Electronic Higher Multipoles in Solids

Size: px
Start display at page:

Download "Electronic Higher Multipoles in Solids"

Transcription

1 Electronic Higher Multipoles in Solids Yoshio Kuramoto Department of Physics, Tohoku University

2 Outline Elementary examples of multiple moments Role of multipole moments in solids Case studies octupole order in Ce 1-x La x B 6 (Kramers 4f 1 ) scalar order in Pr skutterudites (non-kramers 4f 2 ) Mysterious order in SmRu 4 P 12 (Kramers 4f 5 =>octupole?) Summary

3 Electric dipole (O 2 ) and electric octupole (CH 4 ) Figure 1: Arrangement of the methane molecules in the b-c-plane of the Cmca space group of phase III. a) and c) show cuts through the planes at x = 0, 1/2 with m molecules, b) and d) represent planes x = 1/4, 1/2 with 2-site molecules. The underlying blue colour represents orientations in phase II (measurements at hrpd, isis).

4 Multipole moments dipole quadrupole octupole electric magnetic even parity Electronic state with ang.mom. J => multipoles up to rank 2J Large spin-orbit coupling in f-electron systems => JÀ 1 possible

5 Multipole oscillations: cos n θ monopole (n=0) dipole (n=1) quadrupole (n=2) octupole (n=3) popular in nuclear physics =>

6 Hidden orders in solids - dependent on the stage of development antiferromagnetism (Neel, 1936) antiferroelectricity multipoles 2 n =2,4,8,16,32,64, n=2 (quadrupole) n=3 (octupole) octopus n=4 (hexadecapole) n=5 (triakontadipole) n=6 (hexacontatetrapole)

7 Special multipoles => scalar in point group hexadecapole (O 4 ) hexacontatetrapole (O 6c, O 6t ) O 4 x 4 +y 4 +z 4-3r 4 /5 O 6t (x 2 -y 2 ) (y 2 -z 2 ) (z 2 -x 2 )

8 Role of higher multipoles of localized electrons Leading to unusual magnetism, elastic anomaly Strong spin-orbit interaction + discrete symmetry Mixing of multipoles with different ranks (x => J x ) e.g., Γ 5g : xy, yz, zx with xy(7z 2-1), yz(7x 2-1), zx(7y 2-1) Coupling to crystalline lattice diffraction from superlattice? => resonant X-ray scattering (2005), neutron scattering (2007) in Ce 0.7 La 0.3 B 6

9 Clathrate structures RB 6 (R=La, Ce, Pr, ) R skutterudite: RT 4 X 12

10 Ce 4f 1 under cubic crystal field J=5/2 => Γ 7 (2 fold)+ Γ 8 (4 fold) + orbital - orbital σ α, τ α : pseudo spins

11 Splitting of Γ 8 level Magnetic field (H z ) Quadrupole field (O 20 ) orbital - orbital

12 (time reversal: even) (time reversal: odd)

13 τ z η - η + ζ τ x ζ +

14 Strange ordered phase (phase Ⅳ) in Ce x La 1-x B 6 quadrupole No magnetic order by neutrons NMR and μsr detect internal fields Gigantic elastic anomaly and slight lattice distortion magnetic paramagnetic T (K) Tayama et al. JPSJ (1997) Order parameter? octupole order? (Kuramoto, Kusunose, Kubo: 00-)

15 Magnetic anisotropy in Ce 0.7 La 0.3 B 6 under uniaxial stress Magnetization (Exp.) Theoretical (mean-field) prediction no stress Single octupole domain under uniaxial stress along [111] Theory: K. Kubo and Y. Kuramoto: J. Phys. Soc. Jpn. 73 (2004) 216. Experiment: T. Morie et al.: J. Phys. Soc. Jpn. 73 (2004) 2381.

16 Broken T-reversal and broken orbital degeneracy in Ce 0.7 La 0.3 B 6 [111] T + T + T Γ 8 β x β y β z octupolar field B T + T + T β x β y β z antiferro-octupoles with A,B sublattices => ferro-quadrupoles => (0,0,0) lattice distortion (Goto) + (1/2,1/2,1/2) Bragg peak (Mannix) A 3 2

17 Resonant X-ray scattering (RXS)

18 Scattering amplitude in RXS E1: dipole E2: quadrupole Detectable up to hexadecapoles by E2 scattering Approximation: energy levels for intermediate states m are all represented by Δ. Irreducible tensor technique is applicable (S.W. Lovesey et al: Physics Reports 411 (2005) 233.)

19 Resonant X-ray scatt. on Ce0.7La0.3B6 (D. Mannix et al. PRL 05)

20 Azimuthal scan around [111] of Ce 0.7 La 0.3 B 6 Experiment: D. Mannix et al.: Phys. Rev. Lett 95 (2005) Theory: H. Kusunose and Y.K: JPSJ, 74, (2005) 3139

21 Contribution of four domains α = σσ or σπ μ=[-1,1,1], [1, -1,1], [1, 1,-1] => threefold pattern around [111] is possible. [111] μ

22 Neutron scattering on Ce 0.7 La 0.3 B 6 Kuwahara et al.: JPSJ 76 (2007) R cell drm(r) =0 for each Ce site. However, octupole gives R cell drm(r)eik r 6=0

23 Clathrate structures RB 6 (R=La, Ce, Pr, ) R skutterudite: RT 4 X 12

24 Resistivity ρ (T) in Pr skutterudites H. Sato et al.: J. Phys.: Condens. Matter 15 (2003) S2063 S2070 Metal-insulator transition

25 PrFe 4 P 12 vs PrRu 4 P 12 Isotropic χ below T N Aoki et al., Matsuda et al., Sekine et al.

26 Non-Kramers CEF levels (4f 2 ) Δ Γ? Γ 1 Γ 4 : dipole, Γ 5 : quadrupole Γ 4 and Γ 5 mix in the T h point group

27 Neutron scattering of PrRu 4 P 12 (Iwasa et al.: 2004) CEF: well-defined, but T-dependent! Cubic symmetry is preserved.

