Parameter estimation in linear regression driven by a Wiener sheet

Size: px
Start display at page:

Download "Parameter estimation in linear regression driven by a Wiener sheet"

Transcription

1 Ales Mthemtice et Iformtice ) pp. 3 5 Proceedigs of the Coferece o Stochstic Models d their Applictios Fculty of Iformtics, Uiversity of Debrece, Debrece, Hugry, August 22 24, 20 Prmeter estimtio i lier regressio drive by Wieer sheet Sádor Br, Kig Sikoly Fculty of Iformtics, Uiversity of Debrece Kssi út 26, H-4028 Debrece, Hugry br.sdor@if.uideb.hu, sikoly.kig@if.uideb.hu Dedicted to Mátyás Artó o his eightieth birthdy Abstrct The problem of estimtig the prmeters of lier regressio Zs, t) = m g s, t) m pg ps, t) W s, t) bsed o observtios of Z o sptil domi G of specil shpe is cosidered, where the drivig process W is stdrd Wieer sheet d g,..., g p re kow fuctios. We provide expressio for the mximum likelihood estimtor of the ukow prmeters bsed o the observtio of the process Z o the set G. Simultio results re lso preseted, where the drivig rdom sheets re simulted with the help of their Krhue-Loève expsios. Keywords: Wieer sheet, mximum likelihood estimtio, Rdo-Nikodym derivtive. MSC: 60G60; 62M0; 62M30.. Itroductio The Wieer sheet is oe of the most importt exmples of Gussi rdom fields. It hs vrious pplictios i sttisticl modellig. Wieer sheet ppers s limitig process of some rdom fields defied o the iterfce of the Isig model [2], it is used to model rdom polymers [9], to describe the dymics of Heth Jrrow Morto type forwrd iterest rte models [0] or to model rdom mortlity surfces [6]. Further, [7] cosiders the problem of estimtio of the me Reserch hs bee supported by the Hugri Scietific Reserch Fud uder Grt No. OTKA T07928/2009 d prtilly supported by TÁMOP 4.2../B-09//KONV /IK/IT project. The project is implemeted through the New Hugry Developmet Pl co-ficed by the Europe Socil Fud, d the Europe Regiol Developmet Fud. 3

2 4 S. Br, K. Sikoly i oprmetric regressio o two-dimesiol regulr grid of desig poits d costructs Wieer sheet process o the uit squre with drift tht is lmost the me fuctio i the oprmetric regressio. I this pper we cosider lier regressio drive by Wieer sheet, tht is rdom field Zs, t) := m g s, t) m p g p s, t) W s, t).) observed o domi G, where g,..., g p re kow fuctios d W is stdrd Wieer sheet, d we determie the mximum likelihood estimtor MLE) of the ukow prmeters m,..., m p. I priciple, the Rdo-Nikodym derivtive of Gussi mesures might be derived from the geerl Feldm-Hjek theorem [], but i most of the cses explicit clcultios cot be crried out. For exmple, if p = d g shifted Wieer sheet), the MLE of the ukow prmeter is give i [3] d the estimtor is expressed s fuctio of usully ukow rdom vrible stisfyig some chrcterizig equtio. I severl cses the exct form of this rdom vrible c be derived by method proposed i [4] bsed o lier stochstic prtil differetil equtios. Specil cse : Br et l. [3] studied the cse, whe p = d the rdom field Z is observed o rectgulr domi G := [, 2 ] [b, b 2 ], [, 2 ], [b, b 2 ] 0, ). Assumig tht g is bsolutely cotiuous with respect to the Lebesgue mesure d 2 g L 2 G), they proved tht the MLE of the shift prmeter m hs the form m = A ζ, where A = g2, b ) b G 2 [ g u, b )] 2 b du [ 2 g u, v)] 2 dudv, ζ = g, b )Z, b ) b G 2 2 g u, v)zdu, dv), b 2 b [ 2 g, v)] 2 g u, b ) b Zdu, b ) dv.2) b 2 b 2 g, v) Z, dv).3) d it hs orml distributio with me m d vrice /A. For g we hve m = Z, b ). Specil cse 2: Artó N.M. [2] cosidered the cse p = d g d usig Rozov s method foud the MLE of the shift prmeter m whe the process is observed o specil domi G G := {s, t) R 2 : s b, t γs) or s > b, t γb)}

3 Prmeter estimtio i lier regressio drive by Wieer sheet 5 cotiig ε strip of Γ := {s, γs)) : s, b)}, i.e. for some ε > 0 {s, t) R 2 : s [, ε], t [γs), γ)] or s [ ε, b], t [γs), γs) ε]} G, where γ : [, b] 0, ) R is cotiuous d strictly decresig with γb) > 0. Br et l. [4] cosidered the sme model d uder much weker coditios γ C 2, b), γ ) := lim s γ s) [, 0] d γ b) := lim s b γ s) [, 0] exist, d b γ s)γ s) γ s) 2 ds <, ) 2 they proved the result of [2, Theorem 2]. They showed tht the MLE of the shift prmeter m hs the form m = A ζ, where A = b bγb) ds s 2 γs), ζ = c Z, γ)) c 2 Zb, γb)) Γ y Z Γ y 2 Z,.4) c, c 2 re costts depedig o γ d γ t d b, y d y 2 re fuctios of γ, γ, γ, d Z deotes the orml derivtive of Z [4, Defiitio 4.]. If γ ) = we hve ζ = Zb, γb)) bγb) b Zs, γs)) b s 2 ds γs) Zds, γs)). sγs) I the preset pper we cosider the sme type of domi G s i [5] d give turl extesio of their result for the geerl model.). We lso preset some simultio results to illustrte the theoreticl oes where the Wieer sheet is simulted with the help of its Krhue-Loève expsio see e.g. [8]). 2. Model d estimtor Cosider the model.) with some give fuctios g,..., g p : R 2 R d with ukow regressio prmeters m,..., m p R. Let [, c] 0, ) d b, b 2, c), let γ,2 : [, b ] R d γ 0 : [b 2, c] R be cotiuous, strictly decresig fuctios d let γ : [b, c] R d γ 2 : [, b 2 ] R be cotiuous, strictly icresig fuctios with γ,2 b ) = γ b ) > 0, γ 2 b 2 ) = γ 0 b 2 ), γ,2 ) = γ 2 ) d γ c) = γ 0 c). Cosider the curve Γ := Γ,2 Γ Γ 2 Γ 0, where { s, Γ,2 := γ,2 s) ) } { s, : s [, b ], Γ := γ s) ) } : s [b, c], { s, Γ 2 := γ2 s) ) } { s, : s [, b 2 ], Γ 0 := γ0 s) ) } : s [b 2, c],

4 6 S. Br, K. Sikoly d for give ε > 0 let Γ ε,2, Γ ε, Γ ε 2 d Γ ε 0 deote the ier ε-strip of Γ,2, Γ, Γ 2 d Γ 0, respectively, tht is e.g. Γ ε,2 := { s, t) R 2 : s [, ε], t [γ,2 s), γ,2 )] or Suppose tht there exists ε > 0 such tht d cosider the set G := G G 2 G 3, where s [ ε, b ], t [γ,2 s), γ,2 s) ε] }. Γ ε Γ ε 2 = d Γ ε,2 Γ ε 0 =, 2.) G := { s, t) R 2 : s [, b b 2 ], t [γ,2 s), γ 2 s)] }, {{ s, t) R 2 : s [b, b 2 ], t [γ s), γ 2 s)] }, if b b 2, G 2 := { s, t) R 2 : s [b 2, b ], t [γ,2 s), γ 0 s)] }, if b > b 2, G 3 := { s, t) R 2 : s [b b 2, c], t [γ s), γ 0 s)] }. A exmple of such set of observtios c be see of Figure. t γ 0 γ 2 Γ 2 G Γ 0 Γ,2 Γ γ γ,2 b b 2 c s Figure : A exmple of set of observtios G The followig theorem is extesio of Theorem 2. of [5] d c be proved i similr wy. The proof is bsed o the discrete pproximtio method described i [3, 4, 5], which relies o the results of [, Sectio 2.3.2]. Theorem 2.. If g,..., g p re twice cotiuously differetible iside G d the prtil derivtives g i, 2 g i d 2 g i, i =,..., p, c be cotiuously exteded to G the the probbility mesures P Z d P W, geerted o CG) by the sheets Z d W, respectively, re equivlet d the Rdo-Nikodym derivtive of P Z with respect to P W equls { dp Z Z) = exp m dp W 2 Am 2ζ m )},

