Sparse Approximation of Signals with Highly Coherent Dictionaries

Size: px
Start display at page:

Download "Sparse Approximation of Signals with Highly Coherent Dictionaries"

Transcription

1 Sparse Approximation of Signals with Highly Coherent Dictionaries Bishnu P. Lamichhane and Laura Rebollo-Neira Support from EPSRC (EP/D062632/1) is acknowledged New Trends and Directions in Harmonic Analysis, Approximation Theory, and Image Analysis, Inzell Summer School, Germany, Sept , 2007

2 Outline 0 Outline 1. Sparse Approximation of a Signal Introduction Optimized Orthogonal Matching Pursuit Adaptive Biorthogonalization Swapping Controlling the Condition Number 2. Oblique Matching Pursuit Oblique Projections Structured Noise Filtering 3. Conclusion

3 Sparse Approximation 1 Introduction The problem of non-linear approximation consists of representing a signal f as a linear superposition of minimal number of basis functions, called atoms selected from a redundant set called a dictionary, D = {α i } i J. We want to minimize x 0, so that i J α ix i = f or for given ɛ > 0, we want to obtain i J α ix i f ɛ. (NP-hard and highly non-linear problem) Matching pursuit methodologies yield a trade-off between the optimality and computational complexity. Working with a highly coherent dictionary the subset selected by matching pursuit methods can have a large condition number. We want to control the condition number in a step-wise manner.

4 2 Optimized Orthogonal Matching Pursuit Optimized Orthogonal Matching Pursuit Given a signal f H. We select a set of atoms {α li } k 1 i=1 spanning the space V k 1. The new index l k is the maximizer over all n J \J k 1 of γ n, f (OMP), or γ n, f γ n, γ n 0, (OOMP), γ n = α n P Vn α n, where J k 1 = {l 1,, l k 1 }. The orthogonal projection of the signal f onto V k 1 P Vk 1 f = k 1 i=1 α li β k 1 i, f = k 1 i=1 β k 1 i α li, f = } k 1 k 1 i=1 c k 1 i α li, where the set {α li } k 1 i=1 is biorthogonal to {βk 1 i i OOMP criterion is based on minimizing the norm of the residual at each step. R k 1 2 = R k 2 + γ n, f 2 i=1, and V k 1 = span{β k 1 γ n 2 } k 1 i=1.

5 3 Biorthogonalization Recursive Biorthogonalization We want to update and downdate the orthogonal projection when an atom is added to the set {α li } k 1 i=1, and an atom is deleted from the set {α l i } k i=1. Forward step: After selecting the kth atom we have {α li } k i=1. The biorthogonal functions {βi k}k i=1 can be constructed from {βk 1 i } k 1 i=1 using β k k = β k i = β k 1 i γ lk γ lk 1 2; γ l k = α lk P Vk 1 α lk, β k k α lk, β k 1 i, i = 1,, k. Backward step: The biorthogonal set {β k i }k i=1 spanning V k is given and one atom, say α lj, is to be removed from V k. Denote by V k\j the reduced subspace V k\j = span{α l1,..., α lj 1, α lj+1,..., α lk }. The biorthogonal set is to be modified according to the equation β k\j i = β k i βk j βk j, βk i β k j 2, i = 1,..., j 1, j + 1,..., k.

6 The orthogonal projector onto V k = V k 1 {α lk }, P Vk, is then given by k k P Vk = α li βi k, = βi k α li,. i=1 and the orthogonal projector onto V k\j by k P Vk\j = α li β k\j i, = i=1 i j i=1 k i=1 i j β k\j i α li,. 3 Biorthogonalization The coefficients are to be modified as when including the atom α lk c k k c k i = β k i, f = ck 1 i = βk k, f, c k k βk 1 i, α k, i = 1,..., k 1. and when deleting an atom α lj c k\j i = β k\j i, f = c k i βk i, βk j ck j β k j 2, i = 1,..., j 1, j + 1,..., k.

7 Swapping 3 Biorthogonalization Swapping is based on comparing whether removing one already chosen atom and including a new one improve the approximation. Backward and forward steps are made easy with adaptive biorthogonalization. Backward step: Downdate P Vk f to P Vk\j f The index to be removed is the minimizer over all n = 1,..., k c k n β k n. Forward step: Update P Vk 1 f to P Vk f The new index l k is the maximizer over all n J \J k 1 of γ n, f (OMP), or γ n, f γ n, γ n 0, (OOMP), where J k 1 = {l 1,, l k 1 }.

8 Theoretical Bound 3 Biorthogonalization OMP selects only the optimal atoms if Φ optφ npt 1 < 1 (Tropp 2004). The bound is obtained from the inequality Φ nptr n f Φ opt R n f < 1, where Φ opt and Φ npt form sets of optimal and non-optimal atoms, and R n f = f P Vn f. Using φ, R n f = R n φ, f, we get R nφ npt f R n Φ opt f < 1, which gives better bound. Figure 1: Signal independent and signal dependent check for OMP and OOMP

9 More Coherent B-spline Dictionary 3 Biorthogonalization The theoretical bound does not apply at all. Signals are generated by selecting atoms randomly and combining them linearly The signal is exactly recovered with swapping Without swapping only the signals up to sparsity 80 are exactly recovered Error Number of Selected Atoms Babel Function Figure 2: Exact signal recovery using and not using swapping operation

10 Controlling the Condition Number 4 Condition Control Restrict the search space with γ n ɛ 1 and stop when γ n,f γ n ɛ 2, γ n = α n P Vk α n. Both depend on the dictionary and the signal. If W k = [β1, k, βk k], 1 gives the smallest singular value of the selected basis. W k The search can be broken if it goes beyond some limit. Optimal trade-off between the condition number and the approximation? Need a cheap condition estimator. Implementation of the matching pursuit based on the incremental QRdecomposition and the biorthogonal functions = the use of incremental norm estimator proposed by Duff and Voemel. Assume W k = [α l1,, α lk ], then W T k W k = I k. Suppose that W k = Q k R k (QR-decomposition of W k ). The condition number of the basis W k = W k W k = R 1 k R k.