28 T-dependent CEF splittings in PrRu 4 P 12 for T < T M-I =63K (Iwasa et al: 05) =>Hexadecapole: O 4 =O 40 +5O 4 4 as the order parameter Y.Kuramoto et al.: PTP suppl.( 05) T.Takimoto: JPSJ (2006) =>Hexacontatetrapole (O 6 ) can be mixed. ( c t ) 0 0 c 0 t xo + x O + yo = c O + c O c O H CEF = W c 6 + 6t 6 scalar operators in T h symmetry

29 Pr 3+ (4f 2 ) CEF levels against effective hybridization strength AF under pressure (Hidaka 06) No magnetic order Down to 60 mk (Sakakibara 05) 4f 1 4f3 Y. Kuramoto et al.: Prog. Theor. Phys. Suppl. 160 (2005) 134.

30 Landau-type phenomenology A. Kiss and Y.Kuramoto: JPSJ 75 (2006) PrFe 4 P 12 Exp. Points: Matsuda et al λ 0

31 Anisotropy induced by a scalar order Field angle dependence of the transition temperature (111) PrFe 4 P 12 H =2.7 T (110) (001) Tayama et al ( 06) Universal ratio for scalar orders!

32 Other evidences in favor of the scalar order in PrFe 4 P 12 NMR spectra in the ordered phase show local cubic symmetry. Lattice distortion observed by neutron and X-ray does not show lower symmetry. Induced staggered moment is parallel or antiparallel to the magnetic field.

33 Scalar form factors R drρ4f (r) = 2 for all sites (a) Γ 1 singlet (b) Γ 3 doublet (c) Γ 5 triplet (d) Staggered scalar order Degeneracies in (b) and (c) should be lifted at T = 0 either by Kondo or distortion!

34 σ π E2superlattice scattering from hexadecapole O 40 +5O 4 4 Around [001] axis: Intensity 2 sin 2 4ψ = 1-cos 8ψ

35 Outline Elementary examples of multiple moments Role of multipole moments in solids Case studies octupole order in Ce 1-x La x B 6 (Kramers 4f 1 ) scalar order in Pr skutterudites (non-kramers 4f 2 ) Mysterious order in SmRu 4 P 12 (Kramers 4f 5 =>octupole?) Summary

36 Enigmatic phase transitions in SmRu 4 P 12 Matsuhira et al (2005) Sekine et al (2001)

37 Order parameters in SmRu 4 P 12? C. Sekine et al. (2003) quartet Four singlets or orbital Kondo Orbital degeneracy remains in phase II => elastic anomaly at II-III boundary (Nakashima et al)

38 SmRu 4 P 12 : magnetic isotropy at I-II transition III II I D. Kikuchi et al.: (2006)

39 The simplest octupole order (T xyz ) Pseudo-scalar inconsistent with NQR (drawing by K. Kubo) (= T xyz )

40 Possible charge & spin density patterns in SmRu 4 P 12 cf Ce 0.7 La 0.3 B 6 Y. Aoki et al: J. Phys. Soc. Jpn. 76 (2007) Nature of the second transition under magnetic field?

41 Order parameter(s) in SmRu 4 P 12? Metal-insulator transition as in PrRu 4 P 12 Time reversal broken (NMR, musr) Trigonal electric field at Sm (NQR) cf (111) lattice distortion in Ce 0.7 La 0.3 B 6 Emergence of a second transition under H No superlattice found so far

42 Summary Magnetic octupole order in Ce x La 1-x B 6 Induced quadrupoles => lattice distortion Superlattice observation by resonant X-ray scattering and neutron scattering Scalar multipole orders in skutterudites Phase transition keeping the local symmetry Unsolved problems Ground state of PrFe 4 P 12? SmRu 4 P 12, NpO 2, URu 2 Si 2,

arxiv:cond-mat/ v2 [cond-mat.str-el] 27 Jun 2005

arxiv:cond-mat/ v2 [cond-mat.str-el] 27 Jun 2005 Typeset with jpsj2.cls Full Paper On the origin of multiple ordered phases in PrFe 4 P 12 arxiv:cond-mat/0504014v2 [cond-mat.str-el] 27 Jun 2005 Annamária Kiss and Yoshio Kuramoto Department

More information

Quadrupolar Ordered Phases in Pr-based Superconductors PrT 2 Zn 20 (T = Rh and Ir)

Quadrupolar Ordered Phases in Pr-based Superconductors PrT 2 Zn 20 (T = Rh and Ir) NHSCP214 ISSP, University of Tokyo, Kashiwa 214.6.25 Quadrupolar Ordered Phases in Pr-based Superconductors PrT 2 Zn 2 (T = Rh and Ir) Takahiro Onimaru 1 K. T. Matsumoto 1, N. Nagasawa 1, K. Wakiya 1,

More information

Geometrical frustration, phase transitions and dynamical order

Geometrical frustration, phase transitions and dynamical order Geometrical frustration, phase transitions and dynamical order The Tb 2 M 2 O 7 compounds (M = Ti, Sn) Yann Chapuis PhD supervisor: Alain Yaouanc September 2009 ann Chapuis (CEA/Grenoble - Inac/SPSMS)

More information

arxiv: v1 [cond-mat.str-el] 3 Dec 2015

arxiv: v1 [cond-mat.str-el] 3 Dec 2015 arxiv:1512.00974v1 [cond-mat.str-el] 3 Dec 2015 Single crystal 27 Al-NMR study of the cubic Γ 3 ground doublet system PrTi 2 Al 20 T Taniguchi, M Yoshida, H Takeda, M Takigawa, M Tsujimoto, A Sakai, Y

More information

Superconductivity in Heavy Fermion Systems: Present Understanding and Recent Surprises. Gertrud Zwicknagl

Superconductivity in Heavy Fermion Systems: Present Understanding and Recent Surprises. Gertrud Zwicknagl Magnetism, Bad Metals and Superconductivity: Iron Pnictides and Beyond September 11, 2014 Superconductivity in Heavy Fermion Systems: Present Understanding and Recent Surprises Gertrud Zwicknagl Institut

More information

Roberto Caciuffo. European Commission, Joint Research Centre Institute for Transuranium Elements, Karlsruhe, Germany

Roberto Caciuffo. European Commission, Joint Research Centre Institute for Transuranium Elements, Karlsruhe, Germany Actinide Research with Neutrons and hard Synchrotron Radiation Roberto Caciuffo European Commission, Joint Research Centre Institute for Transuranium Elements, Karlsruhe, Germany roberto.caciuffo@ec.europa.eu

More information

Theory of d-vector of in Spin- Triplet Superconductor Sr 2 RuO 4

Theory of d-vector of in Spin- Triplet Superconductor Sr 2 RuO 4 Theory of d-vector of in Spin- Triplet Superconductor Sr 2 RuO 4 K. Miyake KISOKO, Osaka University Acknowledgements Y. Yoshioka JPSJ 78 (2009) 074701. K. Hoshihara JPSJ 74 2679 (2005) 2679. K. Ishida,

More information

Verwey transition in magnetite (Fe3O4), unveiled?

