The Concept of Beamforming

Size: px
Start display at page:

Download "The Concept of Beamforming"

Transcription

1 ELG513 Smart Antennas S.Loyka he Concept of Beamformng Generc representaton of the array output sgnal, 1 where w y N 1 * = 1 = w x = w x (4.1) complex weghts, control the array pattern; y and x - narrowband sgnals; "" denotes Hermtan conjugate: w he array pattern s N 1 * = = ( w ) F( k) = w v( k) = w v ( k ) (4.) For narrowband sgnals, the frequency response of array elements s flat and can be presented by a complex number ( w ); x are complex ampltudes, x = a exp( jϕ ) (4.3) Beamformng s to choose w n such a way as to obtan a desred array pattern Fk ( ), ( Fθ ( ) n -D case),.e. fnd such w that provde desred Fk ( ). * 1 Notatons: bold captal (K) matrces; bold lower case (k) vectors; lower case regular (k) scalars; k - -th column of K. Lecture 4 1-Sep-15 1 (17)

2 ELG513 Smart Antennas S.Loyka Beamformng Usng Pattern Samplng For smplcty, consder -D case: F( θ) and v ( θ) Sample Fθ ( ) at M=N dstnct ponts, F = F( θ ), j = 1,..., M j F j j Defne array manfold matrx he soluton s v j = w v ( θ ) (4.4) = v ( θ ) f = w V j j 1 = w provdes a pattern, whch s the same as the desred pattern at M ponts θ j (but not necessarly n between). w f V (4.5) Important example: formng (N-1) zeros n the pattern (n gven drectons). Assume that the man beam s at broadsde, π θ 1 = and F( θ 1) = 1, F j becomes Usng (4.5), we fnd provdes the desred pattern. [ 1... ] 1 f = = e (4.6) = 1 1 w e V (4.7) Concluson: N-element array s able to form (N-1) nulls. Lecture 4 1-Sep-15 (17)

3 ELG513 Smart Antennas S.Loyka Null Steerng: Example 1 1 ULA Pattern F Complementary angle, deg. F N θ f w = 5; d = λ / ; [, 4, 4,7, 7] = = [ 1,,,, ] = [.9,.5,.33,.5,.9 ] Q1: explan why only 4 zeros can be formed (and not more). Q: do ths example yourself. Lecture 4 1-Sep-15 3 (17)

4 ELG513 Smart Antennas S.Loyka Null Steerng: Example Be careful when postonng zeros! 3 ULA Pattern N θ f w = 5; d = λ / ; [,1, 1,7, 7] = = F F Complementary angle, deg. [ 1,,,, ] = [.9,., 1.,.,.9] Q1: explan why there s a problem n ths case and suggest a way to avod t. Q: do ths example yourself. Lecture 4 1-Sep-15 4 (17)

5 ELG513 Smart Antennas S.Loyka Another example: beam steerng n a gven drecton Basc dea - compensate the phase shfts due to the wave propagaton. If the beam s to be steered at k then 1 1 ( 1 1 ) jk p jk p jk p w = v k = e e... e N N N (4.8) he normalzed pattern s N 1 F 1 1 ( k) = w v( k ) = r v( k k ) = N N v k k and F ( k ) = 1. Another form of the pattern, N ( ψ ψ) sn F( θ ) = ψ ψ N sn π π where ψ = d cos θ, ψ = d cosθ. λ λ { } ( ) = (4.9) (4.1) Lecture 4 1-Sep-15 5 (17)

6 ELG513 Smart Antennas S.Loyka Gratng Lobes Gratng lobe: there may be addtonal man lobe(s) steered n a dfferent (other than θ ) drecton. hs s a parastc lobe and s called gratng lobe. Introduce new angle (measured from broadsde) π π θ = θ ψ = d sn θ λ Gratng lobe condton: (4.11) ψ ψ = ±π sn θ = sn θ ± λ / d (4.1) Doesn t exst when λ d < (4.13) 1 sn θ It s very mportant; f the condton s not respected, there s a spurous response that can not be dstngushed from the man beam of the array. Lecture 4 1-Sep-15 6 (17)

7 ELG513 Smart Antennas S.Loyka wo specal cases. No steerng: θ = d < λ (4.14) Steerng n the entre half-plane: π λ θ = ± d < (4.15) If ths not feasble to mplement, some other measures must be taken: Element pattern: zero at the gratng lobe drectons. Irregular element locaton (random arrays). Lecture 4 1-Sep-15 7 (17)

8 ELG513 Smart Antennas S.Loyka Gratng Lobes: Example 1 ULA Pattern: gratng lobes d =.8 λ; N = tet= tet=6 ULA Pattern: gratng lobes d = λ; N = tet= tet=6 Lecture 4 1-Sep-15 8 (17)

9 ELG513 Smart Antennas S.Loyka Array Performance Parameters Unform lnear array (ULA) gan: N 1 N 1 πd( n m) G = wmwnsnc( ) n= m= λ where snc( x)=sn( x)/ x (see Van rees for a dervaton), and the weghts are normalzed: 1 (4.16) N 1 w 1 1 w = max F ( θ ) = 1 w = = l ( ) = 1 A more compact form of (4.16): where G ( ) 1 = w Sw (4.17) Snm =snc( πd ( n m ) / λ ) (4.18) Note that w ncludes steerng as well. Consder the specal case of d = nλ / and an ULA wth nonunform weghtng: N 1 1 ( ) 1 nm = δ nm, = = = = 1 S G w w w w (4.19) where w = w w s the norm (L ) of a vector (length). If the weghts are of the same magntude, w = 1/ N G = N Lecture 4 1-Sep-15 9 (17)

