ON SOME IMPROPERLY POSED PROBLEMS FOR QUASILINEAR EQUATIONS OF MIXED TYPEC)

Size: px
Start display at page:

Download "ON SOME IMPROPERLY POSED PROBLEMS FOR QUASILINEAR EQUATIONS OF MIXED TYPEC)"

Transcription

1 ON SOME IMPROPERLY POSED PROBLEMS FOR QUASILINEAR EQUATIONS OF MIXED TYPEC) BV L. E. PAYNE AND D. SATHER 1. Introduction. In a previous paper [6] the authors considered certain improperly posed initial-boundary value problems for the Chaplygin equation 82u d2u (i.i) ^+h(y) 2 = o. ey+ky)st2 The Chaplygin equation, which arises in the study of transonic flow, is one of the simplest equations of mixed type. It was shown that with appropriate hypotheses on the function «a problem of this type could be stabilized (i.e., the solution made to depend continuously on the data) by restricting the solution to lie in the class of functions whose L2 integrals are bounded by some prescribed constant M. Similar restrictions have previously been shown (see e.g., [2], [7]) to guarantee continuous dependence in certain improperly posed problems for elliptic and parabolic equations. However, little study has up to now been devoted to improperly posed problems for equations of mixed type. For that matter one is rarely able to determine just what is a well set problem for such an equation. In this paper we demonstrate that the convexity arguments which led to stability inequalities for the Chaplygin equation [6] actually can be carried over with some modification to yield stability inequalities and error bounds in improperly posed problems for a wide class of quasilinear partial differential equations of mixed type. We shall be concerned here only with the question of obtaining such inequalities. We leave aside the difficult question of existence. The particular equation which we consider is by no means the most general one amenable to the convexity method. We restrict our attention to a relatively simple equation but one which exhibits most of the troublesome features which would appear in the more general operators. A survey of the literature on improperly posed problems will appear in a forthcoming paper by Payne [5]. In this paper we consider the following initial-boundary value problem for a cylindrical domain 2 = Z)x(0, Y), D is an arbitrary «-dimensional domain with smooth boundary D: Received by the editors July 1, O This research was supported in part by the National Science Foundation Grant No. GP 5882 with Cornell University. 135

2 136 L. E. PAYNE AND D. SATHER [July Problem A. (1.2) Lu = uyyy-(aitu_i)j-f(x, y, u, u%v) = 0 in Q, (L3) u prescribed on Ù D x [0, Y], du u, -r- prescribed on y = 0. Here (ay) is a symmetric matrix function of the variables x = (xx, x2,..., xn) and y. The matrix (ay) is not assumed to be definite or even semidefinite. The repeated index is used to designate summation from 1 to n and uii = du 8xi. The function/ is to be Lipschitz continuous in its last two arguments, i.e., (1.4) \f(x,y,ux,ux y)-f(x,y,u2,u2 y)\ ú Mx\ux-u2\+M2\ux y-u2 y\. We assume that there exists a nonnegative constant S such that the matrix (Fi;) with elements (1.5) Fy = ^ay-2(m2 + 8)ay is negative semidefinite in Q. Here A/2 is given by (1.4). We shall say that u belongs to Ji if the condition (1.6) f u2dxdy g AT2 Ja is satisfied for some prescribed constant M. In the following section we will develop a priori inequalities which for solutions u of Problem A that belong to J( may be used to obtain uniqueness, continuous dependence on the data and L2 bounds on compact subdomains of O. 2. The a priori inequalities. We derive the basic inequalities in a form which yields immediately the desired L2 bounds; by specialization, these inequalities imply also the properties of uniqueness and continuous dependence on the data. Let us approximate m by a function <p which is piecewise C2 in O, Cx in O and such that u = <p on Q. We set Qy = D x (0, y), 0 < y ^ Y, and (2.1) v = u 9. Let Í20 denote the intersection of Q. and the initial plane y = 0 and let ^ denote the functional (2.2) &(v, y) = log F(v, y) + co2, 0 < y < Y, (2.3) a = (y0+y)-a, «> 0, and F(v,y)= v2dxdr + (Y-y)\ v2dx+kx[ v2 dx (2.4) +k2 f O^i + ir'jax-l-ia f [Lpfdxdy JCl0 JC1 = f v2dxdr,+ Q2.

3 1967] SOME IMPROPERLY POSED PROBLEMS 137 Here the constants a, c, and kt in (2.2) through (2.4) are to be determined. The positive constant y0 is introduced so that o ranges over a finite interval. We note that Q in (2.4) involves only data terms of u <p and, hence, for fixed k it will be small if the data of <p approximate the data of u sufficiently well. Our a priori inequalities are a consequence of the following convexity argument. If we can show that the functional F is a convex function of a then an application of Jensen's inequality yields (2.5) er if v2dxdr] + Q2\ IeeE2 v2dxdy+q2\j {ec o2qf«-»««.-2>, (2.6) zz = (Y+y0ya and a0 = yô«. Since m is to satisfy (1.6) and <p is at our disposal we may assume without loss of generality that (2.7) f v2 dx dy = Ml In addition, since Q involves only data terms we have (2.8) Q2 = vm2o v is a computable constant. Therefore (2.9) f v2dxdr +Q2 S ec<ffo-">«'-»{(l+v)af }(<'o-''>'«'o-»ßa«7-»/(a0-s)> This last inequality yields the desired L2 bounds for u on compact subdomains of O. Let us now show that J5" is a convex function of a. We note that (2.10) F2JF" = FF" - (F')2 + 2cF2, the prime denotes differentiation with respect to a. Therefore, in order to establish the convexity of J5", it is sufficient to show that the right-hand side of (2.10) is positive. Since (2.11) F = -«-»»-"^"ï dy (2.12) F" = a-2(l+a)a-<1 + 2a)/a^+a-2a-2<1 + a>'*^ we have (2.13) -OT<1 + *F = 2 í v(x,r )v_y(x,ri)dxdr (2.14) a2a2(1 + a)/af" = 2(1 +a)alla Í w,y dx dv + 2 v2ydx d-q + 2 vvivdx +2 vv<yydxdr. JCly Jn0 JCiy