11 Controlling the Condition Number 4 Condition Control W k = [α l1,, α lk ] = Q k R k. Update the QR-decomposition of W k to get the QR-decomposition of W n k = [α l 1,, α lk, α n ]. Hence W n k = Qn k Rn k with R n k = ( Rk v n k 0 r n k Assume that σ k = R k z be the norm of the matrix with z = 1. The idea of incremental norm estimator is to maximize the quantity R kẑ n with ẑ = (sz, c)t, and s 2 + c 2 n = 1. An analytical expression for the maximum of Rkẑ is easily obtained [Duff and Voemel]. (R n k ) 1 = 1/σ n k with σn k being the smallest singular value of the matrix Rn k. The same incremental norm estimator can be used to compute the smallest singular value of R n k. ).

12 Controlling the Condition Number 4 Condition Control The smallest and largest singular values of R k and corresponding right singular vectors can be cheaply computed by applying a few power iterations to R k and initialized by some intelligent guess. R 1 k Let Jk ɛ = {n : γ n,f γ ɛ k }. Assume that κ n k the estimated condition number of the basis [W k, α n ], n Jk ɛ. Select the atom with index l k+1 = arg min n J ɛ k κ n k. Alternative way: Assume that D k := { α n, n J \J k } is sorted out in such a way that { γ n,f γ n, n J \J k} is in descending order, and κ k is the condition number of the basis at the kth step, then starting from the first atom in D k, estimate the condition number κ n k of [W κ k, α n ], n J \J k until n k κ is less than some fixed k number. Swapping can be done to improve the approximation or the condition number of the basis.

13 4 Condition Control Numerical Results Given a set find a subset with a given condition number ax n, a = {1, 2}, n = {1, 2, 3, 4, 5}, x = 10. (Old Alg. is based on SVD: Golub and Van Loan) Thrs x 2x x 2 2x 2 x 3 2x 3 x 4 2x 4 x 5 2x 5 Bspline Old (143) New Wavelet Old (635) New Figure 3: The ratios of the thresholds (thrs/cnd) and the computed condition numbers, B-spline dictionary (left), Wavelet dictionary (right)

14 4 Condition Control Numerical Results for OOMP We apply OOMP with and without condition control to approximate the modulated chirp function f = exp(x) cos(kπx 2 ) for k = 5, 10, 15, 20, 25, 30, 35, 40 and 45. The search is stopped when the condition number is greater than Figure 4: Chirp function (left) error (middle) and number of selected atoms (right) versus k for the approximation of the modulated chirp function

15 4 Condition Control Numerical Results for Swapping Signals are chosen by selecting the atoms randomly and using linear combination of them. Figure 5: Error and condition growth with swapping operation

16 Oblique Projection 5 Oblique Matching Pursuit We are given three subspaces V, W and W of H with H = W W = V + W. The oblique projector E VW : H V is uniquely defined with the properties E VW v = v, v V, and E VW w = 0, w W if V W ={0}. For f H, Orthogonal projection: P Vk f = arg min g V k f g. Oblique projection: E Vk W f = arg min g V k f g PW with f, g PW = f, P W g. Following error bound holds: f P Vk f f E Vk W f 1 cos(θ) f P V k f, where θ is the angle between the spaces V k and W.

17 Oblique Matching Pursuit 5 Oblique Matching Pursuit If a signal f H is corrupted with noise, and the noise is known to lie in W with f = g + h with g V and h W, then g = E VW f. In general, only a redundant set D of atoms, called a dictionary, is known, which span V. The signal can be even corrupted with other noise. How to select atoms from the set D to span g? H = W W = V + W. Non-uniqueness of V in Use OOMP on the modified dictionary P W D to select atoms and construct oblique projector E Vk W. We call it Oblique matching pursuit. The efficient implementation can be done by using biorthogonal functions as before which span the space P W V k.

18 5 Oblique Matching Pursuit Figure 6: Oblique matching pursuit applied to the signal corrupted with only structured noise- called backrgound (left) and corrupted with structured and white noise σ = (right) Note: The direct oblique projection (computed by T-SVD) explodes in case of the signal with white noise.

19 6 Conclusion Conclusion and Remark The recursive biorthogonal approach yields an efficient implmentation for the Matching Pursuit method. Forward and backward basis selection can be combined to introduce swapping operation based on the minimal residual condition. The incremental condition estimator can be easily adapted within the recursive biorthogonal approach to deal with the ill-conditioning. Oblique Matching Pursuit (Weighted Matching Pursuit) can be used to filter the structured noise. Theoretical investigation of the swapping operation. Generalizing the result for the multiple selection. Develop a domain decomposition algorithm. Combining different algorithms for efficiency and flexibility. Thank You

Sparse analysis Lecture III: Dictionary geometry and greedy algorithms

Sparse analysis Lecture III: Dictionary geometry and greedy algorithms Sparse analysis Lecture III: Dictionary geometry and greedy algorithms Anna C. Gilbert Department of Mathematics University of Michigan Intuition from ONB Key step in algorithm: r, ϕ j = x c i ϕ i, ϕ j

More information

An Introduction to Sparse Approximation

An Introduction to Sparse Approximation An Introduction to Sparse Approximation Anna C. Gilbert Department of Mathematics University of Michigan Basic image/signal/data compression: transform coding Approximate signals sparsely Compress images,

More information

Introduction to Compressed Sensing

Introduction to Compressed Sensing Introduction to Compressed Sensing Alejandro Parada, Gonzalo Arce University of Delaware August 25, 2016 Motivation: Classical Sampling 1 Motivation: Classical Sampling Issues Some applications Radar Spectral