10 ELG513 Smart Antennas S.Loyka Note that beam steerng does not change the gan (sotropc elements). he array gan (n ths case) s recprocal of the magntude squared of the weght vector, G = w. If d nλ /, the gan wll depend on the steerng drecton. Unform weghtng maxmzes the gan of the ULA wth d = nλ /. Q.: prove t! Hnt : use Lagrange multplers or, better, the Schwarz nequalty. Lecture 4 1-Sep-15 1 (17)

11 ELG513 Smart Antennas S.Loyka SNR Gan Important functon of a receve array s to ncrease sgnal to nose rato (SNR), whch s characterzed the SNR gan assumng that the nose s spatally whte. he SNR gan s also known as nose gan. Consder the ncomng wave consstng of the requred sgnal and nose. he array element outputs are where s element. j ae ϕ x = and he array output s = s ξ (4.) ξ are the sgnal and nose at -th (4.1) jϕ y = a w e w ξ = a w w ξ where a s the requred sgnal ampltude. Lecture 4 1-Sep (17)

12 ELG513 Smart Antennas S.Loyka SNR Gan he total (sgnalnose) output power j, j P = y = a w w σ w sgnal power nose power ; (4.) σ = ξ (4.3) R ξ = ξξ = σ I (spatally whte nose) (4.4) Normalze the weghts, w = 1. ( F max =?). he output SNR, SNR he SNR gan out = Ps a SNR P = = n σ w w SNRn n n / (4.5) = a σ (4.6) SNRout A = = w (4.7) SNR Lecture 4 1-Sep-15 1 (17)

13 ELG513 Smart Antennas S.Loyka SNR Gan For ULA wth d = nλ / A = G In general, d nλ / A G For a unformly weghted array, A = N. Q.: prove the statements above. Q.: can you make a more defnte statement about the relatonshp between A and G, e.g. A G or A G, when d λ /? Justfy your answer. Lecture 4 1-Sep (17)

14 ELG513 Smart Antennas S.Loyka Summary Concept of beamformng. Array pattern synthess for gven levels. Null formng. Gratng lobes. Crtera of no gratng lobes. Array performance parameters: array gan and SNR gan. Effect of random perturbatons. Senstvty functon. References: H.L. Van rees, Optmum Array Processng, Wley, New York,. Homework: fll n the detals n the dervatons above. Do the examples yourself. Lecture 4 1-Sep (17)

15 ELG513 Smart Antennas S.Loyka Appendx: Senstvty and olerance Factor Assume there are random errors (perturbatons) n the array weghts and the element locatons, jϕ w = ge ; g = g(1 ), ϕ = ϕ ϕ p = p p (4.8), ϕ - ampltude and phase errors, p - locaton errors For each array element, g, ϕ, p are the nomnal values. he expected power pattern (conventonal pattern s random), N 1 N 1 j( ϕ kp ( ) ) j( ϕl kpl F g e g e ) k (4.9) = = l= 1 Assume that all varatons are ndependent of each other, and that and ϕ are..d Gaussan. After some manpulatons, N 1 l j( ϕ ϕ ) jk( p p ) l F = F( k) = g g e l e l e N 1 = g g (1 σ ) σϕ - varance of ϕ πp / λ,, σ g - varance of l g, σλ - varance of ϕ λ ( σ σ ) (4.3) Lecture 4 1-Sep (17)

16 ELG513 Smart Antennas S.Loyka F can be presented as ϕ ( ) σ = ϕ ϕ (4.31) ( ) σ g = g g (4.3) π σ λ = p p (4.33) λ = k N 1 ( σ ϕ σλ ) ( σ ϕ σλ ) σ g = F F( ) e g (1 e ) ϕ λ ϕ λ ( σ σ ) ( σ σ ) g (4.34) = F( k) e w (1 σ e ) (4.35) Random varatons has effects: 1st term s an attenuated pattern wthout errors. nd term rases the pattern unformly - sde lobes are not low anymore. nd term s crtcal snce t lmts array ablty to cancel nterference. Lecture 4 1-Sep (17)

17 ELG513 Smart Antennas S.Loyka Introduce the senstvty functon s = w = w (4.36) For small varance, the nd term Note that ϕ λ ( σ σ ) s g e s g ϕ λ ε = [1 σ ] [ σ σ σ ] s 1 A = and, hence, ε depends on A. he larger the nose gan, the smaller the senstvty and ( nose sde lobe level ). Due to ε, we cannot put a perfect null n the drecton of nterference > lmt on null depth. ε (4.37) Example: [ ϕ λ ] 1 1 σ t = σ g σ σ = and A = What s the maxmum null depth? σt 4 L = ε = = 1 = 4dB A If σ t ncreases to.1, null depth decreases to -3 db. he senstvty functon above holds for any array geometry. Lecture 4 1-Sep (17)

Introduction to Antennas & Arrays

Introduction to Antennas & Arrays Introducton to Antennas & Arrays Antenna transton regon (structure) between guded eaves (.e. coaxal cable) and free space waves. On transmsson, antenna accepts energy from TL and radates t nto space. J.D.

