ONE-DIMENSIONAL PARABOLIC p LAPLACIAN EQUATION. Youngsang Ko. 1. Introduction. We consider the Cauchy problem of the form (1.1) u t = ( u x p 2 u x

Size: px
Start display at page:

Download "ONE-DIMENSIONAL PARABOLIC p LAPLACIAN EQUATION. Youngsang Ko. 1. Introduction. We consider the Cauchy problem of the form (1.1) u t = ( u x p 2 u x"

Transcription

1 Kangweon-Kyungki Math. Jour. 7 (999), No. 2, pp ONE-DIMENSIONAL PARABOLIC p LAPLACIAN EQUATION Youngsang Ko Abstract. In this paper we establish some bounds for solutions of parabolic one dimensional p-laplacian equation.. Introduction We consider the Cauchy problem of the form (.) u t = ( u p 2 u ) in S = R [0, ) where p > 2. Equations like (.) were studied by many authors and arise in different physical situations, for the detail see [7]. An important quantity of the study of equation (.) is the local velocity of propagation V (, t), whose epression in terms of u can be obtained by writing the equation as a conservation law in the form In this way we get u t + (uv ) = 0. V = v v p 2, where the nonlinear potential v(, t) is (.2) v = p p 2 u p 2 p. and by direct computation v satisfies (.3) v t = (p 2)v v p 2 v + v p. Received December 3, Mathematics Subject Classification: 35J. Key words and phrases: p-laplacian, free boundary.

2 40 Youngsang Ko In [7], it was shown that V satisfies V 2(p )t, which can also be written as (.4) (v v p 2 ) 2(p )t. Without loss of generality we may consider the case where u 0 vanishes on R and is a continuous positive function, at least, on an interval (0, a) with a > 0. Let P [u] = {(, t) S : u(, t) > 0} be the positivity set of a solution u. Then P [u] is bounded to the left in (, t)-plane by the left interface curve = ζ(t)[7], where ζ(t) = inf{ R : u(, t) > 0}. Moreover there is a time t [0, ), called the waiting time, such that ζ(t) = 0 for 0 t t and ζ(t) < 0 for t > t. It is shown [7] that t is finite(possibly zero) and ζ(t) is a nonincreasing C function on (t, ). For the interface of the porous medium equation { u t = (u m ) in R n [0, ), u(, 0) = u 0 on R n much more is known. D. G. Aronson and J. L. Vazquez [2] and independently K. Höllig and H. O. Kreiss [8] showed the interfaces are smooth after the waiting time. S. Angenent [] showed that the interfaces are real analytic after the waiting time. In dimensions n > 2, L. A. Caffarelli and N. J. Wolanski [4] showed under some nondegeneracy conditions on the initial data, the interface can be described by a C, function when t > T, for some T > 0. Very recently, P. Daskalopoulos and R. Hamilton [6] showed the interface is smooth when 0 < t < T, for some T > 0. On the other hand much less is known for the parabolic p-laplacian equation. For dimensions n > 2, H. Choe and J. Kim [5] showed, under some nondegeneracy conditions on the initial data, the interface is Lipschitz continuous and one of the authors [9] improved this result, showing that, under the same hypotheses, the interface is a C, surface after some time. In [2], Aronson and Vazquez established C regularity of the interfaces by establishing the bounds for v (k) for k 2, where v = m m um

3 One-dimensional parabolic p Laplacian equation 4 represents the pressure of the gas flow through a porous medium, while u represents the density. In this paper we establish bounds for v k, k = 2, 3, near the interface after the waiting time, where v is the solution of (.3). 2. The Upper and Lower Bounds for v Let q = ( 0, t 0 ) be a point on the left interface, so that 0 = ζ(t 0 ), v(, t 0 ) = 0 for all ζ(t 0 ), and v(, t 0 ) > 0 for all sufficiently small > ζ(t 0 ). We assume the left interface is moving at q. Thus t 0 > t. We shall use the notation R δ,η = R δ,η (t 0 ) = {(, t) R 2 : ζ(t) < ζ(t) + δ, t 0 η t t 0 + η}. Proposition 2.. Let q be the point as above. Then there eist positive constants C, δ and η depending only on p, q and u such that v C in R δ,η/2. Proof. From (.4) we have, v. But from 2(p ) 2 v p 2 t Lemma 4.4 in [7] v is bounded away and above from zero near q where u(, t) > 0. Proposition 2.2. Let q = ( 0, t 0 ) be as before. Then there eist positive constants C 2, δ and η depending only on p, q and u such that v C 2 in R δ,η/2. Proof. From Theorem 2 and Lemma 4.4 in [7] we have (2.) ζ (t 0 ) = v v p 2 = v p and (2.2) v t = v p = a on the moving part of the interface { = ζ(t), t > t }. Choose ɛ > 0 such that (2.3) (p )a 5pɛ 4[(p 2) 2 + (p ) 2 ](a + ɛ)ɛ. Then by Theorem 2 in [7], there eists a δ = δ(ɛ) > 0 and η = η(ɛ) (0, t 0 t ) such that R δ,η P [u], (2.4) (a ɛ) p < v < (a + ɛ) p

4 42 Youngsang Ko and (2.5) vv (a ɛ) 2 p ɛ in R δ,η. Then from (2.4) we have (2.6) (a ɛ) p ( ζ) < v(, t) < (a + ɛ) p ( ζ) in R δ,η and (2.7) (a + ɛ) < ζ (t) < (a ɛ) in [t, t 2 ] where t = t 0 η and t 2 = t 0 + η. We set (2.8) ζ (t) = ζ(t ) b(t t ) where b = a + 2ɛ. Then clearly ζ(t) > ζ (t) in (t, t 2 ]. On P [u], w v satisfies L(w) = w t (p 2)v v p 2 w (3p 4) v p 2 v w [(p 2) 2 + 2(p ) 2 ] v p 2 w 2 = 0. 3(p 2) 2 v v p 4 v ww (p 2) 2 (p 3)v v p 4 w 3 We shall construct a barrier for w in R δ,η of the form φ(, t) where and will be decided later. By a direct computation we have L(φ) = where ζ(t) + ζ (t), ( ζ) 2 {ζ (p 2)v v p 2 2 ζ + (3p 4) v p 2 v } + ( ζ ) 2 {ζ (p 2)v v p 2 2 ζ + (3p 4) v p 2 v } [(p 2) 2 + 2(p ) 2 ] v p 2 φ 2 + Ḡ Ḡ = 3(p 2) 2 vv v p 4 φφ (p 2) 2 (p 3)v v p 4 φ 3 = (p 2) 2 v v p 4 ( φ 3v [ ( ζ) + 2 ( ζ ) ] (p 3)[ 2 ζ + ) ζ ]2.

5 One-dimensional parabolic p Laplacian equation 43 If we choose and satisfying v p 3 ma(, ), then Ḡ 0 in R δ,η. Now set Ā = and B =. Then we have ( ζ) 2 ( ζ ) 2 { L(φ) Ā ζ + v p 2 2 { (p 2)v ζ + (3p 4)v } 2[(p 2) 2 + 2(p ) 2 ]} + B { ζ + v p 2 2 { (p 2)v ζ + (3p 4)v } 2[(p 2) 2 + 2(p ) 2 ]} } {(p Ā )a (5p 7)ɛ 2[(p 2) 2 + 2(p ) 2 ](a + ɛ) p 2 p + B } {(p )a (5p 6)ɛ 2[(p 2) 2 + 2(p ) 2 ](a + ɛ) p 2 p. Set and 0 < (2.9) = (p )a (5p 7)ɛ 2[(p 2) 2 + 2(p ) 2 ](a + ɛ) p 2 p (p )a (5p 6ɛ) 2[(p 2) 2 + 2(p ) 2 ](a + ɛ) p 2 p. = 0 Then from (2.3) > 0 and L(φ) 0 in R δ,η for all (0, 0 ] and. Let us now compare w and φ on the parabolic boundary of R δ,η. In view of (2.5) and (2.6) we have and in particular v ɛ(a ɛ) p ζ in R δ,η ɛ(a ɛ) p v (ζ(t) + δ, t) in [t, t 2 ]. δ By the mean value theorem and (2.7) we have for some τ (t, t 2 ) Now set ζ(t) + δ ζ (t) = δ + (a + 2ɛ)(t t ) + ζ (τ)(t t ) δ + 3ɛ(t t ) δ + 6ɛη. η min{η(ɛ), δ(ɛ)/6ɛ}.

