compressible Flow AA210A Fundamentals of Compressible Flow Chapter 13 - Unsteady Waves in Compressible Flow The Shock Tube - Wave Diagram 13.1 Equations for irrotational, homentropic, unsteady flow ρ t + x k ρ U i t (

More information

Theory and calibration of JWL and JWLB thermodynamic equations of state

Theory and calibration of JWL and JWLB thermodynamic equations of state Structures Under Shock and Impact XI 147 Theory and calibration of JWL and JWLB thermodynamic equations of state E. L. Baker 1, D. Murphy 1, L. I. Stiel 2 & E. Wrobel 1 1 US Army Armament Research Development

More information

ISOCHORIC BURN, AN INTERNALLY CONSISTENT METHOD FOR THE REACTANT TO PRODUCT TRANSFORMATION IN REACTIVE FLOW

ISOCHORIC BURN, AN INTERNALLY CONSISTENT METHOD FOR THE REACTANT TO PRODUCT TRANSFORMATION IN REACTIVE FLOW Revised: 8/15/2002 ISOCHORIC BURN, AN INTERNALLY CONSISTENT METHOD FOR THE REACTANT TO PRODUCT TRANSFORMATION IN REACTIVE FLOW J. E. Reaugh, E. L. Lee, Lawrence Livermore National Laboratory, Livermore

More information

Initiation Capacity of a New Booster Pellet

Initiation Capacity of a New Booster Pellet Initiation Capacity of a New Booster Pellet 157 Central European Journal of Energetic Materials, 2014, 11(1), 157-170 ISSN 1733-7178 Initiation Capacity of a New Booster Pellet Lishuang HU *, Shuangqi

More information

Noise mitigation measures to be used for the explosive cladding in open air

Noise mitigation measures to be used for the explosive cladding in open air Noise mitigation measures to be used for the explosive cladding in open air Erik Carton Frank van den Berg Frits van der Eerden 1 Mei 2012 Mitigation Open Air Explosions 1 Simulation of the blast wave

More information

Report Documentation Page

Report Documentation Page High Brightness Imaging for Real Time Measurement of Shock, Particle, and Combustion Fronts Produced By Enhanced Blast Explosives Kevin L. McNesby, Barrie E. Homan, and Richard E. Lottero U.S. Army Research

More information

Energetic Ingredients Synthesis

Energetic Ingredients Synthesis Energetic Ingredients Synthesis Dr. David Price, Dr. Jacob Morris, Dr. Sarah Headrick, Dr. Neil Tucker, Dr. Rycel Uy BAE Systems Ordnance Systems Holston Army Ammunition Plant October 2013 1 Analytical

More information

Sensitivities of Some Imidazole-1-sulfonyl Azide Salts

Sensitivities of Some Imidazole-1-sulfonyl Azide Salts pubs.acs.org/joc Sensitivities of Some Imidazole-1-sulfonyl Azide Salts Niko Fischer, Ethan D. Goddard-Borger, Robert Greiner, Thomas M. Klapoẗke,*, Brian W. Skelton, and Jo rg Stierstorfer Energetic Materials

More information

ACCURACY AND CALIBRATION OF HIGH EXPLOSIVE THERMODYNAMIC EQUATIONS OF STATE

ACCURACY AND CALIBRATION OF HIGH EXPLOSIVE THERMODYNAMIC EQUATIONS OF STATE AD AD-E403 297 Technical Report ARMET-TR-10005 ACCURACY AND CALIBRATION OF HIGH EXPLOSIVE THERMODYNAMIC EQUATIONS OF STATE E. L. Baker C. Capellos J. Pincay U.S. Army ARDEC Picatinny Arsenal, NJ 07806

More information

Detonability of Ammonium Nitrate and Mixtures on Its Base

Detonability of Ammonium Nitrate and Mixtures on Its Base Detonability of Ammonium Nitrate and Mixtures on its Base 335 Central European Journal of Energetic Materials, 2010, 7(4), 335343 ISSN 17337178 Detonability of Ammonium Nitrate and Mixtures on Its Base