More information

SGN Advanced Signal Processing Project bonus: Sparse model estimation

SGN Advanced Signal Processing Project bonus: Sparse model estimation SGN 21006 Advanced Signal Processing Project bonus: Sparse model estimation Ioan Tabus Department of Signal Processing Tampere University of Technology Finland 1 / 12 Sparse models Initial problem: solve

More information

Recovery of Sparse Signals from Noisy Measurements Using an l p -Regularized Least-Squares Algorithm

Recovery of Sparse Signals from Noisy Measurements Using an l p -Regularized Least-Squares Algorithm Recovery of Sparse Signals from Noisy Measurements Using an l p -Regularized Least-Squares Algorithm J. K. Pant, W.-S. Lu, and A. Antoniou University of Victoria August 25, 2011 Compressive Sensing 1 University

More information

MLCC 2018 Variable Selection and Sparsity. Lorenzo Rosasco UNIGE-MIT-IIT

MLCC 2018 Variable Selection and Sparsity. Lorenzo Rosasco UNIGE-MIT-IIT MLCC 2018 Variable Selection and Sparsity Lorenzo Rosasco UNIGE-MIT-IIT Outline Variable Selection Subset Selection Greedy Methods: (Orthogonal) Matching Pursuit Convex Relaxation: LASSO & Elastic Net

More information

Generalized Orthogonal Matching Pursuit- A Review and Some

Generalized Orthogonal Matching Pursuit- A Review and Some Generalized Orthogonal Matching Pursuit- A Review and Some New Results Department of Electronics and Electrical Communication Engineering Indian Institute of Technology, Kharagpur, INDIA Table of Contents

More information

Multiple Change Point Detection by Sparse Parameter Estimation

Multiple Change Point Detection by Sparse Parameter Estimation Multiple Change Point Detection by Sparse Parameter Estimation Department of Econometrics Fac. of Economics and Management University of Defence Brno, Czech Republic Dept. of Appl. Math. and Comp. Sci.

More information

The Lanczos and conjugate gradient algorithms

The Lanczos and conjugate gradient algorithms The Lanczos and conjugate gradient algorithms Gérard MEURANT October, 2008 1 The Lanczos algorithm 2 The Lanczos algorithm in finite precision 3 The nonsymmetric Lanczos algorithm 4 The Golub Kahan bidiagonalization

More information

Introduction to Sparsity. Xudong Cao, Jake Dreamtree & Jerry 04/05/2012

Introduction to Sparsity. Xudong Cao, Jake Dreamtree & Jerry 04/05/2012 Introduction to Sparsity Xudong Cao, Jake Dreamtree & Jerry 04/05/2012 Outline Understanding Sparsity Total variation Compressed sensing(definition) Exact recovery with sparse prior(l 0 ) l 1 relaxation

More information

Inverse problems and sparse models (1/2) Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France

Inverse problems and sparse models (1/2) Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France Inverse problems and sparse models (1/2) Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France remi.gribonval@inria.fr Structure of the tutorial Session 1: Introduction to inverse problems & sparse

More information

Complementary Matching Pursuit Algorithms for Sparse Approximation

Complementary Matching Pursuit Algorithms for Sparse Approximation Complementary Matching Pursuit Algorithms for Sparse Approximation Gagan Rath and Christine Guillemot IRISA-INRIA, Campus de Beaulieu 35042 Rennes, France phone: +33.2.99.84.75.26 fax: +33.2.99.84.71.71

More information

Key words. conjugate gradients, normwise backward error, incremental norm estimation.

Key words. conjugate gradients, normwise backward error, incremental norm estimation. Proceedings of ALGORITMY 2016 pp. 323 332 ON ERROR ESTIMATION IN THE CONJUGATE GRADIENT METHOD: NORMWISE BACKWARD ERROR PETR TICHÝ Abstract. Using an idea of Duff and Vömel [BIT, 42 (2002), pp. 300 322

More information

New Coherence and RIP Analysis for Weak. Orthogonal Matching Pursuit

New Coherence and RIP Analysis for Weak. Orthogonal Matching Pursuit New Coherence and RIP Analysis for Wea 1 Orthogonal Matching Pursuit Mingrui Yang, Member, IEEE, and Fran de Hoog arxiv:1405.3354v1 [cs.it] 14 May 2014 Abstract In this paper we define a new coherence

More information

Simultaneous Sparsity

Simultaneous Sparsity Simultaneous Sparsity Joel A. Tropp Anna C. Gilbert Martin J. Strauss {jtropp annacg martinjs}@umich.edu Department of Mathematics The University of Michigan 1 Simple Sparse Approximation Work in the d-dimensional,

More information

Lecture 9: Numerical Linear Algebra Primer (February 11st)

Lecture 9: Numerical Linear Algebra Primer (February 11st) 10-725/36-725: Convex Optimization Spring 2015 Lecture 9: Numerical Linear Algebra Primer (February 11st) Lecturer: Ryan Tibshirani Scribes: Avinash Siravuru, Guofan Wu, Maosheng Liu Note: LaTeX template

More information

Least squares: the big idea

Least squares: the big idea Notes for 2016-02-22 Least squares: the big idea Least squares problems are a special sort of minimization problem. Suppose A R m n where m > n. In general, we cannot solve the overdetermined system Ax

More information

SPARSE signal representations have gained popularity in recent

SPARSE signal representations have gained popularity in recent 6958 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 10, OCTOBER 2011 Blind Compressed Sensing Sivan Gleichman and Yonina C. Eldar, Senior Member, IEEE Abstract The fundamental principle underlying

More information

Applied Machine Learning for Biomedical Engineering. Enrico Grisan

Applied Machine Learning for Biomedical Engineering. Enrico Grisan Applied Machine Learning for Biomedical Engineering Enrico Grisan enrico.grisan@dei.unipd.it Data representation To find a representation that approximates elements of a signal class with a linear combination