More information

APPENDIX A Some Linear Algebra

APPENDIX A Some Linear Algebra APPENDIX A Some Lnear Algebra The collecton of m, n matrces A.1 Matrces a 1,1,..., a 1,n A = a m,1,..., a m,n wth real elements a,j s denoted by R m,n. If n = 1 then A s called a column vector. Smlarly,

More information

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix Lectures - Week 4 Matrx norms, Condtonng, Vector Spaces, Lnear Independence, Spannng sets and Bass, Null space and Range of a Matrx Matrx Norms Now we turn to assocatng a number to each matrx. We could

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

Composite Hypotheses testing

Composite Hypotheses testing Composte ypotheses testng In many hypothess testng problems there are many possble dstrbutons that can occur under each of the hypotheses. The output of the source s a set of parameters (ponts n a parameter

More information

MIMO Systems and Channel Capacity

MIMO Systems and Channel Capacity MIMO Systems and Channel Capacty Consder a MIMO system wth m Tx and n Rx antennas. x y = Hx ξ Tx H Rx The power constrant: the total Tx power s x = P t. Component-wse representaton of the system model,

More information

Math 217 Fall 2013 Homework 2 Solutions

Math 217 Fall 2013 Homework 2 Solutions Math 17 Fall 013 Homework Solutons Due Thursday Sept. 6, 013 5pm Ths homework conssts of 6 problems of 5 ponts each. The total s 30. You need to fully justfy your answer prove that your functon ndeed has

More information

ECE559VV Project Report

ECE559VV Project Report ECE559VV Project Report (Supplementary Notes Loc Xuan Bu I. MAX SUM-RATE SCHEDULING: THE UPLINK CASE We have seen (n the presentaton that, for downlnk (broadcast channels, the strategy maxmzng the sum-rate

More information

STAT 511 FINAL EXAM NAME Spring 2001

STAT 511 FINAL EXAM NAME Spring 2001 STAT 5 FINAL EXAM NAME Sprng Instructons: Ths s a closed book exam. No notes or books are allowed. ou may use a calculator but you are not allowed to store notes or formulas n the calculator. Please wrte

More information

Errors for Linear Systems

Errors for Linear Systems Errors for Lnear Systems When we solve a lnear system Ax b we often do not know A and b exactly, but have only approxmatons  and ˆb avalable. Then the best thng we can do s to solve ˆx ˆb exactly whch

More information

The Geometry of Logit and Probit

The Geometry of Logit and Probit The Geometry of Logt and Probt Ths short note s meant as a supplement to Chapters and 3 of Spatal Models of Parlamentary Votng and the notaton and reference to fgures n the text below s to those two chapters.

More information

THEOREMS OF QUANTUM MECHANICS

THEOREMS OF QUANTUM MECHANICS THEOREMS OF QUANTUM MECHANICS In order to develop methods to treat many-electron systems (atoms & molecules), many of the theorems of quantum mechancs are useful. Useful Notaton The matrx element A mn

More information

Linear Approximation with Regularization and Moving Least Squares

Linear Approximation with Regularization and Moving Least Squares Lnear Approxmaton wth Regularzaton and Movng Least Squares Igor Grešovn May 007 Revson 4.6 (Revson : March 004). 5 4 3 0.5 3 3.5 4 Contents: Lnear Fttng...4. Weghted Least Squares n Functon Approxmaton...

More information

Stanford University CS359G: Graph Partitioning and Expanders Handout 4 Luca Trevisan January 13, 2011

Stanford University CS359G: Graph Partitioning and Expanders Handout 4 Luca Trevisan January 13, 2011 Stanford Unversty CS359G: Graph Parttonng and Expanders Handout 4 Luca Trevsan January 3, 0 Lecture 4 In whch we prove the dffcult drecton of Cheeger s nequalty. As n the past lectures, consder an undrected

More information

VQ widely used in coding speech, image, and video

VQ widely used in coding speech, image, and video at Scalar quantzers are specal cases of vector quantzers (VQ): they are constraned to look at one sample at a tme (memoryless) VQ does not have such constrant better RD perfomance expected Source codng

More information

Norms, Condition Numbers, Eigenvalues and Eigenvectors

Norms, Condition Numbers, Eigenvalues and Eigenvectors Norms, Condton Numbers, Egenvalues and Egenvectors 1 Norms A norm s a measure of the sze of a matrx or a vector For vectors the common norms are: N a 2 = ( x 2 1/2 the Eucldean Norm (1a b 1 = =1 N x (1b

More information

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017 U.C. Berkeley CS94: Beyond Worst-Case Analyss Handout 4s Luca Trevsan September 5, 07 Summary of Lecture 4 In whch we ntroduce semdefnte programmng and apply t to Max Cut. Semdefnte Programmng Recall that

More information

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems Numercal Analyss by Dr. Anta Pal Assstant Professor Department of Mathematcs Natonal Insttute of Technology Durgapur Durgapur-713209 emal: anta.bue@gmal.com 1 . Chapter 5 Soluton of System of Lnear Equatons

More information

Solutions to Exercises in Astrophysical Gas Dynamics

Solutions to Exercises in Astrophysical Gas Dynamics 1 Solutons to Exercses n Astrophyscal Gas Dynamcs 1. (a). Snce u 1, v are vectors then, under an orthogonal transformaton, u = a j u j v = a k u k Therefore, u v = a j a k u j v k = δ jk u j v k = u j

More information

CSci 6974 and ECSE 6966 Math. Tech. for Vision, Graphics and Robotics Lecture 21, April 17, 2006 Estimating A Plane Homography

CSci 6974 and ECSE 6966 Math. Tech. for Vision, Graphics and Robotics Lecture 21, April 17, 2006 Estimating A Plane Homography CSc 6974 and ECSE 6966 Math. Tech. for Vson, Graphcs and Robotcs Lecture 21, Aprl 17, 2006 Estmatng A Plane Homography Overvew We contnue wth a dscusson of the major ssues, usng estmaton of plane projectve

More information

Research on Modified Root-MUSIC Algorithm of DOA Estimation Based on Covariance Matrix Reconstruction

Research on Modified Root-MUSIC Algorithm of DOA Estimation Based on Covariance Matrix Reconstruction Sensors & ransducers, Vol. 78, Issue 9, September 04, pp. 4-8 Sensors & ransducers 04 by IFSA Publshng, S. L. http://www.sensorsportal.com Research on Modfed Root-MUSIC Algorthm of DOA Estmaton Based on