Verwey transition in magnetite (Fe3O4), unveiled? Verwey transition in magnetite (Fe3O4), unveiled? J.E. Lorenzo Keywords: Charge, orbital orderings; lattice distortion; spin reorientation; resonant X ray scattering S. Grenier N. Jaouen Y. Joly D. Mannix

More information

Excitonic Condensation in Systems of Strongly Correlated Electrons. Jan Kuneš and Pavel Augustinský DFG FOR1346

Excitonic Condensation in Systems of Strongly Correlated Electrons. Jan Kuneš and Pavel Augustinský DFG FOR1346 Excitonic Condensation in Systems of Strongly Correlated Electrons Jan Kuneš and Pavel Augustinský DFG FOR1346 Motivation - unconventional long-range order incommensurate spin spirals complex order parameters

More information

Orbital order and Hund's rule frustration in Kondo lattices

Orbital order and Hund's rule frustration in Kondo lattices Orbital order and Hund's rule frustration in Kondo lattices Ilya Vekhter Louisiana State University, USA 4/29/2015 TAMU work done with Leonid Isaev, LSU Kazushi Aoyama, Kyoto Indranil Paul, CNRS Phys.

More information

Magnetic ordering, magnetic anisotropy and the mean-field theory

Magnetic ordering, magnetic anisotropy and the mean-field theory Magnetic ordering, magnetic anisotropy and the mean-field theory Alexandra Kalashnikova kalashnikova@mail.ioffe.ru Ferromagnets Mean-field approximation Curie temperature and critical exponents Magnetic

More information

Giniyat Khaliullin Max Planck Institute for Solid State Research, Stuttgart

Giniyat Khaliullin Max Planck Institute for Solid State Research, Stuttgart Mott insulators with strong spin-orbit coupling Giniyat Khaliullin Max Planck Institute for Solid State Research, Stuttgart LS driven unusual ground states & excitations motivated by: Sr 2 IrO 4 Na 2 IrO

More information

arxiv: v1 [cond-mat.str-el] 24 Aug 2011

arxiv: v1 [cond-mat.str-el] 24 Aug 2011 Diagonal composite order in two-channel Kondo lattice Shintaro Hoshino, Junya Otsuki and Yoshio Kuramoto Department of Physics, Tohoku University, Sendai 980-8578, Japan (Dated: August 23, 2018) arxiv:1108.4788v1

More information

Multipole Superconductivity and Unusual Gap Closing

Multipole Superconductivity and Unusual Gap Closing Novel Quantum States in Condensed Matter 2017 Nov. 17, 2017 Multipole Superconductivity and Unusual Gap Closing Application to Sr 2 IrO 4 and UPt 3 Department of Physics, Kyoto University Shuntaro Sumita

More information

Odd-frequency superconductivity in two-channel Kondo lattice and its electromagnetic response

Odd-frequency superconductivity in two-channel Kondo lattice and its electromagnetic response 2014/06/20 (fri) @NHSCP2014 Odd-frequency superconductivity in two-channel Kondo lattice and its electromagnetic response Department of Basic Science, The University of Tokyo JSPS Postdoctoral Fellow Shintaro

More information

Topological Kondo Insulator SmB 6. Tetsuya Takimoto

Topological Kondo Insulator SmB 6. Tetsuya Takimoto Topological Kondo Insulator SmB 6 J. Phys. Soc. Jpn. 80 123720, (2011). Tetsuya Takimoto Department of Physics, Hanyang University Collaborator: Ki-Hoon Lee (POSTECH) Content 1. Introduction of SmB 6 in-gap

More information

Hidden order in URu 2. Si 2. hybridization with a twist. Rebecca Flint. Iowa State University. Hasta: spear (Latin) C/T (mj/mol K 2 ) T (K)

Hidden order in URu 2. Si 2. hybridization with a twist. Rebecca Flint. Iowa State University. Hasta: spear (Latin) C/T (mj/mol K 2 ) T (K) Hidden order in URu 2 Si 2 : Rebecca Flint Iowa State University hybridization with a twist C/T (mj/mol K 2 ) T (K) P. Chandra, P. Coleman and R. Flint, arxiv: 1501.01281 (2015) P. Chandra, P. Coleman

More information

Spin Interactions. Giuseppe Pileio 24/10/2006

Spin Interactions. Giuseppe Pileio 24/10/2006 Spin Interactions Giuseppe Pileio 24/10/2006 Magnetic moment µ = " I ˆ µ = " h I(I +1) " = g# h Spin interactions overview Zeeman Interaction Zeeman interaction Interaction with the static magnetic field

More information

Antiferromagnetic Textures

Antiferromagnetic Textures Antiferromagnetic Textures This image cannot currently be displayed. ULRICH K. RÖSSLE IFW DRESDEN SPICE Workshop Antiferromagnetic Spintronics 26.-30/09/2016 Schloss Waldthausen u.roessler@ifw-dresden.de

More information

Knight Shift Measurements on Superconducting Sr 2 RuO 4

Knight Shift Measurements on Superconducting Sr 2 RuO 4 Knight Shift Measurements on Superconducting Sr 2 RuO 4 c b a Sr 2 RuO 4 Sr Ru O RuO 2 plane Layered Perovskite structure Maeno et al. Nature 372, 532 ( 94) K. Ishida A,B,. Murakawa, A. Mukuda, B Y. Kitaoka,

