International Communications in Heat and Mass Transfer

Size: px
Start display at page:

Download "International Communications in Heat and Mass Transfer"

Transcription

1 International Communications in Heat and Mass Transfer 39 (2012) Contents lists available at SciVerse ScienceDirect International Communications in Heat and Mass Transfer journal homepage: Heat transfer performance evaluation for turbulent flow through a tube with twisted wire brush inserts M.M.K. Bhuiya a,b,, M.S.U. Chowdhury b, M. Islam b,c, J.U. Ahamed b, M.J.H. Khan d, M.R.I. Sarker a, M. Saha a a School of Mechanical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia b Department of Mechanical Engineering, Chittagong University of Engineering and Technology (CUET), Chittagong 4349, Bangladesh c School of Physics, Chemistry and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland 4001, Australia d Department of Chemical Engineering, University of Malaya, Kuala Lumpur, Malaysia article info abstract Available online 15 October 2012 Keywords: Twisted wire brush insert Nusselt number Friction factor Thermal performance factor In the present study, the heat transfer performance and friction factor characteristics in a circular tube fitted with twisted wire brush inserts were investigated experimentally. The twisted wire brush inserts were fabricated with four different twisted wire densities of 100, 150, 200, and per centimeter by winding a 1 mm diameter of the copper wire over a 5 mm diameter of two twisted iron core-rods. Heat transfer and friction factor data in tubes were examined for Reynolds number ranging from 7,200 to 50,200. The results indicated that the presence of twisted wire brush inserts led to a large effect on the enhancement of heat transfer with corresponding increase in friction factor over the plain tube. The Nusselt number and friction factor of using the twisted wire brush inserts were found to be increased up to 2.15 and 2.0 times, respectively, than those over the plain tube values. Furthermore, the heat transfer performance was evaluated to assess the real benefits of using those type of inserts and the performance was achieved 1.85 times higher compared to the plain tube based on the constant blower power. Finally, correlations were developed based on the data generated from this work to predict the heat transfer, friction factor, and thermal performance factor for turbulent flow through a circular tube fitted with the twisted wire brush inserts in terms of wire density (y), Reynolds number (Re), and Prandtl number (Pr) Elsevier Ltd. All rights reserved. 1. Introduction Many efforts have been made on heat transfer enhancement according to the progress of thermal systems. The recent researches in heat transfer enhancement lead to the development of currently used heat transfer techniques. The turbulent generators with different geometrical configurations have been used as one of the passive heat transfer enhancement techniques and are the most widely used in tubes in several heat transfer applications, for example, heat recovery processes, air conditioning and refrigeration systems, chemical reactors, and food and dairy processes. Extensive studies have been performed from the beginning of the 20th century to determine the heat transfer characteristics inside the tubes. Agarwal and Rao [1] studied the isothermal and nonisothermal friction factor and mean Nusselt number under uniform wall temperature conditions. They also proposed the isothermal friction factor and the Nusselt number correlations. Hsieh et al. [2] Communicated by W.J. Minkowycz. Corresponding author at: School of Mechanical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia. addresses: mkamalcuet@yahoo.com, muhammadmostafakamal.bhuiya@adelaide.edu.au (M.M.K. Bhuiya). experimentally studied the turbulent heat transfer and flow characteristics in a horizontal circular tube with strip-type inserts (longitudinal and cross strips) using air as working fluid. Eiamsa-ard et al. [3] investigated the heat transfer and fluid friction characteristics in a circular tube fitted with regularly spaced twisted tape elements. Mafiz et al. [4] studied the turbulent flow heat transfer performance of circular tubes having six integral internal longitudinal fins. The study indicated that significant enhancement of heat transfer was possible by using internal fins without requiring much additional pumping power. Naphon [5] considered effect of coil wire insert on heat transfer enhancement and pressure drop of the horizontal concentric plain tubes. Garc et al. [6] investigated the laminar transition turbulent heat transfer enhancement and flow patterns in the tube with wire coil inserts. Experimental correlations of fanning friction factor and Nusselt number were proposed. Sarma et al. [7] presented a new approach for predicting the convective heat transfer coefficient in a tube with twisted tape inserts for different pitch to diameter ratios. Eiamsa-ard and Promvonge [8] studied the heat transfer characteristics in a tube fitted with helical screw-tape with/without core-rod inserts. Sarkar et al. [9] investigated the heat transfer enhancement in turbulent flow through a tube with wire-coil inserts. The heat transfer coefficient for the tube with wire-coil inserts increased between 1.2 and 2.0 times that for a plain tube with a comparable /$ see front matter 2012 Elsevier Ltd. All rights reserved.

2 1506 M.M.K. Bhuiya et al. / International Communications in Heat and Mass Transfer 39 (2012) Nomenclature A x cross sectional area of test section [m 2 ] C p specific heat at constant pressure [J/(kg K)] d core-rod diameter [m] D i tube inside diameter [m] D o tube outer diameter [m] d w wire diameter [m] f friction factor, dimensionless f p predicted friction factor for the tube with wire brush inserts, dimensionless h convective heat transfer coefficient [W/(m 2 K)] h x local convective heat transfer coefficient [W/(m 2 K)] I current [ampere] k thermal conductivity [W/(m K)] L tube length [m] _m mass flow rate [kg/s] ΔP pressure drop along axial length of tube [N/m 2 ] Q average heat transfer rate [W] q heat flux [W/m 2 ] Q loss heat loss [W] Q t generated total heat [W] Q 1 actual heat supplied [W] Q 2 heat absorbed by the fluid [W] T i inlet temperature [K] T o outlet temperature [K] T b mean bulk temperature [K] T w mean wall temperature [K] T bx local bulk fluid temperature [K] T wx local wall temperature [K] V mean velocity in the test section [m/s] _V mass flow flux [kg/s.m 2 ] V i mean velocity at inlet section [m/s] V v voltage [volt] W wetted perimeter of the tube [m] X axial distance [m] y wire density, dimensionless Greek symbols η thermal performance factor, dimensionless η p predicted thermal performance factor, dimensionless ρ density [kg/m 3 ] Subscripts b bulk i inlet o outlet p wire brush s plain w wall x local Dimensionless numbers Nu Nusselt number, dimensionless Nu p predicted Nusselt number for the tube with wire brush insert, dimensionless Nu x local nusselt number, dimensionless Pr Prandtl number, dimensionless Re Reynolds number, dimensionless Re p equivalent Reynolds number for the tube with wire brush insert, dimensionless Re s equivalent Reynolds number of plain tube, dimensionless Reynolds number. A comparison of thermal performance factor of helical screw tape inserts of different twist ratios in laminar flow region of using Al 2 O 3 /water and CuO/water nanofluids through a circular duct with constant heat flux condition was investigated by Suresh et al. [10]. Sivashanmugam and Suresh [11,12] studied the heat transfer and friction factor characteristics in a circular tube fitted with regularly spaced helical screw-tape inserts and helical screw-tape inserts. Hsieh and Huang [13] investigated plain tubes and tubes with square and rectangular as well as crossed strip inserts using water as the working fluid. Zimparov [14] predicted the friction factors and heat transfer coefficients for turbulent flow in corrugated tubes with twisted tape inserts. Promvonge [15] experimentally investigated the thermal enhancement in a round tube with snail entry and coiled-wire inserts. Ahamed et al. [16] studied the prediction of heat transfer in turbulent flow through a tube with perforated twistedtape inserts and also developed a new correlation. The study revealed that the perforated twisted-tape-inserts caused an increase of heat transfer rate at the cost of increased pumping power. Bhuiya et al. [17] investigated the heat transfer enhancement and developed new correlations for turbulent flow through a tube with triple helical tape inserts. Sreenivasulu and Prasad [18] numerically studied the flow and heat transfer characteristics in an annulus wrapped with a helical wire for constant heat flux boundary condition. Behabadi et al. [19] studied the heat transfer and pressure drop characteristics of forced convective evaporation in horizontal tubes with coiled-wire inserts. Behabadi et al. [20] carried out the enhancement in heat transfer coefficient in the double horizontal tube with coiled-wire inserts. Two empirical correlations have been developed for predicting the heat transfer enhancement of these coiled-wire inserts. Karwa et al. [21] investigated the effect of relative roughness pitch and perforation of the spring roughness on heat transfer and friction factor for turbulent flow in an asymmetrically heated annular duct (radius ratio=0.39) with a heated tube having a spirally wound helical spring. Gunes et al. [22,23] studied the heat transfer enhancement in a tube with equilateral triangle cross sectioned coiled wire inserts for uniform heat flux boundary condition. The use of coiled wire inserts has a significant effect on the heat transfer and pressure drop. Wazed et al. [24] investigated the enhancement of heat transfer in turbulent flow through tube with perforated twisted tape inserts and found a significant enhancement of heat transfer at the cost of increased pumping power. Naphon and Suchana [25] experimentally studied the heat transfer enhancement and pressure drop of the horizontal concentric tube with twisted wire brush inserts, and showed that the twisted wire brush inserts have a large effect on the enhancement of heat transfer with the corresponding increase in pressure drop. In the avobe literature review, the numerous research articles were reported on heat transfer enhancement and pressure drop characteristics in tubes with various geometrical configurations of turbulence creator. However, limited research works were found related to heat transfer performance and friction factor characteristics through a tube with twisted wire brush inserts. In this study, the effects of twisted wire brush inserts on heat transfer performance and friction factor characteristics for turbulent flow through a circular tube were evaluated. Moreover, new correlations were developed for predicting the heat transfer, friction factor, and thermal performance factor with different twisted wire densities ranging from 100 to. In this study, some assumptions were made in order to make easy experiments, comparison and analysis. These were: i. Inside diameter of the tube (D i ) was used instead of hydraulic diameter (D h )indefining Reynolds number (Re), Nusselt number (Nu), and friction factor (f). ii. All the fluid properties were calculated at local bulk temperature (T bx ) and at atmospheric pressure instead of local pressure in the test section which was slightly less than the atmospheric pressure.