More information

THERMODYNAMIC ANALYSIS OF COMBUSTION PROCESSES FOR PROPULSION SYSTEMS

THERMODYNAMIC ANALYSIS OF COMBUSTION PROCESSES FOR PROPULSION SYSTEMS 2nd AIAA Aerospace Sciences Paper 2-33 Meeting and Exhibit January -8, 2, Reno, NV THERMODYNAMIC ANALYSIS OF COMBUSTION PROCESSES FOR PROPULSION SYSTEMS E. Wintenberger and J. E. Shepherd Graduate Aeronautical

More information

High-temperature and pressure aluminum reactions in carbon dioxide rich post-detonation environments

High-temperature and pressure aluminum reactions in carbon dioxide rich post-detonation environments Journal of Physics: Conference Series OPEN ACCESS High-temperature and pressure aluminum reactions in carbon dioxide rich post-detonation environments To cite this article: B C Tappan et al 2014 J. Phys.:

More information

Determining the Equivalent Explosive Effect for Different Explosives. Jerome B. Johnson U. S. Army Cold Regions Research and Engineering Laboratory

Determining the Equivalent Explosive Effect for Different Explosives. Jerome B. Johnson U. S. Army Cold Regions Research and Engineering Laboratory Determining the Equivalent Explosive Effect for Different Explosives Jerome B. Johnson U. S. Army Cold Regions Research and Engineering Laboratory P. O. Box 35170 Ft. Wainwright, AK 99703-0170 ABSTRACT

More information

Fundamentals of explosive chemistry. Synopsis:

Fundamentals of explosive chemistry. Synopsis: Fundamentals of explosive chemistry Synopsis: This book is used as a textbook for Ammunition Technical Officers Course and Artillery Course in Chemistry Department, Faculty of Science, Universiti Teknologi

More information

Influence of Different Parameters on the TNT-Equivalent of an Explosion

Influence of Different Parameters on the TNT-Equivalent of an Explosion Influence of Different Parameters on the TNT-Equivalent of an Explosion 53 Central European Journal of Energetic Materials, 2011, 8(1), 53-67 ISSN 1733-7178 Influence of Different Parameters on the TNT-Equivalent

More information

Gelatin Impact Modeling In support of PM-MAS ES-1A-9000

Gelatin Impact Modeling In support of PM-MAS ES-1A-9000 Gelatin Impact Modeling In support of PM-MAS ES-1A-9000 Mark D. Minisi, MSME US Army TACOM ARDEC, Infantry Weapon Systems; Small and Medium Caliber Technical Modeling & Simulation Team Leader AMSRD-AAR-AEW-M

More information

Application of Proton Radiography to High Energy Density Research

Application of Proton Radiography to High Energy Density Research Application of Proton Radiography to High Energy Density Research S.A. Kolesnikov*, S.V. Dudin, V.B. Mintsev, A.V. Shutov, A.V. Utkin, V.E. Fortov IPCP RAS, Chernogolovka, Russia A.A. Golubev, V.S. Demidov,

More information

Some Perspectives on Estimating Detonation Properties of C, H, N, O Compounds

Some Perspectives on Estimating Detonation Properties of C, H, N, O Compounds Some Perspectives on Estimating Detonation Properties of C, H, N, O Compounds 209 Central European Journal of Energetic Materials, 2011, 8(3), 209-220 ISSN 1733-7178 Some Perspectives on Estimating Detonation

More information

Detonation initiation by hypervelocity projectiles

Detonation initiation by hypervelocity projectiles Detonation initiation 1 Detonation initiation by hypervelocity projectiles J. Bélanger, M.Kaneshige,J.E.Shepherd California Institute of Technology Pasadena, CA 91125 USA Abstract: We report experimental

More information

ISSN ; e-issn Copyright 2016 Institute of Industrial Organic Chemistry, Poland

ISSN ; e-issn Copyright 2016 Institute of Industrial Organic Chemistry, Poland Central European Journal of Energetic Materials ISSN 1733-7178; e-issn 2353-1843 Cent. Eur. J. Energ. Mater., 2016, 13(4), 821-837; DOI: 10.22211/cejem/65824 Experimental Study on the Heat Resistant Explosive