5 Prmeter estimtio i lier regressio drive by Wieer sheet 7 where A := A k,l ) p k,l=, m := m,..., m p ) d ζ := ζ,..., ζ p ) with A k,l := g k b, γ,2 b ) ) g l b, γ,2 b ) ) b γ,2 b ) [ gk s, γ,2 s) ) s g k s, γ,2 s) )][ g l s, γ,2 s) ) s g l s, γ,2 s) )] d b c b g k s, γ s) ) g l s, γ s) ) γ,2) γ,2b ) γ s) s 2 γ,2 s) ds 2 g k γ,2 t), t) 2 g l γ,2 t), t) γ 2b 2) γ 2) γ,2 t) dt ds 2.2) 2 g k γ 2 t), t) 2 g l γ 2 t), t) γ2 t) dt G 2 g k s, t) 2 g l s, t)ds dt, ζ k := g k b, γ,2 b ) ) Z b, γ,2 b ) ) c g k s, γ s) ) Z ds, γ s) ) 2.3) b γ,2 b ) γ s) b b [ gk s, γ,2 s) ) s g k s, γ,2 s) )] [Z s 2 s, γ,2 s) ) ds sz ds, γ,2 s) )] γ,2 s) γ 2b 2) γ 2) 2 g k γ 2 t), t) γ2 t) Z γ2 t), dt) 2 g k s, t) Zds, dt). G γ,2) γ,2b ) 2 g k γ,2 t), t) γ,2 t) Z γ,2 t), dt) If deta) 0 the the mximum likelihood estimtor of the prmeter vector m bsed o the observtios {Zs, t) : s, t) G} hs the form m = A ζ d hs p-dimesiol orml distributio with me m d covrice mtrix A. Remrk 2.2. Observe tht ll six terms of mtrix A re o-egtive defiite mtrices, so A is o-egtive defiite, too. Hece, to esure deta) 0 it suffices to hve t lest oe positive defiite mog the terms, which fulfils e.g. if g,..., g p re lierly idepedet. Remrk 2.3. We remrk tht the weighted L 2 -Riem itegrls of prtil derivtives of the Wieer sheet d of other L 2 -processes) log curve re defied i the sese of [5, Defiitio 4.]. This mes tht if Z is L 2 -process give log ε-eighborhood of curve Γ := { s, γs)) : s [, b] }, where γ : [, b] R is

6 8 S. Br, K. Sikoly strictly mootoe d y : [, b] R is fuctio, the b ys) Zds, γs)) := l.i.m. h 0 b ys) [ Zs h, γs)) Zs, γs)) ] ds, h γb) γb) yγ t)) Zγ t), dt) := l.i.m. yγ t)) [ Zγ t), t h) Zγ t), t) ] dt, h 0 h γ) if the right hd sides exist. Exmple 2.4. Cosider the model γ) Zs, t) = m s 2 t 2 ) m 2 s t) m 3 s t) W s, t), s, t) G, where W s, t), s, t) [u r, u r] [v r, v r] is stdrd Wieer sheet d G is circle with ceter t u, v) d rdius r. Thus γ,2 s) = v r 2 s u) 2, γ s) = v r 2 s u) 2, γ 2 s) = v r 2 s u) 2, γ 0 s) = v r 2 s u) 2, s [u r, u], s [u, u r], s [u r, u], s [u, u r], γ,2 t) = u r 2 t v) 2, t [v r, v], γ 2 t) = u r 2 t v) 2, t [v, v r]. I this cse the distict elemets of the symmetric mtrix A defied by 2.2) re the followig A, = u2 v r) 2 ) 2 uv r) v 4 v r t 2 γ,2 t)dt 4 u u r vr A,2 = u2 v r) 2 )uv r) uv r) A 2,2 = 2 ur u s γ s) ds 2 u v r)2 uv r) v v v r u u r γ,2s) 2 s 2 ) 2 s 2 ds 4 γ,2 s) t 2 γ 2 t)dt, u u r γ,2s) s 2 2 ds s 2 t γ,2 t)dt 2 vr v ur γ,2 s) s 2 ds u ur u t γ 2 t)dt, γ s) ds s 2 γ s) ds

7 Prmeter estimtio i lier regressio drive by Wieer sheet 9 v v r vr γ,2 t)dt A,3 = u 2 v r) 2 2ru2v)r 2, A 2,3 = uv2r, A 3,3 = uv r) rv2u) 3πr2 4, v γ2 2.4) t)dt, while the compoets of ζ = ζ, ζ 2, ζ 3 ) defied by 2.3) re ζ = ζ 2 = u 2 v r) 2) Z b, γ,2 b ) ) v v r u u r vr v 2t γ uv r) 2 t) Z γ2 t), dt) ur u 2s γ s) Z ds, γ s) ) γ,2s) 2 s 2 )[Z s, γ,2 s) ) ds sz ds, γ,2 s) )] s 2 γ,2 s) 2t γ,2 t) Z γ,2 t), dt), u v r ) Z b, γ,2 b ) ) v v r u u r uv r) ur u γ s) Z ds, γ s) ) γ2 t) Z γ2 t), dt) 2.5) [ s 2 Z s, γ,2 s) ) ds sz ds, γ,2 s) )] vr ζ 3 = Z b, γ,2 b ) ) vr v ur u Z γ,2 t), dt) Z ds, γ s) ) G Zds, dt). v v r v Z γ2 t), dt) γ,2 t) Z γ,2 t), dt),

8 0 S. Br, K. Sikoly 3. Simultio results To illustrte the theoreticl results of [2, 3, 4, 5] d of Theorem 2. we performed computer simultios usig Mtlb 200. I order to simulte Wieer sheet W s, t), 0 s S, 0 t T, we cosidered its Krhue-Loève expsio, tht is W s, t) j,k= ω j,k 8 ) ST π2j )t π 2 )2k )2j ) si si π2k )s ), 3.) where {ω j,k : j, k } re idepedet stdrd orml rdom vribles [8]. Figure 2 shows pproximtio of the Wieer sheet with = 50. Obviously, there re other methods of simultig Wieer sheet e.g. with the help of discretiztio d usig the idepedece of icremets see e.g. [5]). However, i order to clculte our estimtors we eed method which provides us whole reliztios of the sheet Figure 2: Simultio of Wieer sheet, = 50 I ech of the followig exmples 000 idepedet smples of the drivig Wieer sheet were simulted with vryig betwee 25 d 00 d the mes of the estimtes of the prmeters d the empiricl vrices or covrice mtrices of ζ defied by.3),.4) d 2.3), respectively, were clculted. Exmple 3.. Cosider the model Zs, t) = W s, t) ms 2 t 2 ),