3 M.M.K. Bhuiya et al. / International Communications in Heat and Mass Transfer 39 (2012) iii. The heat transfer mode was considered only by forced convection from the inside wall of the tube to the fluid. However, there were points of contact between the inserts and the inside of wall of the tube. Thus there was the potential for heat transfer to occur through the inserts by conduction. It was not possible to quantify this; also, heat was conducted through the ends of the test section to adjacent sections. 2. Mathematical formulations The experimental data were used to calculate the Nusselt number, friction factor, and thermal performance factor at different Reynolds number in turbulent flow region for both the cases with and without using helical tape inserts: Mass flow rate was calculated by, _m ¼ ρa x V i where ρ is the density of air, A x is the cross sectional area of test section and V i is the mean inlet velocity. In the test section the velocity of air was obtained from, ð1þ The local bulk fluid temperature was determined by the following energy balance equation, T bx ¼ T i þ qwx _m C p ð9þ where W is the wetted perimeter and X is the axial distance of the tube The local Nusselt number was calculated as, Nu x ¼ h xd i k ð10þ where k is the thermal conductivity of air. The average heat transfer coefficient was obtained from, q h ¼ T w T ð11þ b where T w and T b are the mean wall and bulk fluid temperatures. The average Nusselt number was calculated according to the following way, V ¼ _m ρ b A x ð2þ Nu ¼ hd i k ð12þ where ρ b is the density at bulk fluid temperature. The total heat generated by the electrical winding was calculated as, Q t ¼ V v I where V v is the voltage and I is the current. The heat loss (Q loss ) through the insulation was calculated by measuring the average wall and the ambient temperature and estimated as 2 4% of the total heat supplied. Therefore actual heat supplied by the electrical winding, Q 1 ¼ Q t Q loss The heat absorbed by the fluid was calculated as, Q 2 ¼ _mc p ðt 0 T i Þ ð5þ where C p is the specific heat of air, T i and T o are the inlet and outlet temperatures of air, respectively. Heat balance between the actual heat input (Q 1 ) and the heat carried out by the fluid (Q 2 ) was within 1 2% for all runs. The average value of heat transfer (Q) rate was obtained from the actual heat supplied by electrical winding and the heat absorbed by the fluid for convective heat transfer calculation. Therefore, Q ¼ Q 1 þ Q 2 2 And the heat flux was calculated by, q ¼ Q πd i L where D i is the inner diameter and L is the length of the tube. Local convective heat transfer coefficient was obtained from, q h x ¼ ðt wx T bx Þ where T wx and T bx are the local wall and bulk fluid temperatures. ð3þ ð4þ ð6þ ð7þ ð8þ Friction factor was obtained from, ΔP f ¼ ð13þ L D i ρ b V 2 2 where ΔP is the pressure drop along length of the tube. 3. Experimental setup The experimental setup consisted of an inlet section, a test section, an air supply system (electric blower) and a heating arrangement. The schematic diagram of the experimental facility is shown in Fig. 1. The tube shaped inlet section, 533 mm long, was made as integral part of the test section to avoid any flow disturbances upstream of the test section and to get fully developed flow in the test section as well. The inlet section shape of the experimental setup was made as per suggestions of Owner and Pankhurst [26] to avoid separation and stratification of the flow. Geometry of the test section fitted with the twisted wire brush insert over a 5 mm diameter two twisted iron core-rods and geometric parameters of the wire brush insert are shown in Fig. 2(a) and (b), respectively. The plain tube (test section) was made of brass having 70 mm inside diameter, 90 mm outside diameter, and 1500 mm in length. The twisted wire brush inserts were fabricated by winding a 1 mm diameter of the copper wire over a 5 mm diameter of two twisted iron core-rods. The four different twisted wire densities of 100, 150, 200, and were considered per centimeter by winding the copper wire over a two twisted iron core-rods. Nichrome wire (resistance 1.2 Ω/m) was used as an electric heater to heat the test section at constant heat flux condition. Nichrome wire was spirally wounded uniformly around the tube. The terminals of the Nichrome wire heating coil were connected to the variac transformer. The electrical output power was controlled by a variac transformer to obtain a constant heat flux condition throughout the entire test section. The outer surface of the test section was well insulated to minimize heat leak to the surroundings. Sixteen K-type thermocouples were tapped along the tube wall for monitoring the local wall temperatures, while the bulk air temperatures were measured with the help of RTDs. Data logger was used to record the inlet and outlet bulk fluid temperatures as well as to measure the tube wall temperatures of the test section. The calibrated

4 1508 M.M.K. Bhuiya et al. / International Communications in Heat and Mass Transfer 39 (2012) Fig. 1. Schematic diagram of the experimental facility. thermocouples were used to measure the temperatures of the wall as well as bulk fluid temperature of the test section. The pressure drop across the test section was measured with an inclined U-tube manometer. The heat transfer and pressure drop experiments were carried out individually. The heat transfer experiment was performed under a constant heat flux condition. In contrast, the pressure drop (friction) test was conducted under an isothermal condition without turning on the heater. The air flow rate was measured by using an orifice meter was built built according to the ASME standard [27] and was calibrated with a hot-wire anemometer to measure the flow velocities across the tube section. The experiments were conducted for the Reynolds number ranging from 7,200 to 50,200. The uncertainties in the experimental measurements were determined by using the method introduced by Kline and McClintock [28]. The uncertainty calculation method used the calculation of derivatives of the desired variables with respect to the individual experimental quantities and applied with the known uncertainties. The maximum uncertainties of non-dimensional parameters were found to be ±1.6% for Reynolds number, ±4% for Nusselt number, and ±4.2% for friction factor. 4. Results and discussion 4.1. Validation test of the plain tube results The results obtained from present experiments on heat transfer and friction factor characteristics of the plain tube were verified in terms of Nusselt number and friction factor. The Nusselt number and friction factor data obtained from the present plain tube were validated with those from the proposed correlations by Gnielinski [29] and Petukhov [30] for the Nusselt number and friction factor in Fig. 3(a) and (b), respectively. The results obtained from the present plain tube were agreed well with those from the proposed correlations within ±5% and ±4% deviations for the Nusselt number and Fig. 2. (a) Geometry of the test section fitted with the twisted wire brush insert. (b) Geometric parameters of the twisted wire brush insert.

5 M.M.K. Bhuiya et al. / International Communications in Heat and Mass Transfer 39 (2012) friction factor, respectively. These results revealed the accuracy of the present experimental facility and the measurement technique. The correlations obtained from the present plain tube results for the Nusselt number and the friction factor, respectively, were given as follows: Nu ¼ 0:0137Re 0:843 Pr 0:33 f ¼ 0:431Re 0: Heat transfer characteristics ð14þ ð15þ Fig. 4(a) and (b) shows the relationship between the Nusselt number and the Reynolds number of the twisted wire brush inserts of different wire densities. It could be shown from Fig. 4(a) that the trend of Nusselt number was similar for both the plain tube and the tube with twisted wire brush inserts. It was shown from Fig. 4(a) that for all cases, the Nusselt number increased with increasing Reynolds number. This was attributed to the increase of turbulent intensity as the Reynolds number was increased, which led to an amplification of convective heat transfer. As expected from Fig. 4(a), the Nusselt number obtained from the tube with twisted wire brush inserts was significantly higher than those of the plain tube. The twisted wire brush inserts caused swirl a Nusselt number, Nu b Experimental Gnielinski correlation Experimental Petukhov correlation flow or secondary flow and pressure gradient might be created along the radial direction through the tube. Furthermore, the swirl enhanced the flow turbulence, which led to even better convection heat transfer. From the experimental results, it could be observed that the heat transfer rate increased with the increase of wire density of the twisted wire brush inserts. This could be explained by the fact that at higher wire density, stronger swirl intensity was generated, which led to more efficient interruption of boundary layer along the flow path. It could be shown from Fig. 4(a) that the the tube with the higher wire density () provided the higher heat transfer rate than those of the tube with the lower ones i.e. wire densities of 100, 150, and. The effectiveness of heat transfer enhancement of the tube equipped with the twisted wire brush inserts compared to that of the plain tube, in terms of Nusselt number ratio (Nu p /Nu s ), is presented in Fig. 4(b). It was observed from Fig. 4(b) that the Nusselt number ratio of all the investigated cases was consistently higher than the unity. This implied the beneficial gain for heat transfer enhancement of using the twisted wire inserts over the plain tube. From Fig. 4(b), it could be noted that the Nussselt number ratio tended to decrease with increasing Reynolds number. This was because of the influence of twisted wire brush insert on heat transfer enhancement was less significant for increasing Reynolds number. According to the experimental results, the Nusselt numbers of the tube with twisted a Nusselt number, Nu b Plain tube Friction factor, f Nup/Nus Fig. 3. Validation of the plain tube: (a) Nusselt number and (b) friction factor Fig. 4. Relationship between the Nusselt number and Reynolds number: (a) Nu and (b) Nu p /Nu s.