More information

STA141C: Big Data & High Performance Statistical Computing

STA141C: Big Data & High Performance Statistical Computing STA141C: Big Data & High Performance Statistical Computing Lecture 5: Numerical Linear Algebra Cho-Jui Hsieh UC Davis April 20, 2017 Linear Algebra Background Vectors A vector has a direction and a magnitude

More information

Compressive sensing in the analog world

Compressive sensing in the analog world Compressive sensing in the analog world Mark A. Davenport Georgia Institute of Technology School of Electrical and Computer Engineering Compressive Sensing A D -sparse Can we really acquire analog signals

More information

STA141C: Big Data & High Performance Statistical Computing

STA141C: Big Data & High Performance Statistical Computing STA141C: Big Data & High Performance Statistical Computing Numerical Linear Algebra Background Cho-Jui Hsieh UC Davis May 15, 2018 Linear Algebra Background Vectors A vector has a direction and a magnitude

More information

MATCHING-PURSUIT DICTIONARY PRUNING FOR MPEG-4 VIDEO OBJECT CODING

MATCHING-PURSUIT DICTIONARY PRUNING FOR MPEG-4 VIDEO OBJECT CODING MATCHING-PURSUIT DICTIONARY PRUNING FOR MPEG-4 VIDEO OBJECT CODING Yannick Morvan, Dirk Farin University of Technology Eindhoven 5600 MB Eindhoven, The Netherlands email: {y.morvan;d.s.farin}@tue.nl Peter

More information

The Iteration-Tuned Dictionary for Sparse Representations

The Iteration-Tuned Dictionary for Sparse Representations The Iteration-Tuned Dictionary for Sparse Representations Joaquin Zepeda #1, Christine Guillemot #2, Ewa Kijak 3 # INRIA Centre Rennes - Bretagne Atlantique Campus de Beaulieu, 35042 Rennes Cedex, FRANCE

More information

Sparse representation classification and positive L1 minimization

Sparse representation classification and positive L1 minimization Sparse representation classification and positive L1 minimization Cencheng Shen Joint Work with Li Chen, Carey E. Priebe Applied Mathematics and Statistics Johns Hopkins University, August 5, 2014 Cencheng

More information

MATCHING PURSUIT WITH STOCHASTIC SELECTION

MATCHING PURSUIT WITH STOCHASTIC SELECTION 2th European Signal Processing Conference (EUSIPCO 22) Bucharest, Romania, August 27-3, 22 MATCHING PURSUIT WITH STOCHASTIC SELECTION Thomas Peel, Valentin Emiya, Liva Ralaivola Aix-Marseille Université

More information

Linear Methods for Regression. Lijun Zhang

Linear Methods for Regression. Lijun Zhang Linear Methods for Regression Lijun Zhang zlj@nju.edu.cn http://cs.nju.edu.cn/zlj Outline Introduction Linear Regression Models and Least Squares Subset Selection Shrinkage Methods Methods Using Derived

More information

5.6. PSEUDOINVERSES 101. A H w.

5.6. PSEUDOINVERSES 101. A H w. 5.6. PSEUDOINVERSES 0 Corollary 5.6.4. If A is a matrix such that A H A is invertible, then the least-squares solution to Av = w is v = A H A ) A H w. The matrix A H A ) A H is the left inverse of A and

More information

Sparse Legendre expansions via l 1 minimization

Sparse Legendre expansions via l 1 minimization Sparse Legendre expansions via l 1 minimization Rachel Ward, Courant Institute, NYU Joint work with Holger Rauhut, Hausdorff Center for Mathematics, Bonn, Germany. June 8, 2010 Outline Sparse recovery

More information

Rice University. Endogenous Sparse Recovery. Eva L. Dyer. A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree

Rice University. Endogenous Sparse Recovery. Eva L. Dyer. A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree Rice University Endogenous Sparse Recovery by Eva L. Dyer A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree Masters of Science Approved, Thesis Committee: Dr. Richard G. Baraniuk,

More information

Analysis of Greedy Algorithms

Analysis of Greedy Algorithms Analysis of Greedy Algorithms Jiahui Shen Florida State University Oct.26th Outline Introduction Regularity condition Analysis on orthogonal matching pursuit Analysis on forward-backward greedy algorithm

More information

Neural Networks Lecture 4: Radial Bases Function Networks

Neural Networks Lecture 4: Radial Bases Function Networks Neural Networks Lecture 4: Radial Bases Function Networks H.A Talebi Farzaneh Abdollahi Department of Electrical Engineering Amirkabir University of Technology Winter 2011. A. Talebi, Farzaneh Abdollahi

More information

c 2011 International Press Vol. 18, No. 1, pp , March DENNIS TREDE

c 2011 International Press Vol. 18, No. 1, pp , March DENNIS TREDE METHODS AND APPLICATIONS OF ANALYSIS. c 2011 International Press Vol. 18, No. 1, pp. 105 110, March 2011 007 EXACT SUPPORT RECOVERY FOR LINEAR INVERSE PROBLEMS WITH SPARSITY CONSTRAINTS DENNIS TREDE Abstract.

