PLASMA PHYSICS. 1. Charge particle motion in fields of force 2. Plasma particles and their interaction 3. Characteristic propriety of plasma

Size: px
Start display at page:

Download "PLASMA PHYSICS. 1. Charge particle motion in fields of force 2. Plasma particles and their interaction 3. Characteristic propriety of plasma"

Transcription

1 PLASMA PHYSICS 1. Charge particle otion in fields of force. Plasa particles and their interaction 3. Characteristic propriety of plasa 1

2 1. CHARG PARTICL MOTION IN FILDS OF FORC quations of otion: F = q( + ) d q = + ( ) q, : particle charge and ass;, : electric field and agnetic flux density field; : particle velocity. F = q (F Ε parallel to ) F L = q x (F perpendicular to and )

3 a. equal to zero ( 0, = 0): F = q q d = q q F // : if constant in space and tie, a uniforly accelerated straight otion in the direction of is induced. 3

4 b. = 0; 0, constant in tie and space F L = q d q = When is perpendicular to, lays in the x-y plane and is along the z axis, a z x centripetal force perpendicular to is obtained. This force induces a unifor circular otion. Fro the equality beteen centripetal force acting on the particle and centripetal acceleration it results: r = q ω = r = q r = q y y F x r. (ω - angular velocità velocity, angolare) gyration frequency). (r - gyration raggio di radius) girazione)

5 b. = 0; 0, constant in tie and space d α ω = q x G, y G r = = ω d x q dx q = y x = = cos( ωt + α) = d y q dy = x y = =! sin( ωt + α) A unifor circular otion is induced ith: phase angle defined by the initial conditions; angular velocity or gyration velocity; gyration centre; q Laror radius or gyration radius. y z y F x L x. x G, y G r. 5

6 b. = 0; 0, constant in tie and space is not perpendicular to : - in the plane perpendicular to a unifor circular otion is induced as described previously. If is the coponent of, perpendicular to : r = ω = q In the direction of the coponent of is //. The gyration centre oves along ith velocity //. 6

7 b. = 0; 0, constant in tie and space xaple: lectrons at T ~ 1000 K in = 1 T: = 10 5 /s (T ~ 1000 K if is due to theral energy) = 1 T q = - e = C e = kg ω e 11 1 = ωe = = s, 7 r = r = e e 7

8 1.1 DRIFT VLOCITY lectric Field Drift a. and different fro zero,, and constant in space and tie, The particle oves around the gyration centre in the plane x-y due to the Lorentz force induced by. At the sae tie it is accelerated by the Coulob force due to. Fro the cobination of the to forces a drift otion ith velocity D in the direction perpendicular to and, is obtained. 8

9 1.1.1 lectric Field Drift For q > 0 a clockise circular otion in the plain perpendicular to is induced by the Lorentz force. The Coulob force due to accelerates a positive charged particle hen it oves donard toard increasing x, and decelerates it hen it oves upard. The gyration radius, given by: r = /( q ), is increased by increases of the particle speed and it is decreased for decreasing. Therefore r reaches its axial value in the upper part of its trajectory and it reaches its inial value in the loer part of it. Therefore this results in a epicyclic trajectory ith a drift velocity D of the gyration centre perpendicular to and (electric field drift). For a negative charged particle the circular otion is counter clockise. The acceleration induced by is upards and the deceleration is donards. The gyration radius is big in the top and is sall in the botto of the trajectory resulting in a drift velocity D in the sae direction.

10 1.1.1 lectric Field Drift The electric field drift velocity due to an La electric velocità field di is: deriva di capo elettrico è: infatti A ne definito reference un syste nuovo is sistea defined, di here coordi - nate the particle per cui velocity la velocità is given della by: particella sia: d q = + F = q( + ) ( ) D, = ' = D, = ' + D, d' d q 1 + ( ) = [ + ' + ] ( ) = ( ) - - = - d' q = ' this is the equation of a unifor circular otion. Therefore in a reference syste oving ith a velocity given by the electric field electric field drift velocity D, the charged particle is oving ith a unifor circular otion around the gyration centre. 10

11 1.1.1 lectric Field Drift When ( coponent of perpendicular to ) and // ( // coponent of parallel to ) is different fro zero, the gyration centre oves along ith the velocity //. The coponent of the velocity // reains constant if is perpendicular to ( = ). The coponent of parallel to, //, is equal to zero ( // = 0). The plane on hich the particle oves and the electric field velocity lays, is oving in the direction of ith velocity given by //. // 11