6 1510 M.M.K. Bhuiya et al. / International Communications in Heat and Mass Transfer 39 (2012) wire brush inserts varied from 1.25 to 2.15 times than those over the plain tube values Fluid flow characteristics The effect of the wire density of the tube fitted with the twisted wire brush inserts on friction factor characteristics at different Reynolds number is presented in Fig. 5(a). It could be clearly depicted from Fig. 5(a) that the friction factor continue to decrease with increasing Reynolds number. As expected from Fig. 5(a), the friction factors obtained from the tube with twisted wire brush inserts were higher than those of the plain tube. This was because of the swirl flow, drag forces, and the turbulence augmentation produced by the twisted wire brush inserts [25]. As shown in Fig. 5(a), the friction factor tended was increased with increasing twisted wire density. This could be attributed to the use of twisted wire brush insert with higher wire density which caused stronger swirl or turbulence flow and long residence time in the tube. From Fig. 5(a), it could be shown that the tube with the twisted wire brush insert with higher wire density () provided the higher friction factor than those of the tube with the lower ones (100,150, and ). Fig. 5(b) represents the variation of friction factor ratio (f p /f s ) with Reynolds number for different twisted wire densities. It was shown from Fig. 5(b) that the friction a Friction factor, f b fp/fs Plain tube 1.00 Fig. 5. Relationship between the friction factor and Reynolds number: (a) f and (b) f p /f s. factor ratio tended to decrease with raising the Reynolds number for all the investigated cases. Over the range investigated, the friction factors for the tube fitted with the twisted wire inserts varied from 1.35 to 2.0 times than those of the plain tube values Performance evaluation In order to appraise the heat transfer augmentation performance of the four different wire densities of twisted wire brush inserts with plain tube, a constamt blower power comparison was made. The performance was evaluated on the basis of constant blower power the correlation proposed by Usui et al. [31]. According to constant blower power performance evaluation criteria [32] could be written as: _V ΔP ¼ V _ ΔP ð16þ s p From the relationship between the friction factor and Reynolds number it could be expressed as: f Re 3 ¼ f s Re3 p Re s ¼ Re p 1 f 3 p f s ð17þ ð18þ The thermal performance factor at identical blower power for turbulent flow was calculated as the following correlation proposed by Usui et al. [31] Nu p Nu s η ¼ 0:291 f p f s ð19þ The variation of thermal performance factor with the Reynolds number is represented in Fig. 6. The thermal performance factor was decreased with the increase of Reynolds number for all the investigated cases. A performance analysis was performed to evaluate the net energy gain of all the tested inserts based on the constant blower power. It was found efficient from an energy point of view by applying all of these tested inserts as the performance factors were greater than the unity. As expected from Fig. 6, the tube with inserts at lower Reynolds number provided higher thermal performance. The heat transfer performance was obtained for the tube with twisted wire brush inserts of different wire densities, and found to be 1.1 to 1.85 times higher compared to those of the plain tube values Correlations for prediction of heat transfer, friction factor, and thermal performance factor The correlations were developed for the turbulent flow region in a wide range of Reynolds number 7,200 to 50,200. The correlations developed for Nusselt number, friction factor, and thermal performance factor obtained from the present experimental results of the tube fitted with the twisted wire brush inserts could be written in terms of wire density (y), Reynolds number (Re), and Prandtl number (Pr) in Eqs. (20) (22), respectively. Nu p ¼ y 3 þ y 2 0:0006y þ 0:0945 :Re fð Þy 3 ð610 6 Þy 2 þ0:0011yþ0:6628g 0:33 :Pr ð20þ

7 M.M.K. Bhuiya et al. / International Communications in Heat and Mass Transfer 39 (2012) Thermal performance factor, η Predicted Nusselt number, Nup % - 3% 1.1 Fig. 6. Relationship between the thermal performance factor and Reynolds number Experimental Nusselt number, Nu Fig. 7. Comparison between the predicted and experimental Nusselt number. f p ¼ y 3 þ 0:0001y 2 0:0076y þ 1:4492 :Re fð ð Þy Þy 2 0:0001y 0:3651 g ð21þ η p ¼ 38:626:C:C 0:629 1 :Re fð 6: Þy 3 ð4: Þy 2 þ0:001163y 0:12196g ð22þ n o where C ¼ y 3 þ y 2 0:0006y þ 0:0945 n o and C 1 ¼ y 3 þ 0:0001y 2 0:0076y þ 1:4492 The Nusselt number, friction factor and thermal performance factor values predicted from the above correlations Eqs. (20) (22) were compared with the experimental values, and the comparisons are shown in Figs. 7 9, respectively. From Figs. 7 9, it could be noted that the Nusselt number, friction factor, and thermal performance factor values obtained from the predicted correlations Eqs. (20) (22) agreed well with the experimental values for all the investigated cases within the range of +4% to 3%, ±3% and +6% to 3% deviations of the proposed correlations, respectively. 5. Conclusion An experimental study was conducted to investigate the heat transfer performance and friction factor characteristics for turbulent flow through a tube by means of twisted wire brush inserts. The study revealed that the twisted wire brush inserts provided significant enhancement of heat transfer with the corresponding increase in friction factor. It was found that the Nusselt number, friction factor, and thermal performance factor increased with the increase of twisted wire densities. Based on the experimental results, key findings of this study could be summarized as follows: The Nusselt number obtained for the tube with twisted wire brush inserts varied from 1.25 to 2.15 times in comparison to those of the plain tube. The twisted wire brush insert of wire density showed the highest heat transfer performance among the twisted wire inserts. The friction factor achieved for the tube with twisted wire brush inserts varied from 1.35 to 2.0 times than those of the plain tube values at the comparable Reynolds number. The thermal performance factor (η) obtained for the tube with twisted wire brush inserts varied from 1.1 to 1.85 times than those of the plain tube values at constant blower power. The empirical correlations were developed in the present study which predicted the results of the Nusselt number, friction factor, and thermal performance factor. The maximum deviations between the predicted and experimental results for Nusselt number, friction factor, and thermal performance factor were found to be+4% to 3%,±3%,and+6% to 3%, respectively. Acknowledgements The authors would like to acknowledg the Department of Chemical Engineering, University of Malaya, Malaysia for their support in this work. The Chittagong University of Engineering and Technology (CUET) authority is highly acknowledged for necessary assistance to do this research. Predicted friction factor, fp % - 3% Experimental friction factor, f Fig. 8. Comparison between the predicted and experimental friction factor.

8 1512 M.M.K. Bhuiya et al. / International Communications in Heat and Mass Transfer 39 (2012) Predicted thermal performance factor, hp References +6% - 3% Experimental thermal performance factor, h Fig. 9. Comparison between the predicted and experimental thermal performance factor, η p and experimental thermal performance factor η. [1] S.K. Agarwal, M.R. Rao, Heat transfer augmentation for the flow of a viscous liquid in circular tubes using twisted tape inserts, International Journal of Heat and Mass Transfer 39 (1996) [2] S.S. Hsieh, F.Y. Wu, H.H. Tsai, Turbulent heat transfer and flow characteristics in a horizontal circular tube with strip-type inserts: Part I. Fluid mechanics, International Journal of Heat and Mass Transfer 46 (2003) [3] S. Eiamsa-ard, C. Thianpong, P. Promvonge, Experimental investigation of heat transfer and flow friction in a circular tube fitted with regularly twisted tape elements, International Communications in Heat and Mass Transfer 33 (10) (2006) [4] H. Mafiz, A.M.A. Huq, M.M. Rahman, An experimental study of heat transfer in an internally finned tube, Proceedings of the ASME Heat Transfer Division 2 (1996) [5] P. Naphon, Effect of coil-wire insert on heat transfer enhancement and pressure drop of the horizontal concentric tubes, International Communications in Heat and Mass Transfer 33 (2006) [6] A. Garc, J.P. Solano, P.G. Vicente, A. Viedma, Enhancement of laminar and transitional flow heat transfer in tubes by means of wire coil inserts, International Journal of Heat and Mass Transfer 50 (2007) [7] P.K. Sarma, T. Subramanyam, P.S. Kishorea, V.D. Rao, S. Kakac, A new method to predict convective heat transfer in a tube with twisted tape inserts for turbulent flow, International Journal of Thermal Sciences 41 (2002) [8] S. Eiamsa-ard, P. Promvonge, Heat transfer characteristics in a tube fitted with helical screw-tape with/without core-rod inserts, International Communications in Heat and Mass Transfer 34 (2007) [9] M.A.R. Sarkar, M.Z. Islam, M.A. Islam, Heat transfer in turbulent flow through tube with wire-coil inserts, Journal of Enhanced Heat Transfer 12 (4) (2005) [10] S. Suresh, K.P. Venkitaraj, P. Selvakumar, Comparative study on thermal performance of helical screw tape inserts in laminar flow using Al 2 O 3 /water and CuO/water nanofluids, Superlattices and Microstructures 49 (2011) [11] P. Sivashanmugam, S. Suresh, Experimental studies on heat transfer and friction factor characteristics of turbulent flow through a circular tube fitted with regularly spaced helical screw-tape inserts, Applied Thermal Engineering 27 (2007) [12] P. Sivashanmugam, S. Suresh, Experimental studies on heat transfer and friction factor characteristics of turbulent flow through a circular tube fitted with helical screw-tape inserts, Chemical Engineering and Processing 46 (2007) [13] S.S. Hsieh, I.W. Huang, Heat transfer and pressure drop of laminar flow in horizontal tubes with/without longitudinal inserts, Journal of Heat Transfer 122 (2000) [14] V. Zimparov, Prediction of friction factors and heat transfer coefficients for turbulent flow in corrugated tubes combined with twisted tape inserts. Part 2: heat transfer coefficients, International Journal of Heat and Mass Transfer 47 (2004) [15] P. Promvonge, Thermal enhancement in a round tube with snail entry and coiled wire inserts, International Communications in Heat and Mass Transfer 35 (2008) [16] J.U. Ahamed, M.A. Wazed, S. Ahmed, Y. Nukman, T.M.Y.S. Tuan Yak, M.A.R. Sarkar, Enhancement and prediction of heat transfer rate in turbulent flow through tube with perforated twisted tape inserts: a new correlation, Journal of Heat Transfer 133 (2011) 1 9. [17] M.M.K. Bhuiya, J.U. Ahamed, M.S.U. Chowdhury, M.A.R. Sarkar, B. Salam, R. Saidur, H.H. Masjuki, M.A. Kalam, Heat transfer enhancement and development of correlation for turbulent flow through a tube with triple helical tape inserts, International Communications in Heat and Mass Transfer 39 (2012) [18] T. Sreenivasulu, B.V.S.S.S. Prasad, Flow and heat transfer characteristics in an annulus wrapped with a helical wire, International Journal of Thermal Sciences 48 (2009) [19] M.A.A. Behabadi, S.G. Mohseni, H. Najafi, H. Ramazanzadeh, Heat transfer and pressure drop characteristics of forced convective evaporation in horizontal tubes with coiled wire inserts, International Communications in Heat and Mass Transfer 36 (2009) [20] M.A.A. Behabadi, R. Kumar, M.R. Salimpour, R. Azimi, Pressure drop and heat transfer augmentation due to coiled wire inserts during laminar flow of oil inside a horizontal tube, International Journal of Thermal Sciences 49 (2010) [21] R. Karwa, B.K. Maheshwari, P.K. Sailesn, Experimental study of heat transfer and friction in annular ducts with a heated tube having a spirally wound helical spring, Journal of Enhanced Heat Transfer 17 (1) (2010) [22] S. Gunes, V. Ozceyhan, O. Buyukalaca, Heat transfer enhancement in a tube with equilateral triangle cross sectioned coiled wire inserts, Experimental Thermal and Fluid Science 34 (2010) [23] S. Gunes, V. Ozceyhan, O. Buyukalaca, The experimental investigation of heat transfer and pressure drop in a tube with coiled wire inserts placed separately from the tube wall, Applied Thermal Engineering 31 (2010) [24] M.A. Wazed, J.U. Ahamed, S. Ahmed, M.A.R. Sarkar, Enhancement of heat transfer in turbulent flow through a tube with a perforated twisted tape insert, Journal of Enhanced Heat Transfer 18 (1) (2011) [25] P. Naphon, T. Suchana, Heat transfer enhancement and pressure drop of the horizontal concentric tube with twisted wire brush inserts, International Communications in Heat and Mass Transfer 38 (2011) [26] E. Owner, R.C. Pankhurst, The Measurement of Air Flow, Fifth edition Pergamon Press, (in SI units). [27] ASME, Standard Measurement of Fluid Flow in Pipes Using Orifice, Nozzle and Venturi, in: ASME MFC-3M-1984, ASME, New York, 1984, pp [28] S.J. Kline, F.A. McClintock, Describing uncertainties in single-sample experiments, Mechanical Engineering 75 (1) (1953) 3 8. [29] V. Gnielinski, New equations for heat and mass transfer in turbulent pipe and channel flow, International Chemical Engineering 16 (2) (1976) [30] F. Incropera, P.D. Dewitt, Introduction to heat transfer, 3rd edition John Wiley and Sons Inc., [31] H. Usui, Y. Sano, K. Iwashita, A. Isozaki, Enhancement of heat transfer by a combination of internally grooved rough tube and a twisted tape, International Chemical Engineering 26 (1) (1986) [32] R.L. Webb, Performance evaluation criteria for use of enhanced heat transfer surfaces in heat exchanger design, International Journal of Heat and Mass Transfer 24 (1981)