4 138 L. E. PAYNE AND D. SATHER [July The last term in (2.14) may be rewritten as (2.15) and, hence, jay vvivvdxdr)=\ v{(a,jv,t)j-l<p+f(u)-f(<p)}dxdri Jav = {-aav,ivj-vl<p+v[f(u)-f(<p)]}dxdri Jav a2ct2(i+«)/«f» = 2(1 + < )olla f wty dxdq+4 ( v2y dx dr, Jdy Jß (2.16) + 2 f {v[f(u)-f(<p)]- vdp} dxdr +2 ja Jn0 vv,y dx 2 (v^y+aijvjvj) dxdr. Jay An upper bound for the last term in (2.16) is obtained as follows. We note that for 0</<j» 0 = 2 (t ri)v,y{v,vy-(aitv^tt+l<p-[f(u)-f(9)]}dxdy = 2 f (t- r,)v,y{l<p - [/(«)-/(?)]} dx dr, + (v2y+oijvjvj) dxdrj t (v2y+atjvwivj) dx JClt Jci0 - (t-v)au.t,v.ivjdxdr. Jat Let us now assume that the constant 8 in (1.5) is positive. An application of the arithmetic-geometric mean inequality, and (1.4), (1.5), and (2.17) imply (2.18) Ä) g J0»)+2(Ma+8»(t) (2.19) J(t)=i (.t-tufâ+atfljvjdxdn, Ja, (2.20) I(y) = y \ (v2y+aitvivt)dx+2mxy\ \vv J dx dr + -r f [Up]2 dx dr,. Jn0 Jn ' 4o Ja Integrating (2.18) from 0 to y we obtain (2.21) f (v2y + aip fi t) dx dr, S 7(j)e2(M2+«". Jav

5 1967] SOME IMPROPERLY POSED PROBLEMS 139 Substituting (2.21) into (2.16) and using (1.4) we have for some computable constants bi that a2a2(1 + a)/a[ff"-(f')2] ^ 2(1 + cofa1'«f vv,y dx dt]+as2 + 4g2 f v2y dx dr (2.22) F-lbx v2 dx+b2 v2ydx + b3 vtfvtidx I Jo0 Joo J^o + bt [L<p]2 dx dy + b5 v2 dx dt] + 4b6 \vvtv\ dx drn Jo Jo Jo,, (2.23) S2 = ( f v2 dx dr ]( v2y dx dr ]-( vv,y dx dv) \Jny /\Jnv I \Jnv I Since (2.24) vvyv dx dn ^ vviv dx drn v2 dx JCly Jo JOq and (2.25) \vv,y\ dxdrj = S+\ vvtydxdn, Jciy Joy it follows from (2.22) that a2a2<1+«>'«[ff"-(f')2] ^ 2F[(l + a)c71/a-2è6] f vv y dxdr\ + (2S-b6F)2-b26F2 (2.26) r / c -FÏ [bx + 2(l +a)o1'a] v2dx + b2\ v% dx I Jo0 Ja0 + b3 VjVjdx + bi [Dp]2 dx dy + bs v2 dx do Jo0 Ja Jciy If we now choose 1 + a=2be(y+y0) then the coefficient of the first term in (2.26) is nonnegative and, hence, a2a2(i + a>/af2jf» ^ F2[2ca2(F+j0)-2(1 + a)-» ] (2.27) -f([í>i+2(1 + a)/y0] f v2dx + b2[ v2y dx + b3 vavtidx+bi [Dp]2 dxdy+bs v2 dx dr Jo0 ' JO JQy Clearly the constants klt k2, k3 in Q, and c can be chosen so that the right-hand side of (2.27) is positive. In fact for any positive kx, k2, and k3 we need only take

6 140 L. E. PAYNE AND D. SATHER [July c large enough so that the first term in (2.27) is the dominant one. Thus it is possible to choose the constants a, ku and c so that IF is a convex function of a. We have established the following result. Theorem 1. Suppose that S>0 i«(1.5) and the matrix (Bi,) is negative semidefinite. Let u satisfy (1.2), (1.3), and (1.6), and let v, a, Q, 2, o0, and M0 be defined as in (2.1), (2.3), (2.4), (2.6), and (2.7), respectively. Then there exists a computable constant K such that (2.28) f v2dxdn ^ TÍM^o-^'o-sg^-s/í'o-s), 0 < y < Y. JCiy An immediate consequence of the above discussion is Theorem 2. Suppose that the constant 8 «(1.5) is nonnegative. If the matrix (Z?y) is negative semidefinite then any solution of Problem A that is in the class Jt of functions whose L2 integrals over Q are bounded by some constant M will depend continuously in L2 on the Cauchy data. Let us remark that if, in particular, the matrix (ai;) is independent of y, 8=0 and the function fis independent of u y then (Z?i;) = 0. Moreover, the requirement on the matrix (Btj) is a "best possible" condition in the sense that one can give examples Theorem 2 does not hold when this condition fails to be satisfied [6]. Finally, the restriction S>0 in Theorem 1 can be replaced by 8^0 if one imposes additional smoothness requirements on <p (see [5], [6]). As an interesting specific application of these results we let D be the rectangular parallelepiped {0<x<X,0<y< Y,0<t<T} and consider the following Cauchy problem for the wave equation : Problem A. (2.29) mfj/1, = u tt u>xx in Q, (2.30) u prescribed on x = 0, x = X, t = 0, and t = T, (2.31) u, 7T- prescribed on y = 0. Then any solution u of Problem A' that is in the class Jt will depend continuously in L2 on the Cauchy data (compare also [1], [3], and [4]). Bibliography 1. J. R. Cannon, A Cauchy problem for the wave equation for a space-like region, Le Matematiche 16 (1961), F. John, A note on "improper" problems in partial differential equations, Comm. Pure Appl. Math. 8 (1955), , Continuous dependence on the data for solutions of partial differential equations with a prescribed bound, Comm. Pure Appl. Math. 13 (1960), L. Nirenberg, Uniqueness in Cauchy problems for differential equations with constant leading coefficients, Comm. Pure Appl. Math. 10 (1957),

7 1967] SOME IMPROPERLY POSED PROBLEMS L. Payne, On some non-wellposed problems for partial differential equations, Proc. Sympos. Numerical Solutions of Nonlinear Differential Equations, pp , Math. Res. Center, U.S. Army, Univ. of Wisconsin, Madison, Wiley, New York, L. Payne and D. Sather, On some improperly posed problems for the Chaplygin equation, J. Math. Anal. Appl. (to appear). 7. C. Pucci, Sui problemi di Cauchy non "ben posti," Rend. Accad. Naz. Lincei 18 (1955), Cornell University, Ithaca, New York

EQUADIFF 1. Rudolf Výborný On a certain extension of the maximum principle. Terms of use:

EQUADIFF 1. Rudolf Výborný On a certain extension of the maximum principle. Terms of use: EQUADIFF 1 Rudolf Výborný On a certain extension of the maximum principle In: (ed.): Differential Equations and Their Applications, Proceedings of the Conference held in Prague in September 1962. Publishing

More information

A HARNACK INEQUALITY FOR NONLINEAR EQUATIONS

A HARNACK INEQUALITY FOR NONLINEAR EQUATIONS A HARNACK INEQUALITY FOR NONLINEAR EQUATIONS BY JAMES SERRIN Communicated by Lawrence Markus, March 18, 1963 Recently Moser has obtained a Harnack inequality for linear divergence structure equations with