9 Prmeter estimtio i lier regressio drive by Wieer sheet where W s, t), s, t) G = [, 3] 2 is stdrd Wieer sheet see Specil cse ). Compoets of A d of the pproximtio of ζ c be give i the followig closed form: A = 4b3 2 b b 2 b, ζ ma 8 { ST 2 b 2 ω j,k π 2 si )2k )2j ) b j,k= 2 ) [ π2j )b si cos b π2k ) ) π2k )2 2 si si [ ) π2j )b2 cos cos π2j ) ) π2j )b2 π2j )b b 2 si b si where ζ = 2 b 2 ) Z, b ) b π2k ) 2 ) ) π2k ) π2j )b si ) ) ) π2k )2 π2k ) cos ) ] 2 si ) ) π2j )b ) ]}, 2u b Z du, b ) b 2 b ) π2k ) 2v Z, dv ). The theoreticl prmeter vlue is m = 5, while A = O Figure 3 the mes of the estimtes of the prmeter d the estimted vrices of ζ re plotted versus the level of the pproximtio 3.). I cse of = 00 we hve m = d  = Exmple 3.2. Cosider the model Zs, t) = W s, t) m, where W s, t), s, t) G, is stdrd Wieer sheet d G is set stisfyig coditios of Specil cse 2 d Γ is prt of circle with ceter t the origi, tht is γs) = r 2 s 2 with some r > 0 d with [, b] 0, r) [4, Exmple.2]. The A = r 2 r2 2 b r2 ), c = 2 b r2 b 2 r 2, c 2 = r 2 r 2 b, 2 y s, r 2 s 2 ) 0, y 2 s, r 2 s 2 ) r 2

10 2 S. Br, K. Sikoly m  Figure 3: Mes of the estimtes of m d estimted vrices of ζ i Exmple 3. for m  Figure 4: Mes of the estimtes of m d estimted vrices of ζ i Exmple 3.2 for d ζ ma j,k= ω j,k 8 ST π 2 r 2 2k )2j )

11 Prmeter estimtio i lier regressio drive by Wieer sheet 3 { ) r2 2 π2k ) π2j ) ) r si si 2 2 ) b π2k )b r2 b si π2j ) ) r si 2 b 2 2 b { ) π2k )s π2k )s r 2 s cos π2j ) ) r si 2 s 2 2 π2j ) ) π2k )s π2j ) ) } r si cos 2 s ds} 2, where ζ is defied by.4). Let prmeter vlue be m = 5 d choose =, b = 3 d r = 5 yieldig A = O Figure 4 the mes of the estimtes of the prmeter d the estimted vrices of ζ re plotted versus the level of the pproximtio 3.). I cse of = 00 we hve m = d  = m m m Figure 5: Mes of the estimtes of the compoets of m i Exmple 3.3 for Exmple 3.3. Cosider the sme model Zs, t) = m s 2 t 2 ) m 2 s t) m 3 s t) W s, t), s, t) G, s i Exmple 2.4, where W s, t), s, t) [0, 8] 2, is stdrd Wieer sheet d G is circle with ceter t 6, 6) d rdius r = 2. I this cse the etries

12 4 S. Br, K. Sikoly of the mtrix A defied by 2.4) d the pproximtio of the compoets of ζ = ζ, ζ 2, ζ 3 ) defied by 2.5) c be clculted usig umericl itegrtio, where Mtlb fuctio qud is pplied recursive dptive Simpso qudrture) Â, 335 Â, Â2,2 5.9 Â, Â3,3 50 Â2, Figure 6: Estimted covrices of ζ i Exmple 3.3 for The theoreticl prmeter vlues re m = 5, m 2 = 8 d m 3 = 3, while the theoreticl covrice mtrix of ζ equls A = O Figure 5 the mes of the estimtes of the three prmeters, while o Figure 6 the estimted covrices of ζ re plotted versus the level of the pproximtio 3.). I cse of = 00 we hve , , ) for the me d  = for the covrice mtrix.

13 Prmeter estimtio i lier regressio drive by Wieer sheet 5 Refereces [] Artó, M. 982) Lier Stochstic Systems with Costt Coefficiets. A Sttisticl Approch. Spriger-Verlg, Berli; i Russi: Nuk, Moscow, 989. [2] Artó, N. M. 997) Me estimtio of Browi sheet. Comput. Mth. Appl. 33, o. 8, [3] Br, S., Pp, G. d Zuijle, M. v. 2003) Estimtio of the me of sttiory d osttiory Orstei-Uhlebeck processes d sheets. Comput. Mth. Appl. 45, o. 4-5, [4] Br, S., Pp, G. d Zuijle, M. v. 2004) Estimtio of the me of Wieer sheet. Stt. Iferece Stoch. Process. 7, o. 3, [5] Br, S., Pp, G., Zuijle M. v. 20) Prmeter estimtio of shifted Wieer sheet. Sttistics 45, o. 4, [6] Biffis, E. d Millossovich, P. 2006) A bidimesiol pproch to mortlity risk. Decisios Eco. Fi. 29, o. 2, [7] Crter, A. V. 2006) A cotiuous Gussi pproximtio to oprmetric regressio i two dimesios. Beroulli 2, o., [8] Deheuvels, P., Peccti, G. d Yor, M. 2006) O qudrtic fuctiols of the Browi sheet d relted processes. Stochstic Process. Appl. 6, o. 3, [9] Dougls, J. F. 996) Swellig d growth of polymers, membres, d spoges. Phys. Rev. E 54, o. 3, [0] Goldstei, R. 2000) The term structure of iterest rtes s rdom field. Rev. Fic. Stud. 3, o. 2, [] Kuo, H. H. 975) Gussi Mesures i Bch Spces. Spriger-Verlg, Berli. [2] Kurod, K. d Mk, H. 987) The iterfce of the Isig model d the Browi sheet. J. Stt. Phys. 47, o. 5-6, [3] Rozov, Yu. A. 968) Gussi Ifiite-dimesiol Distributios. i Russi). Tr. Mt. Ist. Akd. Nuk SSSR, Nuk, Moscow. [4] Rozov, Yu. A. 990) Some boudry problems for geerlized rdom fields. Theor. Probb. Appl. 35, o. 4, [5] Toth, D. 2004) Addig iterior poits to existig Browi sheet lttice. Sttist. Probb. Lett. 66, o. 3,

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k.

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k. . Computtio of Fourier Series I this sectio, we compute the Fourier coefficiets, f ( x) cos( x) b si( x) d b, i the Fourier series To do this, we eed the followig result o the orthogolity of the trigoometric

More information

lecture 16: Introduction to Least Squares Approximation

lecture 16: Introduction to Least Squares Approximation 97 lecture 16: Itroductio to Lest Squres Approximtio.4 Lest squres pproximtio The miimx criterio is ituitive objective for pproximtig fuctio. However, i my cses it is more ppelig (for both computtio d

More information

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right:

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right: Week 1 Notes: 1) Riem Sum Aim: Compute Are Uder Grph Suppose we wt to fid out the re of grph, like the oe o the right: We wt to kow the re of the red re. Here re some wys to pproximte the re: We cut the

More information

Certain sufficient conditions on N, p n, q n k summability of orthogonal series

Certain sufficient conditions on N, p n, q n k summability of orthogonal series Avilble olie t www.tjs.com J. Nolier Sci. Appl. 7 014, 7 77 Reserch Article Certi sufficiet coditios o N, p, k summbility of orthogol series Xhevt Z. Krsiqi Deprtmet of Mthemtics d Iformtics, Fculty of

More information

Convergence rates of approximate sums of Riemann integrals

Convergence rates of approximate sums of Riemann integrals Jourl of Approximtio Theory 6 (9 477 49 www.elsevier.com/locte/jt Covergece rtes of pproximte sums of Riem itegrls Hiroyuki Tski Grdute School of Pure d Applied Sciece, Uiversity of Tsukub, Tsukub Ibrki