International Communications in Heat and Mass Transfer

International Communications in Heat and Mass Transfer International Communications in Heat and Mass Transfer 39 (2012) 818 825 Contents lists available at SciVerse ScienceDirect International Communications in Heat and Mass Transfer journal homepage: www.elsevier.com/locate/ichmt

More information

SSRG International Journal of Mechanical Engineering ( SSRG IJME ) Volume 2 Issue 5 May 2015

SSRG International Journal of Mechanical Engineering ( SSRG IJME ) Volume 2 Issue 5 May 2015 Heat Transfer Enhancement in a Tube using Elliptical-Cut Twisted Tape Inserts Pratik P. Ganorkar 1, R.M. Warkhedkar 2 1 Heat power Engineering, Department of Mechanical Engineering, Govt. collage of engineering

More information

Enhancement of Heat Transfer in Heat Exchanger using Punched and V-cut Twisted Tape Inserts

Enhancement of Heat Transfer in Heat Exchanger using Punched and V-cut Twisted Tape Inserts ISSN 2395-1621 Enhancement of Heat Transfer in Heat Exchanger using Punched and V-cut Twisted Tape Inserts #1 Imran Quazi, Prof. #2 V.R.Mohite, #3 Prof. J Bali 1 imranquazi1987@gmail.com 2 vrmohite@gmail.com

More information

Experimental Investigation of Heat Transfer Enhancement by Using Clockwise and Counter -clockwise Corrugated Twisted Tape Inserts

Experimental Investigation of Heat Transfer Enhancement by Using Clockwise and Counter -clockwise Corrugated Twisted Tape Inserts Experimental Investigation of Heat Transfer Enhancement by Using Clockwise and Counter -clockwise Corrugated Twisted Tape Inserts K.G.KULKARNI Appearing in ME ( HEAT POWER), PES s Modern College Of Engineering

More information

AUGMENTATION OF HEAT TRANSFER USING COILED POROUS TWISTED TAPE INSERT

AUGMENTATION OF HEAT TRANSFER USING COILED POROUS TWISTED TAPE INSERT Proceedings of the International Conference on Mechanical Engineering and Renewable Energy 2015 (ICMERE2015) 26 29 November, 2015, Chittagong, Bangladesh ICMERE2015-PI-112 AUGMENTATION OF HEAT TRANSFER

More information

Research Article. Kaustubh G. Kulkarni * and Mandar M. Lele. Abstract

Research Article. Kaustubh G. Kulkarni * and Mandar M. Lele. Abstract International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2017 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Enhancement

More information

Heat Transfer Enhancement with Different Square Jagged Twisted Tapes and CuO Nano fluid

Heat Transfer Enhancement with Different Square Jagged Twisted Tapes and CuO Nano fluid Heat Transfer Enhancement with Different Square Jagged Twisted Tapes and CuO Nano fluid 1 Krishna S. Borate, 2 A.V. Gawandare, 3 P.M. Khanwalkar 1,2,3 Department of Mechanical Engineering, Sinhgad College

More information

Investigation of Heat Transfer Enhancement in Laminar Flow through Circular Tube Combined Wire Coil and Wavy Strip with Central Clearance

Investigation of Heat Transfer Enhancement in Laminar Flow through Circular Tube Combined Wire Coil and Wavy Strip with Central Clearance Investigation of Heat Transfer Enhancement in Laminar Flow through Circular Tube by using Combined Wire Coil and Wavy Strip with Central Clearance Dipan Deb, Sajag Poudel Abstract: The experimental friction

More information

Performance analysis of V-jagged twisted tape insert for heat transfer in a circular tube

Performance analysis of V-jagged twisted tape insert for heat transfer in a circular tube International Journal of Sciences & Applied Research www.ijsar.in Performance analysis of V-jagged twisted tape insert for heat transfer in a circular tube N. A. Uzagare*, P. J. Bansod GHRECM, Department

More information

EFFECT OF BAFFLES GEOMETRY ON HEAT TRANSFER ENHANCEMENT INSIDE CORRUGATED DUCT

EFFECT OF BAFFLES GEOMETRY ON HEAT TRANSFER ENHANCEMENT INSIDE CORRUGATED DUCT International Journal of Mechanical Engineering and Technology (IJMET) Volume 10, Issue 03, March 2019, pp. 555-566. Article ID: IJMET_10_03_057 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=10&itype=3

More information

Heat Augmentation Using Non-metallic Flow Divider Type Inserts in Forced Convection

Heat Augmentation Using Non-metallic Flow Divider Type Inserts in Forced Convection IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X PP. 62-67 www.iosrjournals.org Heat Augmentation Using Non-metallic Flow Divider Type Inserts in Forced

More information

Experimental Study of Heat Transfer Enhancement through a Tube with Wire-Coil Inserts at Low Turbulent Reynolds Number

Experimental Study of Heat Transfer Enhancement through a Tube with Wire-Coil Inserts at Low Turbulent Reynolds Number International Journal of Engineering Materials and Manufacture (218) 3(3) 122-133 https://doi.org/1.26776/ijemm.3.3.218.1 Experimental Study of Heat Transfer Enhancement through a Tube with Wire-Coil Inserts

More information

Heat Transfer Enhancement Using a Rotating Twisted Tape Insert

Heat Transfer Enhancement Using a Rotating Twisted Tape Insert Journal of Modern Science and Technology Vol. 3. No. 1. March 2015 Issue. Pp. 263 271 Heat Transfer Enhancement Using a Rotating Twisted Tape Insert Al Amin 1, Zunayed Mahmud 2, Nafis Bin Islam 2, Lutfor

More information

Analysis of Heat Transfer in Pipe with Twisted Tape Inserts

Analysis of Heat Transfer in Pipe with Twisted Tape Inserts Proceedings of the 2 nd International Conference on Fluid Flow, Heat and Mass Transfer Ottawa, Ontario, Canada, April 30 May 1, 2015 Paper No. 143 Analysis of Heat Transfer in Pipe with Twisted Tape Inserts

More information

Experimental Investigation of Heat Transfer Enhancement with Different Square Jagged Twisted Tapes and CuO/water Nano fluid

Experimental Investigation of Heat Transfer Enhancement with Different Square Jagged Twisted Tapes and CuO/water Nano fluid Experimental Investigation of Heat Transfer Enhancement with Different Square Jagged Twisted Tapes and CuO/water Nano fluid Mr. Krishna S. Borate, Prof. P.M. Khanwalkar, Prof. V.N. Kapatkar 3 Department