More information

Second Order Elliptic PDE

Second Order Elliptic PDE Second Order Elliptic PDE T. Muthukumar tmk@iitk.ac.in December 16, 2014 Contents 1 A Quick Introduction to PDE 1 2 Classification of Second Order PDE 3 3 Linear Second Order Elliptic Operators 4 4 Periodic

More information

Module 2: First-Order Partial Differential Equations

Module 2: First-Order Partial Differential Equations Module 2: First-Order Partial Differential Equations The mathematical formulations of many problems in science and engineering reduce to study of first-order PDEs. For instance, the study of first-order

More information

Lecture Notes on PDEs

Lecture Notes on PDEs Lecture Notes on PDEs Alberto Bressan February 26, 2012 1 Elliptic equations Let IR n be a bounded open set Given measurable functions a ij, b i, c : IR, consider the linear, second order differential

More information

A GENERALIZATION OF THE FLAT CONE CONDITION FOR REGULARITY OF SOLUTIONS OF ELLIPTIC EQUATIONS

A GENERALIZATION OF THE FLAT CONE CONDITION FOR REGULARITY OF SOLUTIONS OF ELLIPTIC EQUATIONS PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 100, Number 2. June 1987 A GENERALIZATION OF THE FLAT CONE CONDITION FOR REGULARITY OF SOLUTIONS OF ELLIPTIC EQUATIONS GARY M. LIEBERMAN ABSTRACT.

More information

First order Partial Differential equations

First order Partial Differential equations First order Partial Differential equations 0.1 Introduction Definition 0.1.1 A Partial Deferential equation is called linear if the dependent variable and all its derivatives have degree one and not multiple

More information

Calculation of the Ramanujan t-dirichlet. By Robert Spira

Calculation of the Ramanujan t-dirichlet. By Robert Spira MATHEMATICS OF COMPUTATION, VOLUME 27, NUMBER 122, APRIL, 1973 Calculation of the Ramanujan t-dirichlet Series By Robert Spira Abstract. A method is found for calculating the Ramanujan T-Dirichlet series

More information

ONE-DIMENSIONAL PARABOLIC p LAPLACIAN EQUATION. Youngsang Ko. 1. Introduction. We consider the Cauchy problem of the form (1.1) u t = ( u x p 2 u x

ONE-DIMENSIONAL PARABOLIC p LAPLACIAN EQUATION. Youngsang Ko. 1. Introduction. We consider the Cauchy problem of the form (1.1) u t = ( u x p 2 u x Kangweon-Kyungki Math. Jour. 7 (999), No. 2, pp. 39 50 ONE-DIMENSIONAL PARABOLIC p LAPLACIAN EQUATION Youngsang Ko Abstract. In this paper we establish some bounds for solutions of parabolic one dimensional

More information

A UNIQUENESS THEOREM FOR A BOUNDARY VALUE PROBLEM

A UNIQUENESS THEOREM FOR A BOUNDARY VALUE PROBLEM PROCEEDINGS of the AMERICAN MATHEMATICAL SOCIETY Volume 77, Number 3, December 1979 A UNIQUENESS THEOREM FOR A BOUNDARY VALUE PROBLEM RIAZ A. USMANI Abstract. In this paper it is proved that the two-point

More information

z x = f x (x, y, a, b), z y = f y (x, y, a, b). F(x, y, z, z x, z y ) = 0. This is a PDE for the unknown function of two independent variables.

z x = f x (x, y, a, b), z y = f y (x, y, a, b). F(x, y, z, z x, z y ) = 0. This is a PDE for the unknown function of two independent variables. Chapter 2 First order PDE 2.1 How and Why First order PDE appear? 2.1.1 Physical origins Conservation laws form one of the two fundamental parts of any mathematical model of Continuum Mechanics. These

More information

Nonlinear aspects of Calderón-Zygmund theory

Nonlinear aspects of Calderón-Zygmund theory Ancona, June 7 2011 Overture: The standard CZ theory Consider the model case u = f in R n Overture: The standard CZ theory Consider the model case u = f in R n Then f L q implies D 2 u L q 1 < q < with

More information

On a class of stochastic differential equations in a financial network model

On a class of stochastic differential equations in a financial network model 1 On a class of stochastic differential equations in a financial network model Tomoyuki Ichiba Department of Statistics & Applied Probability, Center for Financial Mathematics and Actuarial Research, University

More information

COINCIDENCE SETS IN THE OBSTACLE PROBLEM FOR THE p-harmonic OPERATOR

COINCIDENCE SETS IN THE OBSTACLE PROBLEM FOR THE p-harmonic OPERATOR PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 95, Number 3, November 1985 COINCIDENCE SETS IN THE OBSTACLE PROBLEM FOR THE p-harmonic OPERATOR SHIGERU SAKAGUCHI Abstract. We consider the obstacle

More information

Partial Differential Equations

Partial Differential Equations Part II Partial Differential Equations Year 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2015 Paper 4, Section II 29E Partial Differential Equations 72 (a) Show that the Cauchy problem for u(x,

More information

6.1 Matrices. Definition: A Matrix A is a rectangular array of the form. A 11 A 12 A 1n A 21. A 2n. A m1 A m2 A mn A 22.

6.1 Matrices. Definition: A Matrix A is a rectangular array of the form. A 11 A 12 A 1n A 21. A 2n. A m1 A m2 A mn A 22. 61 Matrices Definition: A Matrix A is a rectangular array of the form A 11 A 12 A 1n A 21 A 22 A 2n A m1 A m2 A mn The size of A is m n, where m is the number of rows and n is the number of columns The

More information

A COMPARISON THEOREM FOR ELLIPTIC DIFFERENTIAL EQUATIONS

A COMPARISON THEOREM FOR ELLIPTIC DIFFERENTIAL EQUATIONS A COMPARISON THEOREM FOR ELLIPTIC DIFFERENTIAL EQUATIONS C. A. SWANSON1 Clark and the author [2] recently obtained a generalization of the Hartman-Wintner comparison theorem [4] for a pair of self-adjoint

More information

LECTURE # 0 BASIC NOTATIONS AND CONCEPTS IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS (PDES)

LECTURE # 0 BASIC NOTATIONS AND CONCEPTS IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS (PDES) LECTURE # 0 BASIC NOTATIONS AND CONCEPTS IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS (PDES) RAYTCHO LAZAROV 1 Notations and Basic Functional Spaces Scalar function in R d, d 1 will be denoted by u,

More information

Symmetry of nonnegative solutions of elliptic equations via a result of Serrin

Symmetry of nonnegative solutions of elliptic equations via a result of Serrin Symmetry of nonnegative solutions of elliptic equations via a result of Serrin P. Poláčik School of Mathematics, University of Minnesota Minneapolis, MN 55455 Abstract. We consider the Dirichlet problem