More information

Crystalline and Magnetic Anisotropy of the 3d Transition-Metal Monoxides

Crystalline and Magnetic Anisotropy of the 3d Transition-Metal Monoxides Crystalline and of the 3d Transition-Metal Monoxides Institut für Festkörpertheorie und -optik Friedrich-Schiller-Universität Max-Wien-Platz 1 07743 Jena 2012-03-23 Introduction Crystalline Anisotropy

More information

Quantum order-by-disorder in Kitaev model on a triangular lattice

Quantum order-by-disorder in Kitaev model on a triangular lattice Quantum order-by-disorder in Kitaev model on a triangular lattice George Jackeli Max-Planck Institute & University of Stuttgart, Germany Andronikashvili Institute of Physics, Tbilisi, Georgia GJ & Avella,

More information

Quadrupolar Kondo Effect in Non-Kramers Doublet System PrInAg 2

Quadrupolar Kondo Effect in Non-Kramers Doublet System PrInAg 2 Quadrupolar Kondo Effect in Non-Kramers Doublet System PrInAg 2 Osamu SUZUKI, Hiroyuki S. SUZUKI, Hideaki KITAZAWA and Giyuu KIDO National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047,

More information

Nuclear Force. Spin dependent difference in neutron scattering. Compare n-p to n-n and p-p Charge independence of nuclear force.

Nuclear Force. Spin dependent difference in neutron scattering. Compare n-p to n-n and p-p Charge independence of nuclear force. Nuclear Force Spin dependent difference in neutron scattering cross sections of ortho- and para-hydrogen. Compare n-p to n-n and p-p Charge independence of nuclear force. Nuclear and Radiation Physics,

More information

Heisenberg-Kitaev physics in magnetic fields

Heisenberg-Kitaev physics in magnetic fields Heisenberg-Kitaev physics in magnetic fields Lukas Janssen & Eric Andrade, Matthias Vojta L.J., E. Andrade, and M. Vojta, Phys. Rev. Lett. 117, 277202 (2016) L.J., E. Andrade, and M. Vojta, Phys. Rev.

More information

Proceedings of the International Conference on Strongly Correlated Electron Systems (SCES3) Downloaded from journals.jps.jp by on /6/7 JPS

Proceedings of the International Conference on Strongly Correlated Electron Systems (SCES3) Downloaded from journals.jps.jp by on /6/7 JPS Proceedings of the International Conference on Strongly Correlated Electron Systems (SCES3) Downloaded from journals.jps.jp by 37.44.96.39 on /6/7 Proc. Int. Conf. Strongly Correlated Electron Systems

More information

Spin Superfluidity and Graphene in a Strong Magnetic Field

Spin Superfluidity and Graphene in a Strong Magnetic Field Spin Superfluidity and Graphene in a Strong Magnetic Field by B. I. Halperin Nano-QT 2016 Kyiv October 11, 2016 Based on work with So Takei (CUNY), Yaroslav Tserkovnyak (UCLA), and Amir Yacoby (Harvard)

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Materials and Methods Single crystals of Pr 2 Ir 2 O 7 were grown by a flux method [S1]. Energy dispersive x-ray analysis found no impurity phases, no inhomogeneities and a ratio between Pr and Ir of 1:1.03(3).

More information

Electron transport through Shiba states induced by magnetic adsorbates on a superconductor

Electron transport through Shiba states induced by magnetic adsorbates on a superconductor Electron transport through Shiba states induced by magnetic adsorbates on a superconductor Michael Ruby, Nino Hatter, Benjamin Heinrich Falko Pientka, Yang Peng, Felix von Oppen, Nacho Pascual, Katharina

More information

B7 Symmetry : Questions

B7 Symmetry : Questions B7 Symmetry 009-10: Questions 1. Using the definition of a group, prove the Rearrangement Theorem, that the set of h products RS obtained for a fixed element S, when R ranges over the h elements of the

More information

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS A11046W1 SECOND PUBLIC EXAMINATION Honour School of Physics Part C: 4 Year Course Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS TRINITY TERM 2015 Wednesday, 17 June, 2.30

More information

LCI -birthplace of liquid crystal display. May, protests. Fashion school is in top-3 in USA. Clinical Psychology program is Top-5 in USA

LCI -birthplace of liquid crystal display. May, protests. Fashion school is in top-3 in USA. Clinical Psychology program is Top-5 in USA LCI -birthplace of liquid crystal display May, 4 1970 protests Fashion school is in top-3 in USA Clinical Psychology program is Top-5 in USA Topological insulators driven by electron spin Maxim Dzero Kent

More information

7.2 Dipolar Interactions and Single Ion Anisotropy in Metal Ions

7.2 Dipolar Interactions and Single Ion Anisotropy in Metal Ions 7.2 Dipolar Interactions and Single Ion Anisotropy in Metal Ions Up to this point, we have been making two assumptions about the spin carriers in our molecules: 1. There is no coupling between the 2S+1

More information

Quantum-Criticality in the dissipative XY and Ashkin-Teller Model: Application to the Cuprates and SIT..

Quantum-Criticality in the dissipative XY and Ashkin-Teller Model: Application to the Cuprates and SIT.. Quantum-Criticality in the dissipative XY and Ashkin-Teller Model: Application to the Cuprates and SIT.. Jaeger, Orr, Goldman, Kuper (1986) Dissipation driven QCP s Haviland, Liu, and Goldman Phys. Rev.