6 44 Youngsang Ko Since ɛ satisfies (2.3) and is given by (2.9) it follows that φ(ζ + δ, t) 2δ (p )a (5p 6ɛ) 4[(p 2) 2 + 2(p ) 2 ](a + ɛ) p 2 p δ Moreover from (3.5) and (2.9) φ(, t ) ζ(t ) (a + ɛ) p δ p ɛ(a ɛ) > ζ(t ) ɛ v on [t, t 2 ] > v (, t ) on (ζ(t ), ζ(t ) + δ]. Let Γ = {(, t) R 2 : = ζ(t), t t t 2 }. Clearly Γ is a compact subset of R 2. Fi (0, 0 ). For each point s Γ there is an open ball B s centered at s such that (vv )(, t) (a ɛ) p in B s P [u]. In view of (2.6) we have φ(, t) ζ v (, t) in B s P [u]. Since Γ can be covered by a finite number of these balls it follows that there is a γ = γ() (0, δ) such that φ(, t) w(, t) in R δ,η. Thus for every (0, 0 ), φ is a barrier for w in R δ,η. By the comparison principle for parabolic equations [0] we conclude that v (, t) ζ(t) + ζ (t) in R δ,η, where is given by (2.9) and (0, 0 ) is arbitrary. Now let 0 to obtain v (, t) ζ 2 in R. ɛη 3. Bounds for ( ) 3 v In this section we find the estimates of the derivatives of the form ( ) 3 v (3) v.

7 One-dimensional parabolic p Laplacian equation 45 By a direct computation we have, (3.) L 3 (v (3) ) = v (3) where A = (p 2)v p t (p 2)vv p 2 v (3) (A + B)v (3) Cv (3) D(v (3) ) 2 v 3 (p 2) 2 (p 3)(p 4)vv p 5 v 4 = 0 Ev p 3 B = (3p 4)v p + (p 2) 2 vv p 3 v, + 3(p 2) 2 vv p 3 v, C = v v p 2 {(3p 4)(p ) + 2[(p 2) 2 + 2(p ) 2 ] + 6(p 2) 2 (p 3)vv 2 v + 3(p 2) 2 }, D = 3(p 2) 2 vv p 3, E = [(p 2) 2 + 2(p ) 2 ](p 2) + (p 2) 2 (p 3). Suppose that q = ( 0, t 0 ) is a point on the left interface for which (2.) holds. Fi ɛ (0, a) and take δ 0 = δ 0 (ɛ) > 0 and η 0 = η(ɛ) (0, t 0 t ) such that R 0 R δ0,η 0 (t 0 ) P [u] and (2.5) holds. Thus we also have (2.6) and (2.7) in R 0. Then by rescaling and interior estimate we have Proposition 3.. There are constants K R +, δ (0, δ 0 ), and η (0, η 0 ) depending only on p,q and C 2 such that v (3) K (, t) in R δ,η. ζ(t) Proof. Set δ = min{ 2δ 0 3, 2sη 0}, η = η 0 δ 4s, and define R(, t) {(, t) R 2 : < λ2, t λ4s } < t t for (, t) R δ,η, where s = a + ɛ and λ = ζ(t). Then (, t) R δ,η implies that R(, t) R 0. Since δ 0 3δ, λ < δ and ζ is nonincreasing, 2 we have and t 0 η 0 = t 0 η λ 4s < t < t 0 + η < t 0 + η 0 λ 2 = + ζ(t) 2 = + ζ(t) 2 > ζ(t 0 + η 0 )

8 46 Youngsang Ko ζ(t 0 η) + δ + λ 2 < ζ(t 0 η 0 ). Also observe that for each (, t) R δ,η, R(, t) lies to the right of the line = ζ(t)+s(t t). Net set = λξ + and t = λτ +t. The function W (ξ, τ) v (λξ +, λτ + t) = v (, t) satisfies the equation { W τ = (p 2) v } λ vp 2 W ξ + (3p 4)v p W (3.2) in the region +[2(p 2) 2 vv p 3 +λ[(p 2) 2 (p 3)vv p 4 B v (p 2)v p ]W ξ ξ (v ) 3 (p 2)v p 2 (v ) 2 ] {(ξ, τ) R 2 : ξ 2, 4s < τ 0 }, and W C 2 in B. In view of (2.6) and (2.7) and (a ɛ) p ζ(t) λ v(, t) λ (a + ɛ) p ζ(t) λ ζ(t) ζ(t) ζ(t) + s(t t) ζ(t) + λ 4. Therefore λ 4 = λ 2 ζ(t) λ 4 ζ(t) + λ 2 ζ(t) = 3λ 2 which implies (a ɛ) p v 3(a + ɛ) p. 4 λ 2 Hence by (2.4) equation (3.2) is uniformly parabolic in B. Moreover, it follows from Proposition 2.2 that W satisfies all of the hypotheses of Theorem 5.3. of [0]. Thus we conclude that there eists a constant K = K(a, p, C 2 ) > 0 such that W (0, 0) ξ K; that is, v (3) (, t) K λ. Since (, t) R δ,η is arbitrary, this proves the proposition.

9 One-dimensional parabolic p Laplacian equation 47 We now turn to the barrier construction. If γ (0, δ) we will use the notation R γ δ,η = Rγ δ,η (t 0) {(, t) R 2 : ζ(t)+γ ζ(t)+δ, t 0 η t t 0 +η}. Proposition 3.2. Let R δ,η be the region constructed in the proof of Proposition 2.2 with (3.3) 0 < δ < For (, t) R γ δ,η, let (3.4) φ γ (, t) (p )a p 2(p 2) 2 K. ζ(t) γ/3 + ζ (t) where ζ is given by (2.8), and and are positive constant less than K/2. Then there eist δ (0, δ ) and η (0, η ) depending only on a, p and C 2 such that L 3 (φ γ ) 0 in R γ δ,η for all γ (0, δ). Proof. Choose ɛ such that (3.5) 0 < ɛ < (p )a 3p 23. There eist δ 2 (0, δ ) and η (0, η ) such that (2.4), (2.6) and (2.7) hold in R δ2,η. Fi γ (0, δ 2 ). For (, t) R γ δ 2,η, we have } 2(p L 3 (φ 3 ) = {ζ 2)vvp 2 ( ζ γ/3) 2 ζ γ/3 + A + B } 2(p + {ζ 2)vvp 2 + A + B ( ζ ) 2 ζ Cφ 3 D(φ 3 ) 2 Ev p 3 v 3 (p 2) 2 (p 3)(p 4)vv p 5 where A, B, C, D and E are as before. From (2.6), together with the fact that ζ ζ γ/3 we have v ζ v ζ γ/3 (a + ɛ) p (a + ɛ) p ζ ζ γ/3 γ γ γ/3 = 3 (a + ɛ) p. 2 v 4

10 48 Youngsang Ko From (3.3), we have (3.6) D, D < DK (p )a (p )ɛ < DK Then since C is bounded and from (2.4) and (2.6), we have L 3 (φ 3 ) { (p )a (7p )ɛ C Y 2D E Y 2 } Y 2 { + (p )a (7p 0)ɛ C ( ζ ) ( ζ ) 2 2D E ( ζ ) 2 } { (p )a 3p 23 ɛ δ Y 2 2 ( C E Y } ) { (p )a ( ζ ) 2 2 3p 2 2 ɛ δ 2 ( C E } ζ ) where Y = ζ γ/3 and E = E v p 3 v. 3 Since ɛ satisfies (3.5) we can choose δ = δ 2 (ɛ, p, a, C 2 ) > 0 so small that L 3 (φ 3 ) 0 in R γ δ,η. Remark 3.. From (3.6) the Proposition 3.2 will be true for any, (0, K). Proposition 3.3. (Barrier Transformation). Let δ and η be as in Proposition 3.2 with the additional restriction that (3.7) η < δ 6ɛ, where ɛ is as in Proposition 3.2. constant (3.8) v (3) (, t) Then v (3) also satisfies Suppose that for some nonnegative ζ(t) + ζ (t) (3.9) v (3) (, t) 2/3 ζ(t) + + 2/3 ζ (t) in R δ,η. in R δ,η. Proof. By Remark 3., for any γ (0, δ) since + 2/3 K the function 2/3 φ 3 (, t) = ζ γ/ /3 ζ