More information

Greedy Signal Recovery and Uniform Uncertainty Principles

Greedy Signal Recovery and Uniform Uncertainty Principles Greedy Signal Recovery and Uniform Uncertainty Principles SPIE - IE 2008 Deanna Needell Joint work with Roman Vershynin UC Davis, January 2008 Greedy Signal Recovery and Uniform Uncertainty Principles

More information

Reconstruction of Block-Sparse Signals by Using an l 2/p -Regularized Least-Squares Algorithm

Reconstruction of Block-Sparse Signals by Using an l 2/p -Regularized Least-Squares Algorithm Reconstruction of Block-Sparse Signals by Using an l 2/p -Regularized Least-Squares Algorithm Jeevan K. Pant, Wu-Sheng Lu, and Andreas Antoniou University of Victoria May 21, 2012 Compressive Sensing 1/23

More information

Numerical Methods I Non-Square and Sparse Linear Systems

Numerical Methods I Non-Square and Sparse Linear Systems Numerical Methods I Non-Square and Sparse Linear Systems Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 MATH-GA 2011.003 / CSCI-GA 2945.003, Fall 2014 September 25th, 2014 A. Donev (Courant

More information

Review: Learning Bimodal Structures in Audio-Visual Data

Review: Learning Bimodal Structures in Audio-Visual Data Review: Learning Bimodal Structures in Audio-Visual Data CSE 704 : Readings in Joint Visual, Lingual and Physical Models and Inference Algorithms Suren Kumar Vision and Perceptual Machines Lab 106 Davis

More information

Sparse linear models

Sparse linear models Sparse linear models Optimization-Based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_spring16 Carlos Fernandez-Granda 2/22/2016 Introduction Linear transforms Frequency representation Short-time

More information

Stability and Robustness of Weak Orthogonal Matching Pursuits

Stability and Robustness of Weak Orthogonal Matching Pursuits Stability and Robustness of Weak Orthogonal Matching Pursuits Simon Foucart, Drexel University Abstract A recent result establishing, under restricted isometry conditions, the success of sparse recovery

More information

A NEW FRAMEWORK FOR DESIGNING INCOHERENT SPARSIFYING DICTIONARIES

A NEW FRAMEWORK FOR DESIGNING INCOHERENT SPARSIFYING DICTIONARIES A NEW FRAMEWORK FOR DESIGNING INCOERENT SPARSIFYING DICTIONARIES Gang Li, Zhihui Zhu, 2 uang Bai, 3 and Aihua Yu 3 School of Automation & EE, Zhejiang Univ. of Sci. & Tech., angzhou, Zhejiang, P.R. China

More information

NONLINEAR CLASSIFICATION AND REGRESSION. J. Elder CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition

NONLINEAR CLASSIFICATION AND REGRESSION. J. Elder CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition NONLINEAR CLASSIFICATION AND REGRESSION Nonlinear Classification and Regression: Outline 2 Multi-Layer Perceptrons The Back-Propagation Learning Algorithm Generalized Linear Models Radial Basis Function

More information

Matrix Factorization and Analysis

Matrix Factorization and Analysis Chapter 7 Matrix Factorization and Analysis Matrix factorizations are an important part of the practice and analysis of signal processing. They are at the heart of many signal-processing algorithms. Their

More information

Sparse Solutions of Linear Systems of Equations and Sparse Modeling of Signals and Images!

Sparse Solutions of Linear Systems of Equations and Sparse Modeling of Signals and Images! Sparse Solutions of Linear Systems of Equations and Sparse Modeling of Signals and Images! Alfredo Nava-Tudela John J. Benedetto, advisor 1 Happy birthday Lucía! 2 Outline - Problem: Find sparse solutions

More information

Abstract The following linear inverse problem is considered: given a full column rank m n data matrix A and a length m observation vector b, nd the be

Abstract The following linear inverse problem is considered: given a full column rank m n data matrix A and a length m observation vector b, nd the be ON THE OPTIMALLITY OF THE BACKWARD GREEDY ALGORITHM FOR THE SUBSET SELECTION PROBLEM Christophe Couvreur y Yoram Bresler y General Physics Department and TCTS Laboratory, Faculte Polytechnique de Mons,

More information

Iterative Matching Pursuit and its Applications in Adaptive Time-Frequency Analysis

Iterative Matching Pursuit and its Applications in Adaptive Time-Frequency Analysis Iterative Matching Pursuit and its Applications in Adaptive Time-Frequency Analysis Zuoqiang Shi Mathematical Sciences Center, Tsinghua University Joint wor with Prof. Thomas Y. Hou and Sparsity, Jan 9,

More information

DS-GA 1002 Lecture notes 10 November 23, Linear models

DS-GA 1002 Lecture notes 10 November 23, Linear models DS-GA 2 Lecture notes November 23, 2 Linear functions Linear models A linear model encodes the assumption that two quantities are linearly related. Mathematically, this is characterized using linear functions.

More information

Lecture 9: Krylov Subspace Methods. 2 Derivation of the Conjugate Gradient Algorithm

Lecture 9: Krylov Subspace Methods. 2 Derivation of the Conjugate Gradient Algorithm CS 622 Data-Sparse Matrix Computations September 19, 217 Lecture 9: Krylov Subspace Methods Lecturer: Anil Damle Scribes: David Eriksson, Marc Aurele Gilles, Ariah Klages-Mundt, Sophia Novitzky 1 Introduction

More information

On Sparsity, Redundancy and Quality of Frame Representations

On Sparsity, Redundancy and Quality of Frame Representations On Sparsity, Redundancy and Quality of Frame Representations Mehmet Açaaya Division of Engineering and Applied Sciences Harvard University Cambridge, MA Email: acaaya@fasharvardedu Vahid Taroh Division

More information

Low-rank Matrix Completion with Noisy Observations: a Quantitative Comparison

Low-rank Matrix Completion with Noisy Observations: a Quantitative Comparison Low-rank Matrix Completion with Noisy Observations: a Quantitative Comparison Raghunandan H. Keshavan, Andrea Montanari and Sewoong Oh Electrical Engineering and Statistics Department Stanford University,

More information

Designing Information Devices and Systems I Discussion 13B

Designing Information Devices and Systems I Discussion 13B EECS 6A Fall 7 Designing Information Devices and Systems I Discussion 3B. Orthogonal Matching Pursuit Lecture Orthogonal Matching Pursuit (OMP) algorithm: Inputs: A set of m songs, each of length n: S

More information

Convex Optimization and l 1 -minimization

Convex Optimization and l 1 -minimization Convex Optimization and l 1 -minimization Sangwoon Yun Computational Sciences Korea Institute for Advanced Study December 11, 2009 2009 NIMS Thematic Winter School Outline I. Convex Optimization II. l