More information

THE POISSON TRANSFORM^)

THE POISSON TRANSFORM^) THE POISSON TRANSFORM^) BY HARRY POLLARD The Poisson transform is defined by the equation (1) /(*)=- /" / MO- T J _M 1 + (X t)2 It is assumed that a is of bounded variation in each finite interval, and

More information

Math 5210, Definitions and Theorems on Metric Spaces

Math 5210, Definitions and Theorems on Metric Spaces Math 5210, Definitions and Theorems on Metric Spaces Let (X, d) be a metric space. We will use the following definitions (see Rudin, chap 2, particularly 2.18) 1. Let p X and r R, r > 0, The ball of radius

More information

In this section, mathematical description of the motion of fluid elements moving in a flow field is

In this section, mathematical description of the motion of fluid elements moving in a flow field is Jun. 05, 015 Chapter 6. Differential Analysis of Fluid Flow 6.1 Fluid Element Kinematics In this section, mathematical description of the motion of fluid elements moving in a flow field is given. A small

More information

On the decay for M of solutions of parabolic with coefficients

On the decay for M of solutions of parabolic with coefficients Publ. RIMS, Kyoto Univ. Ser. A Vol. 3 (1967), pp. 203-210 On the decay for M of solutions of parabolic with coefficients By Takasi KUSANO* ** 1. Introduction There is much current interest in the Cauchy

More information

Renormalized Solutions of a Nonlinear Parabolic Equation with Double Degeneracy

Renormalized Solutions of a Nonlinear Parabolic Equation with Double Degeneracy Electronic Journal of Qualitative Theory of Differential Equations 26, No. 5, -2; http://www.math.u-szeged.hu/ejqtde/ Renormalized Solutions of a Nonlinear Parabolic Equation with Double Degeneracy Zejia

More information

' '-'in.-i 1 'iritt in \ rrivfi pr' 1 p. ru

' '-'in.-i 1 'iritt in \ rrivfi pr' 1 p. ru V X X Y Y 7 VY Y Y F # < F V 6 7»< V q q $ $» q & V 7» Q F Y Q 6 Q Y F & Q &» & V V» Y V Y [ & Y V» & VV & F > V } & F Q \ Q \» Y / 7 F F V 7 7 x» > QX < #» > X >» < F & V F» > > # < q V 6 & Y Y q < &

More information

Fuchsian groups. 2.1 Definitions and discreteness

Fuchsian groups. 2.1 Definitions and discreteness 2 Fuchsian groups In the previous chapter we introduced and studied the elements of Mob(H), which are the real Moebius transformations. In this chapter we focus the attention of special subgroups of this

More information

ON MIXED BOUNDARY VALUE PROBLEMS FOR PARABOLIC EQUATIONS IN SINGULAR DOMAINS

ON MIXED BOUNDARY VALUE PROBLEMS FOR PARABOLIC EQUATIONS IN SINGULAR DOMAINS Azzam, A. Osaka J. Math. 22 (1985), 691-696 ON MIXED BOUNDARY VALUE PROBLEMS FOR PARABOLIC EQUATIONS IN SINGULAR DOMAINS ALI AZZAM (Received February 28, 1984) 1. Introduction. In this paper we continue

More information

A Sharp Minimum Principle for the Problem of Torsional Rigidity

A Sharp Minimum Principle for the Problem of Torsional Rigidity Journal of Mathematical Analysis and Applications 33, 5765 999 Article ID jmaa99969, available online at http:wwwidealibrarycom on A Sharp Minimum Principle for the Problem of Torsional Rigidity Xi-nan

More information

A comparison theorem for nonsmooth nonlinear operators

A comparison theorem for nonsmooth nonlinear operators A comparison theorem for nonsmooth nonlinear operators Vladimir Kozlov and Alexander Nazarov arxiv:1901.08631v1 [math.ap] 24 Jan 2019 Abstract We prove a comparison theorem for super- and sub-solutions

More information

Continuity. Matt Rosenzweig

Continuity. Matt Rosenzweig Continuity Matt Rosenzweig Contents 1 Continuity 1 1.1 Rudin Chapter 4 Exercises........................................ 1 1.1.1 Exercise 1............................................. 1 1.1.2 Exercise

More information

The first order quasi-linear PDEs

The first order quasi-linear PDEs Chapter 2 The first order quasi-linear PDEs The first order quasi-linear PDEs have the following general form: F (x, u, Du) = 0, (2.1) where x = (x 1, x 2,, x 3 ) R n, u = u(x), Du is the gradient of u.

More information

Lecture No 1 Introduction to Diffusion equations The heat equat

Lecture No 1 Introduction to Diffusion equations The heat equat Lecture No 1 Introduction to Diffusion equations The heat equation Columbia University IAS summer program June, 2009 Outline of the lectures We will discuss some basic models of diffusion equations and

More information

GLOBAL EXISTENCE FOR THE ONE-DIMENSIONAL SEMILINEAR TRICOMI-TYPE EQUATIONS

GLOBAL EXISTENCE FOR THE ONE-DIMENSIONAL SEMILINEAR TRICOMI-TYPE EQUATIONS GLOBAL EXISTENCE FOR THE ONE-DIMENSIONAL SEMILINEAR TRICOMI-TYPE EQUATIONS ANAHIT GALSTYAN The Tricomi equation u tt tu xx = 0 is a linear partial differential operator of mixed type. (For t > 0, the Tricomi

More information

Iterative Domain Decomposition Methods for Singularly Perturbed Nonlinear Convection-Diffusion Equations

Iterative Domain Decomposition Methods for Singularly Perturbed Nonlinear Convection-Diffusion Equations Iterative Domain Decomposition Methods for Singularly Perturbed Nonlinear Convection-Diffusion Equations P.A. Farrell 1, P.W. Hemker 2, G.I. Shishkin 3 and L.P. Shishkina 3 1 Department of Computer Science,

More information

Seong Joo Kang. Let u be a smooth enough solution to a quasilinear hyperbolic mixed problem:

Seong Joo Kang. Let u be a smooth enough solution to a quasilinear hyperbolic mixed problem: Comm. Korean Math. Soc. 16 2001, No. 2, pp. 225 233 THE ENERGY INEQUALITY OF A QUASILINEAR HYPERBOLIC MIXED PROBLEM Seong Joo Kang Abstract. In this paper, e establish the energy inequalities for second

More information

On uniqueness in the inverse conductivity problem with local data

On uniqueness in the inverse conductivity problem with local data On uniqueness in the inverse conductivity problem with local data Victor Isakov June 21, 2006 1 Introduction The inverse condictivity problem with many boundary measurements consists of recovery of conductivity

More information

Ordinary Differential Equations (ODEs)

Ordinary Differential Equations (ODEs) c01.tex 8/10/2010 22: 55 Page 1 PART A Ordinary Differential Equations (ODEs) Chap. 1 First-Order ODEs Sec. 1.1 Basic Concepts. Modeling To get a good start into this chapter and this section, quickly

More information

Instructions: No books. No notes. Non-graphing calculators only. You are encouraged, although not required, to show your work.