11 One-dimensional parabolic p Laplacian equation 49 satisfies L 3 (φ 3 ) 0 in R γ δ,η. On the other hand, on the parabolic boundary of R γ δ,η we have φ 3 v (3). In fact, for t = t and ζ + γ ζ + δ, with ζ = ζ(t ), we have φ 3 (, t ) = 2 ζ γ/ /3 > 4/3 + > v (3) (, t ) ζ ζ ζ while for = ζ + δ and t t t 2 we get, in view of (3.7), φ 3 (ζ + δ, t) 2/3 δ γ/3 + ζ + δ ζ + 2/3 δ + 6ɛη 2/3 δ + δ ζ + δ ζ + /3 v (3) (ζ + δ, t). δ Finally, for = ζ + γ, t t t 2 we have φ 3 (ζ + δ, t) = 2/3 γ γ/ /3 ζ + γ ζ γ + ζ + γ ζ v(3) (ζ + γ, t). By the comparison principle we get φ 3 v (3) in R γ δ.η for any γ (0, δ), and (3.9) follows by letting γ 0. Proposition 3.4. Let q = ( 0, t 0 ) be a point on the interface for which (2.) holds. Then there eist constants C 3, δ and η depending only on p, q and u such that ( ) 3 v C 3 in R δ,η/2. Proof. By Proposition 3. we have, by letting = 0, v (3) (, t) ζ 2 in R δ,η/2. ɛη Even though the equation (3.) is not linear for v (3), a lower bound can be obtained in a similar way. References [] S. Angenent, Analyticity of the interface of the porous media equation after the waiting time, Proc. Amer. Math. Soc. 02 (988), [2] D. G. Aronson and J. L. Vazquez, Eventual C -regularity and concavity for flows in one-dimensional porous media, Arch. Rational Mech. Anal. 99 (987),no.4,

12 50 Youngsang Ko [3] L. A. Caffarelli and A. Friedman, Regularity of the free boundary of a gas flow in an n-dimensional porous medium, Ind. Univ. Math. J. 29 (980), [4] L. A. caffarelli and N. J. Wolanski, C, regularity of the free boundary for the N-dimensional porous medium equation, Comm. Pure Appl. Math. 43 (990), [5] H. Choe and J. Kim, Regularity for the interfaces of evolutionary p-laplacian functions, Siam J. Math. Anal. 26 (4) (995), [6] P. Daskalopoulos and R. Hamilton, Regularity of the free boundary for the porous medium equation, J. A.M.S. (4) (998), [7] J. R. Esteban and J. L. Vazquez, Homogeneous diffusion in R with power-like nonlinear diffusivity, Arch. Rational Mech. Anal. 03(988) [8] K. Höllig and H. O. Kreiss, C -Regularity for the porous medium equation, Math. Z. 92 (986), [9] Y. Ko, C, regularity of interfaces for solutopns of the parabolic p-laplacian equation, Comm. in P. D. E., to appear. [0] O. A. Ladyzhenskaya, N.A. Solonnikov and N.N. Uraltzeva, Linear and quasilinear equations of parabolic type, Trans. Math. Monographs, 23, Amer. Math. Soc., Providence, R. I., 968. Department of Mathematics Kyonggi University Suwon, Kyonggi-do, Korea ysgo@@kuic.kyonggi.ac.kr

REGULARITY OF THE INTERFACE FOR THE POROUS MEDIUM EQUATION

REGULARITY OF THE INTERFACE FOR THE POROUS MEDIUM EQUATION Electronic Journal of Differential Equations, Vol. 2000(2000), No. 68, pp. 2. ISSN: 072-669. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu ftp ejde.math.swt.edu ejde.math.unt.edu (login: ftp)

More information

Large time behavior of solutions of the p-laplacian equation

Large time behavior of solutions of the p-laplacian equation Large time behavior of solutions of the p-laplacian equation Ki-ahm Lee, Arshak Petrosyan, and Juan Luis Vázquez Abstract We establish the behavior of the solutions of the degenerate parabolic equation

More information

Lecture No 2 Degenerate Diffusion Free boundary problems

Lecture No 2 Degenerate Diffusion Free boundary problems Lecture No 2 Degenerate Diffusion Free boundary problems Columbia University IAS summer program June, 2009 Outline We will discuss non-linear parabolic equations of slow diffusion. Our model is the porous

More information

Piecewise Smooth Solutions to the Burgers-Hilbert Equation

Piecewise Smooth Solutions to the Burgers-Hilbert Equation Piecewise Smooth Solutions to the Burgers-Hilbert Equation Alberto Bressan and Tianyou Zhang Department of Mathematics, Penn State University, University Park, Pa 68, USA e-mails: bressan@mathpsuedu, zhang

More information

Homogenization and error estimates of free boundary velocities in periodic media

Homogenization and error estimates of free boundary velocities in periodic media Homogenization and error estimates of free boundary velocities in periodic media Inwon C. Kim October 7, 2011 Abstract In this note I describe a recent result ([14]-[15]) on homogenization and error estimates

More information

UNIQUENESS OF SELF-SIMILAR VERY SINGULAR SOLUTION FOR NON-NEWTONIAN POLYTROPIC FILTRATION EQUATIONS WITH GRADIENT ABSORPTION

UNIQUENESS OF SELF-SIMILAR VERY SINGULAR SOLUTION FOR NON-NEWTONIAN POLYTROPIC FILTRATION EQUATIONS WITH GRADIENT ABSORPTION Electronic Journal of Differential Equations, Vol. 2015 2015), No. 83, pp. 1 9. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu UNIQUENESS OF SELF-SIMILAR

More information

LIFE SPAN OF BLOW-UP SOLUTIONS FOR HIGHER-ORDER SEMILINEAR PARABOLIC EQUATIONS

LIFE SPAN OF BLOW-UP SOLUTIONS FOR HIGHER-ORDER SEMILINEAR PARABOLIC EQUATIONS Electronic Journal of Differential Equations, Vol. 21(21), No. 17, pp. 1 9. ISSN: 172-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu LIFE SPAN OF BLOW-UP

More information

HARDY INEQUALITIES WITH BOUNDARY TERMS. x 2 dx u 2 dx. (1.2) u 2 = u 2 dx.