More information

Effect of V-Shape Twisted Jaw Turbulators on Thermal Performance of Tube heat exchanger: An Experimental Study

Effect of V-Shape Twisted Jaw Turbulators on Thermal Performance of Tube heat exchanger: An Experimental Study DOI: http://dx.doi.org/10.30684/etj.36.11a.4 Akram H. Abed Electro-Mechanical Eng. Dept., Baghdad, Iraq. moon.nassr@gmail.com Effect of V-Shape Twisted Jaw Turbulators on Thermal Performance of Tube heat

More information

International Journal of Advanced Engineering Research and Studies E-ISSN

International Journal of Advanced Engineering Research and Studies E-ISSN Research Paper ANALYSIS OF TWISTED TAPE WITH STRAIGHT WINGLETS TO IMPROVE THE THERMO-HYDRAULIC PERFORMANCE OF TUBE IN TUBE HEAT EXCHANGER Mr.S.D.Patil 1, Prof. A.M. Patil 2, Prof. Gutam S. Kamble 3 Address

More information

Performance evaluation of heat transfer enhancement for internal flow based on exergy analysis. S.A. Abdel-Moneim and R.K. Ali*

Performance evaluation of heat transfer enhancement for internal flow based on exergy analysis. S.A. Abdel-Moneim and R.K. Ali* Int. J. Exergy, Vol. 4, No. 4, 2007 401 Performance evaluation of heat transfer enhancement for internal flow based on exergy analysis S.A. Abdel-Moneim and R.K. Ali* Faculty of Engineering (Shoubra),

More information

Experimental and Numerical Analysis of Turbulent Flow Heat Transfer Enhancement in a Horizontal Circular Tube Using Mesh Inserts

Experimental and Numerical Analysis of Turbulent Flow Heat Transfer Enhancement in a Horizontal Circular Tube Using Mesh Inserts July 2010, Volume 4, No.7 (Serial No.32) Journal of Energy and Power Engineering, ISSN 1934-8975, USA Experimental and Numerical Analysis of Turbulent Flow Heat Transfer Enhancement in a Horizontal Circular

More information

Convective Heat Transfer and Thermal Performance in a Circular Tube Heat Exchanger Inserted with U-Shaped Baffle

Convective Heat Transfer and Thermal Performance in a Circular Tube Heat Exchanger Inserted with U-Shaped Baffle Journal of Mathematics and Statistics Original Research Paper Convective Heat Transfer and Thermal Performance in a Circular Tube Heat Exchanger Inserted with U-Shaped Baffle 1 Amnart Boonloi and 2 Withada

More information

Flow and Heat Transfer Profiles in a Square Channel with 45 V-Downstream Orifices

Flow and Heat Transfer Profiles in a Square Channel with 45 V-Downstream Orifices Journal of Mathematics and Statistics Original Research Paper Flow and Heat Transfer Profiles in a Square Channel with 45 V-Downstream Orifices 1 Withada Jedsadaratanachai and 2 Amnart Boonloi 1 Department

More information

Department of Mechanical Engineering, VTU, Basveshwar Engineering college, Bagalkot, Karnataka, India

Department of Mechanical Engineering, VTU, Basveshwar Engineering college, Bagalkot, Karnataka, India International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2016 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Optimization

More information

Study of Compound Heat Transfer Enhancement of Horizontal Liquid-Solid Fluidized Bed Heat Exchanger with a Kenics Static Mixer

Study of Compound Heat Transfer Enhancement of Horizontal Liquid-Solid Fluidized Bed Heat Exchanger with a Kenics Static Mixer International Symposium on Energy Science and Chemical Engineering (ISESCE 015) Study of Compound Heat ransfer Enhancement of Horizontal Liquid-Solid Fluidized Bed Heat Exchanger with a Kenics Static Mixer

More information

Experimental Heat transfer study of Turbulent Square duct flow through V type turbulators

Experimental Heat transfer study of Turbulent Square duct flow through V type turbulators IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 13, Issue 6 Ver. II (Nov. - Dec. 2016), PP 26-31 www.iosrjournals.org Experimental Heat transfer

More information

Chapter 3 NATURAL CONVECTION

Chapter 3 NATURAL CONVECTION Fundamentals of Thermal-Fluid Sciences, 3rd Edition Yunus A. Cengel, Robert H. Turner, John M. Cimbala McGraw-Hill, 2008 Chapter 3 NATURAL CONVECTION Mehmet Kanoglu Copyright The McGraw-Hill Companies,

More information

EFFECT OF STAGGERED RIB LENGTH ON PERFORMANCE OF SOLAR AIR HEATER USING V-RIB WITH SYMMETRICAL GAP AND STAGGERED RIB

EFFECT OF STAGGERED RIB LENGTH ON PERFORMANCE OF SOLAR AIR HEATER USING V-RIB WITH SYMMETRICAL GAP AND STAGGERED RIB EFFECT OF STAGGERED RIB LENGTH ON PERFORMANCE OF SOLAR AIR HEATER USING V-RIB WITH SYMMETRICAL GAP AND STAGGERED RIB Piyush Kumar Jain and Atul Lanjewar Department of Mechanical Engineering, Maulana Azad

More information

The Effect of Solid and Perforated Pin Fin on the Heat Transfer Performance of Finned Tube Heat Exchanger

The Effect of Solid and Perforated Pin Fin on the Heat Transfer Performance of Finned Tube Heat Exchanger International Journal of Energy Engineering 2018, 8(1): 1-11 DOI: 10.5923/j.ijee.20180801.01 The Effect of Solid and Perforated Pin Fin on the Heat Transfer Performance of Finned Tube Heat Exchanger Nabil

More information

Sarbendu Roy, Manvendra Tiwari and Sujoy Kumar Saha 1. Mechanical Engineering Department, IIEST, Shibpur, Howrah , West Bengal, INDIA

Sarbendu Roy, Manvendra Tiwari and Sujoy Kumar Saha 1. Mechanical Engineering Department, IIEST, Shibpur, Howrah , West Bengal, INDIA ISBN 978-93-84422-63-9 Proceeding of 2016 International Conference on Advances in Software, Control and Mechanical Engineering (ICSCME'16) Kyoto (Japan) April 12-13, 2016 pp.22-28 New Correlations and

More information

International Journal of Engineering, Business and Enterprise Applications (IJEBEA)

International Journal of Engineering, Business and Enterprise Applications (IJEBEA) International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research) International Journal of Engineering, Business and Enterprise

More information

International Journal of Innovative Research in Science, Engineering and Technology

International Journal of Innovative Research in Science, Engineering and Technology ISSN(Online): 2319-8753 Heat Transfer Intensification in U-bend Double Pipe Heat Exchanger using Twisted Tape Inserts L.Sandeep Raj 1, K.Vijaya Kumar Reddy 2, A.Aruna Kumari 2 Assitant Professor, VNR Vignana

More information

Laminar flow heat transfer studies in a twisted square duct for constant wall heat flux boundary condition

Laminar flow heat transfer studies in a twisted square duct for constant wall heat flux boundary condition Sādhanā Vol. 40, Part 2, April 2015, pp. 467 485. c Indian Academy of Sciences Laminar flow heat transfer studies in a twisted square duct for constant wall heat flux boundary condition RAMBIR BHADOURIYA,

More information

COMPUTATIONAL FLUID DYNAMICS ANALYSIS ON HEAT TRANSFER AND FRICTION FACTOR CHARACTERISTICS OF A TURBULENT FLOW FOR INTERNALLY GROOVED TUBES

COMPUTATIONAL FLUID DYNAMICS ANALYSIS ON HEAT TRANSFER AND FRICTION FACTOR CHARACTERISTICS OF A TURBULENT FLOW FOR INTERNALLY GROOVED TUBES THERMAL SCIENCE: Year 2013, Vol. 17, No. 4, pp. 1125-1137 1125 COMPUTATIONAL FLUID DYNAMICS ANALYSIS ON HEAT TRANSFER AND FRICTION FACTOR CHARACTERISTICS OF A TURBULENT FLOW FOR INTERNALLY GROOVED TUBES

More information

Exergy Analysis of Solar Air Collector Having W Shaped Artificial Roughness

Exergy Analysis of Solar Air Collector Having W Shaped Artificial Roughness Advances in Materials Science and Mechanical Engineering Research Volume 1, Number 1 (2015), pp. 25-32 International Research Publication House http://www.irphouse.com Exergy Analysis of Solar Air Collector

More information

IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 06, 2015 ISSN (online):

IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 06, 2015 ISSN (online): IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 06, 2015 ISSN (online): 2321-0613 Experimental Investigation for Enhancement of Heat Transfer in Two Pass Solar Air Heater

More information

International Journal of Scientific & Engineering Research, Volume 5, Issue 11, November ISSN

International Journal of Scientific & Engineering Research, Volume 5, Issue 11, November ISSN International Journal of Scientific & Engineering Research, Volume 5, Issue 11, November-2014 1226 NUMERICAL ANALYSIS OF TRIPLE TUBE HEAT EXCHANGER USING ANSYS Vishwa Mohan Behera1, D.H. Das2, Ayusman

More information

CFD Investigation of Heat Transfer and Flow Patterns in Tube Side Laminar Flow and the Potential for Enhancement

CFD Investigation of Heat Transfer and Flow Patterns in Tube Side Laminar Flow and the Potential for Enhancement A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 35, 2013 Guest Editors: Petar Varbanov, Jiří Klemeš, Panos Seferlis, Athanasios I. Papadopoulos, Spyros Voutetakis Copyright 2013, AIDIC Servizi

More information

Heat Transfer Analysis of Helical Strip Insert with Regularly Spaced Cut Sections Placed Inside a Circular Pipe

Heat Transfer Analysis of Helical Strip Insert with Regularly Spaced Cut Sections Placed Inside a Circular Pipe Vol. 2, Issue. 5, Sep.-Oct. 2012 pp-3711-3716 ISSN: 2249-6645 Heat Transfer Analysis of Helical Strip Insert with Regularly Spaced Cut Sections Placed Inside a Circular Pipe Prof. Naresh B. Dhamane 1,

More information

Heat Transfer F12-ENG Lab #4 Forced convection School of Engineering, UC Merced.