More information

1.3 Continuous Functions and Riemann Sums

1.3 Continuous Functions and Riemann Sums mth riem sums, prt 0 Cotiuous Fuctios d Riem Sums I Exmple we sw tht lim Lower() = lim Upper() for the fuctio!! f (x) = + x o [0, ] This is o ccidet It is exmple of the followig theorem THEOREM Let f be

More information

Infinite Series Sequences: terms nth term Listing Terms of a Sequence 2 n recursively defined n+1 Pattern Recognition for Sequences Ex:

Infinite Series Sequences: terms nth term Listing Terms of a Sequence 2 n recursively defined n+1 Pattern Recognition for Sequences Ex: Ifiite Series Sequeces: A sequece i defied s fuctio whose domi is the set of positive itegers. Usully it s esier to deote sequece i subscript form rther th fuctio ottio.,, 3, re the terms of the sequece

More information

Prior distributions. July 29, 2002

Prior distributions. July 29, 2002 Prior distributios Aledre Tchourbov PKI 357, UNOmh, South 67th St. Omh, NE 688-694, USA Phoe: 4554-64 E-mil: tchourb@cse.ul.edu July 9, Abstrct This documet itroduces prior distributios for the purposes

More information

King Fahd University of Petroleum & Minerals

King Fahd University of Petroleum & Minerals Kig Fhd Uiversity of Petroleum & Mierls DEPARTMENT OF MATHEMATICAL CIENCE Techicl Report eries TR 434 April 04 A Direct Proof of the Joit Momet Geertig Fuctio of mple Me d Vrice Awr H. Jorder d A. Lrdji

More information

Maximum Likelihood Estimation of Two Unknown. Parameter of Beta-Weibull Distribution. under Type II Censored Samples

Maximum Likelihood Estimation of Two Unknown. Parameter of Beta-Weibull Distribution. under Type II Censored Samples Applied Mthemticl Scieces, Vol. 6, 12, o. 48, 2369-2384 Mximum Likelihood Estimtio of Two Ukow Prmeter of Bet-Weibull Distributio uder Type II Cesored Smples M. R. Mhmoud d R. M. Mdouh Istitute of Sttisticl

More information

f(bx) dx = f dx = dx l dx f(0) log b x a + l log b a 2ɛ log b a.

f(bx) dx = f dx = dx l dx f(0) log b x a + l log b a 2ɛ log b a. Eercise 5 For y < A < B, we hve B A f fb B d = = A B A f d f d For y ɛ >, there re N > δ >, such tht d The for y < A < δ d B > N, we hve ba f d f A bb f d l By ba A A B A bb ba fb d f d = ba < m{, b}δ

More information

Convergence rates of approximate sums of Riemann integrals

Convergence rates of approximate sums of Riemann integrals Covergece rtes of pproximte sums of Riem itegrls Hiroyuki Tski Grdute School of Pure d Applied Sciece, Uiversity of Tsuku Tsuku Irki 5-857 Jp tski@mth.tsuku.c.jp Keywords : covergece rte; Riem sum; Riem

More information

Limit of a function:

Limit of a function: - Limit of fuctio: We sy tht f ( ) eists d is equl with (rel) umer L if f( ) gets s close s we wt to L if is close eough to (This defiitio c e geerlized for L y syig tht f( ) ecomes s lrge (or s lrge egtive

More information

AN INEQUALITY OF GRÜSS TYPE FOR RIEMANN-STIELTJES INTEGRAL AND APPLICATIONS FOR SPECIAL MEANS

AN INEQUALITY OF GRÜSS TYPE FOR RIEMANN-STIELTJES INTEGRAL AND APPLICATIONS FOR SPECIAL MEANS RGMIA Reserch Report Collectio, Vol., No., 998 http://sci.vut.edu.u/ rgmi/reports.html AN INEQUALITY OF GRÜSS TYPE FOR RIEMANN-STIELTJES INTEGRAL AND APPLICATIONS FOR SPECIAL MEANS S.S. DRAGOMIR AND I.

More information

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2 Mth 3, Clculus II Fil Exm Solutios. (5 poits) Use the limit defiitio of the defiite itegrl d the sum formuls to compute 3 x + x. Check your swer by usig the Fudmetl Theorem of Clculus. Solutio: The limit

More information

Chapter 7 Infinite Series

Chapter 7 Infinite Series MA Ifiite Series Asst.Prof.Dr.Supree Liswdi Chpter 7 Ifiite Series Sectio 7. Sequece A sequece c be thought of s list of umbers writte i defiite order:,,...,,... 2 The umber is clled the first term, 2

More information

n 2 + 3n + 1 4n = n2 + 3n + 1 n n 2 = n + 1

n 2 + 3n + 1 4n = n2 + 3n + 1 n n 2 = n + 1 Ifiite Series Some Tests for Divergece d Covergece Divergece Test: If lim u or if the limit does ot exist, the series diverget. + 3 + 4 + 3 EXAMPLE: Show tht the series diverges. = u = + 3 + 4 + 3 + 3

More information

Approximate Integration

Approximate Integration Study Sheet (7.7) Approimte Itegrtio I this sectio, we will ler: How to fid pproimte vlues of defiite itegrls. There re two situtios i which it is impossile to fid the ect vlue of defiite itegrl. Situtio:

More information

Approximations of Definite Integrals

Approximations of Definite Integrals Approximtios of Defiite Itegrls So fr we hve relied o tiderivtives to evlute res uder curves, work doe by vrible force, volumes of revolutio, etc. More precisely, wheever we hve hd to evlute defiite itegrl

More information

MAS221 Analysis, Semester 2 Exercises

MAS221 Analysis, Semester 2 Exercises MAS22 Alysis, Semester 2 Exercises Srh Whitehouse (Exercises lbelled * my be more demdig.) Chpter Problems: Revisio Questio () Stte the defiitio of covergece of sequece of rel umbers, ( ), to limit. (b)

More information

3.7 The Lebesgue integral

3.7 The Lebesgue integral 3 Mesure d Itegrtio The f is simple fuctio d positive wheever f is positive (the ltter follows from the fct tht i this cse f 1 [B,k ] = for ll k, ). Moreover, f (x) f (x). Ideed, if x, the there exists

More information

Numerical Solution of Fuzzy Fredholm Integral Equations of the Second Kind using Bernstein Polynomials

Numerical Solution of Fuzzy Fredholm Integral Equations of the Second Kind using Bernstein Polynomials Jourl of Al-Nhri Uiversity Vol.5 (), Mrch,, pp.-9 Sciece Numericl Solutio of Fuzzy Fredholm Itegrl Equtios of the Secod Kid usig Berstei Polyomils Srmd A. Altie Deprtmet of Computer Egieerig d Iformtio

More information

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J.

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J. Probbility d Stochstic Processes: A Friedly Itroductio for Electricl d Computer Egieers Roy D. Ytes d Dvid J. Goodm Problem Solutios : Ytes d Goodm,4..4 4..4 4..7 4.4. 4.4. 4..6 4.6.8 4.6.9 4.7.4 4.7.