HARDY INEQUALITIES WITH BOUNDARY TERMS. x 2 dx u 2 dx. (1.2) u 2 = u 2 dx. Electronic Journal of Differential Equations, Vol. 003(003), No. 3, pp. 1 8. ISSN: 107-6691. UL: http://ejde.math.swt.edu or http://ejde.math.unt.edu ftp ejde.math.swt.edu (login: ftp) HADY INEQUALITIES

More information

SIMULTANEOUS AND NON-SIMULTANEOUS BLOW-UP AND UNIFORM BLOW-UP PROFILES FOR REACTION-DIFFUSION SYSTEM

SIMULTANEOUS AND NON-SIMULTANEOUS BLOW-UP AND UNIFORM BLOW-UP PROFILES FOR REACTION-DIFFUSION SYSTEM Electronic Journal of Differential Euations, Vol. 22 (22), No. 26, pp. 9. ISSN: 72-669. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu SIMULTANEOUS AND NON-SIMULTANEOUS

More information

Inequalities of Babuška-Aziz and Friedrichs-Velte for differential forms

Inequalities of Babuška-Aziz and Friedrichs-Velte for differential forms Inequalities of Babuška-Aziz and Friedrichs-Velte for differential forms Martin Costabel Abstract. For sufficiently smooth bounded plane domains, the equivalence between the inequalities of Babuška Aziz

More information

Global unbounded solutions of the Fujita equation in the intermediate range

Global unbounded solutions of the Fujita equation in the intermediate range Global unbounded solutions of the Fujita equation in the intermediate range Peter Poláčik School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA Eiji Yanagida Department of Mathematics,

More information

Some aspects of vanishing properties of solutions to nonlinear elliptic equations

Some aspects of vanishing properties of solutions to nonlinear elliptic equations RIMS Kôkyûroku, 2014, pp. 1 9 Some aspects of vanishing properties of solutions to nonlinear elliptic equations By Seppo Granlund and Niko Marola Abstract We discuss some aspects of vanishing properties

More information

Simultaneous vs. non simultaneous blow-up

Simultaneous vs. non simultaneous blow-up Simultaneous vs. non simultaneous blow-up Juan Pablo Pinasco and Julio D. Rossi Departamento de Matemática, F.C.E y N., UBA (428) Buenos Aires, Argentina. Abstract In this paper we study the possibility

More information

Simultaneous vs. non simultaneous blow-up

Simultaneous vs. non simultaneous blow-up Simultaneous vs. non simultaneous blow-up Juan Pablo Pinasco and Julio D. Rossi Departamento de Matemática, F..E y N., UBA (428) Buenos Aires, Argentina. Abstract In this paper we study the possibility

More information

On the Dirichlet Problem for the Reaction-Diffusion. Equations in Non-smooth Domains

On the Dirichlet Problem for the Reaction-Diffusion. Equations in Non-smooth Domains On the Dirichlet Problem for the Reaction-Diffusion Equations in Non-smooth Domains Ugur G. Abdulla Faculty of Applied Mathematics and Cybernetics, Baku State University, Baku, Azerbaijan, and Max-Planck

More information

SYMMETRY RESULTS FOR PERTURBED PROBLEMS AND RELATED QUESTIONS. Massimo Grosi Filomena Pacella S. L. Yadava. 1. Introduction

SYMMETRY RESULTS FOR PERTURBED PROBLEMS AND RELATED QUESTIONS. Massimo Grosi Filomena Pacella S. L. Yadava. 1. Introduction Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center Volume 21, 2003, 211 226 SYMMETRY RESULTS FOR PERTURBED PROBLEMS AND RELATED QUESTIONS Massimo Grosi Filomena Pacella S.

More information

hal , version 1-22 Nov 2009

hal , version 1-22 Nov 2009 Author manuscript, published in "Kinet. Relat. Models 1, 3 8) 355-368" PROPAGATION OF GEVREY REGULARITY FOR SOLUTIONS OF LANDAU EQUATIONS HUA CHEN, WEI-XI LI AND CHAO-JIANG XU Abstract. By using the energy-type

More information

Blow-up for a Nonlocal Nonlinear Diffusion Equation with Source

Blow-up for a Nonlocal Nonlinear Diffusion Equation with Source Revista Colombiana de Matemáticas Volumen 46(2121, páginas 1-13 Blow-up for a Nonlocal Nonlinear Diffusion Equation with Source Explosión para una ecuación no lineal de difusión no local con fuente Mauricio

More information

DETERMINATION OF THE BLOW-UP RATE FOR THE SEMILINEAR WAVE EQUATION

DETERMINATION OF THE BLOW-UP RATE FOR THE SEMILINEAR WAVE EQUATION DETERMINATION OF THE LOW-UP RATE FOR THE SEMILINEAR WAVE EQUATION y FRANK MERLE and HATEM ZAAG Abstract. In this paper, we find the optimal blow-up rate for the semilinear wave equation with a power nonlinearity.

More information

ON THE CONVERGENCE OF MODIFIED NOOR ITERATION METHOD FOR NEARLY LIPSCHITZIAN MAPPINGS IN ARBITRARY REAL BANACH SPACES

ON THE CONVERGENCE OF MODIFIED NOOR ITERATION METHOD FOR NEARLY LIPSCHITZIAN MAPPINGS IN ARBITRARY REAL BANACH SPACES TJMM 6 (2014), No. 1, 45-51 ON THE CONVERGENCE OF MODIFIED NOOR ITERATION METHOD FOR NEARLY LIPSCHITZIAN MAPPINGS IN ARBITRARY REAL BANACH SPACES ADESANMI ALAO MOGBADEMU Abstract. In this present paper,

More information

BLOW-UP ON THE BOUNDARY: A SURVEY

BLOW-UP ON THE BOUNDARY: A SURVEY SINGULARITIES AND DIFFERENTIAL EQUATIONS BANACH CENTER PUBLICATIONS, VOLUME 33 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 1996 BLOW-UP ON THE BOUNDARY: A SURVEY MAREK FILA Department

More information

On critical Fujita exponents for the porous medium equation with a nonlinear boundary condition

On critical Fujita exponents for the porous medium equation with a nonlinear boundary condition J. Math. Anal. Appl. 286 (2003) 369 377 www.elsevier.com/locate/jmaa On critical Fujita exponents for the porous medium equation with a nonlinear boundary condition Wenmei Huang, a Jingxue Yin, b andyifuwang

More information

Jae Gil Choi and Young Seo Park

Jae Gil Choi and Young Seo Park Kangweon-Kyungki Math. Jour. 11 (23), No. 1, pp. 17 3 TRANSLATION THEOREM ON FUNCTION SPACE Jae Gil Choi and Young Seo Park Abstract. In this paper, we use a generalized Brownian motion process to define

More information

A note on W 1,p estimates for quasilinear parabolic equations

A note on W 1,p estimates for quasilinear parabolic equations 200-Luminy conference on Quasilinear Elliptic and Parabolic Equations and Systems, Electronic Journal of Differential Equations, Conference 08, 2002, pp 2 3. http://ejde.math.swt.edu or http://ejde.math.unt.edu

More information

Gas solid reaction with porosity change

Gas solid reaction with porosity change Nonlinear Differential Equations, Electron. J. Diff. Eqns., Conf. 5, 2, pp. 247 252 http://ejde.math.swt.edu or http://ejde.math.unt.edu ftp ejde.math.swt.edu or ejde.math.unt.edu (login: ftp) Gas solid

More information

Multiple positive solutions for a class of quasilinear elliptic boundary-value problems

Multiple positive solutions for a class of quasilinear elliptic boundary-value problems Electronic Journal of Differential Equations, Vol. 20032003), No. 07, pp. 1 5. ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu ftp ejde.math.swt.edu login: ftp) Multiple positive

More information

Steepest descent approximations in Banach space 1

Steepest descent approximations in Banach space 1 General Mathematics Vol. 16, No. 3 (2008), 133 143 Steepest descent approximations in Banach space 1 Arif Rafiq, Ana Maria Acu, Mugur Acu Abstract Let E be a real Banach space and let A : E E be a Lipschitzian

More information

Regularity estimates for fully non linear elliptic equations which are asymptotically convex

Regularity estimates for fully non linear elliptic equations which are asymptotically convex Regularity estimates for fully non linear elliptic equations which are asymptotically convex Luis Silvestre and Eduardo V. Teixeira Abstract In this paper we deliver improved C 1,α regularity estimates

More information

COINCIDENCE SETS IN THE OBSTACLE PROBLEM FOR THE p-harmonic OPERATOR

COINCIDENCE SETS IN THE OBSTACLE PROBLEM FOR THE p-harmonic OPERATOR PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 95, Number 3, November 1985 COINCIDENCE SETS IN THE OBSTACLE PROBLEM FOR THE p-harmonic OPERATOR SHIGERU SAKAGUCHI Abstract. We consider the obstacle

More information

Uniqueness of ground states for quasilinear elliptic equations in the exponential case

Uniqueness of ground states for quasilinear elliptic equations in the exponential case Uniqueness of ground states for quasilinear elliptic equations in the exponential case Patrizia Pucci & James Serrin We consider ground states of the quasilinear equation (.) div(a( Du )Du) + f(u) = 0