Instructions: No books. No notes. Non-graphing calculators only. You are encouraged, although not required, to show your work. Exam 3 Math 850-007 Fall 04 Odenthal Name: Instructions: No books. No notes. Non-graphing calculators only. You are encouraged, although not required, to show your work.. Evaluate the iterated integral

More information

Nonnegative Solutions for a Class of Nonpositone Problems

Nonnegative Solutions for a Class of Nonpositone Problems Claremont Colleges Scholarship @ Claremont All HMC Faculty Publications and Research HMC Faculty Scholarship 1-1-1988 Nonnegative Solutions for a Class of Nonpositone Problems Alfonso Castro Harvey Mudd

More information

HW1 solutions. 1. α Ef(x) β, where Ef(x) is the expected value of f(x), i.e., Ef(x) = n. i=1 p if(a i ). (The function f : R R is given.

HW1 solutions. 1. α Ef(x) β, where Ef(x) is the expected value of f(x), i.e., Ef(x) = n. i=1 p if(a i ). (The function f : R R is given. HW1 solutions Exercise 1 (Some sets of probability distributions.) Let x be a real-valued random variable with Prob(x = a i ) = p i, i = 1,..., n, where a 1 < a 2 < < a n. Of course p R n lies in the standard

More information

Extremal Solutions of Differential Inclusions via Baire Category: a Dual Approach

Extremal Solutions of Differential Inclusions via Baire Category: a Dual Approach Extremal Solutions of Differential Inclusions via Baire Category: a Dual Approach Alberto Bressan Department of Mathematics, Penn State University University Park, Pa 1682, USA e-mail: bressan@mathpsuedu

More information

Regularity and compactness for the DiPerna Lions flow

Regularity and compactness for the DiPerna Lions flow Regularity and compactness for the DiPerna Lions flow Gianluca Crippa 1 and Camillo De Lellis 2 1 Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy. g.crippa@sns.it 2 Institut für Mathematik,

More information

A FINITE DIFFERENCE DOMAIN DECOMPOSITION ALGORITHM FOR NUMERICAL SOLUTION OF THE HEAT EQUATION

A FINITE DIFFERENCE DOMAIN DECOMPOSITION ALGORITHM FOR NUMERICAL SOLUTION OF THE HEAT EQUATION mathematics of computation volume 57, number 195 july 1991, pages 63-71 A FINITE DIFFERENCE DOMAIN DECOMPOSITION ALGORITHM FOR NUMERICAL SOLUTION OF THE HEAT EQUATION CLINT N. DAWSON, QIANG DU, AND TODD

More information

Chapter 3 Second Order Linear Equations

Chapter 3 Second Order Linear Equations Partial Differential Equations (Math 3303) A Ë@ Õæ Aë áöß @. X. @ 2015-2014 ú GA JË@ É Ë@ Chapter 3 Second Order Linear Equations Second-order partial differential equations for an known function u(x,

More information

An Improved Method for the Numerical Solution of the Suspension Bridge Deflection Equations*

An Improved Method for the Numerical Solution of the Suspension Bridge Deflection Equations* An Improved Method for the Numerical Solution of the Suspension Bridge Deflection Equations* By R. W. Dickey 1. Introduction. The purpose of this paper is to indicate an improved method for obtaining numerical

More information

New Generalizations of Caristi s Fixed Point Theorem Via Brézis Browder Principle

New Generalizations of Caristi s Fixed Point Theorem Via Brézis Browder Principle Mathematica Moravica Vol. 8 1 (2004), 1 5 New Generalizations of Caristi s Fixed Point Theorem Via Brézis Browder Principle Temistocle Bîrsan Abstract. In this paper, some generalizations of Caristi s

More information

LEBESGUE INTEGRATION. Introduction

LEBESGUE INTEGRATION. Introduction LEBESGUE INTEGATION EYE SJAMAA Supplementary notes Math 414, Spring 25 Introduction The following heuristic argument is at the basis of the denition of the Lebesgue integral. This argument will be imprecise,

More information

EXISTENCE OF SOLUTIONS FOR CROSS CRITICAL EXPONENTIAL N-LAPLACIAN SYSTEMS

EXISTENCE OF SOLUTIONS FOR CROSS CRITICAL EXPONENTIAL N-LAPLACIAN SYSTEMS Electronic Journal of Differential Equations, Vol. 2014 (2014), o. 28, pp. 1 10. ISS: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu EXISTECE OF SOLUTIOS

More information

Practice Final Exam Solutions

Practice Final Exam Solutions Important Notice: To prepare for the final exam, study past exams and practice exams, and homeworks, quizzes, and worksheets, not just this practice final. A topic not being on the practice final does

More information

FOURTH-ORDER TWO-POINT BOUNDARY VALUE PROBLEMS

FOURTH-ORDER TWO-POINT BOUNDARY VALUE PROBLEMS PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 104, Number 1, September 1988 FOURTH-ORDER TWO-POINT BOUNDARY VALUE PROBLEMS YISONG YANG (Communicated by Kenneth R. Meyer) ABSTRACT. We establish

More information

Blow-up for a Nonlocal Nonlinear Diffusion Equation with Source

Blow-up for a Nonlocal Nonlinear Diffusion Equation with Source Revista Colombiana de Matemáticas Volumen 46(2121, páginas 1-13 Blow-up for a Nonlocal Nonlinear Diffusion Equation with Source Explosión para una ecuación no lineal de difusión no local con fuente Mauricio

More information

Parts Manual. EPIC II Critical Care Bed REF 2031

Parts Manual. EPIC II Critical Care Bed REF 2031 EPIC II Critical Care Bed REF 2031 Parts Manual For parts or technical assistance call: USA: 1-800-327-0770 2013/05 B.0 2031-109-006 REV B www.stryker.com Table of Contents English Product Labels... 4

More information

MATH H53 : Final exam

MATH H53 : Final exam MATH H53 : Final exam 11 May, 18 Name: You have 18 minutes to answer the questions. Use of calculators or any electronic items is not permitted. Answer the questions in the space provided. If you run out

More information

SYMMETRY AND REGULARITY OF AN OPTIMIZATION PROBLEM RELATED TO A NONLINEAR BVP

SYMMETRY AND REGULARITY OF AN OPTIMIZATION PROBLEM RELATED TO A NONLINEAR BVP lectronic ournal of Differential quations, Vol. 2013 2013, No. 108, pp. 1 10. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu SYMMTRY AND RGULARITY

More information

ANALYTIC TRANSFORMATIONS OF EVERYWHERE DENSE POINT SETS*

ANALYTIC TRANSFORMATIONS OF EVERYWHERE DENSE POINT SETS* ANALYTIC TRANSFORMATIONS OF EVERYWHERE DENSE POINT SETS* BY PHILIP FRANKLIN I. Transformations of point sets There is a well known theorem in the theory of point sets, due to Cantor,t to the effect that

More information

APPENDIX A. Background Mathematics. A.1 Linear Algebra. Vector algebra. Let x denote the n-dimensional column vector with components x 1 x 2.