More information

Schrödinger Equation Via Laplace-Beltrami Operator

Schrödinger Equation Via Laplace-Beltrami Operator IOSR Jourl of Mthemtics (IOSR-JM) e-issn: 78-578, p-issn: 39-765X. Volume 3, Issue 6 Ver. III (Nov. - Dec. 7), PP 9-95 www.iosrjourls.org Schrödiger Equtio Vi Lplce-Beltrmi Opertor Esi İ Eskitşçioğlu,

More information

Definite Integral. The Left and Right Sums

Definite Integral. The Left and Right Sums Clculus Li Vs Defiite Itegrl. The Left d Right Sums The defiite itegrl rises from the questio of fidig the re betwee give curve d x-xis o itervl. The re uder curve c be esily clculted if the curve is give

More information

Sequence and Series of Functions

Sequence and Series of Functions 6 Sequece d Series of Fuctios 6. Sequece of Fuctios 6.. Poitwise Covergece d Uiform Covergece Let J be itervl i R. Defiitio 6. For ech N, suppose fuctio f : J R is give. The we sy tht sequece (f ) of fuctios

More information

is continuous at x 2 and g(x) 2. Oil spilled from a ruptured tanker spreads in a circle whose area increases at a

is continuous at x 2 and g(x) 2. Oil spilled from a ruptured tanker spreads in a circle whose area increases at a . Cosider two fuctios f () d g () defied o itervl I cotiig. f () is cotiuous t d g() is discotiuous t. Which of the followig is true bout fuctios f g d f g, the sum d the product of f d g, respectively?

More information

BRAIN TEASURES INDEFINITE INTEGRATION+DEFINITE INTEGRATION EXERCISE I

BRAIN TEASURES INDEFINITE INTEGRATION+DEFINITE INTEGRATION EXERCISE I EXERCISE I t Q. d Q. 6 6 cos si Q. Q.6 d d Q. d Q. Itegrte cos t d by the substitutio z = + e d e Q.7 cos. l cos si d d Q. cos si si si si b cos Q.9 d Q. si b cos Q. si( ) si( ) d ( ) Q. d cot d d Q. (si

More information

POWER SERIES R. E. SHOWALTER

POWER SERIES R. E. SHOWALTER POWER SERIES R. E. SHOWALTER. sequeces We deote by lim = tht the limit of the sequece { } is the umber. By this we me tht for y ε > 0 there is iteger N such tht < ε for ll itegers N. This mkes precise

More information

Inference on One Population Mean Hypothesis Testing

Inference on One Population Mean Hypothesis Testing Iferece o Oe Popultio Me ypothesis Testig Scerio 1. Whe the popultio is orml, d the popultio vrice is kow i. i. d. Dt : X 1, X,, X ~ N(, ypothesis test, for istce: Exmple: : : : : : 5'7" (ull hypothesis:

More information

INFINITE SERIES. ,... having infinite number of terms is called infinite sequence and its indicated sum, i.e., a 1

INFINITE SERIES. ,... having infinite number of terms is called infinite sequence and its indicated sum, i.e., a 1 Appedix A.. Itroductio As discussed i the Chpter 9 o Sequeces d Series, sequece,,...,,... hvig ifiite umber of terms is clled ifiite sequece d its idicted sum, i.e., + + +... + +... is clled ifite series

More information

Statistics for Financial Engineering Session 1: Linear Algebra Review March 18 th, 2006

Statistics for Financial Engineering Session 1: Linear Algebra Review March 18 th, 2006 Sttistics for Ficil Egieerig Sessio : Lier Algebr Review rch 8 th, 6 Topics Itroductio to trices trix opertios Determits d Crmer s rule Eigevlues d Eigevectors Quiz The cotet of Sessio my be fmilir to

More information

Crushed Notes on MATH132: Calculus

Crushed Notes on MATH132: Calculus Mth 13, Fll 011 Siyg Yg s Outlie Crushed Notes o MATH13: Clculus The otes elow re crushed d my ot e ect This is oly my ow cocise overview of the clss mterils The otes I put elow should ot e used to justify

More information

Important Facts You Need To Know/Review:

Important Facts You Need To Know/Review: Importt Fcts You Need To Kow/Review: Clculus: If fuctio is cotiuous o itervl I, the its grph is coected o I If f is cotiuous, d lim g Emple: lim eists, the lim lim f g f g d lim cos cos lim 3 si lim, t

More information

Chapter System of Equations

Chapter System of Equations hpter 4.5 System of Equtios After redig th chpter, you should be ble to:. setup simulteous lier equtios i mtrix form d vice-vers,. uderstd the cocept of the iverse of mtrix, 3. kow the differece betwee

More information

( ) dx ; f ( x ) is height and Δx is

( ) dx ; f ( x ) is height and Δx is Mth : 6.3 Defiite Itegrls from Riem Sums We just sw tht the exct re ouded y cotiuous fuctio f d the x xis o the itervl x, ws give s A = lim A exct RAM, where is the umer of rectgles i the Rectgulr Approximtio

More information

General properties of definite integrals

General properties of definite integrals Roerto s Notes o Itegrl Clculus Chpter 4: Defiite itegrls d the FTC Sectio Geerl properties of defiite itegrls Wht you eed to kow lredy: Wht defiite Riem itegrl is. Wht you c ler here: Some key properties

More information

The Reimann Integral is a formal limit definition of a definite integral

The Reimann Integral is a formal limit definition of a definite integral MATH 136 The Reim Itegrl The Reim Itegrl is forml limit defiitio of defiite itegrl cotiuous fuctio f. The costructio is s follows: f ( x) dx for Reim Itegrl: Prtitio [, ] ito suitervls ech hvig the equl

More information

Math 2414 Activity 17 (Due with Final Exam) Determine convergence or divergence of the following alternating series: a 3 5 2n 1 2n 1

Math 2414 Activity 17 (Due with Final Exam) Determine convergence or divergence of the following alternating series: a 3 5 2n 1 2n 1 Mth 44 Activity 7 (Due with Fil Exm) Determie covergece or divergece of the followig ltertig series: l 4 5 6 4 7 8 4 {Hit: Loo t 4 } {Hit: } 5 {Hit: AST or just chec out the prtil sums} {Hit: AST or just

More information

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i Mth 06 Clculus Sec. 5.: The Defiite Itegrl I. Riem Sums A. Def : Give y=f(x):. Let f e defied o closed itervl[,].. Prtitio [,] ito suitervls[x (i-),x i ] of legth Δx i = x i -x (i-). Let P deote the prtitio

More information

We will begin by supplying the proof to (a).

We will begin by supplying the proof to (a). (The solutios of problem re mostly from Jeffrey Mudrock s HWs) Problem 1. There re three sttemet from Exmple 5.4 i the textbook for which we will supply proofs. The sttemets re the followig: () The spce

More information

Course 121, , Test III (JF Hilary Term)

Course 121, , Test III (JF Hilary Term) Course 2, 989 9, Test III (JF Hilry Term) Fridy 2d Februry 99, 3. 4.3pm Aswer y THREE questios. Let f: R R d g: R R be differetible fuctios o R. Stte the Product Rule d the Quotiet Rule for differetitig

More information

UNIVERSITY OF BRISTOL. Examination for the Degrees of B.Sc. and M.Sci. (Level C/4) ANALYSIS 1B, SOLUTIONS MATH (Paper Code MATH-10006)

UNIVERSITY OF BRISTOL. Examination for the Degrees of B.Sc. and M.Sci. (Level C/4) ANALYSIS 1B, SOLUTIONS MATH (Paper Code MATH-10006) UNIVERSITY OF BRISTOL Exmitio for the Degrees of B.Sc. d M.Sci. (Level C/4) ANALYSIS B, SOLUTIONS MATH 6 (Pper Code MATH-6) My/Jue 25, hours 3 miutes This pper cotis two sectios, A d B. Plese use seprte

More information

Handout #2. Introduction to Matrix: Matrix operations & Geometric meaning

Handout #2. Introduction to Matrix: Matrix operations & Geometric meaning Hdout # Title: FAE Course: Eco 8/ Sprig/5 Istructor: Dr I-Mig Chiu Itroductio to Mtrix: Mtrix opertios & Geometric meig Mtrix: rectgulr rry of umers eclosed i pretheses or squre rckets It is covetiolly