More information

arxiv: v3 [math.ap] 1 Sep 2017

arxiv: v3 [math.ap] 1 Sep 2017 arxiv:1603.0685v3 [math.ap] 1 Sep 017 UNIQUE CONTINUATION FOR THE SCHRÖDINGER EQUATION WITH GRADIENT TERM YOUNGWOO KOH AND IHYEOK SEO Abstract. We obtain a unique continuation result for the differential

More information

A Necessary and Sufficient Condition for the Continuity of Local Minima of Parabolic Variational Integrals with Linear Growth

A Necessary and Sufficient Condition for the Continuity of Local Minima of Parabolic Variational Integrals with Linear Growth A Necessary and Sufficient Condition for the Continuity of Local Minima of Parabolic Variational Integrals with Linear Growth E. DiBenedetto 1 U. Gianazza 2 C. Klaus 1 1 Vanderbilt University, USA 2 Università

More information

EXISTENCE AND UNIQUENESS OF SOLUTIONS CAUCHY PROBLEM FOR NONLINEAR INFINITE SYSTEMS OF PARABOLIC DIFFERENTIAL-FUNCTIONAL EQUATIONS

EXISTENCE AND UNIQUENESS OF SOLUTIONS CAUCHY PROBLEM FOR NONLINEAR INFINITE SYSTEMS OF PARABOLIC DIFFERENTIAL-FUNCTIONAL EQUATIONS UNIVERSITATIS IAGELLONICAE ACTA MATHEMATICA, FASCICULUS XL 22 EXISTENCE AND UNIQUENESS OF SOLUTIONS CAUCHY PROBLEM FOR NONLINEAR INFINITE SYSTEMS OF PARABOLIC DIFFERENTIAL-FUNCTIONAL EQUATIONS by Anna

More information

EXISTENCE AND REGULARITY RESULTS FOR SOME NONLINEAR PARABOLIC EQUATIONS

EXISTENCE AND REGULARITY RESULTS FOR SOME NONLINEAR PARABOLIC EQUATIONS EXISTECE AD REGULARITY RESULTS FOR SOME OLIEAR PARABOLIC EUATIOS Lucio BOCCARDO 1 Andrea DALL AGLIO 2 Thierry GALLOUËT3 Luigi ORSIA 1 Abstract We prove summability results for the solutions of nonlinear

More information

SYMMETRY OF POSITIVE SOLUTIONS OF SOME NONLINEAR EQUATIONS. M. Grossi S. Kesavan F. Pacella M. Ramaswamy. 1. Introduction

SYMMETRY OF POSITIVE SOLUTIONS OF SOME NONLINEAR EQUATIONS. M. Grossi S. Kesavan F. Pacella M. Ramaswamy. 1. Introduction Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center Volume 12, 1998, 47 59 SYMMETRY OF POSITIVE SOLUTIONS OF SOME NONLINEAR EQUATIONS M. Grossi S. Kesavan F. Pacella M. Ramaswamy

More information

ON QUASI-FUZZY H-CLOSED SPACE AND CONVERGENCE. Yoon Kyo-Chil and Myung Jae-Duek

ON QUASI-FUZZY H-CLOSED SPACE AND CONVERGENCE. Yoon Kyo-Chil and Myung Jae-Duek Kangweon-Kyungki Math. Jour. 4 (1996), No. 2, pp. 173 178 ON QUASI-FUZZY H-CLOSED SPACE AND CONVERGENCE Yoon Kyo-Chil and Myung Jae-Duek Abstract. In this paper, we discuss quasi-fuzzy H-closed space and

More information

Minimization problems on the Hardy-Sobolev inequality

Minimization problems on the Hardy-Sobolev inequality manuscript No. (will be inserted by the editor) Minimization problems on the Hardy-Sobolev inequality Masato Hashizume Received: date / Accepted: date Abstract We study minimization problems on Hardy-Sobolev

More information

Lecture No 1 Introduction to Diffusion equations The heat equat

Lecture No 1 Introduction to Diffusion equations The heat equat Lecture No 1 Introduction to Diffusion equations The heat equation Columbia University IAS summer program June, 2009 Outline of the lectures We will discuss some basic models of diffusion equations and

More information

A LOWER BOUND FOR THE GRADIENT OF -HARMONIC FUNCTIONS Edi Rosset. 1. Introduction. u xi u xj u xi x j

A LOWER BOUND FOR THE GRADIENT OF -HARMONIC FUNCTIONS Edi Rosset. 1. Introduction. u xi u xj u xi x j Electronic Journal of Differential Equations, Vol. 1996(1996) No. 0, pp. 1 7. ISSN 107-6691. URL: http://ejde.math.swt.edu (147.6.103.110) telnet (login: ejde), ftp, and gopher access: ejde.math.swt.edu

More information

ON CHARACTERISTIC 0 AND WEAKLY ALMOST PERIODIC FLOWS. Hyungsoo Song

ON CHARACTERISTIC 0 AND WEAKLY ALMOST PERIODIC FLOWS. Hyungsoo Song Kangweon-Kyungki Math. Jour. 11 (2003), No. 2, pp. 161 167 ON CHARACTERISTIC 0 AND WEAKLY ALMOST PERIODIC FLOWS Hyungsoo Song Abstract. The purpose of this paper is to study and characterize the notions

More information

ANISOTROPIC EQUATIONS: UNIQUENESS AND EXISTENCE RESULTS

ANISOTROPIC EQUATIONS: UNIQUENESS AND EXISTENCE RESULTS ANISOTROPIC EQUATIONS: UNIQUENESS AND EXISTENCE RESULTS STANISLAV ANTONTSEV, MICHEL CHIPOT Abstract. We study uniqueness of weak solutions for elliptic equations of the following type ) xi (a i (x, u)

More information

Threshold behavior and non-quasiconvergent solutions with localized initial data for bistable reaction-diffusion equations

Threshold behavior and non-quasiconvergent solutions with localized initial data for bistable reaction-diffusion equations Threshold behavior and non-quasiconvergent solutions with localized initial data for bistable reaction-diffusion equations P. Poláčik School of Mathematics, University of Minnesota Minneapolis, MN 55455

More information

REGULARITY AND COMPARISON PRINCIPLES FOR p-laplace EQUATIONS WITH VANISHING SOURCE TERM. Contents

REGULARITY AND COMPARISON PRINCIPLES FOR p-laplace EQUATIONS WITH VANISHING SOURCE TERM. Contents REGULARITY AND COMPARISON PRINCIPLES FOR p-laplace EQUATIONS WITH VANISHING SOURCE TERM BERARDINO SCIUNZI Abstract. We prove some sharp estimates on the summability properties of the second derivatives

More information

A new contraction family for porous medium and fast diffusion equation

A new contraction family for porous medium and fast diffusion equation A new contraction family for porous medium and fast diffusion equation Ghada Chmaycem, Régis Monneau, Mustapha Jazar To cite this version: Ghada Chmaycem, Régis Monneau, Mustapha Jazar. A new contraction

More information

Part 1 Introduction Degenerate Diffusion and Free-boundaries

Part 1 Introduction Degenerate Diffusion and Free-boundaries Part 1 Introduction Degenerate Diffusion and Free-boundaries Columbia University De Giorgi Center - Pisa June 2012 Introduction We will discuss, in these lectures, certain geometric and analytical aspects

More information

Shih-sen Chang, Yeol Je Cho, and Haiyun Zhou

Shih-sen Chang, Yeol Je Cho, and Haiyun Zhou J. Korean Math. Soc. 38 (2001), No. 6, pp. 1245 1260 DEMI-CLOSED PRINCIPLE AND WEAK CONVERGENCE PROBLEMS FOR ASYMPTOTICALLY NONEXPANSIVE MAPPINGS Shih-sen Chang, Yeol Je Cho, and Haiyun Zhou Abstract.