APPENDIX A. Background Mathematics. A.1 Linear Algebra. Vector algebra. Let x denote the n-dimensional column vector with components x 1 x 2. APPENDIX A Background Mathematics A. Linear Algebra A.. Vector algebra Let x denote the n-dimensional column vector with components 0 x x 2 B C @. A x n Definition 6 (scalar product). The scalar product

More information

From Completing the Squares and Orthogonal Projection to Finite Element Methods

From Completing the Squares and Orthogonal Projection to Finite Element Methods From Completing the Squares and Orthogonal Projection to Finite Element Methods Mo MU Background In scientific computing, it is important to start with an appropriate model in order to design effective

More information

Nonlinear Analysis 71 (2009) Contents lists available at ScienceDirect. Nonlinear Analysis. journal homepage:

Nonlinear Analysis 71 (2009) Contents lists available at ScienceDirect. Nonlinear Analysis. journal homepage: Nonlinear Analysis 71 2009 2744 2752 Contents lists available at ScienceDirect Nonlinear Analysis journal homepage: www.elsevier.com/locate/na A nonlinear inequality and applications N.S. Hoang A.G. Ramm

More information

Coupled differential equations

Coupled differential equations Coupled differential equations Example: dy 1 dy 11 1 1 1 1 1 a y a y b x a y a y b x Consider the case with b1 b d y1 a11 a1 y1 y a1 ay dy y y e y 4/1/18 One way to address this sort of problem, is to

More information

CLASSIFICATION AND PRINCIPLE OF SUPERPOSITION FOR SECOND ORDER LINEAR PDE

CLASSIFICATION AND PRINCIPLE OF SUPERPOSITION FOR SECOND ORDER LINEAR PDE CLASSIFICATION AND PRINCIPLE OF SUPERPOSITION FOR SECOND ORDER LINEAR PDE 1. Linear Partial Differential Equations A partial differential equation (PDE) is an equation, for an unknown function u, that

More information

Homework 1 Due: Wednesday, September 28, 2016

Homework 1 Due: Wednesday, September 28, 2016 0-704 Information Processing and Learning Fall 06 Homework Due: Wednesday, September 8, 06 Notes: For positive integers k, [k] := {,..., k} denotes te set of te first k positive integers. Wen p and Y q

More information

P(E t, Ω)dt, (2) 4t has an advantage with respect. to the compactly supported mollifiers, i.e., the function W (t)f satisfies a semigroup law:

P(E t, Ω)dt, (2) 4t has an advantage with respect. to the compactly supported mollifiers, i.e., the function W (t)f satisfies a semigroup law: Introduction Functions of bounded variation, usually denoted by BV, have had and have an important role in several problems of calculus of variations. The main features that make BV functions suitable

More information

An Addition Theorem Modulo p

An Addition Theorem Modulo p JOURNAL OF COMBINATORIAL THEORY 5, 45-52 (1968) An Addition Theorem Modulo p JOHN E. OLSON The University of Wisconsin, Madison, Wisconsin 53706 Communicated by Gian-Carlo Rota ABSTRACT Let al,..., a=

More information

13 PDEs on spatially bounded domains: initial boundary value problems (IBVPs)

13 PDEs on spatially bounded domains: initial boundary value problems (IBVPs) 13 PDEs on spatially bounded domains: initial boundary value problems (IBVPs) A prototypical problem we will discuss in detail is the 1D diffusion equation u t = Du xx < x < l, t > finite-length rod u(x,

More information

Radial Symmetry of Minimizers for Some Translation and Rotation Invariant Functionals

Radial Symmetry of Minimizers for Some Translation and Rotation Invariant Functionals journal of differential equations 124, 378388 (1996) article no. 0015 Radial Symmetry of Minimizers for Some Translation and Rotation Invariant Functionals Orlando Lopes IMECCUNICAMPCaixa Postal 1170 13081-970,

More information

Math 140A - Fall Final Exam

Math 140A - Fall Final Exam Math 140A - Fall 2014 - Final Exam Problem 1. Let {a n } n 1 be an increasing sequence of real numbers. (i) If {a n } has a bounded subsequence, show that {a n } is itself bounded. (ii) If {a n } has a

More information

THE PRESERVATION OF CONVERGENCE OF MEASURABLE FUNCTIONS UNDER COMPOSITION

THE PRESERVATION OF CONVERGENCE OF MEASURABLE FUNCTIONS UNDER COMPOSITION THE PRESERVATION OF CONVERGENCE OF MEASURABLE FUNCTIONS UNDER COMPOSITION ROBERT G. BARTLE AND JAMES T. JOICHI1 Let / be a real-valued measurable function on a measure space (S,, p.) and let

More information

Math 210, Final Exam, Practice Fall 2009 Problem 1 Solution AB AC AB. cosθ = AB BC AB (0)(1)+( 4)( 2)+(3)(2)

Math 210, Final Exam, Practice Fall 2009 Problem 1 Solution AB AC AB. cosθ = AB BC AB (0)(1)+( 4)( 2)+(3)(2) Math 2, Final Exam, Practice Fall 29 Problem Solution. A triangle has vertices at the points A (,,), B (, 3,4), and C (2,,3) (a) Find the cosine of the angle between the vectors AB and AC. (b) Find an

More information

A SIMPLE, DIRECT PROOF OF UNIQUENESS FOR SOLUTIONS OF THE HAMILTON-JACOBI EQUATIONS OF EIKONAL TYPE

A SIMPLE, DIRECT PROOF OF UNIQUENESS FOR SOLUTIONS OF THE HAMILTON-JACOBI EQUATIONS OF EIKONAL TYPE PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 100, Number 2, June 1987 A SIMPLE, DIRECT PROOF OF UNIQUENESS FOR SOLUTIONS OF THE HAMILTON-JACOBI EQUATIONS OF EIKONAL TYPE HITOSHI ISHII ABSTRACT.