12 1.1.1 lectric Field Drift b. and field different fro zero, and constant in space and tie, and not perpendicular to each other. D, = = D, // induces an acceleration of the gyration centre in the direction of. 1

13 1.1. Gravity Field Drift = 0 and g 0 (g gravity acceleration) g and constant in space and tie. g is the coponent of g perpendicular to = g D,g q = g ω As is a force per unit of charge, is replaced by g /q. The direction of D,g is perpendicular to g and. The orientation of D,g depends on the sign of particle charge q. g = 0 q > 0 g 0 D,g g q < 0 D,g 13

14 1.1.3 Curvature Drift 0, constant in tie. ( is the gradient of scalar perpendicularly to ) For increasing values of, the radius of gyration r = /(q) decreases. This causes a drift of the charged particle. Fro a first order theory it is obtained: I D,C I D,C r = r R = If the plasa current is equal to zero,it is = 0 and / = 1/R (R is the radius of curvature of ) Β = 0 q > 0 Β 0 D,C Β q < 0 D,C

15 1.1.3 Curvature Drift If // 0, the particle q oves along flux tubes of, as e ill see later, hich has a curvature radius R. On the particle acts a centrifugal force given by // /R and a force per unit of charge // /(qr): // R T Δ. ='+". i II D,C = // Rq = // Rω! I = + D,C D,C 1 ωr II D,C ( / ) D, C = + // 15

16 1.1.4 Displaceent Drift constant in space and tie, variable in tie, ( along x, along z). z x y. D, D,S (t) = (t) i = x x0 + x t i (assuing that (ipotesi :! = cost.) x d q q d d = x y q ( + ) + y x = = 0 x0 + x t q d The solution of the associated hoogeneous equation is the usual rotational otion. y + y = 1 x0 + x t 16

17 1.1.4 Displaceent Drift A particular solution leads to a drift velocity: ' ' y x = = 1 q ' ' x0 x + x t x (t) y = x = x q = = D, this che in D,S q z x d y y + x = 0. D, D,S D,S = q t x 17

18 DRIFT VLOCITY D, = D, g = g g = = q ω I II + D, C D,C D,S = q t D,C I D,C r = // Rq II = = D, C // Rω 18

19 1. MAGNTIC MOMNT The agnetic oent associated ith a circuit here a current i flos, is: i µ = isn qω =, S = πr, n = π n is the unitary vector perpendicular to S, surface the border of hich is given by the circuit. The orientation of n is given by the right hand rule. For a charged particle q, rotating around, the current i is given by: µ r ω 1 q = π q = = π π πr i S n Magnetic oent associated ith the circular otion of q ith r = /ω = /( q ). Module of µ ω W q 1 µ = πr q = = Φ here dove W = ; π π Φ = πr

20 1..1 Magnetic Moent Invariance Invariance of µ: for slo variations of in tie and space, the agnetic oent, associated ith the otion of a charged particle, reains constant in tie and in space. For slo variations in tie of, the induced e..f. is: d dl = n ds S The associated electrical poer is given by the e..f. ties i = qω/(π): Pl = π r d qω π = µ d For the conservation of energy the variation of the kinetic energy W has to be equal to the poer P l (in the direction parallel to there is no influence of on q and dw // / = 0). 0

21 1..1 Magnetic Moent Invariance It follos: P l = Fro the definition of µ: µ = 7 8 : Therefore: < 69 Ø It is possible to see also that for slo variations of in space, µ = const. Therefore µ is an invariance of the particle otion in a field. It follos that: = 6(<:) 69 and fro the expression of P l : P l = µ 6: = µ 6: < 69 = 0. As 0 it follos that 6< = 6(<:) 69 and a. µ Φ Β : µ = const. Φ Β = const. Therefore the particle q is o ving on flux tube of = µ 6: =0 and that µ = costant in t. b. µ = W / = const., W = W + W // = const. For increasing Β, W increases and W // decreases. 1

22 1.3 MAGNTIC MIRRORS As µ = W / is constant and as the kinetic energy W = + // is constant the charged particle tends to be reflected fro regions of increasing agnetics fields.