More information

ARDEC ARL HSAI MSRM HPC

ARDEC ARL HSAI MSRM HPC INSTITUTE FOR MULTI SCALE REACTIVE MODELING ARL HPC ARDEC HSAI MSRM D.J. Murphy, L. Costa, D.G. Pfau, W.H. Davis, E.L. Baker U.S. Army Armament Research, Development and Engineering Center, Picatinny,

More information

Dynamic Initiator Experiments using X-Ray Phase Contrast Imaging at the Advanced Photon Source

Dynamic Initiator Experiments using X-Ray Phase Contrast Imaging at the Advanced Photon Source LA-UR-16-22990 Dynamic Initiator Experiments using X-Ray Phase Contrast Imaging at the Advanced Photon Source Sanchez Nathaniel J 1, Jensen Brian J 1, Ramos Kyle J 1, Iverson Adam 2 J, Martinez Michael

More information

HIGH SPEED GAS DYNAMICS HINCHEY

HIGH SPEED GAS DYNAMICS HINCHEY HIGH SPEED GAS DYNAMICS HINCHEY MACH WAVES Mach Number is the speed of something divided by the local speed of sound. When an infinitesimal disturbance moves at a steady speed, at each instant in time

More information

Extension of the Planar Noh Problem to Aluminum, Iron, Copper, and Tungsten

Extension of the Planar Noh Problem to Aluminum, Iron, Copper, and Tungsten Extension of the Planar Noh Problem to Aluminum, Iron, Copper, and Tungsten Chloe E. Yorke, April D. Howard, Sarah C. Burnett, Kevin G. Honnell a), Scott D. Ramsey, and Robert L. Singleton, Jr. Computational

More information

Measurement of Impulse Generated by the Detonation of Anti-tank Mines by Using the VLIP Technique

Measurement of Impulse Generated by the Detonation of Anti-tank Mines by Using the VLIP Technique Measurement of Impulse Generated by the Detonation of Anti-tank Mines by Using the VLIP Technique Pieter Marius de Koker 19, Nikola Pavković 20, Jacobus Theodorus van Dyk 21, Ivan Šteker 22 Abstract The

More information

Parameter determination of an ignition and growth model from emulsion explosive tests. Changping Yi Ulf Nyberg Daniel Johansson

Parameter determination of an ignition and growth model from emulsion explosive tests. Changping Yi Ulf Nyberg Daniel Johansson Parameter determination of an ignition and growth model from emulsion explosive tests Changping Yi Ulf Nyberg Daniel Johansson Outline Background Ignition and Growth model Methodology Parameter calibration

More information

GAS DYNAMICS. M. Halük Aksel. O. Cahit Eralp. and. Middle East Technical University Ankara, Turkey

GAS DYNAMICS. M. Halük Aksel. O. Cahit Eralp. and. Middle East Technical University Ankara, Turkey GAS DYNAMICS M. Halük Aksel and O. Cahit Eralp Middle East Technical University Ankara, Turkey PRENTICE HALL f r \ New York London Toronto Sydney Tokyo Singapore; \ Contents Preface xi Nomenclature xiii

More information

Three Dimensional Analysis of Induced Detonation of Cased Explosive

Three Dimensional Analysis of Induced Detonation of Cased Explosive 13 th International LS-DYNA Users Conference Session: Blast Three Dimensional Analysis of Induced Detonation of Cased Explosive Devon Downes 1, Amal Bouamoul 2 and Manouchehr Nejad Ensan 1 1 Aerospace

More information

Adiabat Shaping of Direct-Drive OMEGA Capsules Using Ramped Pressure Profiles

Adiabat Shaping of Direct-Drive OMEGA Capsules Using Ramped Pressure Profiles Adiabat Shaping of Direct-Drive OMEGA Capsules Using Ramped Pressure Profiles a r Lagrangian coordinate K. Anderson University of Rochester Laboratory for Laser Energetics 44th Annual Meeting of the American