More information

Grover s Algorithm + Quantum Zeno Effect + Vaidman

Grover s Algorithm + Quantum Zeno Effect + Vaidman Grover s Algorthm + Quantum Zeno Effect + Vadman CS 294-2 Bomb 10/12/04 Fall 2004 Lecture 11 Grover s algorthm Recall that Grover s algorthm for searchng over a space of sze wors as follows: consder the

More information

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

ρ some λ THE INVERSE POWER METHOD (or INVERSE ITERATION) , for , or (more usually) to

ρ some λ THE INVERSE POWER METHOD (or INVERSE ITERATION) , for , or (more usually) to THE INVERSE POWER METHOD (or INVERSE ITERATION) -- applcaton of the Power method to A some fxed constant ρ (whch s called a shft), x λ ρ If the egenpars of A are { ( λ, x ) } ( ), or (more usually) to,

More information

SIO 224. m(r) =(ρ(r),k s (r),µ(r))

SIO 224. m(r) =(ρ(r),k s (r),µ(r)) SIO 224 1. A bref look at resoluton analyss Here s some background for the Masters and Gubbns resoluton paper. Global Earth models are usually found teratvely by assumng a startng model and fndng small

More information

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X Statstcs 1: Probablty Theory II 37 3 EPECTATION OF SEVERAL RANDOM VARIABLES As n Probablty Theory I, the nterest n most stuatons les not on the actual dstrbuton of a random vector, but rather on a number

More information

Quantum Mechanics I - Session 4

Quantum Mechanics I - Session 4 Quantum Mechancs I - Sesson 4 Aprl 3, 05 Contents Operators Change of Bass 4 3 Egenvectors and Egenvalues 5 3. Denton....................................... 5 3. Rotaton n D....................................

More information

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM An elastc wave s a deformaton of the body that travels throughout the body n all drectons. We can examne the deformaton over a perod of tme by fxng our look

More information

1 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations

1 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations Physcs 171/271 -Davd Klenfeld - Fall 2005 (revsed Wnter 2011) 1 Dervaton of Rate Equatons from Sngle-Cell Conductance (Hodgkn-Huxley-lke) Equatons We consder a network of many neurons, each of whch obeys

More information

The Fourier Transform

The Fourier Transform e Processng ourer Transform D The ourer Transform Effcent Data epresentaton Dscrete ourer Transform - D Contnuous ourer Transform - D Eamples + + + Jean Baptste Joseph ourer Effcent Data epresentaton Data

More information

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne ( ( ( t as ( + ( + + ( ( ( Consder a sequence of ndependent random proceses t, t, dentcal to some ( t. Assume t = 0. Defne the sum process t t t t = ( t = (; t

More information

CIS526: Machine Learning Lecture 3 (Sept 16, 2003) Linear Regression. Preparation help: Xiaoying Huang. x 1 θ 1 output... θ M x M

CIS526: Machine Learning Lecture 3 (Sept 16, 2003) Linear Regression. Preparation help: Xiaoying Huang. x 1 θ 1 output... θ M x M CIS56: achne Learnng Lecture 3 (Sept 6, 003) Preparaton help: Xaoyng Huang Lnear Regresson Lnear regresson can be represented by a functonal form: f(; θ) = θ 0 0 +θ + + θ = θ = 0 ote: 0 s a dummy attrbute

More information

Lecture 10 Support Vector Machines II

Lecture 10 Support Vector Machines II Lecture 10 Support Vector Machnes II 22 February 2016 Taylor B. Arnold Yale Statstcs STAT 365/665 1/28 Notes: Problem 3 s posted and due ths upcomng Frday There was an early bug n the fake-test data; fxed

More information

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity LINEAR REGRESSION ANALYSIS MODULE IX Lecture - 30 Multcollnearty Dr. Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur 2 Remedes for multcollnearty Varous technques have

More information

Chapter 7 Channel Capacity and Coding

Chapter 7 Channel Capacity and Coding Chapter 7 Channel Capacty and Codng Contents 7. Channel models and channel capacty 7.. Channel models Bnary symmetrc channel Dscrete memoryless channels Dscrete-nput, contnuous-output channel Waveform

More information

I + HH H N 0 M T H = UΣV H = [U 1 U 2 ] 0 0 E S. X if X 0 0 if X < 0 (X) + = = M T 1 + N 0. r p + 1

I + HH H N 0 M T H = UΣV H = [U 1 U 2 ] 0 0 E S. X if X 0 0 if X < 0 (X) + = = M T 1 + N 0. r p + 1 Homework 4 Problem Capacty wth CSI only at Recever: C = log det I + E )) s HH H N M T R SS = I) SVD of the Channel Matrx: H = UΣV H = [U 1 U ] [ Σr ] [V 1 V ] H Capacty wth CSI at both transmtter and

More information

MACHINE APPLIED MACHINE LEARNING LEARNING. Gaussian Mixture Regression

MACHINE APPLIED MACHINE LEARNING LEARNING. Gaussian Mixture Regression 11 MACHINE APPLIED MACHINE LEARNING LEARNING MACHINE LEARNING Gaussan Mture Regresson 22 MACHINE APPLIED MACHINE LEARNING LEARNING Bref summary of last week s lecture 33 MACHINE APPLIED MACHINE LEARNING

More information

Solutions to exam in SF1811 Optimization, Jan 14, 2015

Solutions to exam in SF1811 Optimization, Jan 14, 2015 Solutons to exam n SF8 Optmzaton, Jan 4, 25 3 3 O------O -4 \ / \ / The network: \/ where all lnks go from left to rght. /\ / \ / \ 6 O------O -5 2 4.(a) Let x = ( x 3, x 4, x 23, x 24 ) T, where the varable