23 1.3 MAGNTIC MIRRORS + = + / /a a a = a b b / /b b W is constant for a otion of q in fields Invariance of µ = / /b + / /a a 1 The parallel coponent of the velocity becoes equal to zero for //? a = 0: / /a = b 1 a a 3

24 1.3 MAGNTIC MIRRORS The irror ratio is defined as: Si definisce coe rapporto di specchio: R = ax in The le particelle reflected cariche charged riflesse particles sono are those quelle for per hich: cui: / /a R 1 a That od anche: is: a a R 4

25 1.3 MAGNTIC MIRRORS The escape cone and the escape angle θ are defined by: tan -1 θ = I // J I J liit = R 1 The particle is reflected if it oves ith a velocity ith a direction θ > θ. For velocities directed ithin the escape cone ith θ > θ the particle leaves the agnetic syste. θ 5

26 1.3 MAGNTIC MIRRORS 6

5. Charge Particle Motion in Fields

5. Charge Particle Motion in Fields 5 Charge Particle Motion in Fields 1 1 CHARG PARTICL MOTION IN FILDS OF FORCS uations of otion: F ( + ) d ( + ), : particle charge and ass;, : electric field and agnetic flu densit field; : particle velocit

More information

Effects of an Inhomogeneous Magnetic Field (E =0)

Effects of an Inhomogeneous Magnetic Field (E =0) Effects of an Inhoogeneous Magnetic Field (E =0 For soe purposes the otion of the guiding centers can be taken as a good approxiation of that of the particles. ut it ust be recognized that during the particle

More information

Subject Code: R13110/R13 I B. Tech I Semester Regular Examinations Jan./Feb ENGINEERING MECHANICS

Subject Code: R13110/R13 I B. Tech I Semester Regular Examinations Jan./Feb ENGINEERING MECHANICS Set No - 1 I B. Tech I Seester Regular Exainations Jan./Feb. 2015 ENGINEERING MECHANICS (Coon to CE, ME, CSE, PCE, IT, Che E, Aero E, AME, Min E, PE, Metal E) Tie: 3 hours Max. Marks: 70 What is the principle

More information

Definition of Work, The basics

Definition of Work, The basics Physics 07 Lecture 16 Lecture 16 Chapter 11 (Work) v Eploy conservative and non-conservative forces v Relate force to potential energy v Use the concept of power (i.e., energy per tie) Chapter 1 v Define

More information

In the session you will be divided into groups and perform four separate experiments:

In the session you will be divided into groups and perform four separate experiments: Mechanics Lab (Civil Engineers) Nae (please print): Tutor (please print): Lab group: Date of lab: Experients In the session you will be divided into groups and perfor four separate experients: (1) air-track

More information

Year 12 Physics Holiday Work

Year 12 Physics Holiday Work Year 1 Physics Holiday Work 1. Coplete questions 1-8 in the Fields assessent booklet and questions 1-3 In the Further Mechanics assessent booklet (repeated below in case you have lost the booklet).. Revise

More information

Stern-Gerlach Experiment

Stern-Gerlach Experiment Stern-Gerlach Experient HOE: The Physics of Bruce Harvey This is the experient that is said to prove that the electron has an intrinsic agnetic oent. Hydrogen like atos are projected in a bea through a

More information

Problem T1. Main sequence stars (11 points)

Problem T1. Main sequence stars (11 points) Proble T1. Main sequence stars 11 points Part. Lifetie of Sun points i..7 pts Since the Sun behaves as a perfectly black body it s total radiation power can be expressed fro the Stefan- Boltzann law as

More information

CHAPTER 21 MAGNETIC FORCES AND MAGNETIC FIELDS

CHAPTER 21 MAGNETIC FORCES AND MAGNETIC FIELDS CHAPTER 21 MAGNETIC FORCES AND MAGNETIC FIELDS PROBLEMS 5. SSM REASONING According to Equation 21.1, the agnitude of the agnetic force on a oving charge is F q 0 vb sinθ. Since the agnetic field points

More information

ROTATIONAL MOTION FROM TRANSLATIONAL MOTION

ROTATIONAL MOTION FROM TRANSLATIONAL MOTION ROTATIONAL MOTION FROM TRANSLATIONAL MOTION Velocity Acceleration 1-D otion 3-D otion Linear oentu TO We have shown that, the translational otion of a acroscopic object is equivalent to the translational