More information

A CONVEXITY CONDITION IN BANACH SPACES AND THE STRONG LAW OF LARGE NUMBERS1

A CONVEXITY CONDITION IN BANACH SPACES AND THE STRONG LAW OF LARGE NUMBERS1 A CONVEXITY CONDITION IN BANACH SPACES AND THE STRONG LAW OF LARGE NUMBERS1 ANATOLE BECK Introduction. The strong law of large numbers can be shown under certain hypotheses for random variables which take

More information

Econometric modelling and forecasting of intraday electricity prices

Econometric modelling and forecasting of intraday electricity prices E y y Xv:1812.09081v1 [q-.st] 21 D 2018 M Nw Uvy Duu-E F Z Uvy Duu-E D 24, 2018 A I w w y ID 3 -P G Iy Cuu Ey M u. A uv u uy qu-uy u y. W u qu u-- vy - uy. T w u. F u v w G Iy Cuu Ey M y ID 3 -P vu. T

More information

Brief introduction to groups and group theory

Brief introduction to groups and group theory Brief introduction to groups and group theory In physics, we often can learn a lot about a system based on its symmetries, even when we do not know how to make a quantitative calculation Relevant in particle

More information

NECESSARY CONDITIONS FOR WEIGHTED POINTWISE HARDY INEQUALITIES

NECESSARY CONDITIONS FOR WEIGHTED POINTWISE HARDY INEQUALITIES NECESSARY CONDITIONS FOR WEIGHTED POINTWISE HARDY INEQUALITIES JUHA LEHRBÄCK Abstract. We establish necessary conditions for domains Ω R n which admit the pointwise (p, β)-hardy inequality u(x) Cd Ω(x)

More information

Math512 PDE Homework 2

Math512 PDE Homework 2 Math51 PDE Homework October 11, 009 Exercise 1.3. Solve u = xu x +yu y +(u x+y y/ = 0 with initial conditon u(x, 0 = 1 x. Proof. In this case, we have F = xp + yq + (p + q / z = 0 and Γ parameterized as

More information

Lp-norms of weak solutions of elliptic equations in the interior of their domain,

Lp-norms of weak solutions of elliptic equations in the interior of their domain, 872 MATHEMATICS: COURANT AND LAX PROC. N. A. S. so measurable), with fs (x, X)I dm(x) < k(s, G1) for x e G1, for which P+Esg,(x) = fs (v(x ) dmr(x). It follows easily that f,(x) = f c,(x),,(x, X) dm^(x),

More information

Non-Constant Stable Solutions to Reaction- Diffusion Equations in Star-Shaped Domains

Non-Constant Stable Solutions to Reaction- Diffusion Equations in Star-Shaped Domains Rose-Hulman Undergraduate Mathematics Journal Volume 6 Issue Article 4 Non-Constant Stable Solutions to Reaction- iffusion Equations in Star-Shaped omains Greg rugan University of Texas at Austin, g_drugan@mail.utexas.edu

More information

Lecture No 2 Degenerate Diffusion Free boundary problems

Lecture No 2 Degenerate Diffusion Free boundary problems Lecture No 2 Degenerate Diffusion Free boundary problems Columbia University IAS summer program June, 2009 Outline We will discuss non-linear parabolic equations of slow diffusion. Our model is the porous

More information

L O W Z L L, M Z C B., W S D I T X S D J L T, JT7ITZ 2 6, O n # D o l l a r a T m t. L Cuiiveuiluu. BASEBALL.

L O W Z L L, M Z C B., W S D I T X S D J L T, JT7ITZ 2 6, O n # D o l l a r a T m t. L Cuiiveuiluu. BASEBALL. # Z Z B X 7Z 6 8 9 0 # F Y BB F x B- B B BV 5 G - V 84 B F x - G 6 x - F - 500000 Bx > -- z : V Y B / «- Q - 4«7 6 890 6 578 0 00 8: B! 0 677 F 574 BB 4 - V 0 B 8 5 5 0 5 Z G F Q 4 50 G B - 5 5-7 B z 7

More information

ANALYTIC SMOOTHING EFFECT FOR NONLI TitleSCHRÖDINGER EQUATION IN TWO SPACE DIMENSIONS. Citation Osaka Journal of Mathematics.

ANALYTIC SMOOTHING EFFECT FOR NONLI TitleSCHRÖDINGER EQUATION IN TWO SPACE DIMENSIONS. Citation Osaka Journal of Mathematics. ANALYTIC SMOOTHING EFFECT FOR NONLI TitleSCHRÖDINGER EQUATION IN TWO SPACE DIMENSIONS Author(s) Hoshino, Gaku; Ozawa, Tohru Citation Osaka Journal of Mathematics. 51(3) Issue 014-07 Date Text Version publisher

More information

LOWELL WEEKLY JOURNAL.

LOWELL WEEKLY JOURNAL. Y 5 ; ) : Y 3 7 22 2 F $ 7 2 F Q 3 q q 6 2 3 6 2 5 25 2 2 3 $2 25: 75 5 $6 Y q 7 Y Y # \ x Y : { Y Y Y : ( \ _ Y ( ( Y F [ F F ; x Y : ( : G ( ; ( ~ x F G Y ; \ Q ) ( F \ Q / F F \ Y () ( \ G Y ( ) \F

More information

ON THE HARMONIC SUMMABILITY OF DOUBLE FOURIER SERIES P. L. SHARMA

ON THE HARMONIC SUMMABILITY OF DOUBLE FOURIER SERIES P. L. SHARMA ON THE HARMONIC SUMMABILITY OF DOUBLE FOURIER SERIES P. L. SHARMA 1. Suppose that the function f(u, v) is integrable in the sense of Lebesgue, over the square ( ir, ir; it, it) and is periodic with period

More information

GRONWALL'S INEQUALITY FOR SYSTEMS OF PARTIAL DIFFERENTIAL EQUATIONS IN TWO INDEPENDENT VARIABLES

GRONWALL'S INEQUALITY FOR SYSTEMS OF PARTIAL DIFFERENTIAL EQUATIONS IN TWO INDEPENDENT VARIABLES PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 33, Number I, May 1972 GRONWALL'S INEQUALITY FOR SYSTEMS OF PARTIAL DIFFERENTIAL EQUATIONS IN TWO INDEPENDENT VARIABLES DONALD R. SNOW Abstract.

More information

The Heine-Borel and Arzela-Ascoli Theorems

The Heine-Borel and Arzela-Ascoli Theorems The Heine-Borel and Arzela-Ascoli Theorems David Jekel October 29, 2016 This paper explains two important results about compactness, the Heine- Borel theorem and the Arzela-Ascoli theorem. We prove them

More information

A LOWER BOUND FOR THE GRADIENT OF -HARMONIC FUNCTIONS Edi Rosset. 1. Introduction. u xi u xj u xi x j

A LOWER BOUND FOR THE GRADIENT OF -HARMONIC FUNCTIONS Edi Rosset. 1. Introduction. u xi u xj u xi x j Electronic Journal of Differential Equations, Vol. 1996(1996) No. 0, pp. 1 7. ISSN 107-6691. URL: http://ejde.math.swt.edu (147.6.103.110) telnet (login: ejde), ftp, and gopher access: ejde.math.swt.edu

More information

A LOWER BOUND FOR THE FUNDAMENTAL FREQUENCY OF A CONVEX REGION

A LOWER BOUND FOR THE FUNDAMENTAL FREQUENCY OF A CONVEX REGION proceedings of the american mathematical society Volume 81, Number 1, January 1981 A LOWER BOUND FOR THE FUNDAMENTAL FREQUENCY OF A CONVEX REGION M. H. PROTTER1 Abstract. A lower bound for the first eigenvalue

More information

Real Analysis Math 131AH Rudin, Chapter #1. Dominique Abdi

Real Analysis Math 131AH Rudin, Chapter #1. Dominique Abdi Real Analysis Math 3AH Rudin, Chapter # Dominique Abdi.. If r is rational (r 0) and x is irrational, prove that r + x and rx are irrational. Solution. Assume the contrary, that r+x and rx are rational.