Heat Transfer F12-ENG Lab #4 Forced convection School of Engineering, UC Merced. 1 Heat Transfer F12-ENG-135 - Lab #4 Forced convection School of Engineering, UC Merced. October 23, 2012 1 General purpose of the Laboratory To gain a physical understanding of the behavior of the average

More information

HEAT TRANSFER AND FRICTION FACTOR CHARACTERISTICS OF COMPOUND TURBULATORS IN RECTANGULAR DUCTS OF SOLAR AIR HEATER

HEAT TRANSFER AND FRICTION FACTOR CHARACTERISTICS OF COMPOUND TURBULATORS IN RECTANGULAR DUCTS OF SOLAR AIR HEATER HEAT TRANSFER AND FRICTION FACTOR CHARACTERISTICS OF COMPOUND TURBULATORS IN RECTANGULAR DUCTS OF SOLAR AIR HEATER C.B.Pawar*, K.R.Aharwal 1 and Alok Chaube 2 1. Department of Mechanical Engineering, Shri

More information

Investigation of Heat Transfer on Smooth and Enhanced Tube in Heat Exchanger

Investigation of Heat Transfer on Smooth and Enhanced Tube in Heat Exchanger International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2015INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Investigation

More information

Experimental Investigation of Single-Phase Friction Factor and Heat Transfer inside the Horizontal Internally Micro-Fin Tubes.

Experimental Investigation of Single-Phase Friction Factor and Heat Transfer inside the Horizontal Internally Micro-Fin Tubes. Experimental Investigation of Single-Phase Friction Factor and Heat Transfer inside the Horizontal Internally Micro-Fin Tubes by Sun Cheong Master of Science in Electromechanical Engineering 2013 Faculty

More information

NUMERICAL HEAT TRANSFER ENHANCEMENT IN SQUARE DUCT WITH INTERNAL RIB

NUMERICAL HEAT TRANSFER ENHANCEMENT IN SQUARE DUCT WITH INTERNAL RIB NUMERICAL HEAT TRANSFER ENHANCEMENT IN SQUARE DUCT WITH INTERNAL RIB University of Technology Department Mechanical engineering Baghdad, Iraq ABSTRACT - This paper presents numerical investigation of heat

More information

Mechanism of Heat Transfer Enhancement in the Core Flow of a Tube and Its Numerical Simulation

Mechanism of Heat Transfer Enhancement in the Core Flow of a Tube and Its Numerical Simulation The Open Transport Phenomena Journal, 010,, 9-15 9 Open Access Mechanism of Heat Transfer Enhancement in the Core Flow of a Tube and Its Numerical Simulation W. Liu 1,*, K. Yang 1, Z.C. Liu 1, T.Z. Ming

More information

Numerical investigation of heat transfer enhancement in a pipe heat exchanger by adding nano particle and twisted tape

Numerical investigation of heat transfer enhancement in a pipe heat exchanger by adding nano particle and twisted tape 2015, TextRoad Publication ISSN: 2090-4274 Journal of Applied Environmental and Biological Sciences www.textroad.com Numerical investigation of heat transfer enhancement in a pipe heat exchanger by adding

More information

W-Discrete Rib for Enhancing the Thermal Performance of Solar Air Heater

W-Discrete Rib for Enhancing the Thermal Performance of Solar Air Heater W-Discrete Rib for Enhancing the Thermal Performance of Solar Air Heater Alok Kumar Rohit 1, A.M. Lanjewar 2 1PhD Scholar, Mechanical Engineering Department, AISECT University Bhopal, M.P. - 462024 India

More information

Experimental Validation of Heat Transfer Enhancement in plate Heat Exchanger with Non Conventional Shapes of Rib

Experimental Validation of Heat Transfer Enhancement in plate Heat Exchanger with Non Conventional Shapes of Rib Experimental Validation of Heat Transfer Enhancement in plate Heat Exchanger with Non Conventional Shapes of Rib 1 Miss. Ashwini Vasant Thakare, 2 Dr. J. A. Hole 1 M.Tech Student of JSPM Narhe Technical

More information

International Journal of Emerging Technologies in Engineering Research (IJETER)

International Journal of Emerging Technologies in Engineering Research (IJETER) CFD Analysis of Transfer and Friction Factor Characteristics of ZNO/Water through Circular Tube with Rectangular Helix Inserts With Different Thicknesses Amit Singh Bisht PG Scholar, Department of Mechanical

More information

Sami D. Salman, 1,2 Abdul Amir H. Kadhum, 1 Mohd S. Takriff, 1 and Abu Bakar Mohamad Introduction

Sami D. Salman, 1,2 Abdul Amir H. Kadhum, 1 Mohd S. Takriff, 1 and Abu Bakar Mohamad Introduction The Scientific World Journal Volume 213, Article ID 492762, 8 pages http://dx.doi.org/1.1155/213/492762 Research Article Numerical Investigation of Heat Transfer and Friction Factor Characteristics in

More information

Heat transfer characteristics and friction of turbulent swirling air flow through abrupt expansion

Heat transfer characteristics and friction of turbulent swirling air flow through abrupt expansion AMERICAN JOURNAL OF SCIENTIFIC AND INDUSTRIAL RESEARCH 2010, Science Huβ, http://www.scihub.org/ajsir ISSN: 2153-649X doi:10.5251/ajsir.2010.1.2.364.374 Heat transfer characteristics and friction of turbulent

More information

Thermo-Hydraulic Performance of a Roughened Square Duct Having Inclined Ribs with a Gap on Two Opposite Walls

Thermo-Hydraulic Performance of a Roughened Square Duct Having Inclined Ribs with a Gap on Two Opposite Walls International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 7, Issue 10 (July 2013), PP. 55-63 Thermo-Hydraulic Performance of a Roughened Square

More information

AUGMENTATION OF RIBS TURBULATORS HEIGHT ON THE HYDROTHERMAL PERFORMANCE OF DOUBLE PIPE HEAT EXCHANGER

AUGMENTATION OF RIBS TURBULATORS HEIGHT ON THE HYDROTHERMAL PERFORMANCE OF DOUBLE PIPE HEAT EXCHANGER Journal of Engineering Science and Technology Vol. 12, No. 2 (2017) 548-563 School of Engineering, Taylor s University AUGMENTATION OF RIBS TURBULATORS HEIGHT ON THE HYDROTHERMAL PERFORMANCE OF DOUBLE

More information

Australian Journal of Basic and Applied Sciences

Australian Journal of Basic and Applied Sciences AENSI Journals Australian Journal of Basic and Applied Sciences ISSN:1991-8178 Journal home page: www.ajbasweb.com Numerical investigation of Heat Transfer Enhancements in a Circular Tube with CuONanofluid

More information

Australian Journal of Basic and Applied Sciences. Heat transfer enhancement of laminar flow in a circular tube using Swirl / vortex generator

Australian Journal of Basic and Applied Sciences. Heat transfer enhancement of laminar flow in a circular tube using Swirl / vortex generator AENSI Journals Australian Journal of Basic and Applied Sciences ISSN:1991-8178 Journal home page: www.ajbasweb.com Heat transfer enhancement of laminar flow in a circular tube using Swirl / vortex generator

More information

International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS Vol:18 No:02 1

International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS Vol:18 No:02 1 International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS Vol:18 No:02 1 Computational and Experimental Investigations on Thermal and Fluid Flow Characteristics for Different Models of

More information

Computational Analysis of Heat Transfer Enhancement in a Circular Tube Fitted with Different Inserts

Computational Analysis of Heat Transfer Enhancement in a Circular Tube Fitted with Different Inserts 40, Issue 1 (2017) 59-69 Journal of Advanced Research in Fluid Mechanics and Thermal Sciences Journal homepage: www.akademiabaru.com/arfmts.html ISSN: 2289-7879 Computational Analysis of Heat Transfer

More information

Experimental studies on hydrodynamic behaviour of flow through a tube with TRIANGULAR WAVY TAPES. Bachelor of Technology in Chemical Engineering

Experimental studies on hydrodynamic behaviour of flow through a tube with TRIANGULAR WAVY TAPES. Bachelor of Technology in Chemical Engineering Experimental studies on hydrodynamic behaviour of flow through a tube with TRIANGULAR WAVY TAPES A thesis submitted in partial fulfilment of the requirement for the degree of Bachelor of Technology in

More information

International Communications in Heat and Mass Transfer

International Communications in Heat and Mass Transfer International Communications in Heat and Mass Transfer 39 (12) 82 86 Contents lists available at SciVerse ScienceDirect International Communications in Heat and Mass Transfer journal homepage: www.elsevier.com/locate/ichmt

More information

ENERGY PERFORMANCE IMPROVEMENT, FLOW BEHAVIOR AND HEAT TRANSFER INVESTIGATION IN A CIRCULAR TUBE WITH V-DOWNSTREAM DISCRETE BAFFLES

ENERGY PERFORMANCE IMPROVEMENT, FLOW BEHAVIOR AND HEAT TRANSFER INVESTIGATION IN A CIRCULAR TUBE WITH V-DOWNSTREAM DISCRETE BAFFLES Journal of Mathematics and Statistics 9 (4): 339-348, 2013 ISSN: 1549-3644 2013 doi:10.3844/jmssp.2013.339.348 Published Online 9 (4) 2013 (http://www.thescipub.com/jmss.toc) ENERGY PERFORMANCE IMPROVEMENT,