More information

TESTING HOLOMORPHY ON CURVES

TESTING HOLOMORPHY ON CURVES TESTING HOLOMORPHY ON CURVES BUMA L. FRIDMAN AND DAOWEI MA Abstract. For a domain D C n we construct a continuous foliation of D into one real dimensional curves such that any function f C 1 (D) which

More information

On Characterizations of Meir-Keeler Contractive Maps

On Characterizations of Meir-Keeler Contractive Maps On Characterizations of Meir-Keeler Contractive Maps Teck-Cheong Lim Department of Mathematical Sciences George Mason University 4400, University Drive Fairfax, VA 030 U.S.A. e-mail address: tlim@gmu.edu

More information

Thuong Nguyen. SADCO Internal Review Metting

Thuong Nguyen. SADCO Internal Review Metting Asymptotic behavior of singularly perturbed control system: non-periodic setting Thuong Nguyen (Joint work with A. Siconolfi) SADCO Internal Review Metting Rome, Nov 10-12, 2014 Thuong Nguyen (Roma Sapienza)

More information

Applications of the compensated compactness method on hyperbolic conservation systems

Applications of the compensated compactness method on hyperbolic conservation systems Applications of the compensated compactness method on hyperbolic conservation systems Yunguang Lu Department of Mathematics National University of Colombia e-mail:ylu@unal.edu.co ALAMMI 2009 In this talk,

More information

On The Convergence Of Modified Noor Iteration For Nearly Lipschitzian Maps In Real Banach Spaces

On The Convergence Of Modified Noor Iteration For Nearly Lipschitzian Maps In Real Banach Spaces CJMS. 2(2)(2013), 95-104 Caspian Journal of Mathematical Sciences (CJMS) University of Mazandaran, Iran http://cjms.journals.umz.ac.ir ISSN: 1735-0611 On The Convergence Of Modified Noor Iteration For

More information

GENERAL NONCONVEX SPLIT VARIATIONAL INEQUALITY PROBLEMS. Jong Kyu Kim, Salahuddin, and Won Hee Lim

GENERAL NONCONVEX SPLIT VARIATIONAL INEQUALITY PROBLEMS. Jong Kyu Kim, Salahuddin, and Won Hee Lim Korean J. Math. 25 (2017), No. 4, pp. 469 481 https://doi.org/10.11568/kjm.2017.25.4.469 GENERAL NONCONVEX SPLIT VARIATIONAL INEQUALITY PROBLEMS Jong Kyu Kim, Salahuddin, and Won Hee Lim Abstract. In this

More information

Yunhi Cho. 3 y = y yy,.

Yunhi Cho. 3 y = y yy,. Kangweon-Kyungki Math. Jour. 12 (2004), No. 1, pp. 55 65 THE DIFFERENTIAL PROPERTY OF ODD AND EVEN HYPERPOWER FUNCTIONS Yunhi Cho Abstract. Let h e (y), h o (y) denote the limits of the sequences { 2n

More information

MEAN CURVATURE FLOW OF ENTIRE GRAPHS EVOLVING AWAY FROM THE HEAT FLOW

MEAN CURVATURE FLOW OF ENTIRE GRAPHS EVOLVING AWAY FROM THE HEAT FLOW MEAN CURVATURE FLOW OF ENTIRE GRAPHS EVOLVING AWAY FROM THE HEAT FLOW GREGORY DRUGAN AND XUAN HIEN NGUYEN Abstract. We present two initial graphs over the entire R n, n 2 for which the mean curvature flow

More information

On Smoothness of Suitable Weak Solutions to the Navier-Stokes Equations

On Smoothness of Suitable Weak Solutions to the Navier-Stokes Equations On Smoothness of Suitable Weak Solutions to the Navier-Stokes Equations G. Seregin, V. Šverák Dedicated to Vsevolod Alexeevich Solonnikov Abstract We prove two sufficient conditions for local regularity

More information

Symmetry of nonnegative solutions of elliptic equations via a result of Serrin

Symmetry of nonnegative solutions of elliptic equations via a result of Serrin Symmetry of nonnegative solutions of elliptic equations via a result of Serrin P. Poláčik School of Mathematics, University of Minnesota Minneapolis, MN 55455 Abstract. We consider the Dirichlet problem

More information

ITERATIVE SCHEMES FOR APPROXIMATING SOLUTIONS OF ACCRETIVE OPERATORS IN BANACH SPACES SHOJI KAMIMURA AND WATARU TAKAHASHI. Received December 14, 1999

ITERATIVE SCHEMES FOR APPROXIMATING SOLUTIONS OF ACCRETIVE OPERATORS IN BANACH SPACES SHOJI KAMIMURA AND WATARU TAKAHASHI. Received December 14, 1999 Scientiae Mathematicae Vol. 3, No. 1(2000), 107 115 107 ITERATIVE SCHEMES FOR APPROXIMATING SOLUTIONS OF ACCRETIVE OPERATORS IN BANACH SPACES SHOJI KAMIMURA AND WATARU TAKAHASHI Received December 14, 1999

More information

Existence of Solutions for a Class of Third Order Quasilinear Ordinary Differential Equations with Nonlinear Boundary Value Problems

Existence of Solutions for a Class of Third Order Quasilinear Ordinary Differential Equations with Nonlinear Boundary Value Problems Advances in Dynamical Systems and Applications ISSN 973-5321, Volume 3, Number 2, pp. 35 321 (28) http://campus.mst.edu/adsa Existence of Solutions for a Class of Third Order Quasilinear Ordinary Differential

More information

Sang-baek Lee*, Jae-hyeong Bae**, and Won-gil Park***

Sang-baek Lee*, Jae-hyeong Bae**, and Won-gil Park*** JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 6, No. 4, November 013 http://d.doi.org/10.14403/jcms.013.6.4.671 ON THE HYERS-ULAM STABILITY OF AN ADDITIVE FUNCTIONAL INEQUALITY Sang-baek Lee*,

More information

ON COMPARISON PRINCIPLES FOR

ON COMPARISON PRINCIPLES FOR Monografías Matemáticas García de Galdeano 39, 177 185 (214) ON COMPARISON PRINCIPLES FOR WEAK SOLUTIONS OF DOUBLY NONLINEAR REACTION-DIFFUSION EQUATIONS Jochen Merker and Aleš Matas Abstract. The weak

More information

REGULARITY RESULTS FOR THE EQUATION u 11 u 22 = Introduction

REGULARITY RESULTS FOR THE EQUATION u 11 u 22 = Introduction REGULARITY RESULTS FOR THE EQUATION u 11 u 22 = 1 CONNOR MOONEY AND OVIDIU SAVIN Abstract. We study the equation u 11 u 22 = 1 in R 2. Our results include an interior C 2 estimate, classical solvability

More information

Author(s) Huang, Feimin; Matsumura, Akitaka; Citation Osaka Journal of Mathematics. 41(1)

Author(s) Huang, Feimin; Matsumura, Akitaka; Citation Osaka Journal of Mathematics. 41(1) Title On the stability of contact Navier-Stokes equations with discont free b Authors Huang, Feimin; Matsumura, Akitaka; Citation Osaka Journal of Mathematics. 4 Issue 4-3 Date Text Version publisher URL

More information

Spreading-vanishing dichotomy in a diffusive epidemic model with Stefan condition

Spreading-vanishing dichotomy in a diffusive epidemic model with Stefan condition Spreading-vanishing dichotomy in a diffusive epidemic model with Stefan condition Inkyung Ahn Department of Mathematics Korea University April 1, 2016 2016 CMAC Workshop (joint-work with Seunghyun Baek)

More information

ON THE STRONG SOLUTIONS OF THE INHOMOGENEOUS INCOMPRESSIBLE NAVIER-STOKES EQUATIONS IN A THIN DOMAIN

ON THE STRONG SOLUTIONS OF THE INHOMOGENEOUS INCOMPRESSIBLE NAVIER-STOKES EQUATIONS IN A THIN DOMAIN ON THE STRONG SOLUTIONS OF THE INHOMOGENEOUS INCOMPRESSIBLE NAVIER-STOKES EQUATIONS IN A THIN DOMAIN XIAN LIAO Abstract. In this work we will show the global existence of the strong solutions of the inhomogeneous