More information

Magnetic neutron diffraction

Magnetic neutron diffraction Magnetic neutron diffraction Rob McQueeney Physics 590 1 Magnetic moment-rare earths Progressive filling of 4f levels Strong Hund s rules Strong spin-orbit interaction Weak CEF Unpaired electrons Total

More information

arxiv:cond-mat/ v2 [cond-mat.str-el] 28 Jun 2006

arxiv:cond-mat/ v2 [cond-mat.str-el] 28 Jun 2006 arxiv:cond-mat/0604467v2 [cond-mat.str-el] 28 Jun 2006 Orbital ordering phenomena in d- and f-electron systems Takashi Hotta Advanced Science Research Center, Japan Atomic Energy Agency Tokai, Ibaraki

More information

Multiple spin exchange model on the triangular lattice

Multiple spin exchange model on the triangular lattice Multiple spin exchange model on the triangular lattice Philippe Sindzingre, Condensed matter theory laboratory Univ. Pierre & Marie Curie Kenn Kubo Aoyama Gakuin Univ Tsutomu Momoi RIKEN T. Momoi, P. Sindzingre,

More information

Thermal Hall effect of magnons

Thermal Hall effect of magnons Max Planck-UBC-UTokyo School@Hongo (2018/2/18) Thermal Hall effect of magnons Hosho Katsura (Dept. Phys., UTokyo) Related papers: H.K., Nagaosa, Lee, Phys. Rev. Lett. 104, 066403 (2010). Onose et al.,

More information

Electron Spin Resonance and Quantum Dynamics. Masaki Oshikawa (ISSP, University of Tokyo)

Electron Spin Resonance and Quantum Dynamics. Masaki Oshikawa (ISSP, University of Tokyo) Electron Spin Resonance and Quantum Dynamics Masaki Oshikawa (ISSP, University of Tokyo) Electron Spin Resonance (ESR) E-M wave electron spins H measure the absorption intensity Characteristic of ESR single

More information

Intermediate valence in Yb Intermetallic compounds

Intermediate valence in Yb Intermetallic compounds Intermediate valence in Yb Intermetallic compounds Jon Lawrence University of California, Irvine This talk concerns rare earth intermediate valence (IV) metals, with a primary focus on certain Yb-based

More information

Nuclear vibrations and rotations

Nuclear vibrations and rotations Nuclear vibrations and rotations Introduction to Nuclear Science Simon Fraser University Spring 2011 NUCS 342 February 2, 2011 NUCS 342 (Lecture 9) February 2, 2011 1 / 29 Outline 1 Significance of collective

More information

Luigi Paolasini

Luigi Paolasini Luigi Paolasini paolasini@esrf.fr LECTURE 5: MAGNETIC STRUCTURES - Mean field theory and magnetic order - Classification of magnetic structures - Collinear and non-collinear magnetic structures. - Magnetic

More information

Theory of Electron Spin Resonance in Ferromagnetically Correlated Heavy Fermion Compounds

Theory of Electron Spin Resonance in Ferromagnetically Correlated Heavy Fermion Compounds magnetochemistry Article Theory of Electron Spin Resonance in Ferromagnetically Correlated Heavy Fermion Compounds Pedro Schlottmann Department of Physics, Florida State University, Tallahassee, FL 32306,

More information

Observation of quadrupole helix chirality and its domain structure in DyFe 3 (BO 3 ) 4

Observation of quadrupole helix chirality and its domain structure in DyFe 3 (BO 3 ) 4 Observation of quadrupole helix chirality and its domain structure in DyFe 3 (BO 3 ) 4 T. Usui, Y. Tanaka, H. Nakajima, M. Taguchi, A. Chainani, M. Oura, S. Shin, N. Katayama, H. Sawa, Y. Wakabayashi,

More information

Magnetic neutron diffraction. Rob McQueeney, Ames Laboratory and Iowa State University

Magnetic neutron diffraction. Rob McQueeney, Ames Laboratory and Iowa State University Magnetic neutron diffraction Rob McQueeney, Ames Laboratory and Iowa State University September 19, 2018 Magnetic moment-rare earths Progressive filling of 4f levels Strong Hund s rules Strong spin-orbit

More information

WORLD SCIENTIFIC (2014)

WORLD SCIENTIFIC (2014) WORLD SCIENTIFIC (2014) LIST OF PROBLEMS Chapter 1: Magnetism of Free Electrons and Atoms 1. Orbital and spin moments of an electron: Using the theory of angular momentum, calculate the orbital

More information

Anomalous low-temperature state of a possible Kondo semimetal CeOs 4 Sb 12 : Magnetic field and La impurity study

Anomalous low-temperature state of a possible Kondo semimetal CeOs 4 Sb 12 : Magnetic field and La impurity study PHYSICAL REVIEW B 73, 144429 2006 Anomalous low-temperature state of a possible Kondo semimetal CeOs 4 Sb 12 : Magnetic field and La impurity study C. R. Rotundu and B. Andraka* Department of Physics,

More information

Competing Ferroic Orders The magnetoelectric effect

Competing Ferroic Orders The magnetoelectric effect Competing Ferroic Orders The magnetoelectric effect Cornell University I would found an institution where any person can find instruction in any study. Ezra Cornell, 1868 Craig J. Fennie School of Applied

More information

Degeneracy Breaking in Some Frustrated Magnets

Degeneracy Breaking in Some Frustrated Magnets Degeneracy Breaking in Some Frustrated Magnets Doron Bergman Greg Fiete Ryuichi Shindou Simon Trebst UCSB Physics KITP UCSB Physics Q Station cond-mat: 0510202 (prl) 0511176 (prb) 0605467 0607210 0608131

More information

b) Discuss the amplitude of electromagnetic waves on reflection and refraction at the boundary of a dielectric interface.

b) Discuss the amplitude of electromagnetic waves on reflection and refraction at the boundary of a dielectric interface. (DPHY 21) ASSIGNMENT - 1, DEC - 2018. PAPER- V : ELECTROMAGNETIC THEORY AND MODERN OPTICS 1) a)derive Fresnel equation. b) Discuss the amplitude of electromagnetic waves on reflection and refraction at

More information

arxiv: v1 [cond-mat.str-el] 20 Feb 2012

arxiv: v1 [cond-mat.str-el] 20 Feb 2012 Spin Exciton Formation inside the Hidden Order Phase of CeB 6 Alireza Akbari and Peter Thalmeier Max Planck Institute for the Chemical Physics of Solids, D-1187 Dresden, Germany (Dated: December, 18) arxiv:1.491v1

More information

The interacting boson model

The interacting boson model The interacting boson model P. Van Isacker, GANIL, France Dynamical symmetries of the IBM Neutrons, protons and F-spin (IBM-2) T=0 and T=1 bosons: IBM-3 and IBM-4 The interacting boson model Nuclear collective