More information

Motion of Charges in Uniform E

Motion of Charges in Uniform E Motion of Charges in Unifor E and Fields Assue an ionized gas is acted upon by a unifor (but possibly tie-dependent) electric field E, and a unifor, steady agnetic field. These fields are assued to be

More information

SRI LANKAN PHYSICS OLYMPIAD MULTIPLE CHOICE TEST 30 QUESTIONS ONE HOUR AND 15 MINUTES

SRI LANKAN PHYSICS OLYMPIAD MULTIPLE CHOICE TEST 30 QUESTIONS ONE HOUR AND 15 MINUTES SRI LANKAN PHYSICS OLYMPIAD - 5 MULTIPLE CHOICE TEST QUESTIONS ONE HOUR AND 5 MINUTES INSTRUCTIONS This test contains ultiple choice questions. Your answer to each question ust be arked on the answer sheet

More information

Physics 2210 Fall smartphysics 20 Conservation of Angular Momentum 21 Simple Harmonic Motion 11/23/2015

Physics 2210 Fall smartphysics 20 Conservation of Angular Momentum 21 Simple Harmonic Motion 11/23/2015 Physics 2210 Fall 2015 sartphysics 20 Conservation of Angular Moentu 21 Siple Haronic Motion 11/23/2015 Exa 4: sartphysics units 14-20 Midter Exa 2: Day: Fri Dec. 04, 2015 Tie: regular class tie Section

More information

16 - MAGNETIC EFFECTS OF CURRENTS Page 1 ( Answers at the end of all questions )

16 - MAGNETIC EFFECTS OF CURRENTS Page 1 ( Answers at the end of all questions ) 16 - MAGNETIC EFFECTS OF CURRENTS Page 1 1 ) One conducting U tue can slide inside another as shown in the figure, aintaining electrical contacts etween the tues. The agnetic field B is perpendicular to

More information

Mark Scheme (Final Standardisation) Summer 2007

Mark Scheme (Final Standardisation) Summer 2007 Mark Schee (Final Standardisation) Suer 007 GCE GCE Physics (675/0) Edexcel Liited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WCV 7BH 675 Unit Test PHY 5

More information

Single Particle Motion

Single Particle Motion Single Particle Motion C ontents Uniform E and B E = - guiding centers Definition of guiding center E gravitation Non Uniform B 'grad B' drift, B B Curvature drift Grad -B drift, B B invariance of µ. Magnetic

More information

Moment of Inertia. Terminology. Definitions Moment of inertia of a body with mass, m, about the x axis: Transfer Theorem - 1. ( )dm. = y 2 + z 2.

Moment of Inertia. Terminology. Definitions Moment of inertia of a body with mass, m, about the x axis: Transfer Theorem - 1. ( )dm. = y 2 + z 2. Terinology Moent of Inertia ME 202 Moent of inertia (MOI) = second ass oent Instead of ultiplying ass by distance to the first power (which gives the first ass oent), we ultiply it by distance to the second

More information

Work, Energy and Momentum

Work, Energy and Momentum Work, Energy and Moentu Work: When a body oves a distance d along straight line, while acted on by a constant force of agnitude F in the sae direction as the otion, the work done by the force is tered

More information

FOUNDATION STUDIES EXAMINATIONS January 2016

FOUNDATION STUDIES EXAMINATIONS January 2016 1 FOUNDATION STUDIES EXAMINATIONS January 2016 PHYSICS Seester 2 Exa July Fast Track Tie allowed 2 hours for writing 10 inutes for reading This paper consists of 4 questions printed on 11 pages. PLEASE

More information

Important Formulae & Basic concepts. Unit 3: CHAPTER 4 - MAGNETIC EFFECTS OF CURRENT AND MAGNETISM CHAPTER 5 MAGNETISM AND MATTER

Important Formulae & Basic concepts. Unit 3: CHAPTER 4 - MAGNETIC EFFECTS OF CURRENT AND MAGNETISM CHAPTER 5 MAGNETISM AND MATTER Iportant Forulae & Basic concepts Unit 3: CHAPTER 4 - MAGNETIC EFFECTS OF CURRENT AND MAGNETISM CHAPTER 5 MAGNETISM AND MATTER S. No. Forula Description 1. Magnetic field induction at a point due to current

More information

3. In the figure below, the coefficient of friction between the center mass and the surface is

3. In the figure below, the coefficient of friction between the center mass and the surface is Physics 04A Exa October 9, 05 Short-answer probles: Do any seven probles in your exa book. Start each proble on a new page and and clearly indicate the proble nuber for each. If you attept ore than seven