More information

Sparse linear models and denoising

Sparse linear models and denoising Lecture notes 4 February 22, 2016 Sparse linear models and denoising 1 Introduction 1.1 Definition and motivation Finding representations of signals that allow to process them more effectively is a central

More information

Sparse Solutions of Linear Systems of Equations and Sparse Modeling of Signals and Images: Final Presentation

Sparse Solutions of Linear Systems of Equations and Sparse Modeling of Signals and Images: Final Presentation Sparse Solutions of Linear Systems of Equations and Sparse Modeling of Signals and Images: Final Presentation Alfredo Nava-Tudela John J. Benedetto, advisor 5/10/11 AMSC 663/664 1 Problem Let A be an n

More information

Block Bidiagonal Decomposition and Least Squares Problems

Block Bidiagonal Decomposition and Least Squares Problems Block Bidiagonal Decomposition and Least Squares Problems Åke Björck Department of Mathematics Linköping University Perspectives in Numerical Analysis, Helsinki, May 27 29, 2008 Outline Bidiagonal Decomposition

More information

Numerical Linear Algebra Primer. Ryan Tibshirani Convex Optimization /36-725

Numerical Linear Algebra Primer. Ryan Tibshirani Convex Optimization /36-725 Numerical Linear Algebra Primer Ryan Tibshirani Convex Optimization 10-725/36-725 Last time: proximal gradient descent Consider the problem min g(x) + h(x) with g, h convex, g differentiable, and h simple

More information

AM205: Assignment 2. i=1

AM205: Assignment 2. i=1 AM05: Assignment Question 1 [10 points] (a) [4 points] For p 1, the p-norm for a vector x R n is defined as: ( n ) 1/p x p x i p ( ) i=1 This definition is in fact meaningful for p < 1 as well, although

More information

Recovery Guarantees for Rank Aware Pursuits

Recovery Guarantees for Rank Aware Pursuits BLANCHARD AND DAVIES: RECOVERY GUARANTEES FOR RANK AWARE PURSUITS 1 Recovery Guarantees for Rank Aware Pursuits Jeffrey D. Blanchard and Mike E. Davies Abstract This paper considers sufficient conditions

More information

Bindel, Fall 2016 Matrix Computations (CS 6210) Notes for

Bindel, Fall 2016 Matrix Computations (CS 6210) Notes for 1 A cautionary tale Notes for 2016-10-05 You have been dropped on a desert island with a laptop with a magic battery of infinite life, a MATLAB license, and a complete lack of knowledge of basic geometry.

More information

The Analysis Cosparse Model for Signals and Images

The Analysis Cosparse Model for Signals and Images The Analysis Cosparse Model for Signals and Images Raja Giryes Computer Science Department, Technion. The research leading to these results has received funding from the European Research Council under

More information

Subset Selection. Deterministic vs. Randomized. Ilse Ipsen. North Carolina State University. Joint work with: Stan Eisenstat, Yale

Subset Selection. Deterministic vs. Randomized. Ilse Ipsen. North Carolina State University. Joint work with: Stan Eisenstat, Yale Subset Selection Deterministic vs. Randomized Ilse Ipsen North Carolina State University Joint work with: Stan Eisenstat, Yale Mary Beth Broadbent, Martin Brown, Kevin Penner Subset Selection Given: real

More information

Chapter 3 Transformations

Chapter 3 Transformations Chapter 3 Transformations An Introduction to Optimization Spring, 2014 Wei-Ta Chu 1 Linear Transformations A function is called a linear transformation if 1. for every and 2. for every If we fix the bases

More information

EUSIPCO

EUSIPCO EUSIPCO 013 1569746769 SUBSET PURSUIT FOR ANALYSIS DICTIONARY LEARNING Ye Zhang 1,, Haolong Wang 1, Tenglong Yu 1, Wenwu Wang 1 Department of Electronic and Information Engineering, Nanchang University,

More information

Three Generalizations of Compressed Sensing

Three Generalizations of Compressed Sensing Thomas Blumensath School of Mathematics The University of Southampton June, 2010 home prev next page Compressed Sensing and beyond y = Φx + e x R N or x C N x K is K-sparse and x x K 2 is small y R M or

More information

2. Review of Linear Algebra

2. Review of Linear Algebra 2. Review of Linear Algebra ECE 83, Spring 217 In this course we will represent signals as vectors and operators (e.g., filters, transforms, etc) as matrices. This lecture reviews basic concepts from linear

More information

Structured matrix factorizations. Example: Eigenfaces

Structured matrix factorizations. Example: Eigenfaces Structured matrix factorizations Example: Eigenfaces An extremely large variety of interesting and important problems in machine learning can be formulated as: Given a matrix, find a matrix and a matrix

More information

L-statistics based Modification of Reconstruction Algorithms for Compressive Sensing in the Presence of Impulse Noise

L-statistics based Modification of Reconstruction Algorithms for Compressive Sensing in the Presence of Impulse Noise L-statistics based Modification of Reconstruction Algorithms for Compressive Sensing in the Presence of Impulse Noise Srdjan Stanković, Irena Orović and Moeness Amin 1 Abstract- A modification of standard

More information

sparse and low-rank tensor recovery Cubic-Sketching

sparse and low-rank tensor recovery Cubic-Sketching Sparse and Low-Ran Tensor Recovery via Cubic-Setching Guang Cheng Department of Statistics Purdue University www.science.purdue.edu/bigdata CCAM@Purdue Math Oct. 27, 2017 Joint wor with Botao Hao and Anru

More information

Subset Selection. Ilse Ipsen. North Carolina State University, USA

Subset Selection. Ilse Ipsen. North Carolina State University, USA Subset Selection Ilse Ipsen North Carolina State University, USA Subset Selection Given: real or complex matrix A integer k Determine permutation matrix P so that AP = ( A 1 }{{} k A 2 ) Important columns