More information

INTRODUCTION TO PDEs

INTRODUCTION TO PDEs INTRODUCTION TO PDEs In this course we are interested in the numerical approximation of PDEs using finite difference methods (FDM). We will use some simple prototype boundary value problems (BVP) and initial

More information

A Remark on -harmonic Functions on Riemannian Manifolds

A Remark on -harmonic Functions on Riemannian Manifolds Electronic Journal of ifferential Equations Vol. 1995(1995), No. 07, pp. 1-10. Published June 15, 1995. ISSN 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu ftp (login: ftp) 147.26.103.110

More information

NONDIFFERENTIABLE SECOND-ORDER MINIMAX MIXED INTEGER SYMMETRIC DUALITY

NONDIFFERENTIABLE SECOND-ORDER MINIMAX MIXED INTEGER SYMMETRIC DUALITY J. Korean Math. Soc. 48 (011), No. 1, pp. 13 1 DOI 10.4134/JKMS.011.48.1.013 NONDIFFERENTIABLE SECOND-ORDER MINIMAX MIXED INTEGER SYMMETRIC DUALITY Tilak Raj Gulati and Shiv Kumar Gupta Abstract. In this

More information

CONVEXITY OF INTEGRAL MEANS OF SUBHARMONIC FUNCTIONS

CONVEXITY OF INTEGRAL MEANS OF SUBHARMONIC FUNCTIONS PROCEEDINGS OF THE AMERICAIN MATHEMATICAL SOCIETY Volume 60, October 1976 CONVEXITY OF INTEGRAL MEANS OF SUBHARMONIC FUNCTIONS JANG-MEI G. WU' Abstract. We study the convexity of integral means of subharmonic

More information

arxiv: v1 [math.ap] 18 Jan 2019

arxiv: v1 [math.ap] 18 Jan 2019 Boundary Pointwise C 1,α C 2,α Regularity for Fully Nonlinear Elliptic Equations arxiv:1901.06060v1 [math.ap] 18 Jan 2019 Yuanyuan Lian a, Kai Zhang a, a Department of Applied Mathematics, Northwestern

More information

Approximate additive and quadratic mappings in 2-Banach spaces and related topics

Approximate additive and quadratic mappings in 2-Banach spaces and related topics Int. J. Nonlinear Anal. Appl. 3 (0) No., 75-8 ISSN: 008-68 (electronic) http://www.ijnaa.semnan.ac.ir Approximate additive and quadratic mappings in -Banach spaces and related topics Y. J. Cho a, C. Park

More information

COMPLETE METRIC SPACES AND THE CONTRACTION MAPPING THEOREM

COMPLETE METRIC SPACES AND THE CONTRACTION MAPPING THEOREM COMPLETE METRIC SPACES AND THE CONTRACTION MAPPING THEOREM A metric space (M, d) is a set M with a metric d(x, y), x, y M that has the properties d(x, y) = d(y, x), x, y M d(x, y) d(x, z) + d(z, y), x,

More information

EXISTENCE OF STRONG SOLUTIONS OF FULLY NONLINEAR ELLIPTIC EQUATIONS

EXISTENCE OF STRONG SOLUTIONS OF FULLY NONLINEAR ELLIPTIC EQUATIONS EXISTENCE OF STRONG SOLUTIONS OF FULLY NONLINEAR ELLIPTIC EQUATIONS Adriana Buică Department of Applied Mathematics Babeş-Bolyai University of Cluj-Napoca, 1 Kogalniceanu str., RO-3400 Romania abuica@math.ubbcluj.ro

More information

GENERALIZATIONS OF MIDPOINT RULES

GENERALIZATIONS OF MIDPOINT RULES ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 1, Number 4, Fall 1971 GENERALIZATIONS OF MIDPOINT RULES ROBERT E. BARNHILL ABSTRACT. A midpoint rule proposed by Jagermann and improved upon by Stetter is

More information

Derivatives in 2D. Outline. James K. Peterson. November 9, Derivatives in 2D! Chain Rule

Derivatives in 2D. Outline. James K. Peterson. November 9, Derivatives in 2D! Chain Rule Derivatives in 2D James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 9, 2016 Outline Derivatives in 2D! Chain Rule Let s go back to

More information

ENGI Partial Differentiation Page y f x

ENGI Partial Differentiation Page y f x ENGI 3424 4 Partial Differentiation Page 4-01 4. Partial Differentiation For functions of one variable, be found unambiguously by differentiation: y f x, the rate of change of the dependent variable can

More information

Stanford Mathematics Department Math 205A Lecture Supplement #4 Borel Regular & Radon Measures

Stanford Mathematics Department Math 205A Lecture Supplement #4 Borel Regular & Radon Measures 2 1 Borel Regular Measures We now state and prove an important regularity property of Borel regular outer measures: Stanford Mathematics Department Math 205A Lecture Supplement #4 Borel Regular & Radon

More information

SYMMETRICOMPLETIONS AND PRODUCTS OF SYMMETRIC MATRICES

SYMMETRICOMPLETIONS AND PRODUCTS OF SYMMETRIC MATRICES TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 186, December 1973 SYMMETRICOMPLETIONS AND PRODUCTS OF SYMMETRIC MATRICES BY MORRIS NEWMAN ABSTRACT. We show that any vector of n relatively prime

More information

STRONG CONVERGENCE OF AN ITERATIVE METHOD FOR VARIATIONAL INEQUALITY PROBLEMS AND FIXED POINT PROBLEMS

STRONG CONVERGENCE OF AN ITERATIVE METHOD FOR VARIATIONAL INEQUALITY PROBLEMS AND FIXED POINT PROBLEMS ARCHIVUM MATHEMATICUM (BRNO) Tomus 45 (2009), 147 158 STRONG CONVERGENCE OF AN ITERATIVE METHOD FOR VARIATIONAL INEQUALITY PROBLEMS AND FIXED POINT PROBLEMS Xiaolong Qin 1, Shin Min Kang 1, Yongfu Su 2,

More information