More information

22 - ELECTRON AND PHOTONS Page 1 ( Answers at the end of all questions )

22 - ELECTRON AND PHOTONS Page 1 ( Answers at the end of all questions ) 22 - ELECTRON AND PHOTONS Page 1 1 ) A photocell is illuinated by a sall source placed 1 away. When the sae source of light is placed 1 / 2 away, the nuber of electrons eitted by photocathode would ( a

More information

Department of Physics Preliminary Exam January 3 6, 2006

Department of Physics Preliminary Exam January 3 6, 2006 Departent of Physics Preliinary Exa January 3 6, 2006 Day 1: Classical Mechanics Tuesday, January 3, 2006 9:00 a.. 12:00 p.. Instructions: 1. Write the answer to each question on a separate sheet of paper.

More information

1 (40) Gravitational Systems Two heavy spherical (radius 0.05R) objects are located at fixed positions along

1 (40) Gravitational Systems Two heavy spherical (radius 0.05R) objects are located at fixed positions along (40) Gravitational Systes Two heavy spherical (radius 0.05) objects are located at fixed positions along 2M 2M 0 an axis in space. The first ass is centered at r = 0 and has a ass of 2M. The second ass

More information

Motion of Charged Particles in Fields

Motion of Charged Particles in Fields Chapter Motion of Charged Particles in Fields Plasmas are complicated because motions of electrons and ions are determined by the electric and magnetic fields but also change the fields by the currents

More information

Pearson Physics Level 30 Unit VI Forces and Fields: Chapter 12 Solutions

Pearson Physics Level 30 Unit VI Forces and Fields: Chapter 12 Solutions Concept Check (top) Pearson Physics Level 30 Unit VI Forces and Fields: Chapter 12 Solutions Student Book page 583 Concept Check (botto) The north-seeking needle of a copass is attracted to what is called

More information

Periodic Motion is everywhere

Periodic Motion is everywhere Lecture 19 Goals: Chapter 14 Interrelate the physics and atheatics of oscillations. Draw and interpret oscillatory graphs. Learn the concepts of phase and phase constant. Understand and use energy conservation

More information

PHYSICS 2210 Fall Exam 4 Review 12/02/2015

PHYSICS 2210 Fall Exam 4 Review 12/02/2015 PHYSICS 10 Fall 015 Exa 4 Review 1/0/015 (yf09-049) A thin, light wire is wrapped around the ri of a unifor disk of radius R=0.80, as shown. The disk rotates without friction about a stationary horizontal

More information

Moment of inertia and torsional vibrations (Item No.: P )

Moment of inertia and torsional vibrations (Item No.: P ) Moent of inertia and torsional vibrations (Ite No.: P2133100) Curricular Relevance Area of Expertise: Physics Education Level: University Topic: Mechanics Subtopic: Static Equilibriu and Elasticity Experient:

More information

Discover the answer to this question in this chapter.

Discover the answer to this question in this chapter. What are the apparent eight (agnitude and direction) and the nuber of g s eperienced by a 70 kg fighter pilot hen his aircraft is catapulted fro an aircraft carrier knoing that the plane accelerates up

More information

Chapter 11 Simple Harmonic Motion

Chapter 11 Simple Harmonic Motion Chapter 11 Siple Haronic Motion "We are to adit no ore causes of natural things than such as are both true and sufficient to explain their appearances." Isaac Newton 11.1 Introduction to Periodic Motion

More information

Kinetics of Rigid (Planar) Bodies

Kinetics of Rigid (Planar) Bodies Kinetics of Rigi (Planar) Boies Types of otion Rectilinear translation Curvilinear translation Rotation about a fixe point eneral planar otion Kinetics of a Syste of Particles The center of ass for a syste

More information

which proves the motion is simple harmonic. Now A = a 2 + b 2 = =

which proves the motion is simple harmonic. Now A = a 2 + b 2 = = Worked out Exaples. The potential energy function for the force between two atos in a diatoic olecules can be expressed as follows: a U(x) = b x / x6 where a and b are positive constants and x is the distance

More information

Part A Here, the velocity is at an angle of 45 degrees to the x-axis toward the z-axis. The velocity is then given in component form as.