More information

R-Linear Convergence of Limited Memory Steepest Descent

R-Linear Convergence of Limited Memory Steepest Descent R-Linear Convergence of Limited Memory Steepest Descent Frank E. Curtis, Lehigh University joint work with Wei Guo, Lehigh University OP17 Vancouver, British Columbia, Canada 24 May 2017 R-Linear Convergence

More information

FEM and sparse linear system solving

FEM and sparse linear system solving FEM & sparse linear system solving, Lecture 9, Nov 19, 2017 1/36 Lecture 9, Nov 17, 2017: Krylov space methods http://people.inf.ethz.ch/arbenz/fem17 Peter Arbenz Computer Science Department, ETH Zürich

More information

Wavelet Footprints: Theory, Algorithms, and Applications

Wavelet Footprints: Theory, Algorithms, and Applications 1306 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 51, NO. 5, MAY 2003 Wavelet Footprints: Theory, Algorithms, and Applications Pier Luigi Dragotti, Member, IEEE, and Martin Vetterli, Fellow, IEEE Abstract

More information

Low-Rank Factorization Models for Matrix Completion and Matrix Separation

Low-Rank Factorization Models for Matrix Completion and Matrix Separation for Matrix Completion and Matrix Separation Joint work with Wotao Yin, Yin Zhang and Shen Yuan IPAM, UCLA Oct. 5, 2010 Low rank minimization problems Matrix completion: find a low-rank matrix W R m n so

More information

Model-Based Compressive Sensing for Signal Ensembles. Marco F. Duarte Volkan Cevher Richard G. Baraniuk

Model-Based Compressive Sensing for Signal Ensembles. Marco F. Duarte Volkan Cevher Richard G. Baraniuk Model-Based Compressive Sensing for Signal Ensembles Marco F. Duarte Volkan Cevher Richard G. Baraniuk Concise Signal Structure Sparse signal: only K out of N coordinates nonzero model: union of K-dimensional

More information

Dominant feature extraction

Dominant feature extraction Dominant feature extraction Francqui Lecture 7-5-200 Paul Van Dooren Université catholique de Louvain CESAME, Louvain-la-Neuve, Belgium Goal of this lecture Develop basic ideas for large scale dense matrices

More information

Dictionary Learning for L1-Exact Sparse Coding

Dictionary Learning for L1-Exact Sparse Coding Dictionary Learning for L1-Exact Sparse Coding Mar D. Plumbley Department of Electronic Engineering, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom. Email: mar.plumbley@elec.qmul.ac.u

More information

QALGO workshop, Riga. 1 / 26. Quantum algorithms for linear algebra.

QALGO workshop, Riga. 1 / 26. Quantum algorithms for linear algebra. QALGO workshop, Riga. 1 / 26 Quantum algorithms for linear algebra., Center for Quantum Technologies and Nanyang Technological University, Singapore. September 22, 2015 QALGO workshop, Riga. 2 / 26 Overview

More information

Conjugate Gradient algorithm. Storage: fixed, independent of number of steps.

Conjugate Gradient algorithm. Storage: fixed, independent of number of steps. Conjugate Gradient algorithm Need: A symmetric positive definite; Cost: 1 matrix-vector product per step; Storage: fixed, independent of number of steps. The CG method minimizes the A norm of the error,

More information

EE 381V: Large Scale Optimization Fall Lecture 24 April 11

EE 381V: Large Scale Optimization Fall Lecture 24 April 11 EE 381V: Large Scale Optimization Fall 2012 Lecture 24 April 11 Lecturer: Caramanis & Sanghavi Scribe: Tao Huang 24.1 Review In past classes, we studied the problem of sparsity. Sparsity problem is that

More information

COMPARATIVE ANALYSIS OF ORTHOGONAL MATCHING PURSUIT AND LEAST ANGLE REGRESSION

COMPARATIVE ANALYSIS OF ORTHOGONAL MATCHING PURSUIT AND LEAST ANGLE REGRESSION COMPARATIVE ANALYSIS OF ORTHOGONAL MATCHING PURSUIT AND LEAST ANGLE REGRESSION By Mazin Abdulrasool Hameed A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for

More information

SVD, PCA & Preprocessing

SVD, PCA & Preprocessing Chapter 1 SVD, PCA & Preprocessing Part 2: Pre-processing and selecting the rank Pre-processing Skillicorn chapter 3.1 2 Why pre-process? Consider matrix of weather data Monthly temperatures in degrees

More information

Sensing systems limited by constraints: physical size, time, cost, energy

Sensing systems limited by constraints: physical size, time, cost, energy Rebecca Willett Sensing systems limited by constraints: physical size, time, cost, energy Reduce the number of measurements needed for reconstruction Higher accuracy data subject to constraints Original

More information

Sparse Solutions of Systems of Equations and Sparse Modelling of Signals and Images

Sparse Solutions of Systems of Equations and Sparse Modelling of Signals and Images Sparse Solutions of Systems of Equations and Sparse Modelling of Signals and Images Alfredo Nava-Tudela ant@umd.edu John J. Benedetto Department of Mathematics jjb@umd.edu Abstract In this project we are

More information

Institute for Advanced Computer Studies. Department of Computer Science. Two Algorithms for the The Ecient Computation of

Institute for Advanced Computer Studies. Department of Computer Science. Two Algorithms for the The Ecient Computation of University of Maryland Institute for Advanced Computer Studies Department of Computer Science College Park TR{98{12 TR{3875 Two Algorithms for the The Ecient Computation of Truncated Pivoted QR Approximations

More information

AM 205: lecture 8. Last time: Cholesky factorization, QR factorization Today: how to compute the QR factorization, the Singular Value Decomposition