More information

ADAPTIVE IMAGE FILTERING

ADAPTIVE IMAGE FILTERING Why adaptve? ADAPTIVE IMAGE FILTERING average detals and contours are aected Averagng should not be appled n contour / detals regons. Adaptaton Adaptaton = modyng the parameters o a prrocessng block accordng

More information

First Year Examination Department of Statistics, University of Florida

First Year Examination Department of Statistics, University of Florida Frst Year Examnaton Department of Statstcs, Unversty of Florda May 7, 010, 8:00 am - 1:00 noon Instructons: 1. You have four hours to answer questons n ths examnaton.. You must show your work to receve

More information

The Second Anti-Mathima on Game Theory

The Second Anti-Mathima on Game Theory The Second Ant-Mathma on Game Theory Ath. Kehagas December 1 2006 1 Introducton In ths note we wll examne the noton of game equlbrum for three types of games 1. 2-player 2-acton zero-sum games 2. 2-player

More information

The Order Relation and Trace Inequalities for. Hermitian Operators

The Order Relation and Trace Inequalities for. Hermitian Operators Internatonal Mathematcal Forum, Vol 3, 08, no, 507-57 HIKARI Ltd, wwwm-hkarcom https://doorg/0988/mf088055 The Order Relaton and Trace Inequaltes for Hermtan Operators Y Huang School of Informaton Scence

More information

CHAPTER III Neural Networks as Associative Memory

CHAPTER III Neural Networks as Associative Memory CHAPTER III Neural Networs as Assocatve Memory Introducton One of the prmary functons of the bran s assocatve memory. We assocate the faces wth names, letters wth sounds, or we can recognze the people

More information

ARRAY CALIBRATION WITH MODIFIED ITERATIVE HOS-SOS (MIHOSS) ALGORITHM

ARRAY CALIBRATION WITH MODIFIED ITERATIVE HOS-SOS (MIHOSS) ALGORITHM 19th European Sgnal Processng Conference EUSIPCO 2011 Barcelona, Span, August 29 - September 2, 2011 ARRAY CALIBRATION WITH MODIFIED ITERATIVE HOS-SOS ALGORITHM Metn Aktaş, and T. Engn Tuncer Electrcal

More information

Module 3: Element Properties Lecture 1: Natural Coordinates

Module 3: Element Properties Lecture 1: Natural Coordinates Module 3: Element Propertes Lecture : Natural Coordnates Natural coordnate system s bascally a local coordnate system whch allows the specfcaton of a pont wthn the element by a set of dmensonless numbers

More information

ELG4179: Wireless Communication Fundamentals S.Loyka. Frequency-Selective and Time-Varying Channels

ELG4179: Wireless Communication Fundamentals S.Loyka. Frequency-Selective and Time-Varying Channels Frequeny-Seletve and Tme-Varyng Channels Ampltude flutuatons are not the only effet. Wreless hannel an be frequeny seletve (.e. not flat) and tmevaryng. Frequeny flat/frequeny-seletve hannels Frequeny

More information

The Gaussian classifier. Nuno Vasconcelos ECE Department, UCSD

The Gaussian classifier. Nuno Vasconcelos ECE Department, UCSD he Gaussan classfer Nuno Vasconcelos ECE Department, UCSD Bayesan decson theory recall that we have state of the world X observatons g decson functon L[g,y] loss of predctng y wth g Bayes decson rule s

More information

First day August 1, Problems and Solutions

First day August 1, Problems and Solutions FOURTH INTERNATIONAL COMPETITION FOR UNIVERSITY STUDENTS IN MATHEMATICS July 30 August 4, 997, Plovdv, BULGARIA Frst day August, 997 Problems and Solutons Problem. Let {ε n } n= be a sequence of postve

More information

8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS

8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS SECTION 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS 493 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS All the vector spaces you have studed thus far n the text are real vector spaces because the scalars

More information

Differential Phase Shift Keying (DPSK)

Differential Phase Shift Keying (DPSK) Dfferental Phase Shft Keyng (DPSK) BPSK need to synchronze the carrer. DPSK no such need. Key dea: transmt the dfference between adjacent messages, not messages themselves. Implementaton: b = b m m = 1

More information

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0 MODULE 2 Topcs: Lnear ndependence, bass and dmenson We have seen that f n a set of vectors one vector s a lnear combnaton of the remanng vectors n the set then the span of the set s unchanged f that vector

More information

14 The Postulates of Quantum mechanics

14 The Postulates of Quantum mechanics 14 The Postulates of Quantum mechancs Postulate 1: The state of a system s descrbed completely n terms of a state vector Ψ(r, t), whch s quadratcally ntegrable. Postulate 2: To every physcally observable

More information

Lecture 20: Lift and Project, SDP Duality. Today we will study the Lift and Project method. Then we will prove the SDP duality theorem.

Lecture 20: Lift and Project, SDP Duality. Today we will study the Lift and Project method. Then we will prove the SDP duality theorem. prnceton u. sp 02 cos 598B: algorthms and complexty Lecture 20: Lft and Project, SDP Dualty Lecturer: Sanjeev Arora Scrbe:Yury Makarychev Today we wll study the Lft and Project method. Then we wll prove

More information

Classification as a Regression Problem

Classification as a Regression Problem Target varable y C C, C,, ; Classfcaton as a Regresson Problem { }, 3 L C K To treat classfcaton as a regresson problem we should transform the target y nto numercal values; The choce of numercal class

More information

Lecture Notes on Linear Regression

Lecture Notes on Linear Regression Lecture Notes on Lnear Regresson Feng L fl@sdueducn Shandong Unversty, Chna Lnear Regresson Problem In regresson problem, we am at predct a contnuous target value gven an nput feature vector We assume

More information

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4)

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4) I. Classcal Assumptons Econ7 Appled Econometrcs Topc 3: Classcal Model (Studenmund, Chapter 4) We have defned OLS and studed some algebrac propertes of OLS. In ths topc we wll study statstcal propertes

More information

Solutions HW #2. minimize. Ax = b. Give the dual problem, and make the implicit equality constraints explicit. Solution.