More information

Quadrature Methods for Numerical Integration

Quadrature Methods for Numerical Integration Qudrture Methods for Numericl Itegrtio Toy Sd Istitute for Cle d Secure Eergy Uiversity of Uth April 11, 2011 1 The Need for Numericl Itegrtio Nuemricl itegrtio ims t pproximtig defiite itegrls usig umericl

More information

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018 DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS Assoc. Prof. Dr. Bur Kelleci Sprig 8 OUTLINE The Z-Trsform The Regio of covergece for the Z-trsform The Iverse Z-Trsform Geometric

More information

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx),

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx), FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES To -periodic fuctio f() we will ssocite trigoometric series + cos() + b si(), or i terms of the epoetil e i, series of the form c e i. Z For most of the

More information

Double Sums of Binomial Coefficients

Double Sums of Binomial Coefficients Itertiol Mthemticl Forum, 3, 008, o. 3, 50-5 Double Sums of Biomil Coefficiets Athoy Sofo School of Computer Sciece d Mthemtics Victori Uiversity, PO Box 448 Melboure, VIC 800, Austrli thoy.sofo@vu.edu.u

More information

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS) Mthemtics Revisio Guides Itegrtig Trig, Log d Ep Fuctios Pge of MK HOME TUITION Mthemtics Revisio Guides Level: AS / A Level AQA : C Edecel: C OCR: C OCR MEI: C INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

More information

Abel Resummation, Regularization, Renormalization & Infinite Series

Abel Resummation, Regularization, Renormalization & Infinite Series Prespcetime Jourl August 3 Volume 4 Issue 7 pp. 68-689 Moret, J. J. G., Abel Resummtio, Regulriztio, Reormliztio & Ifiite Series Abel Resummtio, Regulriztio, Reormliztio & Ifiite Series 68 Article Jose

More information

SOME SHARP OSTROWSKI-GRÜSS TYPE INEQUALITIES

SOME SHARP OSTROWSKI-GRÜSS TYPE INEQUALITIES Uiv. Beogrd. Publ. Elektroteh. Fk. Ser. Mt. 8 006 4. Avilble electroiclly t http: //pefmth.etf.bg.c.yu SOME SHARP OSTROWSKI-GRÜSS TYPE INEQUALITIES Zheg Liu Usig vrit of Grüss iequlity to give ew proof

More information

: : 8.2. Test About a Population Mean. STT 351 Hypotheses Testing Case I: A Normal Population with Known. - null hypothesis states 0

: : 8.2. Test About a Population Mean. STT 351 Hypotheses Testing Case I: A Normal Population with Known. - null hypothesis states 0 8.2. Test About Popultio Me. Cse I: A Norml Popultio with Kow. H - ull hypothesis sttes. X1, X 2,..., X - rdom smple of size from the orml popultio. The the smple me X N, / X X Whe H is true. X 8.2.1.

More information

Linear Programming. Preliminaries

Linear Programming. Preliminaries Lier Progrmmig Prelimiries Optimiztio ethods: 3L Objectives To itroduce lier progrmmig problems (LPP To discuss the stdrd d coicl form of LPP To discuss elemetry opertio for lier set of equtios Optimiztio

More information

MATH 104 FINAL SOLUTIONS. 1. (2 points each) Mark each of the following as True or False. No justification is required. y n = x 1 + x x n n

MATH 104 FINAL SOLUTIONS. 1. (2 points each) Mark each of the following as True or False. No justification is required. y n = x 1 + x x n n MATH 04 FINAL SOLUTIONS. ( poits ech) Mrk ech of the followig s True or Flse. No justifictio is required. ) A ubouded sequece c hve o Cuchy subsequece. Flse b) A ifiite uio of Dedekid cuts is Dedekid cut.

More information

Notes 17 Sturm-Liouville Theory

Notes 17 Sturm-Liouville Theory ECE 638 Fll 017 Dvid R. Jckso Notes 17 Sturm-Liouville Theory Notes re from D. R. Wilto, Dept. of ECE 1 Secod-Order Lier Differetil Equtios (SOLDE) A SOLDE hs the form d y dy 0 1 p ( x) + p ( x) + p (

More information

[ 20 ] 1. Inequality exists only between two real numbers (not complex numbers). 2. If a be any real number then one and only one of there hold.

[ 20 ] 1. Inequality exists only between two real numbers (not complex numbers). 2. If a be any real number then one and only one of there hold. [ 0 ]. Iequlity eists oly betwee two rel umbers (ot comple umbers).. If be y rel umber the oe d oly oe of there hold.. If, b 0 the b 0, b 0.. (i) b if b 0 (ii) (iii) (iv) b if b b if either b or b b if

More information

(1 q an+b ). n=0. n=0

(1 q an+b ). n=0. n=0 AN ELEMENTARY DERIVATION OF THE ASYMPTOTICS OF PARTITION FUNCTIONS Diel M Ke Abstrct Let S,b { + b : 0} where is iteger Let P,b deote the umber of prtitios of ito elemets of S,b I prticulr, we hve the

More information

Power Series Solutions to Generalized Abel Integral Equations

Power Series Solutions to Generalized Abel Integral Equations Itertiol Jourl of Mthemtics d Computtiol Sciece Vol., No. 5, 5, pp. 5-54 http://www.isciece.org/jourl/ijmcs Power Series Solutios to Geerlized Abel Itegrl Equtios Rufi Abdulli * Deprtmet of Physics d Mthemtics,

More information

Remarks: (a) The Dirac delta is the function zero on the domain R {0}.

Remarks: (a) The Dirac delta is the function zero on the domain R {0}. Sectio Objective(s): The Dirc s Delt. Mi Properties. Applictios. The Impulse Respose Fuctio. 4.4.. The Dirc Delt. 4.4. Geerlized Sources Defiitio 4.4.. The Dirc delt geerlized fuctio is the limit δ(t)

More information

A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD

A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD Diol Bgoo () A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD I. Itroductio The first seprtio of vribles (see pplictios to Newto s equtios) is ver useful method

More information

Variational Iteration Method for Solving Volterra and Fredholm Integral Equations of the Second Kind

Variational Iteration Method for Solving Volterra and Fredholm Integral Equations of the Second Kind Ge. Mth. Notes, Vol. 2, No. 1, Jury 211, pp. 143-148 ISSN 2219-7184; Copyright ICSRS Publictio, 211 www.i-csrs.org Avilble free olie t http://www.gem.i Vritiol Itertio Method for Solvig Volterr d Fredholm

More information

Review of the Riemann Integral

Review of the Riemann Integral Chpter 1 Review of the Riem Itegrl This chpter provides quick review of the bsic properties of the Riem itegrl. 1.0 Itegrls d Riem Sums Defiitio 1.0.1. Let [, b] be fiite, closed itervl. A prtitio P of

More information

Particle in a Box. and the state function is. In this case, the Hermitian operator. The b.c. restrict us to 0 x a. x A sin for 0 x a, and 0 otherwise

Particle in a Box. and the state function is. In this case, the Hermitian operator. The b.c. restrict us to 0 x a. x A sin for 0 x a, and 0 otherwise Prticle i Box We must hve me where = 1,,3 Solvig for E, π h E = = where = 1,,3, m 8m d the stte fuctio is x A si for 0 x, d 0 otherwise x ˆ d KE V. m dx I this cse, the Hermiti opertor 0iside the box The

More information

Students must always use correct mathematical notation, not calculator notation. the set of positive integers and zero, {0,1, 2, 3,...