More information

Mechanics of Materials and Structures

Mechanics of Materials and Structures Journal of Mechanics of Materials and Structures SHOCK-INDUCED DETONATION OF HIGH EXPLOSIVES BY HIGH VELOCITY IMPACT J. K. Chen, Hsu-Kuang Ching and Firooz A. Allahdadi Volume 2, Nº 9 November 2007 mathematical

More information

Strength effects in an imploding cylinder with constant mass-to-explosive loading

Strength effects in an imploding cylinder with constant mass-to-explosive loading Journal of Physics: Conference Series OPEN ACCESS Strength effects in an imploding cylinder with constant mass-to-explosive loading To cite this article: M Serge et al 014 J. Phys.: Conf. Ser. 500 11058

More information

Application of Steady and Unsteady Detonation Waves to Propulsion

Application of Steady and Unsteady Detonation Waves to Propulsion Application of Steady and Unsteady Detonation Waves to Propulsion Thesis by Eric Wintenberger In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California Institute of Technology

More information

A Study on Shock Wave Propagation Process in the Smooth Blasting Technique

A Study on Shock Wave Propagation Process in the Smooth Blasting Technique 8 th International LS-DYNA Users Conference Simulation Technology () A Study on Shock Wave Propagation Process in the Smooth Blasting Technique Masahiko Otsuka, Yamato Matsui, Kenji Murata, Yukio Kato,

More information

Jennifer Wen 1 & Changjian Wang 2,3. Warwick Fire, School of Engineering, University of Warwick

Jennifer Wen 1 & Changjian Wang 2,3. Warwick Fire, School of Engineering, University of Warwick A new single-step reaction mechanism for propane explosions covering the entire spectrum of flame acceleration, transition to detonation and detonation Jennifer Wen 1 & Changian Wang 2,3 1 Warwick Fire,

More information

APPLICATION OF DETONATION TO PROPULSION. S. M. Frolov, V. Ya. Basevich, and V. S. Aksenov

APPLICATION OF DETONATION TO PROPULSION. S. M. Frolov, V. Ya. Basevich, and V. S. Aksenov APPLICATION OF DETONATION TO PROPULSION COMBUSTION CHAMBER WITH INTERMITTENT GENERATION AND AMPLIFICATION OF PROPAGATING REACTIVE SHOCKS S. M. Frolov, V. Ya. Basevich, and V. S. Aksenov N. N. Semenov Institute

More information

Fragmentation and Safety Distances

Fragmentation and Safety Distances Fragmentation and Safety Distances Examples MNGN 444 Spring 2016 Recommended Literature 1. Explosives Engineering - Paul W. Cooper. 2. Manual for the Prediction of Blast and Fragment Loadings in Structures

More information

Theoretical Prediction of the Heats of Formation, Densities, and Relative Sensitivities for 5,7-dinitro-5,7-diaza-1,3-dioxabicyclo (3:3:0)octan-2-one

Theoretical Prediction of the Heats of Formation, Densities, and Relative Sensitivities for 5,7-dinitro-5,7-diaza-1,3-dioxabicyclo (3:3:0)octan-2-one ARL-TN-0749 APR 2016 US Army Research Laboratory Theoretical Prediction of the Heats of Formation, Densities, and Relative Sensitivities for 5,7-dinitro-5,7-diaza-1,3-dioxabicyclo (3:3:0)octan-2-one by

More information

The Pennsylvania State University. The Graduate School. College of Engineering CHARACTERIZATION OF BLASTS FROM LABORATORY-SCALE

The Pennsylvania State University. The Graduate School. College of Engineering CHARACTERIZATION OF BLASTS FROM LABORATORY-SCALE The Pennsylvania State University The Graduate School College of Engineering CHARACTERIZATION OF BLASTS FROM LABORATORY-SCALE COMPOSITE EXPLOSIVE CHARGES A Dissertation in Mechanical Engineering by Matthew

More information

Supporting Information. Use of Mass Spectrometric Vapor Analysis to Improve Canine Explosive Detection Efficiency