Solutions HW #2. minimize. Ax = b. Give the dual problem, and make the implicit equality constraints explicit. Solution. Solutons HW #2 Dual of general LP. Fnd the dual functon of the LP mnmze subject to c T x Gx h Ax = b. Gve the dual problem, and make the mplct equalty constrants explct. Soluton. 1. The Lagrangan s L(x,

More information

BOUNDEDNESS OF THE RIESZ TRANSFORM WITH MATRIX A 2 WEIGHTS

BOUNDEDNESS OF THE RIESZ TRANSFORM WITH MATRIX A 2 WEIGHTS BOUNDEDNESS OF THE IESZ TANSFOM WITH MATIX A WEIGHTS Introducton Let L = L ( n, be the functon space wth norm (ˆ f L = f(x C dx d < For a d d matrx valued functon W : wth W (x postve sem-defnte for all

More information

1 Convex Optimization

1 Convex Optimization Convex Optmzaton We wll consder convex optmzaton problems. Namely, mnmzaton problems where the objectve s convex (we assume no constrants for now). Such problems often arse n machne learnng. For example,

More information

Lecture 10 Support Vector Machines. Oct

Lecture 10 Support Vector Machines. Oct Lecture 10 Support Vector Machnes Oct - 20-2008 Lnear Separators Whch of the lnear separators s optmal? Concept of Margn Recall that n Perceptron, we learned that the convergence rate of the Perceptron

More information

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 7: LP Duality Lecturer: Matt Weinberg

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 7: LP Duality Lecturer: Matt Weinberg prnceton unv. F 17 cos 521: Advanced Algorthm Desgn Lecture 7: LP Dualty Lecturer: Matt Wenberg Scrbe: LP Dualty s an extremely useful tool for analyzng structural propertes of lnear programs. Whle there

More information

Chapter 7 Channel Capacity and Coding

Chapter 7 Channel Capacity and Coding Wreless Informaton Transmsson System Lab. Chapter 7 Channel Capacty and Codng Insttute of Communcatons Engneerng atonal Sun Yat-sen Unversty Contents 7. Channel models and channel capacty 7.. Channel models

More information

Root Locus Properties of Adaptive Beamforming and Capon Estimation for Uniform Linear Arrays

Root Locus Properties of Adaptive Beamforming and Capon Estimation for Uniform Linear Arrays Root Locus Propertes of Adaptve Beamformng and Capon Estmaton for Unform Lnear Arrays Allan Stenhardt Alphatech phone: 703-284-8426 emal: astenhardt@dc.alphatech.com Abstract In ths paper we explore propertes

More information

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal Inner Product Defnton 1 () A Eucldean space s a fnte-dmensonal vector space over the reals R, wth an nner product,. Defnton 2 (Inner Product) An nner product, on a real vector space X s a symmetrc, blnear,

More information

C/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1

C/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1 C/CS/Phy9 Problem Set 3 Solutons Out: Oct, 8 Suppose you have two qubts n some arbtrary entangled state ψ You apply the teleportaton protocol to each of the qubts separately What s the resultng state obtaned

More information

Research Article Green s Theorem for Sign Data

Research Article Green s Theorem for Sign Data Internatonal Scholarly Research Network ISRN Appled Mathematcs Volume 2012, Artcle ID 539359, 10 pages do:10.5402/2012/539359 Research Artcle Green s Theorem for Sgn Data Lous M. Houston The Unversty of

More information

Notes on Frequency Estimation in Data Streams

Notes on Frequency Estimation in Data Streams Notes on Frequency Estmaton n Data Streams In (one of) the data streamng model(s), the data s a sequence of arrvals a 1, a 2,..., a m of the form a j = (, v) where s the dentty of the tem and belongs to

More information

Pivot-Wheel Drive Crab with a Twist! Clem McKown Team November-2009 (eq 1 edited 29-March-2010)

Pivot-Wheel Drive Crab with a Twist! Clem McKown Team November-2009 (eq 1 edited 29-March-2010) Pvot-Wheel Drve Crab wth a Twst! Clem McKown Team 1640 13-November-2009 (eq 1 edted 29-March-2010) 4-Wheel Independent Pvot-Wheel Drve descrbes a 4wd drve-tran n whch each of the (4) wheels are ndependently

More information

Feb 14: Spatial analysis of data fields

Feb 14: Spatial analysis of data fields Feb 4: Spatal analyss of data felds Mappng rregularly sampled data onto a regular grd Many analyss technques for geophyscal data requre the data be located at regular ntervals n space and/or tme. hs s

More information

CSE 252C: Computer Vision III

CSE 252C: Computer Vision III CSE 252C: Computer Vson III Lecturer: Serge Belonge Scrbe: Catherne Wah LECTURE 15 Kernel Machnes 15.1. Kernels We wll study two methods based on a specal knd of functon k(x, y) called a kernel: Kernel

More information

Parametric fractional imputation for missing data analysis. Jae Kwang Kim Survey Working Group Seminar March 29, 2010

Parametric fractional imputation for missing data analysis. Jae Kwang Kim Survey Working Group Seminar March 29, 2010 Parametrc fractonal mputaton for mssng data analyss Jae Kwang Km Survey Workng Group Semnar March 29, 2010 1 Outlne Introducton Proposed method Fractonal mputaton Approxmaton Varance estmaton Multple mputaton