More information

Hidden Order and Nexus between Quantum Criticality and Phase Formation : The Case of URu 2 Si 2

Hidden Order and Nexus between Quantum Criticality and Phase Formation : The Case of URu 2 Si 2 Hidden Order and Nexus between Quantum Criticality and Phase Formation : The Case of URu 2 Si 2 J. A. Mydosh Max Planck Institute for Chemical Physics of Solids, Dresden and Kamerlingh Onnes Laboratory,

More information

Electron Correlation

Electron Correlation Series in Modern Condensed Matter Physics Vol. 5 Lecture Notes an Electron Correlation and Magnetism Patrik Fazekas Research Institute for Solid State Physics & Optics, Budapest lb World Scientific h Singapore

More information

arxiv:cond-mat/ v1 20 May 1995

arxiv:cond-mat/ v1 20 May 1995 Singlet Magnetism in Heavy Fermions Victor Barzykin Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801-3080, USA arxiv:cond-mat/9505091v1

More information

Problem Set 2 Due Tuesday, September 27, ; p : 0. (b) Construct a representation using five d orbitals that sit on the origin as a basis: 1

Problem Set 2 Due Tuesday, September 27, ; p : 0. (b) Construct a representation using five d orbitals that sit on the origin as a basis: 1 Problem Set 2 Due Tuesday, September 27, 211 Problems from Carter: Chapter 2: 2a-d,g,h,j 2.6, 2.9; Chapter 3: 1a-d,f,g 3.3, 3.6, 3.7 Additional problems: (1) Consider the D 4 point group and use a coordinate

More information

Journal of the Korean Magnetic Resonance Society 2003, 7, Kwangju, , KOREA Received September 29, 2003

Journal of the Korean Magnetic Resonance Society 2003, 7, Kwangju, , KOREA Received September 29, 2003 Journal of the Korean Magnetic Resonance Society 2003, 7, 80-88 11 B Nuclear Magnetic Resonance Study of Calcium-hexaborides B. J. Mean 1, K. H. Lee 1, K. H. Kang 1, Moohee Lee 1*, J.S. Lee 2, and B. K.

More information

phases of liquid crystals and their transitions

phases of liquid crystals and their transitions phases of liquid crystals and their transitions Term paper for PHYS 569 Xiaoxiao Wang Abstract A brief introduction of liquid crystals and their phases is provided in this paper. Liquid crystal is a state

More information

Magnetism in correlated-electron materials

Magnetism in correlated-electron materials Magnetism in correlated-electron materials B. Keimer Max-Planck-Institute for Solid State Research focus on delocalized electrons in metals and superconductors localized electrons: Hinkov talk outline

More information

NMR: Formalism & Techniques

NMR: Formalism & Techniques NMR: Formalism & Techniques Vesna Mitrović, Brown University Boulder Summer School, 2008 Why NMR? - Local microscopic & bulk probe - Can be performed on relatively small samples (~1 mg +) & no contacts

More information

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University Global phase diagrams of two-dimensional quantum antiferromagnets Cenke Xu Yang Qi Subir Sachdev Harvard University Outline 1. Review of experiments Phases of the S=1/2 antiferromagnet on the anisotropic

More information

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures B. Halperin Spin lecture 1 Spins and spin-orbit coupling in semiconductors, metals, and nanostructures Behavior of non-equilibrium spin populations. Spin relaxation and spin transport. How does one produce

More information

Non-cuprate Exotics, II: Heavy-fermions, Ruthenates, Organics

Non-cuprate Exotics, II: Heavy-fermions, Ruthenates, Organics PHYS598/2 A.J.Leggett Lecture 3 Non-cuprate Exotics, II: Heavy-fermions, Ruthenates... 1 Non-cuprate Exotics, II: Heavy-fermions, Ruthenates, Organics Heavy fermions 1 The name heavy-fermion system is

More information

Electron Paramagnetic Resonance parameters from Wave Function Theory calculations. Laboratoire de Chimie et de Physique Quantiques Toulouse

Electron Paramagnetic Resonance parameters from Wave Function Theory calculations. Laboratoire de Chimie et de Physique Quantiques Toulouse Electron Paramagnetic Resonance parameters from Wave Function Theory calculations Hélène Bolvin Laboratoire de Chimie et de Physique Quantiques Toulouse Outline Preliminaries EPR spectroscopy spin Hamiltonians

More information

Physics 211B : Problem Set #0

Physics 211B : Problem Set #0 Physics 211B : Problem Set #0 These problems provide a cross section of the sort of exercises I would have assigned had I taught 211A. Please take a look at all the problems, and turn in problems 1, 4,

More information

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS 2753 SECOND PUBLIC EXAMINATION Honour School of Physics Part C: 4 Year Course Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS TRINITY TERM 2011 Wednesday, 22 June, 9.30 am 12.30

More information

Crystal field effect on atomic states

Crystal field effect on atomic states Crystal field effect on atomic states Mehdi Amara, Université Joseph-Fourier et Institut Néel, C.N.R.S. BP 66X, F-3842 Grenoble, France References : Articles - H. Bethe, Annalen der Physik, 929, 3, p.

More information

X-Ray Scattering and Absorption by Magnetic Materials

X-Ray Scattering and Absorption by Magnetic Materials X-Ray Scattering and Absorption by Magnetic Materials S. W. Lovesey ISIS Facility, Rutherford Appleton Laboratory S. P. Collins Synchrotron Radiation Department, Daresbury Laboratory CLARENDON PRESS OXFORD

More information

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets In collaboration with: Olexei Motrunich & Jason Alicea I. Background Outline Avoiding conventional symmetry-breaking in s=1/2 AF Topological

More information

Interplay between crystal electric field and magnetic exchange anisotropies in the heavy fermion antiferromagnet YbRhSb under pressure

Interplay between crystal electric field and magnetic exchange anisotropies in the heavy fermion antiferromagnet YbRhSb under pressure 24-P-45 TOKIMEKI211, Nov. 24, 211 Interplay between crystal electric field and magnetic exchange anisotropies in the heavy fermion antiferromagnet under pressure K. Umeo N-BARD, Hiroshima University Collaborators

More information

Nematicity and quantum paramagnetism in FeSe

Nematicity and quantum paramagnetism in FeSe Nematicity and quantum paramagnetism in FeSe Fa Wang 1,, Steven A. Kivelson 3 & Dung-Hai Lee 4,5, 1 International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China.