Supporting Information. Use of Mass Spectrometric Vapor Analysis to Improve Canine Explosive Detection Efficiency Supporting Information Use of Mass Spectrometric Vapor Analysis to Improve Canine Explosive Detection Efficiency Ta-Hsuan Ong, Ted Mendum, Geoff Geurtsen, Jude Kelley, Alla Ostrinskaya, Roderick Kunz Chemical,

More information

A BURN MODEL BASED ON HEATING DUE TO SHEAR FLOW: PROOF OF PRINCIPLE CALCULATIONS. F. J. Zerilli, R. H. Guirguis, and C. S. Coffey

A BURN MODEL BASED ON HEATING DUE TO SHEAR FLOW: PROOF OF PRINCIPLE CALCULATIONS. F. J. Zerilli, R. H. Guirguis, and C. S. Coffey A BURN MODEL BASED ON HEATING DUE TO SHEAR FLOW: PROOF OF PRINCIPLE CALCULATIONS F. J. Zerilli, R. H. Guirguis, and C. S. Coffey Indian Head Division Naval Surface Warfare Center Indian Head, MD 20640

More information

Detonation Diffraction

Detonation Diffraction Detonation Diffraction E. Schultz, J. Shepherd Detonation Physics Laboratory Pasadena, CA 91125 MURI Mid-Year Pulse Detonation Engine Review Meeting February 10-11, 2000 Super-critical Detonation Diffraction

More information

Mathematical Models of Fluids

Mathematical Models of Fluids SOUND WAVES Mathematical Models of Fluids Fluids molecules roam and collide no springs Collisions cause pressure in fluid (Units: Pascal Pa = N/m 2 ) 2 mathematical models for fluid motion: 1) Bulk properties

More information

Chemical inhibiting of hydrogen-air detonations Sergey M. Frolov

Chemical inhibiting of hydrogen-air detonations Sergey M. Frolov Chemical inhibiting of hydrogen-air detonations Sergey M. Frolov Semenov Institute of Chemical Physics Moscow, Russia Outline Introduction Theoretical studies Classical 1D approach (ZND-model) Detailed

More information

The risk of storage plant of pyrotechnics

The risk of storage plant of pyrotechnics The risk of storage plant of pyrotechnics Basco A. 1, Cammarota F. 1, Salzano E. 1, Istituto di Ricerche sulla Combustione - C.N.R., Via Diocleziano 328, 80124 Napoli (I) Recent updating of Seveso Directive

More information

Energetic Nitrogen-Rich Polymers Based on Cellulose

Energetic Nitrogen-Rich Polymers Based on Cellulose Energetic itrogen-rich Polymers Based on Cellulose 157 Central European Journal of Energetic Materials, 2011, 8(3), 157-171 ISS 1733-7178 Energetic itrogen-rich Polymers Based on Cellulose Franziska M.

More information

Introduction to Fluid Mechanics. Chapter 13 Compressible Flow. Fox, Pritchard, & McDonald

Introduction to Fluid Mechanics. Chapter 13 Compressible Flow. Fox, Pritchard, & McDonald Introduction to Fluid Mechanics Chapter 13 Compressible Flow Main Topics Basic Equations for One-Dimensional Compressible Flow Isentropic Flow of an Ideal Gas Area Variation Flow in a Constant Area Duct

More information

Laser Ablation Studies at UCSD and Plans for Time and Space Resolved Ejecta Measurements

Laser Ablation Studies at UCSD and Plans for Time and Space Resolved Ejecta Measurements Laser Ablation Studies at UCSD and Plans for Time and Space Resolved Ejecta Measurements M. S. Tillack, Y. Tao, Y. Ueno*, R. Burdt, S. Yuspeh, A. Farkas, 2 nd TITAN workshop on MFE/IFE common research

More information

Supporting Information for:

Supporting Information for: Supporting Information for: 1,1 -Azobistetrazole: A Highly Energetic Nitrogen Rich Compound With a N 10 Chain. Thomas M. Klapötke and Davin G. Piercey. Department of Chemistry and Biochemistry, Energetic

More information

Shock Waves. = 0 (momentum conservation)