More information

The Prncpal Component Transform The Prncpal Component Transform s also called Karhunen-Loeve Transform (KLT, Hotellng Transform, oregenvector Transfor

The Prncpal Component Transform The Prncpal Component Transform s also called Karhunen-Loeve Transform (KLT, Hotellng Transform, oregenvector Transfor Prncpal Component Transform Multvarate Random Sgnals A real tme sgnal x(t can be consdered as a random process and ts samples x m (m =0; ;N, 1 a random vector: The mean vector of X s X =[x0; ;x N,1] T

More information

Salmon: Lectures on partial differential equations. Consider the general linear, second-order PDE in the form. ,x 2

Salmon: Lectures on partial differential equations. Consider the general linear, second-order PDE in the form. ,x 2 Salmon: Lectures on partal dfferental equatons 5. Classfcaton of second-order equatons There are general methods for classfyng hgher-order partal dfferental equatons. One s very general (applyng even to

More information

What would be a reasonable choice of the quantization step Δ?

What would be a reasonable choice of the quantization step Δ? CE 108 HOMEWORK 4 EXERCISE 1. Suppose you are samplng the output of a sensor at 10 KHz and quantze t wth a unform quantzer at 10 ts per sample. Assume that the margnal pdf of the sgnal s Gaussan wth mean

More information

DUE: WEDS FEB 21ST 2018

DUE: WEDS FEB 21ST 2018 HOMEWORK # 1: FINITE DIFFERENCES IN ONE DIMENSION DUE: WEDS FEB 21ST 2018 1. Theory Beam bendng s a classcal engneerng analyss. The tradtonal soluton technque makes smplfyng assumptons such as a constant

More information

j) = 1 (note sigma notation) ii. Continuous random variable (e.g. Normal distribution) 1. density function: f ( x) 0 and f ( x) dx = 1

j) = 1 (note sigma notation) ii. Continuous random variable (e.g. Normal distribution) 1. density function: f ( x) 0 and f ( x) dx = 1 Random varables Measure of central tendences and varablty (means and varances) Jont densty functons and ndependence Measures of assocaton (covarance and correlaton) Interestng result Condtonal dstrbutons

More information

PHYS 215C: Quantum Mechanics (Spring 2017) Problem Set 3 Solutions

PHYS 215C: Quantum Mechanics (Spring 2017) Problem Set 3 Solutions PHYS 5C: Quantum Mechancs Sprng 07 Problem Set 3 Solutons Prof. Matthew Fsher Solutons prepared by: Chatanya Murthy and James Sully June 4, 07 Please let me know f you encounter any typos n the solutons.

More information

Structure and Drive Paul A. Jensen Copyright July 20, 2003

Structure and Drive Paul A. Jensen Copyright July 20, 2003 Structure and Drve Paul A. Jensen Copyrght July 20, 2003 A system s made up of several operatons wth flow passng between them. The structure of the system descrbes the flow paths from nputs to outputs.

More information

TLCOM 612 Advanced Telecommunications Engineering II

TLCOM 612 Advanced Telecommunications Engineering II TLCOM 62 Advanced Telecommuncatons Engneerng II Wnter 2 Outlne Presentatons The moble rado sgnal envronment Combned fadng effects and nose Delay spread and Coherence bandwdth Doppler Shft Fast vs. Slow

More information

Solution 1 for USTC class Physics of Quantum Information

Solution 1 for USTC class Physics of Quantum Information Soluton 1 for 018 019 USTC class Physcs of Quantum Informaton Shua Zhao, Xn-Yu Xu and Ka Chen Natonal Laboratory for Physcal Scences at Mcroscale and Department of Modern Physcs, Unversty of Scence and

More information

xp(x µ) = 0 p(x = 0 µ) + 1 p(x = 1 µ) = µ

xp(x µ) = 0 p(x = 0 µ) + 1 p(x = 1 µ) = µ CSE 455/555 Sprng 2013 Homework 7: Parametrc Technques Jason J. Corso Computer Scence and Engneerng SUY at Buffalo jcorso@buffalo.edu Solutons by Yngbo Zhou Ths assgnment does not need to be submtted and

More information

Lecture 6/7 (February 10/12, 2014) DIRAC EQUATION. The non-relativistic Schrödinger equation was obtained by noting that the Hamiltonian 2

Lecture 6/7 (February 10/12, 2014) DIRAC EQUATION. The non-relativistic Schrödinger equation was obtained by noting that the Hamiltonian 2 P470 Lecture 6/7 (February 10/1, 014) DIRAC EQUATION The non-relatvstc Schrödnger equaton was obtaned by notng that the Hamltonan H = P (1) m can be transformed nto an operator form wth the substtutons

More information

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system Transfer Functons Convenent representaton of a lnear, dynamc model. A transfer functon (TF) relates one nput and one output: x t X s y t system Y s The followng termnology s used: x y nput output forcng

More information

Supporting Information

Supporting Information Supportng Informaton The neural network f n Eq. 1 s gven by: f x l = ReLU W atom x l + b atom, 2 where ReLU s the element-wse rectfed lnear unt, 21.e., ReLUx = max0, x, W atom R d d s the weght matrx to

More information

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity LINEAR REGRESSION ANALYSIS MODULE IX Lecture - 31 Multcollnearty Dr. Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur 6. Rdge regresson The OLSE s the best lnear unbased

More information

Statistical pattern recognition

Statistical pattern recognition Statstcal pattern recognton Bayes theorem Problem: decdng f a patent has a partcular condton based on a partcular test However, the test s mperfect Someone wth the condton may go undetected (false negatve

More information

10-801: Advanced Optimization and Randomized Methods Lecture 2: Convex functions (Jan 15, 2014)