More information

Fe Co Si. Fe Co Si. Ref. p. 59] d elements and C, Si, Ge, Sn or Pb Alloys and compounds with Ge

Fe Co Si. Fe Co Si. Ref. p. 59] d elements and C, Si, Ge, Sn or Pb Alloys and compounds with Ge Ref. p. 59] 1.5. 3d elements and C, Si, Ge, Sn or Pb 7 1.75 1.50 Co Si 0.8 0. 3.50 3.5 Co Si 0.8 0. H cr Magnetic field H [koe] 1.5 1.00 0.75 0.50 0.5 C C IF "A" P Frequency ωγ / e [koe] 3.00.75.50.5.00

More information

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan Kondo effect in multi-level and multi-valley quantum dots Mikio Eto Faculty of Science and Technology, Keio University, Japan Outline 1. Introduction: next three slides for quantum dots 2. Kondo effect

More information

Keble College - Hilary 2012 Section VI: Condensed matter physics Tutorial 2 - Lattices and scattering

Keble College - Hilary 2012 Section VI: Condensed matter physics Tutorial 2 - Lattices and scattering Tomi Johnson Keble College - Hilary 2012 Section VI: Condensed matter physics Tutorial 2 - Lattices and scattering Please leave your work in the Clarendon laboratory s J pigeon hole by 5pm on Monday of

More information

Single crystal growth and basic characterization of intermetallic compounds. Eundeok Mun Department of Physics Simon Fraser University

Single crystal growth and basic characterization of intermetallic compounds. Eundeok Mun Department of Physics Simon Fraser University Single crystal growth and basic characterization of intermetallic compounds Eundeok Mun Department of Physics Simon Fraser University CIFAR Summer School 2015 Beautiful single crystals! Then What? We know

More information

Magnetic Resonance Spectroscopy

Magnetic Resonance Spectroscopy INTRODUCTION TO Magnetic Resonance Spectroscopy ESR, NMR, NQR D. N. SATHYANARAYANA Formerly, Chairman Department of Inorganic and Physical Chemistry Indian Institute of Science, Bangalore % I.K. International

More information

EPR in Kagome Staircase Compound Mg Co V 2 O 8

EPR in Kagome Staircase Compound Mg Co V 2 O 8 Vol. 111 (2007) ACTA PHYSICA POLONICA A No. 1 Proceedings of the Symposium K: Complex Oxide Materials for New Technologies of E-MRS Fall Meeting 2006, Warsaw, September 4 8, 2006 EPR in Kagome Staircase

More information

6 NMR Interactions: Zeeman and CSA

6 NMR Interactions: Zeeman and CSA 6 NMR Interactions: Zeeman and CSA 6.1 Zeeman Interaction Up to this point, we have mentioned a number of NMR interactions - Zeeman, quadrupolar, dipolar - but we have not looked at the nature of these

More information

Metallic Nanotubes as a Perfect Conductor

Metallic Nanotubes as a Perfect Conductor Metallic Nanotubes as a Perfect Conductor 1. Effective-mass description Neutrino on cylinder surface 2. Nanotube as a perfect conductor Absence of backward scattering Perfectly transmitting channel Some

More information

Magnetic and Electrical Properties in NpFe 4 P 12

Magnetic and Electrical Properties in NpFe 4 P 12 PB1 Magnetic and Electrical Properties in NpFe 4 P 12 D. Aoki 1, Y. Haga 2, Y. Homma 1, H. Sakai 2, S. Ikeda 2, Y. Shiokawa 1,2, E. Yamamoto 2, A. Nakamura 2, R. Settai 3 and Y. Ōnuki3,1 1 Institute for

More information

Gamma-ray decay. Introduction to Nuclear Science. Simon Fraser University Spring NUCS 342 March 7, 2011

Gamma-ray decay. Introduction to Nuclear Science. Simon Fraser University Spring NUCS 342 March 7, 2011 Gamma-ray decay Introduction to Nuclear Science Simon Fraser University Spring 2011 NUCS 342 March 7, 2011 NUCS 342 (Lecture 18) March 7, 2011 1 / 31 Outline 1 Mössbauer spectroscopy NUCS 342 (Lecture

More information

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT).

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT). Ideas on non-fermi liquid metals and quantum criticality T. Senthil (MIT). Plan Lecture 1: General discussion of heavy fermi liquids and their magnetism Review of some experiments Concrete `Kondo breakdown

More information

Rotor Spectra, Berry Phases, and Monopole Fields: From Antiferromagnets to QCD

Rotor Spectra, Berry Phases, and Monopole Fields: From Antiferromagnets to QCD Rotor Spectra, Berry Phases, and Monopole Fields: From Antiferromagnets to QCD Uwe-Jens Wiese Bern University LATTICE08, Williamsburg, July 14, 008 S. Chandrasekharan (Duke University) F.-J. Jiang, F.

More information

Twisted Hubbard model for Sr2IrO4: magnetism and possible high temperature superconductivity. Fa Wang and T. Senthil, PRL 2011

Twisted Hubbard model for Sr2IrO4: magnetism and possible high temperature superconductivity. Fa Wang and T. Senthil, PRL 2011 Twisted Hubbard model for Sr2IrO4: magnetism and possible high temperature superconductivity Fa Wang and T. Senthil, PRL 2011 Iridium oxide materials: various kinds of exotic physics Na4Ir3O8: insulating

More information

Chapter 8 Magnetic Resonance

Chapter 8 Magnetic Resonance Chapter 8 Magnetic Resonance 9.1 Electron paramagnetic resonance 9.2 Ferromagnetic resonance 9.3 Nuclear magnetic resonance 9.4 Other resonance methods TCD March 2007 1 A resonance experiment involves

More information

Neutron Scattering of Magnetic excitations

Neutron Scattering of Magnetic excitations Neutron Scattering of Magnetic excitations Magnetic excitations, magnons, and spin chains by Ibrahima Diallo Technische Universität Muenchen Outline Properties of the Neutron Spin, spin waves, and magnons

More information

Supplementary Figure 1. Spin-spin relaxation curves for three La 1.8-x Eu 0.2 Sr x CuO 4 samples.