Students must always use correct mathematical notation, not calculator notation. the set of positive integers and zero, {0,1, 2, 3,... Appedices Of the vrious ottios i use, the IB hs chose to dopt system of ottio bsed o the recommedtios of the Itertiol Orgiztio for Stdrdiztio (ISO). This ottio is used i the emitio ppers for this course

More information

Review of Sections

Review of Sections Review of Sectios.-.6 Mrch 24, 204 Abstrct This is the set of otes tht reviews the mi ides from Chpter coverig sequeces d series. The specific sectios tht we covered re s follows:.: Sequces..2: Series,

More information

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best Tylor Polyomils Let f () = e d let p() = 1 + + 1 + 1 6 3 Without usig clcultor, evlute f (1) d p(1) Ok, I m still witig With little effort it is possible to evlute p(1) = 1 + 1 + 1 (144) + 6 1 (178) =

More information

Background 1. Cramer-Rao inequality

Background 1. Cramer-Rao inequality Bro-06, Lecture, 60506 D/Stt/Bro-06/tex wwwmstqueesuc/ blevit/ Observtio vector, dt: Bckgroud Crmer-Ro iequlity X (X,, X X R Here dt c be rel- or vector vlued, compoets of the dt c be idepedet or depedet,

More information

f(t)dt 2δ f(x) f(t)dt 0 and b f(t)dt = 0 gives F (b) = 0. Since F is increasing, this means that

f(t)dt 2δ f(x) f(t)dt 0 and b f(t)dt = 0 gives F (b) = 0. Since F is increasing, this means that Uiversity of Illiois t Ur-Chmpig Fll 6 Mth 444 Group E3 Itegrtio : correctio of the exercises.. ( Assume tht f : [, ] R is cotiuous fuctio such tht f(x for ll x (,, d f(tdt =. Show tht f(x = for ll x [,

More information

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Mtemtisk sttistik TENTAMEN I SF94 SANNOLIKHETSTEORI/EAM IN SF94 PROBABILITY THE- ORY WEDNESDAY 8th OCTOBER 5, 8-3 hrs Exmitor : Timo Koski, tel. 7 3747, emil: tjtkoski@kth.se Tillåt hjälpmedel Mes

More information

Options: Calculus. O C.1 PG #2, 3b, 4, 5ace O C.2 PG.24 #1 O D PG.28 #2, 3, 4, 5, 7 O E PG #1, 3, 4, 5 O F PG.

Options: Calculus. O C.1 PG #2, 3b, 4, 5ace O C.2 PG.24 #1 O D PG.28 #2, 3, 4, 5, 7 O E PG #1, 3, 4, 5 O F PG. O C. PG.-3 #, 3b, 4, 5ce O C. PG.4 # Optios: Clculus O D PG.8 #, 3, 4, 5, 7 O E PG.3-33 #, 3, 4, 5 O F PG.36-37 #, 3 O G. PG.4 #c, 3c O G. PG.43 #, O H PG.49 #, 4, 5, 6, 7, 8, 9, 0 O I. PG.53-54 #5, 8

More information

=> PARALLEL INTERCONNECTION. Basic Properties LTI Systems. The Commutative Property. Convolution. The Commutative Property. The Distributive Property

=> PARALLEL INTERCONNECTION. Basic Properties LTI Systems. The Commutative Property. Convolution. The Commutative Property. The Distributive Property Lier Time-Ivrit Bsic Properties LTI The Commuttive Property The Distributive Property The Associtive Property Ti -6.4 / Chpter Covolutio y ] x ] ] x ]* ] x ] ] y] y ( t ) + x( τ ) h( t τ ) dτ x( t) * h(

More information

The Definite Integral

The Definite Integral The Defiite Itegrl A Riem sum R S (f) is pproximtio to the re uder fuctio f. The true re uder the fuctio is obtied by tkig the it of better d better pproximtios to the re uder f. Here is the forml defiitio,

More information

Green s Function Approach to Solve a Nonlinear Second Order Four Point Directional Boundary Value Problem

Green s Function Approach to Solve a Nonlinear Second Order Four Point Directional Boundary Value Problem IOSR Jourl of Mthemtics (IOSR-JM) e-issn: 78-578, p-issn: 39-765X. Volume 3, Issue 3 Ver. IV (My - Jue 7), PP -8 www.iosrjourls.org Gree s Fuctio Approch to Solve Nolier Secod Order Four Poit Directiol

More information

Introduction to mathematical Statistics

Introduction to mathematical Statistics More ttistics tutoril t wwwdumblittledoctorcom Itroductio to mthemticl ttistics Chpter 7 ypothesis Testig Exmple (ull hypothesis) : the verge height is 5 8 or more ( : μ 5'8" ) (ltertive hypothesis) :

More information

Second Mean Value Theorem for Integrals By Ng Tze Beng. The Second Mean Value Theorem for Integrals (SMVT) Statement of the Theorem

Second Mean Value Theorem for Integrals By Ng Tze Beng. The Second Mean Value Theorem for Integrals (SMVT) Statement of the Theorem Secod Me Vlue Theorem for Itegrls By Ng Tze Beg This rticle is out the Secod Me Vlue Theorem for Itegrls. This theorem, first proved y Hoso i its most geerlity d with extesio y ixo, is very useful d lmost

More information

1 Tangent Line Problem

1 Tangent Line Problem October 9, 018 MAT18 Week Justi Ko 1 Tget Lie Problem Questio: Give the grph of fuctio f, wht is the slope of the curve t the poit, f? Our strteg is to pproimte the slope b limit of sect lies betwee poits,

More information

EVALUATING DEFINITE INTEGRALS

EVALUATING DEFINITE INTEGRALS Chpter 4 EVALUATING DEFINITE INTEGRALS If the defiite itegrl represets re betwee curve d the x-xis, d if you c fid the re by recogizig the shpe of the regio, the you c evlute the defiite itegrl. Those

More information

Fig. 1. I a. V ag I c. I n. V cg. Z n Z Y. I b. V bg

Fig. 1. I a. V ag I c. I n. V cg. Z n Z Y. I b. V bg ymmetricl Compoets equece impedces Although the followig focuses o lods, the results pply eqully well to lies, or lies d lods. Red these otes together with sectios.6 d.9 of text. Cosider the -coected lced

More information

5.1 - Areas and Distances

5.1 - Areas and Distances Mth 3B Midterm Review Writte by Victori Kl vtkl@mth.ucsb.edu SH 63u Office Hours: R 9:5 - :5m The midterm will cover the sectios for which you hve received homework d feedbck Sectios.9-6.5 i your book.

More information

COMPOSITE TRAPEZOID RULE FOR THE RIEMANN-STIELTJES INTEGRAL AND ITS RICHARDSON EXTRAPOLATION FORMULA

COMPOSITE TRAPEZOID RULE FOR THE RIEMANN-STIELTJES INTEGRAL AND ITS RICHARDSON EXTRAPOLATION FORMULA itli jourl of pure d pplied mthemtics. 5 015 (11 18) 11 COMPOSITE TRAPEZOID RULE FOR THE RIEMANN-STIELTJES INTEGRAL AND ITS RICHARDSON EXTRAPOLATION FORMULA Weijig Zho 1 College of Air Trffic Mgemet Civil

More information

F x = 2x λy 2 z 3 = 0 (1) F y = 2y λ2xyz 3 = 0 (2) F z = 2z λ3xy 2 z 2 = 0 (3) F λ = (xy 2 z 3 2) = 0. (4) 2z 3xy 2 z 2. 2x y 2 z 3 = 2y 2xyz 3 = ) 2

F x = 2x λy 2 z 3 = 0 (1) F y = 2y λ2xyz 3 = 0 (2) F z = 2z λ3xy 2 z 2 = 0 (3) F λ = (xy 2 z 3 2) = 0. (4) 2z 3xy 2 z 2. 2x y 2 z 3 = 2y 2xyz 3 = ) 2 0 微甲 07- 班期中考解答和評分標準 5%) Fid the poits o the surfce xy z = tht re closest to the origi d lso the shortest distce betwee the surfce d the origi Solutio Cosider the Lgrge fuctio F x, y, z, λ) = x + y + z

More information

Uncertainty Analysis for Uncorrelated Input Quantities and a Generalization

Uncertainty Analysis for Uncorrelated Input Quantities and a Generalization WHITE PAPER Ucertity Alysis for Ucorrelted Iput Qutities d Geerliztio Welch-Stterthwite Formul Abstrct The Guide to the Expressio of Ucertity i Mesuremet (GUM) hs bee widely dopted i the differet fields

More information

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2!