More information

GLOBAL ATTRACTIVITY IN A CLASS OF NONMONOTONE REACTION-DIFFUSION EQUATIONS WITH TIME DELAY

GLOBAL ATTRACTIVITY IN A CLASS OF NONMONOTONE REACTION-DIFFUSION EQUATIONS WITH TIME DELAY CANADIAN APPLIED MATHEMATICS QUARTERLY Volume 17, Number 1, Spring 2009 GLOBAL ATTRACTIVITY IN A CLASS OF NONMONOTONE REACTION-DIFFUSION EQUATIONS WITH TIME DELAY XIAO-QIANG ZHAO ABSTRACT. The global attractivity

More information

THE ZERO-DISTRIBUTION AND THE ASYMPTOTIC BEHAVIOR OF A FOURIER INTEGRAL. Haseo Ki and Young One Kim

THE ZERO-DISTRIBUTION AND THE ASYMPTOTIC BEHAVIOR OF A FOURIER INTEGRAL. Haseo Ki and Young One Kim THE ZERO-DISTRIBUTION AND THE ASYMPTOTIC BEHAVIOR OF A FOURIER INTEGRAL Haseo Ki Young One Kim Abstract. The zero-distribution of the Fourier integral Q(u)eP (u)+izu du, where P is a polynomial with leading

More information

Some recent results on controllability of coupled parabolic systems: Towards a Kalman condition

Some recent results on controllability of coupled parabolic systems: Towards a Kalman condition Some recent results on controllability of coupled parabolic systems: Towards a Kalman condition F. Ammar Khodja Clermont-Ferrand, June 2011 GOAL: 1 Show the important differences between scalar and non

More information

BEST APPROXIMATIONS AND ORTHOGONALITIES IN 2k-INNER PRODUCT SPACES. Seong Sik Kim* and Mircea Crâşmăreanu. 1. Introduction

BEST APPROXIMATIONS AND ORTHOGONALITIES IN 2k-INNER PRODUCT SPACES. Seong Sik Kim* and Mircea Crâşmăreanu. 1. Introduction Bull Korean Math Soc 43 (2006), No 2, pp 377 387 BEST APPROXIMATIONS AND ORTHOGONALITIES IN -INNER PRODUCT SPACES Seong Sik Kim* and Mircea Crâşmăreanu Abstract In this paper, some characterizations of

More information

LORENTZ ESTIMATES FOR ASYMPTOTICALLY REGULAR FULLY NONLINEAR ELLIPTIC EQUATIONS

LORENTZ ESTIMATES FOR ASYMPTOTICALLY REGULAR FULLY NONLINEAR ELLIPTIC EQUATIONS Electronic Journal of Differential Equations, Vol. 27 27), No. 2, pp. 3. ISSN: 72-669. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu LORENTZ ESTIMATES FOR ASYMPTOTICALLY REGULAR FULLY NONLINEAR

More information

Mem. Differential Equations Math. Phys. 36 (2005), T. Kiguradze

Mem. Differential Equations Math. Phys. 36 (2005), T. Kiguradze Mem. Differential Equations Math. Phys. 36 (2005), 42 46 T. Kiguradze and EXISTENCE AND UNIQUENESS THEOREMS ON PERIODIC SOLUTIONS TO MULTIDIMENSIONAL LINEAR HYPERBOLIC EQUATIONS (Reported on June 20, 2005)

More information

Blow-up directions for quasilinear parabolic equations UNIVERSITY OF TOKYO

Blow-up directions for quasilinear parabolic equations UNIVERSITY OF TOKYO UTMS 2006 20 August 18, 2006 Blow-up directions for quasilinear parabolic equations by Yukihiro Seki, Ryuichi Suzuki and Noriaki Umeda T UNIVERSITY OF TOKYO GRADUATE SCHOOL OF MATHEMATICAL SCIENCES KOMABA,

More information

A PROOF OF A CONVEX-VALUED SELECTION THEOREM WITH THE CODOMAIN OF A FRÉCHET SPACE. Myung-Hyun Cho and Jun-Hui Kim. 1. Introduction

A PROOF OF A CONVEX-VALUED SELECTION THEOREM WITH THE CODOMAIN OF A FRÉCHET SPACE. Myung-Hyun Cho and Jun-Hui Kim. 1. Introduction Comm. Korean Math. Soc. 16 (2001), No. 2, pp. 277 285 A PROOF OF A CONVEX-VALUED SELECTION THEOREM WITH THE CODOMAIN OF A FRÉCHET SPACE Myung-Hyun Cho and Jun-Hui Kim Abstract. The purpose of this paper

More information

Threshold solutions and sharp transitions for nonautonomous parabolic equations on R N

Threshold solutions and sharp transitions for nonautonomous parabolic equations on R N Threshold solutions and sharp transitions for nonautonomous parabolic equations on R N P. Poláčik School of Mathematics, University of Minnesota Minneapolis, MN 55455 Abstract This paper is devoted to

More information

Asymptotic behavior of infinity harmonic functions near an isolated singularity

Asymptotic behavior of infinity harmonic functions near an isolated singularity Asymptotic behavior of infinity harmonic functions near an isolated singularity Ovidiu Savin, Changyou Wang, Yifeng Yu Abstract In this paper, we prove if n 2 x 0 is an isolated singularity of a nonegative

More information

BLOWUP THEORY FOR THE CRITICAL NONLINEAR SCHRÖDINGER EQUATIONS REVISITED

BLOWUP THEORY FOR THE CRITICAL NONLINEAR SCHRÖDINGER EQUATIONS REVISITED BLOWUP THEORY FOR THE CRITICAL NONLINEAR SCHRÖDINGER EQUATIONS REVISITED TAOUFIK HMIDI AND SAHBI KERAANI Abstract. In this note we prove a refined version of compactness lemma adapted to the blowup analysis

More information

Weak and strong convergence theorems of modified SP-iterations for generalized asymptotically quasi-nonexpansive mappings

Weak and strong convergence theorems of modified SP-iterations for generalized asymptotically quasi-nonexpansive mappings Mathematica Moravica Vol. 20:1 (2016), 125 144 Weak and strong convergence theorems of modified SP-iterations for generalized asymptotically quasi-nonexpansive mappings G.S. Saluja Abstract. The aim of

More information

ON NONHOMOGENEOUS BIHARMONIC EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENT

ON NONHOMOGENEOUS BIHARMONIC EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENT PORTUGALIAE MATHEMATICA Vol. 56 Fasc. 3 1999 ON NONHOMOGENEOUS BIHARMONIC EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENT M. Guedda Abstract: In this paper we consider the problem u = λ u u + f in, u = u

More information

A Nonlinear PDE in Mathematical Finance

A Nonlinear PDE in Mathematical Finance A Nonlinear PDE in Mathematical Finance Sergio Polidoro Dipartimento di Matematica, Università di Bologna, Piazza di Porta S. Donato 5, 40127 Bologna (Italy) polidoro@dm.unibo.it Summary. We study a non

More information

Symmetry and non-uniformly elliptic operators

Symmetry and non-uniformly elliptic operators Symmetry and non-uniformly elliptic operators Jean Dolbeault Ceremade, UMR no. 7534 CNRS, Université Paris IX-Dauphine, Place de Lattre de Tassigny, 75775 Paris Cédex 16, France E-mail: dolbeaul@ceremade.dauphine.fr

More information

ON THE GLOBAL EXISTENCE OF A CROSS-DIFFUSION SYSTEM. Yuan Lou. Wei-Ming Ni. Yaping Wu

ON THE GLOBAL EXISTENCE OF A CROSS-DIFFUSION SYSTEM. Yuan Lou. Wei-Ming Ni. Yaping Wu DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS Volume 4, Number 2, April 998 pp. 93 203 ON THE GLOBAL EXISTENCE OF A CROSS-DIFFUSION SYSTEM Yuan Lou Department of Mathematics, University of Chicago Chicago,