Shock Waves. = 0 (momentum conservation) PH27: Aug-Dec 2003 Shock Waves A shock wave is a surface of discontinuity moving through a medium at a speed larger than the speed of sound upstream. The change in the fluid properties upon passing the

More information

Introduction to Aerodynamics. Dr. Guven Aerospace Engineer (P.hD)

Introduction to Aerodynamics. Dr. Guven Aerospace Engineer (P.hD) Introduction to Aerodynamics Dr. Guven Aerospace Engineer (P.hD) Aerodynamic Forces All aerodynamic forces are generated wither through pressure distribution or a shear stress distribution on a body. The

More information

INTRODUCTION TO NUMERICAL ANALYSIS OF DIRECTED FRAGMENTATION WARHEADS

INTRODUCTION TO NUMERICAL ANALYSIS OF DIRECTED FRAGMENTATION WARHEADS Journal of KONES Powertrain and Transport, Vol. 20, No. 4 2013 INTRODUCTION TO NUMERICAL ANALYSIS OF DIRECTED FRAGMENTATION WARHEADS Robert Panowicz, Jacek Nowak, Marcin Konarzewski, Tadeusz Niezgoda Military

More information

ARL-TN-0737 FEB US Army Research Laboratory

ARL-TN-0737 FEB US Army Research Laboratory ARL-TN-0737 FEB 2016 US Army Research Laboratory Theoretical Prediction of the Heats of Formation, Densities, and Relative Sensitivities for 3,7-diamino-2,4,6,8-tetranitro-1,5- diazanaphthalene (DATNP)

More information

THERMOBARIC EXPLOSIVES TBX (a thermobaric explosive) is defined as a partially detonating energetic material with excess fuel (gas, solid or liquid)

THERMOBARIC EXPLOSIVES TBX (a thermobaric explosive) is defined as a partially detonating energetic material with excess fuel (gas, solid or liquid) THERMOBARIC EXPLOSIVES TBX (a thermobaric explosive) is defined as a partially detonating energetic material with excess fuel (gas, solid or liquid) dispersed and mixed into air with subsequent ignition

More information

An analytical model for the impulse of a single-cycle pulse detonation tube

An analytical model for the impulse of a single-cycle pulse detonation tube Preprint, see final version in Journal of Propulsion and Power, 19(1):22-38, 23. http://dx.doi.org/1.2514/2.699. See also the erratum (JPP 2(4) 765-767, 24) and responses to comments by Heiser and Pratt

More information

Journal of Molecular Structure: THEOCHEM

Journal of Molecular Structure: THEOCHEM Accepted Manuscript Computational Study on 2,6-Diamino-3,5-dinitropyrazine and its 1-Oxide and 1,4-Dioxide Derivatives Elif Gökç ınar, Thomas M. Klapötke, Anthony J. Bellamy PII: S0166-1280(10)00277-0

More information

Dalton Transactions PAPER. Asymmetrically substituted 5,5 -bistriazoles nitrogenrich materials with various energetic functionalities.

Dalton Transactions PAPER. Asymmetrically substituted 5,5 -bistriazoles nitrogenrich materials with various energetic functionalities. Dalton Transactions PAPER View Article Online View Journal View Issue Cite this: Dalton Trans., 2013, 42, 11136 Asymmetrically substituted 5,5 -bistriazoles nitrogenrich materials with various energetic

More information

Synthesis of 1,3-Dinitrohexahydropyrimidine via Ring Contraction of Ether-Linked Nitramines

Synthesis of 1,3-Dinitrohexahydropyrimidine via Ring Contraction of Ether-Linked Nitramines ARL-TR-7706 JULY 2016 US Army Research Laboratory Synthesis of 1,3-Dinitrohexahydropyrimidine via Ring Contraction of Ether-Linked Nitramines by Joseph E Banning, William M Sherrill, Eric C Johnson, and

More information

Near limit behavior of the detonation velocity

Near limit behavior of the detonation velocity Near limit behavior of the detonation velocity John H.S. Lee 1, Anne Jesuthasan 1 and Hoi Dick Ng 2 1 McGill University Department of Mechanical Engineering Montreal, QC, Canada 2 Concordia University