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2! mth power series, prt ii 7 A Very Iterestig Emple Oe of the first power series we emied ws! + +! + + +!! + I Emple 58 we used the rtio test to show tht the itervl of covergece ws (, ) Sice the series coverges

More information

Probability for mathematicians INDEPENDENCE TAU

Probability for mathematicians INDEPENDENCE TAU Probbility for mthemticis INDEPENDENCE TAU 2013 21 Cotets 2 Cetrl limit theorem 21 2 Itroductio............................ 21 2b Covolutio............................ 22 2c The iitil distributio does

More information

Numerical Solutions of Fredholm Integral Equations Using Bernstein Polynomials

Numerical Solutions of Fredholm Integral Equations Using Bernstein Polynomials Numericl Solutios of Fredholm Itegrl Equtios Usig erstei Polyomils A. Shiri, M. S. Islm Istitute of Nturl Scieces, Uited Itertiol Uiversity, Dhk-, gldesh Deprtmet of Mthemtics, Uiversity of Dhk, Dhk-,

More information

2. Infinite Series 3. Power Series 4. Taylor Series 5. Review Questions and Exercises 6. Sequences and Series with Maple

2. Infinite Series 3. Power Series 4. Taylor Series 5. Review Questions and Exercises 6. Sequences and Series with Maple Chpter II CALCULUS II.4 Sequeces d Series II.4 SEQUENCES AND SERIES Objectives: After the completio of this sectio the studet - should recll the defiitios of the covergece of sequece, d some limits; -

More information

Closed Newton-Cotes Integration

Closed Newton-Cotes Integration Closed Newto-Cotes Itegrtio Jmes Keeslig This documet will discuss Newto-Cotes Itegrtio. Other methods of umericl itegrtio will be discussed i other posts. The other methods will iclude the Trpezoidl Rule,

More information

Chapter 10. U-statistics Statistical Functionals and V-Statistics

Chapter 10. U-statistics Statistical Functionals and V-Statistics , respectively. Chpter 0 U-sttistics Whe oe is willig to ssume the existece of simple rdom smple X,...,X, U- sttistics geerlize commo otios of ubised estimtio such s the smple me d the ubised smple vrice

More information

Numerical Integration by using Straight Line Interpolation Formula

Numerical Integration by using Straight Line Interpolation Formula Glol Jourl of Pure d Applied Mthemtics. ISSN 0973-1768 Volume 13, Numer 6 (2017), pp. 2123-2132 Reserch Idi Pulictios http://www.ripulictio.com Numericl Itegrtio y usig Stright Lie Iterpoltio Formul Mhesh

More information

Angle of incidence estimation for converted-waves

Angle of incidence estimation for converted-waves Agle of icidece estimtio for coverted-wves Crlos E. Nieto d Robert R. tewrt Agle of icidece estimtio ABTRACT Amplitude-versus-gle AA lysis represets li betwee te geologicl properties of roc iterfces d

More information

Auto-correlation. Window Selection: Hamming. Hamming Filtered Power Spectrum. White Noise Auto-Covariance vs. Hamming Filtered Noise

Auto-correlation. Window Selection: Hamming. Hamming Filtered Power Spectrum. White Noise Auto-Covariance vs. Hamming Filtered Noise Correltio d Spectrl Alsis Applictio 4 Review of covrice idepedece cov cov with vrice : ew rdom vrile forms. d For idepedet rdom vriles - Autocorreltio Autocovrice cptures covrice where I geerl. for oise

More information

MTH 146 Class 16 Notes

MTH 146 Class 16 Notes MTH 46 Clss 6 Notes 0.4- Cotiued Motivtio: We ow cosider the rc legth of polr curve. Suppose we wish to fid the legth of polr curve curve i terms of prmetric equtios s: r f where b. We c view the cos si

More information

( ) k ( ) 1 T n 1 x = xk. Geometric series obtained directly from the definition. = 1 1 x. See also Scalars 9.1 ADV-1: lim n.

( ) k ( ) 1 T n 1 x = xk. Geometric series obtained directly from the definition. = 1 1 x. See also Scalars 9.1 ADV-1: lim n. Sclrs-9.0-ADV- Algebric Tricks d Where Tylor Polyomils Come From 207.04.07 A.docx Pge of Algebric tricks ivolvig x. You c use lgebric tricks to simplify workig with the Tylor polyomils of certi fuctios..

More information

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Lecture 17

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Lecture 17 CS 70 Discrete Mthemtics d Proility Theory Sprig 206 Ro d Wlrd Lecture 7 Vrice We hve see i the previous ote tht if we toss coi times with is p, the the expected umer of heds is p. Wht this mes is tht

More information

Riemann Integration. Chapter 1

Riemann Integration. Chapter 1 Mesure, Itegrtio & Rel Alysis. Prelimiry editio. 8 July 2018. 2018 Sheldo Axler 1 Chpter 1 Riem Itegrtio This chpter reviews Riem itegrtio. Riem itegrtio uses rectgles to pproximte res uder grphs. This

More information

CHAPTER 6: USING MULTIPLE REGRESSION

CHAPTER 6: USING MULTIPLE REGRESSION CHAPTER 6: USING MULTIPLE REGRESSION There re my situtios i which oe wts to predict the vlue the depedet vrible from the vlue of oe or more idepedet vribles. Typiclly: idepedet vribles re esily mesurble

More information

Section IV.6: The Master Method and Applications

Section IV.6: The Master Method and Applications Sectio IV.6: The Mster Method d Applictios Defiitio IV.6.1: A fuctio f is symptoticlly positive if d oly if there exists rel umer such tht f(x) > for ll x >. A cosequece of this defiitio is tht fuctio

More information

Content: Essential Calculus, Early Transcendentals, James Stewart, 2007 Chapter 1: Functions and Limits., in a set B.

Content: Essential Calculus, Early Transcendentals, James Stewart, 2007 Chapter 1: Functions and Limits., in a set B. Review Sheet: Chpter Cotet: Essetil Clculus, Erly Trscedetls, Jmes Stewrt, 007 Chpter : Fuctios d Limits Cocepts, Defiitios, Lws, Theorems: A fuctio, f, is rule tht ssigs to ech elemet i set A ectly oe

More information

Exponential and Logarithmic Functions (4.1, 4.2, 4.4, 4.6)

Exponential and Logarithmic Functions (4.1, 4.2, 4.4, 4.6) WQ017 MAT16B Lecture : Mrch 8, 017 Aoucemets W -4p Wellm 115-4p Wellm 115 Q4 ue F T 3/1 10:30-1:30 FINAL Expoetil Logrithmic Fuctios (4.1, 4., 4.4, 4.6) Properties of Expoets Let b be positive rel umbers.

More information

Graphing Review Part 3: Polynomials

Graphing Review Part 3: Polynomials Grphig Review Prt : Polomils Prbols Recll, tht the grph of f ( ) is prbol. It is eve fuctio, hece it is smmetric bout the bout the -is. This mes tht f ( ) f ( ). Its grph is show below. The poit ( 0,0)

More information