More information

COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF A V-RIB WITH GAP ROUGHENED SOLAR AIR HEATER

COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF A V-RIB WITH GAP ROUGHENED SOLAR AIR HEATER THERMAL SCIENCE: Year 2018, Vol. 22, No. 2, pp. 963-972 963 COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF A V-RIB WITH GAP ROUGHENED SOLAR AIR HEATER by Jitesh RANA, Anshuman SILORI, Rajesh MAITHANI *, and

More information

AJK Proceedings of ASME-JSME-KSME Joint Fluids Engineering Conference 2011 AJK2011-FED July 24-29, 2011, Hamamatsu, Shizuoka, JAPAN

AJK Proceedings of ASME-JSME-KSME Joint Fluids Engineering Conference 2011 AJK2011-FED July 24-29, 2011, Hamamatsu, Shizuoka, JAPAN Proceedings of ASME-JSME-KSME Joint Fluids Engineering Conference 2011 AJK2011-FED July 24-29, 2011, Hamamatsu, Shizuoka, JAPAN AJK2011-16026 EXPERIMENTAL INVESTIGATON OF THE SINGLE-PHASE FRICTION FACTOR

More information

Fluid Flow and Heat Transfer Characteristics in Helical Tubes Cooperating with Spiral Corrugation

Fluid Flow and Heat Transfer Characteristics in Helical Tubes Cooperating with Spiral Corrugation Available online at www.sciencedirect.com Energy Procedia 17 (2012 ) 791 800 2012 International Conference on Future Electrical Power and Energy Systems Fluid Flow and Heat Transfer Characteristics in

More information

Thermo-Hydraulic performance of Internal finned tube Automobile Radiator

Thermo-Hydraulic performance of Internal finned tube Automobile Radiator Thermo-Hydraulic performance of Internal finned tube Automobile Radiator Dr.Kailash Mohapatra 1, Deepiarani Swain 2 1 Department of Mechanical Engineering, Raajdhani Engineering College, Bhubaneswar, 751017,

More information

Comparative Analysis of Heat Transfer and Friction Characteristics in a Corrugated Tube

Comparative Analysis of Heat Transfer and Friction Characteristics in a Corrugated Tube International Journal of Current Engineering and Technology E-ISSN 2277 416, P-ISSN 2347 5161 216 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Comparative

More information

ME 331 Homework Assignment #6

ME 331 Homework Assignment #6 ME 33 Homework Assignment #6 Problem Statement: ater at 30 o C flows through a long.85 cm diameter tube at a mass flow rate of 0.020 kg/s. Find: The mean velocity (u m ), maximum velocity (u MAX ), and

More information

EXPERIMENTAL AND NUMERICAL STUDIES OF A SPIRAL PLATE HEAT EXCHANGER

EXPERIMENTAL AND NUMERICAL STUDIES OF A SPIRAL PLATE HEAT EXCHANGER THERMAL SCIENCE: Year 2014, Vol. 18, No. 4, pp. 1355-1360 1355 EXPERIMENTAL AND NUMERICAL STUDIES OF A SPIRAL PLATE HEAT EXCHANGER by Rangasamy RAJAVEL Department of Mechanical Engineering, AMET University,

More information

A study of Heat Transfer Enhancement on a Tilted Rectangular Stainless Steel Plate

A study of Heat Transfer Enhancement on a Tilted Rectangular Stainless Steel Plate HEFAT2008 6 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 30 June to 2 July 2008 Pretoria, South Africa Paper number: NM1 A study of Heat Transfer Enhancement on a Tilted

More information

Heat Transfer Investigation in a Circular Tube Fabricated from Nano-composite Materials Under a Constant Heat Flux

Heat Transfer Investigation in a Circular Tube Fabricated from Nano-composite Materials Under a Constant Heat Flux International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS Vol:18 No:2 44 Heat Transfer Investigation in a Circular Tube Fabricated from Nano-composite Materials Under a Constant Heat Flux

More information

Keywords: Spiral plate heat exchanger, Heat transfer, Nusselt number

Keywords: Spiral plate heat exchanger, Heat transfer, Nusselt number EXPERIMENTAL AND NUMERICAL STUDIES OF A SPIRAL PLATE HEAT EXCHANGER Dr.RAJAVEL RANGASAMY Professor and Head, Department of Mechanical Engineering Velammal Engineering College,Chennai -66,India Email:rajavelmech@gmail.com

More information

UNIT II CONVECTION HEAT TRANSFER

UNIT II CONVECTION HEAT TRANSFER UNIT II CONVECTION HEAT TRANSFER Convection is the mode of heat transfer between a surface and a fluid moving over it. The energy transfer in convection is predominately due to the bulk motion of the fluid

More information

Computational Fluid Dynamics Based Analysis of Angled Rib Roughened Solar Air Heater Duct

Computational Fluid Dynamics Based Analysis of Angled Rib Roughened Solar Air Heater Duct Research Article International Journal of Thermal Technologies ISSN 2277-4114 2013 INPRESSCO. All Rights Reserved. Available at http://inpressco.com/category/ijtt Computational Fluid Dynamics Based Analysis

More information

Performance Investigation of Artificially Roughened Duct used in Solar Air Heaters

Performance Investigation of Artificially Roughened Duct used in Solar Air Heaters International Performance Journal Investigation of Product of Artificially Design Roughened Duct used in Solar Air Heaters January-June 2011, Volume 1, Number 1, pp. 45 62 Performance Investigation of

More information

EXPERIMENTAL INVESTIGATION OF THE HEAT TRANSFER IN A HORIZONTAL MINI-TUBE WITH THREE DIFFERENT INLET CONFIGURATIONS

EXPERIMENTAL INVESTIGATION OF THE HEAT TRANSFER IN A HORIZONTAL MINI-TUBE WITH THREE DIFFERENT INLET CONFIGURATIONS Proceedings of the 2nd Thermal and Fluid Engineering Conference, TFEC2017 4th International Workshop on Heat Transfer, IWHT2017 April 2-5, 2017, Las Vegas, NV, USA TFEC-IWHT2017-17541 EXPERIMENTAL INVESTIGATION

More information

Experimental Analysis of Heat Transfer Enhancement over Dimpled Surface on One Side of Plate

Experimental Analysis of Heat Transfer Enhancement over Dimpled Surface on One Side of Plate Experimental Analysis of Heat Transfer Enhancement over Dimpled Surface on One Side of Plate Avinash A. Ranaware Mechanical Engineering Department ME Student, G. S. Moze COE, Balewadi Pune, India aviranaware83@yahoo.in

More information

Numerical Investigation on Turbulent Forced Convection in Heating Channel Inserted with Discrete V-Shaped Baffles

Numerical Investigation on Turbulent Forced Convection in Heating Channel Inserted with Discrete V-Shaped Baffles Journal of Mathematics and Statistics Original Research Paper Numerical Investigation on Turbulent Forced Convection in Heating Channel Inserted with Discrete V-Shaped Baffles 1 Amnart Boonloi and 2 Withada

More information

Heat Transfer Convection

Heat Transfer Convection Heat ransfer Convection Previous lectures conduction: heat transfer without fluid motion oday (textbook nearly 00 pages) Convection: heat transfer with fluid motion Research methods different Natural Convection

More information

EXPERIMENTAL AND CFD ANALYSIS OF TURBULENT FLOW HEAT TRANSFER IN TUBULAR HEAT EXCHANGER

EXPERIMENTAL AND CFD ANALYSIS OF TURBULENT FLOW HEAT TRANSFER IN TUBULAR HEAT EXCHANGER EXPERIMENTAL AND CFD ANALYSIS OF TURBULENT FLOW HEAT TRANSFER IN TUBULAR HEAT EXCHANGER HESHAM G. IBRAHIM Assist. Prof., Department of Mechanical Engineering, Faculty of Marine Resources, Al-Asmarya Islamic

More information

EXPERIMENTAL AND CFD ANALYSIS OF TURBULENT FLOW HEAT TRANSFER IN TUBULAR EXCHANGER

EXPERIMENTAL AND CFD ANALYSIS OF TURBULENT FLOW HEAT TRANSFER IN TUBULAR EXCHANGER EXPERIMENTAL AND CFD ANALYSIS OF TURBULENT FLOW HEAT TRANSFER IN TUBULAR EXCHANGER HESHAM G. IBRAHIM Assist. Prof., Department of Mechanical Engineering, Faculty of Marine Resources, Al-Asmarya Islamic

More information

TURBULENCE AND PRESSURE DROP BEHAVIORS AROUND SEMICIRCULAR RIBS IN A RECTANGULAR CHANNEL

TURBULENCE AND PRESSURE DROP BEHAVIORS AROUND SEMICIRCULAR RIBS IN A RECTANGULAR CHANNEL THERMAL SCIENCE: Year 2014, Vol. 18, No. 2, pp. 419-430 419 TURBULENCE AND PRESSURE DROP BEHAVIORS AROUND SEMICIRCULAR RIBS IN A RECTANGULAR CHANNEL by Md. Julker NINE a, Gyeong Hwan LEE a, HanShik CHUNG

More information

CHME 302 CHEMICAL ENGINEERING LABOATORY-I EXPERIMENT 302-V FREE AND FORCED CONVECTION

CHME 302 CHEMICAL ENGINEERING LABOATORY-I EXPERIMENT 302-V FREE AND FORCED CONVECTION CHME 302 CHEMICAL ENGINEERING LABOATORY-I EXPERIMENT 302-V FREE AND FORCED CONVECTION OBJECTIVE The objective of the experiment is to compare the heat transfer characteristics of free and forced convection.