Supplementary Figure 1. Spin-spin relaxation curves for three La 1.8-x Eu 0.2 Sr x CuO 4 samples. Supplementary Figure 1. Spin-spin relaxation curves for three La 1.8-x Eu 0.2 Sr x CuO 4 samples. The data here are raw nuclear quadrupole resonance (NQR) data multiplied by temperature to compensate for

More information

Magnetism in low dimensions from first principles. Atomic magnetism. Gustav Bihlmayer. Gustav Bihlmayer

Magnetism in low dimensions from first principles. Atomic magnetism. Gustav Bihlmayer. Gustav Bihlmayer IFF 10 p. 1 Magnetism in low dimensions from first principles Atomic magnetism Gustav Bihlmayer Institut für Festkörperforschung, Quantum Theory of Materials Gustav Bihlmayer Institut für Festkörperforschung

More information

Superconductivity in Fe-based ladder compound BaFe 2 S 3

Superconductivity in Fe-based ladder compound BaFe 2 S 3 02/24/16 QMS2016 @ Incheon Superconductivity in Fe-based ladder compound BaFe 2 S 3 Tohoku University Kenya OHGUSHI Outline Introduction Fe-based ladder material BaFe 2 S 3 Basic physical properties High-pressure

More information

Experimental evidence of anapolar moments in the antiferromagnetic insulating phase of V 2 O 3 obtained from x-ray resonant Bragg diffraction

Experimental evidence of anapolar moments in the antiferromagnetic insulating phase of V 2 O 3 obtained from x-ray resonant Bragg diffraction Experimental evidence of anapolar moments in the antiferromagnetic insulating phase of V 2 O 3 obtained from x-ray resonant Bragg diffraction J. Fernández-Rodríguez, 1 V. Scagnoli, 1 C. Mazzoli, 1 F. Fabrizi,

More information

YBCO. CuO 2. the CuO 2. planes is controlled. from deviation from. neutron. , blue star for. Hg12011 (this work) for T c = 72

YBCO. CuO 2. the CuO 2. planes is controlled. from deviation from. neutron. , blue star for. Hg12011 (this work) for T c = 72 Supplementary Figure 1 Crystal structures and joint phase diagram of Hg1201 and YBCO. (a) Hg1201 features tetragonal symmetry and one CuO 2 plane per primitive cell. In the superconducting (SC) doping

More information

Making the Invisible Visible: Probing Antiferromagnetic Order in Novel Materials

Making the Invisible Visible: Probing Antiferromagnetic Order in Novel Materials Making the Invisible Visible: Probing Antiferromagnetic Order in Novel Materials Elke Arenholz Lawrence Berkeley National Laboratory Antiferromagnetic contrast in X-ray absorption Ni in NiO Neel Temperature

More information

Topological Kondo Insulators!

Topological Kondo Insulators! Topological Kondo Insulators! Maxim Dzero, University of Maryland Collaborators: Kai Sun, University of Maryland Victor Galitski, University of Maryland Piers Coleman, Rutgers University Main idea Kondo

More information

M.Sc. (Final) DEGREE EXAMINATION, MAY Second Year Physics

M.Sc. (Final) DEGREE EXAMINATION, MAY Second Year Physics Physics Paper - V : ELECTROMAGNETIC THEORY AND MODERN OPTICS (DPHY 21) Answer any Five questions 1) Discuss the phenomenon of reflection and refraction of electromagnetic waves at a plane interface between

More information

Determination of long range antiferromagnetic order by powder neutron diffraction

Determination of long range antiferromagnetic order by powder neutron diffraction Determination of long range antiferromagnetic order by powder neutron diffraction Practical course on powder diffraction at the neutron spallation source SINQ of the Paul Scherrer Institute Summary Antiferromagnetic

More information

Quadrupole Susceptibility and Elastic Softening due to a Vacancy in Silicon Crystal

Quadrupole Susceptibility and Elastic Softening due to a Vacancy in Silicon Crystal Typeset with jpsj2.cls Full Paper Quadrupole Susceptibility and Elastic Softening due to a Vacancy in Silicon Crystal Takemi Yamada, Youichi Yamakawa and Yoshiaki Ōno Department of Physics,

More information

2.1 Experimental and theoretical studies

2.1 Experimental and theoretical studies Chapter 2 NiO As stated before, the first-row transition-metal oxides are among the most interesting series of materials, exhibiting wide variations in physical properties related to electronic structure.

More information

compound Cs 2 Cu 2 Mo 3 O 12

compound Cs 2 Cu 2 Mo 3 O 12 133 Cs-NMR study on aligned powder of competing spin chain compound A Yagi 1, K Matsui 1 T Goto 1, M Hase 2 and T Sasaki 3 1 2 Sophia University, Physics Division, Tokyo, 102-8554, Japan National Institute

More information

Spin Hall and quantum spin Hall effects. Shuichi Murakami Department of Physics, Tokyo Institute of Technology PRESTO, JST

Spin Hall and quantum spin Hall effects. Shuichi Murakami Department of Physics, Tokyo Institute of Technology PRESTO, JST YKIS2007 (Kyoto) Nov.16, 2007 Spin Hall and quantum spin Hall effects Shuichi Murakami Department of Physics, Tokyo Institute of Technology PRESTO, JST Introduction Spin Hall effect spin Hall effect in

More information

A05: Quantum crystal and ring exchange. Novel magnetic states induced by ring exchange

A05: Quantum crystal and ring exchange. Novel magnetic states induced by ring exchange A05: Quantum crystal and ring exchange Novel magnetic states induced by ring exchange Members: Tsutomu Momoi (RIKEN) Kenn Kubo (Aoyama Gakuinn Univ.) Seiji Miyashita (Univ. of Tokyo) Hirokazu Tsunetsugu

More information