More information

EXISTENCE OF SOLUTIONS FOR CROSS CRITICAL EXPONENTIAL N-LAPLACIAN SYSTEMS

EXISTENCE OF SOLUTIONS FOR CROSS CRITICAL EXPONENTIAL N-LAPLACIAN SYSTEMS Electronic Journal of Differential Equations, Vol. 2014 (2014), o. 28, pp. 1 10. ISS: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu EXISTECE OF SOLUTIOS

More information

Renormalized Solutions of a Nonlinear Parabolic Equation with Double Degeneracy

Renormalized Solutions of a Nonlinear Parabolic Equation with Double Degeneracy Electronic Journal of Qualitative Theory of Differential Equations 26, No. 5, -2; http://www.math.u-szeged.hu/ejqtde/ Renormalized Solutions of a Nonlinear Parabolic Equation with Double Degeneracy Zejia

More information

The De Giorgi-Nash-Moser Estimates

The De Giorgi-Nash-Moser Estimates The De Giorgi-Nash-Moser Estimates We are going to discuss the the equation Lu D i (a ij (x)d j u) = 0 in B 4 R n. (1) The a ij, with i, j {1,..., n}, are functions on the ball B 4. Here and in the following

More information

ON SOME SINGULAR LIMITS OF HOMOGENEOUS SEMIGROUPS. In memory of our friend Philippe Bénilan

ON SOME SINGULAR LIMITS OF HOMOGENEOUS SEMIGROUPS. In memory of our friend Philippe Bénilan ON SOME SINGULAR LIMITS OF HOMOGENEOUS SEMIGROUPS P. Bénilan, L. C. Evans 1 and R. F. Gariepy In memory of our friend Philippe Bénilan Mais là où les uns voyaient l abstraction, d autres voyaient la vérité

More information

Stability of a Class of Singular Difference Equations

Stability of a Class of Singular Difference Equations International Journal of Difference Equations. ISSN 0973-6069 Volume 1 Number 2 2006), pp. 181 193 c Research India Publications http://www.ripublication.com/ijde.htm Stability of a Class of Singular Difference

More information

A CLASSICAL SOLUTION OF THE PROBLEM OF SEEPAGE IN TWO LAYERED SOIL WITH AN INCLINED BOUNDARY

A CLASSICAL SOLUTION OF THE PROBLEM OF SEEPAGE IN TWO LAYERED SOIL WITH AN INCLINED BOUNDARY International Journal of Mathematical Sciences Vol., No. 3-4, July-December, pp. 69-74 Serials Publications A CLASSICAL SOLUTION OF THE PROBLEM OF SEEPAGE IN TWO LAYERED SOIL WITH AN INCLINED BOUNDARY

More information

EXISTENCE AND REGULARITY OF SOLUTIONS FOR STOKES SYSTEMS WITH NON-SMOOTH BOUNDARY DATA IN A POLYHEDRON

EXISTENCE AND REGULARITY OF SOLUTIONS FOR STOKES SYSTEMS WITH NON-SMOOTH BOUNDARY DATA IN A POLYHEDRON Electronic Journal of Differential Equations, Vol. 2017 (2017), No. 147, pp. 1 10. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu EXISTENCE AND REGULARITY OF SOLUTIONS FOR

More information

The Dirichlet problem for non-divergence parabolic equations with discontinuous in time coefficients in a wedge

The Dirichlet problem for non-divergence parabolic equations with discontinuous in time coefficients in a wedge The Dirichlet problem for non-divergence parabolic equations with discontinuous in time coefficients in a wedge Vladimir Kozlov (Linköping University, Sweden) 2010 joint work with A.Nazarov Lu t u a ij

More information

REGULARITY THROUGH APPROXIMATION FOR SCALAR CONSERVATION LAWS

REGULARITY THROUGH APPROXIMATION FOR SCALAR CONSERVATION LAWS SIAM J. MATH. ANAL. c 1988 Society for Industrial and Applied Mathematics Vol. 19, No. 4, pp. 1 XX, July 1988 003 REGULARITY THROUGH APPROXIMATION FOR SCALAR CONSERVATION LAWS BRADLEY J. LUCIER Abstract.

More information

Equilibria with a nontrivial nodal set and the dynamics of parabolic equations on symmetric domains

Equilibria with a nontrivial nodal set and the dynamics of parabolic equations on symmetric domains Equilibria with a nontrivial nodal set and the dynamics of parabolic equations on symmetric domains J. Földes Department of Mathematics, Univerité Libre de Bruxelles 1050 Brussels, Belgium P. Poláčik School

More information

Non-degeneracy of perturbed solutions of semilinear partial differential equations

Non-degeneracy of perturbed solutions of semilinear partial differential equations Non-degeneracy of perturbed solutions of semilinear partial differential equations Robert Magnus, Olivier Moschetta Abstract The equation u + F(V (εx, u = 0 is considered in R n. For small ε > 0 it is

More information

HAIYUN ZHOU, RAVI P. AGARWAL, YEOL JE CHO, AND YONG SOO KIM

HAIYUN ZHOU, RAVI P. AGARWAL, YEOL JE CHO, AND YONG SOO KIM Georgian Mathematical Journal Volume 9 (2002), Number 3, 591 600 NONEXPANSIVE MAPPINGS AND ITERATIVE METHODS IN UNIFORMLY CONVEX BANACH SPACES HAIYUN ZHOU, RAVI P. AGARWAL, YEOL JE CHO, AND YONG SOO KIM

More information

On asymptotically symmetric parabolic equations

On asymptotically symmetric parabolic equations On asymptotically symmetric parabolic equations Juraj Földes Institute for Mathematics and its Applicaitons, University of Minnesota Minneapolis, MN 55455 P. Poláčik School of Mathematics, University of

More information

A Caffarelli-Kohn-Nirenberg type inequality with variable exponent and applications to PDE s

A Caffarelli-Kohn-Nirenberg type inequality with variable exponent and applications to PDE s A Caffarelli-Kohn-Nirenberg type ineuality with variable exponent and applications to PDE s Mihai Mihăilescu a,b Vicenţiu Rădulescu a,c Denisa Stancu-Dumitru a a Department of Mathematics, University of

More information

Í I (udt<t>-vxum-va)dxdt

Í I (udt<t>-vxum-va)dxdt proceedings of the american mathematical society Volume 107. Number I, September 1989 ON THE REGULARITY PROPERTIES FOR SOLUTIONS OF THE CAUCHY PROBLEM FOR THE POROUS MEDIA EQUATION KAZUYA HAYASIDA (Communicated

More information

MULTIPLE POSITIVE SOLUTIONS FOR P-LAPLACIAN EQUATION WITH WEAK ALLEE EFFECT GROWTH RATE

MULTIPLE POSITIVE SOLUTIONS FOR P-LAPLACIAN EQUATION WITH WEAK ALLEE EFFECT GROWTH RATE Differential and Integral Equations Volume xx, Number xxx,, Pages xx xx MULTIPLE POSITIVE SOLUTIONS FOR P-LAPLACIAN EQUATION WITH WEAK ALLEE EFFECT GROWTH RATE Chan-Gyun Kim 1 and Junping Shi 2 Department

More information

Asymptotic behavior of the degenerate p Laplacian equation on bounded domains

Asymptotic behavior of the degenerate p Laplacian equation on bounded domains Asymptotic behavior of the degenerate p Laplacian equation on bounded domains Diana Stan Instituto de Ciencias Matematicas (CSIC), Madrid, Spain UAM, September 19, 2011 Diana Stan (ICMAT & UAM) Nonlinear

More information

arxiv: v1 [math.ap] 16 Jan 2015

arxiv: v1 [math.ap] 16 Jan 2015 Three positive solutions of a nonlinear Dirichlet problem with competing power nonlinearities Vladimir Lubyshev January 19, 2015 arxiv:1501.03870v1 [math.ap] 16 Jan 2015 Abstract This paper studies a nonlinear

More information

Nonlinear Diffusion in Irregular Domains

Nonlinear Diffusion in Irregular Domains Nonlinear Diffusion in Irregular Domains Ugur G. Abdulla Max-Planck Institute for Mathematics in the Sciences, Leipzig 0403, Germany We investigate the Dirichlet problem for the parablic equation u t =

More information