More information

THERMODYNAMIC THEORY OF NON-IDEAL DETONATION AND FAILURE

THERMODYNAMIC THEORY OF NON-IDEAL DETONATION AND FAILURE THERMODYNAMIC THEORY O NON-IDEAL DETONATION AND AILURE W yers rown Mass Action Research Consultancy Devonshire House, 14 Corbar Road, uxton, SK17 6RQ, UK and Department of Chemistry University of Manchester,

More information

Los Alamos National Laboratory Hydrodynamic Methods Applications and Research 1 LA-UR

Los Alamos National Laboratory Hydrodynamic Methods Applications and Research 1 LA-UR Rayleigh-Taylor instability is generated when a heavy fluid sits above a lighter fluid in a gravitational field. The flow behavior is described in terms of bubbles of light fluid rising into the heavier

More information

CHEMICAL ENGINEERING DESIGN & SAFETY

CHEMICAL ENGINEERING DESIGN & SAFETY CHEMICAL ENGINEERING DESIGN & SAFETY CHE 4253 Prof. Miguel Bagajewicz Explosions Explained EXPLOSION A rapid and uniform expansion Expanding Shock wave Initial System Boundary EXPLOSION The expansion ends

More information

NEUTROTEST- A NEUTRON BASED NONDESTRUCTIVE DEVICE FOR EXPLOSIVE DETECTION

NEUTROTEST- A NEUTRON BASED NONDESTRUCTIVE DEVICE FOR EXPLOSIVE DETECTION NEUTROTEST- A NEUTRON BASED NONDESTRUCTIVE DEVICE FOR EXPLOSIVE DETECTION by Dr. Jürgen Leonhardt 26 October 2005 Volmer Strasse 9B (UTZ) D-12489 Berlin-Adlershof Germany phone.: ++49 (0) 30-6392 5511

More information

Theoretical and Experimental Study on Detonation Wave Propagation in Cylindrical High Explosive Charges with a Wave-shaper

Theoretical and Experimental Study on Detonation Wave Propagation in Cylindrical High Explosive Charges with a Wave-shaper Central European Journal of Energetic Materials ISSN 1733-7178; e-issn 353-1843 Cent. Eur. J. Energ. Mater., 016, 13(3), 658-676; DOI: 10.11/cejem/65004 Theoretical and Experimental Study on Detonation

More information

Explosive formation of coherent particle jets

Explosive formation of coherent particle jets Journal of Physics: Conference Series OPEN ACCESS Explosive formation of coherent particle jets To cite this article: D L Frost et al 2014 J. Phys.: Conf. Ser. 500 112026 View the article online for updates

More information

NUMERICAL STUDY OF LARGE SCALE HYDROGEN EXPLOSIONS AND DETONATION

NUMERICAL STUDY OF LARGE SCALE HYDROGEN EXPLOSIONS AND DETONATION NUMERICAL STUDY OF LARGE SCALE HYDROGEN EXPLOSIONS AND DETONATION VC Madhav Rao, A Heidari, JX Wen and VHY Tam Centre for Fire and Explosion Studies, Faculty of Engineering, Kingston University Friars

More information

Using Fast Neutrons to Detect Explosives and Illicit Materials

Using Fast Neutrons to Detect Explosives and Illicit Materials Using Fast Neutrons to Detect Explosives and Illicit Materials Andy Buffler Department of Physics University of Cape Town, South Africa International Symposium on Utilization of Accelerators, Dubrovnik,

More information

DETONATION WAVE PROPAGATION IN SEMI-CONFINED LAYERS OF HYDROGEN-AIR AND HYDROGEN-OXYGEN MIXTURES

DETONATION WAVE PROPAGATION IN SEMI-CONFINED LAYERS OF HYDROGEN-AIR AND HYDROGEN-OXYGEN MIXTURES DETONATION WAVE PROPAGATION IN SEMI-CONFINED LAYERS OF HYDROGEN-AIR AND HYDROGEN-OXYGEN MIXTURES Grune, J. 1 *, Sempert, K. 1, Friedrich, A. 1, Kuznetsov, M. 2, Jordan, T. 2 1 Pro-Science GmbH, Parkstr.9,