AM 205: lecture 8. Last time: Cholesky factorization, QR factorization Today: how to compute the QR factorization, the Singular Value Decomposition AM 205: lecture 8 Last time: Cholesky factorization, QR factorization Today: how to compute the QR factorization, the Singular Value Decomposition QR Factorization A matrix A R m n, m n, can be factorized

More information

GREEDY SIGNAL RECOVERY REVIEW

GREEDY SIGNAL RECOVERY REVIEW GREEDY SIGNAL RECOVERY REVIEW DEANNA NEEDELL, JOEL A. TROPP, ROMAN VERSHYNIN Abstract. The two major approaches to sparse recovery are L 1-minimization and greedy methods. Recently, Needell and Vershynin

More information

Designing Information Devices and Systems I Spring 2018 Lecture Notes Note 25

Designing Information Devices and Systems I Spring 2018 Lecture Notes Note 25 EECS 6 Designing Information Devices and Systems I Spring 8 Lecture Notes Note 5 5. Speeding up OMP In the last lecture note, we introduced orthogonal matching pursuit OMP, an algorithm that can extract

More information

Sparse Approximation and Variable Selection

Sparse Approximation and Variable Selection Sparse Approximation and Variable Selection Lorenzo Rosasco 9.520 Class 07 February 26, 2007 About this class Goal To introduce the problem of variable selection, discuss its connection to sparse approximation

More information

Recent developments on sparse representation

Recent developments on sparse representation Recent developments on sparse representation Zeng Tieyong Department of Mathematics, Hong Kong Baptist University Email: zeng@hkbu.edu.hk Hong Kong Baptist University Dec. 8, 2008 First Previous Next Last

More information

Bindel, Fall 2016 Matrix Computations (CS 6210) Notes for At a high level, there are two pieces to solving a least squares problem:

Bindel, Fall 2016 Matrix Computations (CS 6210) Notes for At a high level, there are two pieces to solving a least squares problem: 1 Trouble points Notes for 2016-09-28 At a high level, there are two pieces to solving a least squares problem: 1. Project b onto the span of A. 2. Solve a linear system so that Ax equals the projected

More information

Estimation Error Bounds for Frame Denoising

Estimation Error Bounds for Frame Denoising Estimation Error Bounds for Frame Denoising Alyson K. Fletcher and Kannan Ramchandran {alyson,kannanr}@eecs.berkeley.edu Berkeley Audio-Visual Signal Processing and Communication Systems group Department

More information

Lecture 3: Review of Linear Algebra

Lecture 3: Review of Linear Algebra ECE 83 Fall 2 Statistical Signal Processing instructor: R Nowak Lecture 3: Review of Linear Algebra Very often in this course we will represent signals as vectors and operators (eg, filters, transforms,

More information

QR-decomposition. The QR-decomposition of an n k matrix A, k n, is an n n unitary matrix Q and an n k upper triangular matrix R for which A = QR

QR-decomposition. The QR-decomposition of an n k matrix A, k n, is an n n unitary matrix Q and an n k upper triangular matrix R for which A = QR QR-decomposition The QR-decomposition of an n k matrix A, k n, is an n n unitary matrix Q and an n k upper triangular matrix R for which In Matlab A = QR [Q,R]=qr(A); Note. The QR-decomposition is unique

More information

Lecture 3: Review of Linear Algebra

Lecture 3: Review of Linear Algebra ECE 83 Fall 2 Statistical Signal Processing instructor: R Nowak, scribe: R Nowak Lecture 3: Review of Linear Algebra Very often in this course we will represent signals as vectors and operators (eg, filters,

More information

arxiv: v1 [math.na] 26 Nov 2009

arxiv: v1 [math.na] 26 Nov 2009 Non-convexly constrained linear inverse problems arxiv:0911.5098v1 [math.na] 26 Nov 2009 Thomas Blumensath Applied Mathematics, School of Mathematics, University of Southampton, University Road, Southampton,

More information

ISyE 691 Data mining and analytics

ISyE 691 Data mining and analytics ISyE 691 Data mining and analytics Regression Instructor: Prof. Kaibo Liu Department of Industrial and Systems Engineering UW-Madison Email: kliu8@wisc.edu Office: Room 3017 (Mechanical Engineering Building)

More information

Bias-free Sparse Regression with Guaranteed Consistency

Bias-free Sparse Regression with Guaranteed Consistency Bias-free Sparse Regression with Guaranteed Consistency Wotao Yin (UCLA Math) joint with: Stanley Osher, Ming Yan (UCLA) Feng Ruan, Jiechao Xiong, Yuan Yao (Peking U) UC Riverside, STATS Department March

More information

5742 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 12, DECEMBER /$ IEEE

5742 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 12, DECEMBER /$ IEEE 5742 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 12, DECEMBER 2009 Uncertainty Relations for Shift-Invariant Analog Signals Yonina C. Eldar, Senior Member, IEEE Abstract The past several years

More information

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 0

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 0 CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 0 GENE H GOLUB 1 What is Numerical Analysis? In the 1973 edition of the Webster s New Collegiate Dictionary, numerical analysis is defined to be the

More information

INDUSTRIAL MATHEMATICS INSTITUTE. B.S. Kashin and V.N. Temlyakov. IMI Preprint Series. Department of Mathematics University of South Carolina

INDUSTRIAL MATHEMATICS INSTITUTE. B.S. Kashin and V.N. Temlyakov. IMI Preprint Series. Department of Mathematics University of South Carolina INDUSTRIAL MATHEMATICS INSTITUTE 2007:08 A remark on compressed sensing B.S. Kashin and V.N. Temlyakov IMI Preprint Series Department of Mathematics University of South Carolina A remark on compressed

More information

Optimum Rate Communication by Fast Sparse Superposition Codes

Optimum Rate Communication by Fast Sparse Superposition Codes Optimum Rate Communication by Fast Sparse Superposition Codes Andrew Barron Department of Statistics Yale University Joint work with Antony Joseph and Sanghee Cho Algebra, Codes and Networks Conference

More information