More information

CFD Analysis of Forced Convection Flow and Heat Transfer in Semi-Circular Cross-Sectioned Micro-Channel

CFD Analysis of Forced Convection Flow and Heat Transfer in Semi-Circular Cross-Sectioned Micro-Channel CFD Analysis of Forced Convection Flow and Heat Transfer in Semi-Circular Cross-Sectioned Micro-Channel *1 Hüseyin Kaya, 2 Kamil Arslan 1 Bartın University, Mechanical Engineering Department, Bartın, Turkey

More information

HEAT TRANSFER ENHANCEMENT IN HEAT EXCHANGER USING TANGENTIAL INJECTOR TYPE SWIRL GENERATOR

HEAT TRANSFER ENHANCEMENT IN HEAT EXCHANGER USING TANGENTIAL INJECTOR TYPE SWIRL GENERATOR HEAT TRANSFER ENHANCEMENT IN HEAT EXCHANGER USING TANGENTIAL INJECTOR TYPE SWIRL GENERATOR Hanumant Jagdale Department of Mechanical Engineering, MIT, Aurangabad, India Subhash Lahane Department of Mechanical

More information

Forced Convection Heat Transfer in the Entrance Region of Horizontal Tube under Constant Heat Flux

Forced Convection Heat Transfer in the Entrance Region of Horizontal Tube under Constant Heat Flux World Applied Sciences Journal 15 (3): 331-338, 011 ISSN 1818-495 IDOSI Publications, 011 Forced Convection Heat Transfer in the Entrance Region of Horizontal Tube under Constant Heat Flux S.M. Peyghambarzadeh

More information

3D Numerical Study on Laminar Forced Convection in V-Baffled Square Channel

3D Numerical Study on Laminar Forced Convection in V-Baffled Square Channel American Journal of Applied Sciences 10 (10): 1287-1297, 2013 ISSN: 1546-9239 2013 Boonloi and Jedsadaratanachai, This open access article is distributed under a Creative Commons Attribution (CC-BY) 3.0

More information

Australian Journal of Basic and Applied Sciences. Numerical Study of a Concentric Tube Heat Exchanger Using Dimpled Tubes with Al 2 o 3 NanoFluid

Australian Journal of Basic and Applied Sciences. Numerical Study of a Concentric Tube Heat Exchanger Using Dimpled Tubes with Al 2 o 3 NanoFluid AENSI Journals Australian Journal of Basic and Applied Sciences ISSN:1991-8178 Journal home page: www.ajbasweb.com Numerical Study of a Concentric Tube Heat Exchanger Using Dimpled Tubes with Al 2 o 3

More information

Amir Houshmand, Ahmad Sedaghat, Kia Golmohamadi and Mohamadreza Salimpour

Amir Houshmand, Ahmad Sedaghat, Kia Golmohamadi and Mohamadreza Salimpour J. Energy Power Sources Vol. 1, No. 4, 2014, pp. 217-224 Received: July 19, 2014, Published: October 30, 2014 Journal of Energy and Power Sources www.ethanpublishing.com Experimental Study on Thermal and

More information

Investigation of Effects on Heat Transfer and Flow Characteristics of Cr-Ni Alloy and Aluminum Pins Placed in AISI 304 Tube

Investigation of Effects on Heat Transfer and Flow Characteristics of Cr-Ni Alloy and Aluminum Pins Placed in AISI 304 Tube Investigation of Effects on Heat Transfer and Flow Characteristics of Cr-Ni Alloy and Aluminum Pins Placed in AISI 304 Tube Adnan Berber 1, Kazım Bagirsakci 2, Mehmet Gurdal 3 1 Assist. Prof. Dr., Department

More information

Heat Transfer Enhancement of Shell and Tube Heat Exchanger Using Conical Tapes.

Heat Transfer Enhancement of Shell and Tube Heat Exchanger Using Conical Tapes. ISSN : 2248-9622, Vol. 4, Issue 12( Part 3), December 214, pp.6-11 RESEARCH ARTICLE OPEN ACCESS Heat Transfer Enhancement of Shell and Tube Heat Exchanger Using Conical Tapes. Dhanraj S.Pimple 1,Shreeshail.B.H

More information

Experimental investigation of heat transfer augmentation in triangular duct with rectangular wing

Experimental investigation of heat transfer augmentation in triangular duct with rectangular wing ISSN 2395-1621 Experimental investigation of heat transfer augmentation in triangular duct with rectangular wing #1 Atole Santosh, #2 Channapattana S.V 1 santoshatole10@gmail.com 1 svchanna@yahoo.co.in

More information

Experimental Analysis of Heat Transfer Enhancement through Pipe using Baffles

Experimental Analysis of Heat Transfer Enhancement through Pipe using Baffles Experimental Analysis of Heat Transfer Enhancement through Pipe using Baffles Ms.Jayshri. M. Lanjewar, Asst.Professor, Mechanical Engineering Department Suryodaya college of Engineering and Technology,Vihirgaon,Nagpur.

More information

Heat Transfer Coefficient Solver for a Triple Concentric-tube Heat Exchanger in Transition Regime

Heat Transfer Coefficient Solver for a Triple Concentric-tube Heat Exchanger in Transition Regime Heat Transfer Coefficient Solver for a Triple Concentric-tube Heat Exchanger in Transition Regime SINZIANA RADULESCU*, IRENA LOREDANA NEGOITA, ION ONUTU University Petroleum-Gas of Ploiesti, Department

More information

Experimentation and Performance Evaluation of Heat Exchanger Using Z-Ribs

Experimentation and Performance Evaluation of Heat Exchanger Using Z-Ribs ISSN 2395-1621 Experimentation and Performance Evaluation of Heat Exchanger Using Z-Ribs #1 Mr.B.J.Patil, #2 Prof.Lalit S.Pawar, #3 Prof.J.S.Bali 1 bjpatil2007@gmail.com 2 lalitpawar75@gmail.com 3 bali.jagdeesh@gmail.com

More information

Experimental Investigation of Trapezoidal Duct using Delta Wing Vortex Generators

Experimental Investigation of Trapezoidal Duct using Delta Wing Vortex Generators Experimental Investigation of Trapezoidal Duct using Delta Wing Vortex Generators #1 Gokul N Wakchaure, #2 Prof. Shivanand S Talwar #123 Department of Mechanical Engg, Jayawantrao Sawant college of Engineering,

More information

Enhancement in the Performance of Heat Exchanger by Inserting Twisted Tape Turbulators

Enhancement in the Performance of Heat Exchanger by Inserting Twisted Tape Turbulators ISSN 2395-1621 Enhancement in the Performance of Heat Exchanger by Inserting Twisted Tape Turbulators #1 D.S. Nakate, #2 S.V. Channapattana, #3 Ravi.H.C 1 ameetnakate@gmail.com 2 svchanna@yahoo.co.in.

More information

Convection. forced convection when the flow is caused by external means, such as by a fan, a pump, or atmospheric winds.

Convection. forced convection when the flow is caused by external means, such as by a fan, a pump, or atmospheric winds. Convection The convection heat transfer mode is comprised of two mechanisms. In addition to energy transfer due to random molecular motion (diffusion), energy is also transferred by the bulk, or macroscopic,

More information

Heat Transfer Characteristics and Performance of a Spirally Coiled Heat Exchanger under Sensible Cooling Conditions

Heat Transfer Characteristics and Performance of a Spirally Coiled Heat Exchanger under Sensible Cooling Conditions 810 Heat Transfer Characteristics and Performance of a Spirally Coiled Heat Exchanger under Sensible Cooling Conditions Somchai WONGWISES and Paisarn NAPHON In the present study, new experimental data

More information

Journal of Thermal Science and Technology

Journal of Thermal Science and Technology Bulletin of the JSME Vol.13, No.1, 2018 Journal of Thermal Science and Technology Effect of geometrical parameters on turbulent flow and heat transfer behaviors in triple-start corrugated tubes Pitak PROMTHAISONG*,

More information

Estimation of Heat Transfer in Internally Micro Finned Tube

Estimation of Heat Transfer in Internally Micro Finned Tube Page9 Estimation of Heat Transfer in Internally Micro Finned Tube B. Usha Rani* and P.S. Kishore** * M.E Thermal, Department of Mechanical Engineering, College of Engineering (A), Andhra University **Professor,

More information

Experimental Analysis of Rectangular Fin Arrays with Continuous Fin and Interrupted Fins Using Natural and Forced Convection

Experimental Analysis of Rectangular Fin Arrays with Continuous Fin and Interrupted Fins Using Natural and Forced Convection Experimental Analysis of Rectangular Fin Arrays with Continuous Fin and Interrupted Fins Using Natural and Forced Convection Vinaya Kumara U M 1, Mr. Krishnamurthy K.N 2, Akash Deep B N 3 P.G. Student,

More information

Convection Heat Transfer. Introduction

Convection Heat Transfer. Introduction Convection Heat Transfer Reading Problems 12-1 12-8 12-40, 12-49, 12-68, 12-70, 12-87, 12-98 13-1 13-6 13-39, 13-47, 13-59 14-1 14-4 14-18, 14-24, 14-45, 14-82 Introduction Newton s Law of Cooling Controlling

More information

Comparative study of Different Geometry of Ribs for roughness on absorber plate of Solar Air Heater -A Review

Comparative study of Different Geometry of Ribs for roughness on absorber plate of Solar Air Heater -A Review Comparative study of Different Geometry of Ribs for roughness on absorber plate of Solar Air Heater -A Review Gulshan Singh Baghel 1, Dr. A R Jaurker 2 1. Student, M.E. (Heat Power engineering), Jabalpur

More information