More information

One & Two Dimensional Diagnostics for Detonators & Boosters

One & Two Dimensional Diagnostics for Detonators & Boosters One & Two Dimensional Diagnostics for Detonators & Boosters S.A. Clarke, K.A. Thomas, C.D. Landon, & T.A. Mason Weapons Engineering Los Alamos National Lab NDIA Fuze Conference May 2007 LA-UR-07-3127 Diagnostics

More information

Shock Wave Boundary Layer Interaction from Reflecting Detonations

Shock Wave Boundary Layer Interaction from Reflecting Detonations Shock Wave Boundary Layer Interaction from Reflecting Detonations J. Damazo 1, J. Ziegler 1, J. Karnesky 2, and J. E. Shepherd 1 1 Introduction The present work is concerned with the differences in how

More information

University of Cape Town

University of Cape Town The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private

More information

Studies on Empirical Approaches for Estimation of Detonation Velocity of High Explosives

Studies on Empirical Approaches for Estimation of Detonation Velocity of High Explosives Studies on Empirical Approaches for Estimation of Detonation Velocity... 39 Central European Journal of Energetic Materials, 2012, 9(1), 39-48 ISSN 1733-7178 Studies on Empirical Approaches for Estimation

More information

MODELLING OF DEFLAGRATION, ESTABLISHING MATERIAL DATA INTO ANSYS AUTODYN S POWDER BURN MODEL

MODELLING OF DEFLAGRATION, ESTABLISHING MATERIAL DATA INTO ANSYS AUTODYN S POWDER BURN MODEL MODELLING OF DEFLAGRATION, ESTABLISHING MATERIAL DATA INTO ANSYS AUTODYN S POWDER BURN MODEL Eimund Smestad a, John F. Moxnes b,and Gard Ødegårdstuen a a Nammo Raufoss AS, P.O. Box 62, N-283 Raufoss, Norway

More information

The evolution and cellular structure of a detonation subsequent to a head-on interaction with a shock wave

The evolution and cellular structure of a detonation subsequent to a head-on interaction with a shock wave Combustion and Flame 151 (2007) 573 580 www.elsevier.com/locate/combustflame The evolution and cellular structure of a detonation subsequent to a head-on interaction with a shock wave Barbara B. Botros

More information

Determination of Nitroglycerine Content in Double Base Propellants by Isothermal Thermogravimetry

Determination of Nitroglycerine Content in Double Base Propellants by Isothermal Thermogravimetry Determination of Nitroglycerine Content in Double Base Propellants... 3 Central European Journal of Energetic Materials, 2010, 7(1), 3-19 ISSN 1733-7178 Determination of Nitroglycerine Content in Double

More information

Simulation of mixing of heterogeneous HE components

Simulation of mixing of heterogeneous HE components Chapter Simulation of mixing of heterogeneous HE components The majority on high explosives (HEs) used are blend ones. Properties of components differ that produces interaction on the grain scale (mesoprocesses).

More information

AME 513. " Lecture 8 Premixed flames I: Propagation rates

AME 513.  Lecture 8 Premixed flames I: Propagation rates AME 53 Principles of Combustion " Lecture 8 Premixed flames I: Propagation rates Outline" Rankine-Hugoniot relations Hugoniot curves Rayleigh lines Families of solutions Detonations Chapman-Jouget Others

More information

Z =4 Mo K radiation = 0.17 mm 1. Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections 205 parameters

Z =4 Mo K radiation = 0.17 mm 1. Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections 205 parameters organic compounds Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368 The energetic double salt nitroguanidinium nitrate guanidinium nitrate (1/1) Georg Steinhauser, a Margaret-Jane

More information

Gas-dynamic acceleration of bodies till the hyper sonic velocity

Gas-dynamic acceleration of bodies till the hyper sonic velocity Gas-dynamic acceleration of bodies till the hyper sonic velocity S. N. Dolya Joint Institute for Nuclear Research, Joliot - Curie str. 6, Dubna, Russia, 141980 Abstract The article considers an opportunity

More information