10-801: Advanced Optimization and Randomized Methods Lecture 2: Convex functions (Jan 15, 2014) 0-80: Advanced Optmzaton and Randomzed Methods Lecture : Convex functons (Jan 5, 04) Lecturer: Suvrt Sra Addr: Carnege Mellon Unversty, Sprng 04 Scrbes: Avnava Dubey, Ahmed Hefny Dsclamer: These notes

More information

Fourier Transform. Additive noise. Fourier Tansform. I = S + N. Noise doesn t depend on signal. We ll consider:

Fourier Transform. Additive noise. Fourier Tansform. I = S + N. Noise doesn t depend on signal. We ll consider: Flterng Announcements HW2 wll be posted later today Constructng a mosac by warpng mages. CSE252A Lecture 10a Flterng Exampel: Smoothng by Averagng Kernel: (From Bll Freeman) m=2 I Kernel sze s m+1 by m+1

More information

Lecture 4: Constant Time SVD Approximation

Lecture 4: Constant Time SVD Approximation Spectral Algorthms and Representatons eb. 17, Mar. 3 and 8, 005 Lecture 4: Constant Tme SVD Approxmaton Lecturer: Santosh Vempala Scrbe: Jangzhuo Chen Ths topc conssts of three lectures 0/17, 03/03, 03/08),

More information

CHAPTER 4 SPEECH ENHANCEMENT USING MULTI-BAND WIENER FILTER. In real environmental conditions the speech signal may be

CHAPTER 4 SPEECH ENHANCEMENT USING MULTI-BAND WIENER FILTER. In real environmental conditions the speech signal may be 55 CHAPTER 4 SPEECH ENHANCEMENT USING MULTI-BAND WIENER FILTER 4.1 Introducton In real envronmental condtons the speech sgnal may be supermposed by the envronmental nterference. In general, the spectrum

More information

Chapter Newton s Method

Chapter Newton s Method Chapter 9. Newton s Method After readng ths chapter, you should be able to:. Understand how Newton s method s dfferent from the Golden Secton Search method. Understand how Newton s method works 3. Solve

More information

Quantifying Uncertainty

Quantifying Uncertainty Partcle Flters Quantfyng Uncertanty Sa Ravela M. I. T Last Updated: Sprng 2013 1 Quantfyng Uncertanty Partcle Flters Partcle Flters Appled to Sequental flterng problems Can also be appled to smoothng problems

More information

MAE140 - Linear Circuits - Winter 16 Final, March 16, 2016

MAE140 - Linear Circuits - Winter 16 Final, March 16, 2016 ME140 - Lnear rcuts - Wnter 16 Fnal, March 16, 2016 Instructons () The exam s open book. You may use your class notes and textbook. You may use a hand calculator wth no communcaton capabltes. () You have

More information

Flexible Allocation of Capacity in Multi-Cell CDMA Networks

Flexible Allocation of Capacity in Multi-Cell CDMA Networks Flexble Allocaton of Capacty n Mult-Cell CDMA Networs Robert Al, Manu Hegde, Mort Naragh-Pour*, Paul Mn Washngton Unversty, St. Lous, MO *Lousana State Unversty, Baton Rouge, LA Outlne Capacty and Probablty

More information

Rethinking MIMO for Wireless Networks: Linear Throughput Increases with Multiple Receive Antennas

Rethinking MIMO for Wireless Networks: Linear Throughput Increases with Multiple Receive Antennas Retnng MIMO for Wreless etwors: Lnear Trougput Increases wt Multple Receve Antennas ar Jndal Unversty of Mnnesota Unverstat Pompeu Fabra Jont wor wt Jeff Andrews & Steven Weber MIMO n Pont-to-Pont Cannels

More information

Radar Trackers. Study Guide. All chapters, problems, examples and page numbers refer to Applied Optimal Estimation, A. Gelb, Ed.

Radar Trackers. Study Guide. All chapters, problems, examples and page numbers refer to Applied Optimal Estimation, A. Gelb, Ed. Radar rackers Study Gude All chapters, problems, examples and page numbers refer to Appled Optmal Estmaton, A. Gelb, Ed. Chapter Example.0- Problem Statement wo sensors Each has a sngle nose measurement

More information

Supplementary material: Margin based PU Learning. Matrix Concentration Inequalities

Supplementary material: Margin based PU Learning. Matrix Concentration Inequalities Supplementary materal: Margn based PU Learnng We gve the complete proofs of Theorem and n Secton We frst ntroduce the well-known concentraton nequalty, so the covarance estmator can be bounded Then we

More information

Markov Chain Monte Carlo (MCMC), Gibbs Sampling, Metropolis Algorithms, and Simulated Annealing Bioinformatics Course Supplement

Markov Chain Monte Carlo (MCMC), Gibbs Sampling, Metropolis Algorithms, and Simulated Annealing Bioinformatics Course Supplement Markov Chan Monte Carlo MCMC, Gbbs Samplng, Metropols Algorthms, and Smulated Annealng 2001 Bonformatcs Course Supplement SNU Bontellgence Lab http://bsnuackr/ Outlne! Markov Chan Monte Carlo MCMC! Metropols-Hastngs

More information

9 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations

9 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations Physcs 171/271 - Chapter 9R -Davd Klenfeld - Fall 2005 9 Dervaton of Rate Equatons from Sngle-Cell Conductance (Hodgkn-Huxley-lke) Equatons We consder a network of many neurons, each of whch obeys a set

More information

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification E395 - Pattern Recognton Solutons to Introducton to Pattern Recognton, Chapter : Bayesan pattern classfcaton Preface Ths document s a soluton manual for selected exercses from Introducton to Pattern Recognton

More information