Part A Here, the velocity is at an angle of 45 degrees to the x-axis toward the z-axis. The velocity is then given in component form as. Electrodynaics Chapter Andrew Robertson 32.30 Here we are given a proton oving in a agnetic eld ~ B 0:5^{ T at a speed of v :0 0 7 /s in the directions given in the gures. Part A Here, the velocity is

More information

Q5 We know that a mass at the end of a spring when displaced will perform simple m harmonic oscillations with a period given by T = 2!

Q5 We know that a mass at the end of a spring when displaced will perform simple m harmonic oscillations with a period given by T = 2! Chapter 4.1 Q1 n oscillation is any otion in which the displaceent of a particle fro a fixed point keeps changing direction and there is a periodicity in the otion i.e. the otion repeats in soe way. In

More information

2.003 Engineering Dynamics Problem Set 2 Solutions

2.003 Engineering Dynamics Problem Set 2 Solutions .003 Engineering Dynaics Proble Set Solutions This proble set is priarily eant to give the student practice in describing otion. This is the subject of kineatics. It is strongly recoended that you study

More information

72. (30.2) Interaction between two parallel current carrying wires.

72. (30.2) Interaction between two parallel current carrying wires. 7. (3.) Interaction between two parallel current carrying wires. Two parallel wires carrying currents exert forces on each other. Each current produces a agnetic field in which the other current is placed.

More information

PHYS 1443 Section 003 Lecture #22

PHYS 1443 Section 003 Lecture #22 PHYS 443 Section 003 Lecture # Monda, Nov. 4, 003. Siple Bloc-Spring Sste. Energ of the Siple Haronic Oscillator 3. Pendulu Siple Pendulu Phsical Pendulu orsion Pendulu 4. Siple Haronic Motion and Unifor

More information

1. Answer the following questions.

1. Answer the following questions. (06) Physics Nationality No. (Please print full nae, underlining faily nae) Marks Nae Before you start, fill in the necessary details (nationality, exaination nuber, nae etc.) in the box at the top of

More information

EULER EQUATIONS. We start by considering how time derivatives are effected by rotation. Consider a vector defined in the two systems by

EULER EQUATIONS. We start by considering how time derivatives are effected by rotation. Consider a vector defined in the two systems by EULER EQUATIONS We now consider another approach to rigid body probles based on looking at the change needed in Newton s Laws if an accelerated coordinate syste is used. We start by considering how tie

More information

Particle dynamics Physics 1A, UNSW

Particle dynamics Physics 1A, UNSW 1 Particle dynaics Physics 1A, UNSW Newton's laws: S & J: Ch 5.1 5.9, 6.1 force, ass, acceleration also weight Physclips Chapter 5 Friction - coefficients of friction Physclips Chapter 6 Hooke's Law Dynaics

More information

U V. r In Uniform Field the Potential Difference is V Ed

U V. r In Uniform Field the Potential Difference is V Ed SPHI/W nit 7.8 Electric Potential Page of 5 Notes Physics Tool box Electric Potential Energy the electric potential energy stored in a syste k of two charges and is E r k Coulobs Constant is N C 9 9. E

More information

Physics with Health Science Applications Ch. 3 pg. 56

Physics with Health Science Applications Ch. 3 pg. 56 Physics with Health Science Applications Ch. 3 pg. 56 Questions 3.4 The plane is accelerating forward. The seat is connected to the plane and is accelerated forward. The back of the seat applies a forward

More information

Chapter 10 Atmospheric Forces & Winds

Chapter 10 Atmospheric Forces & Winds Chapter 10 Atospheric Forces & Winds Chapter overview: Atospheric Pressure o Horizontal pressure variations o Station vs sea level pressure Winds and weather aps Newton s 2 nd Law Horizontal Forces o Pressure

More information

NAME NUMBER SEC. PHYCS 101 SUMMER 2001/2002 FINAL EXAME:24/8/2002. PART(I) 25% PART(II) 15% PART(III)/Lab 8% ( ) 2 Q2 Q3 Total 40%

NAME NUMBER SEC. PHYCS 101 SUMMER 2001/2002 FINAL EXAME:24/8/2002. PART(I) 25% PART(II) 15% PART(III)/Lab 8% ( ) 2 Q2 Q3 Total 40% NAME NUMER SEC. PHYCS 101 SUMMER 2001/2002 FINAL EXAME:24/8/2002 PART(I) 25% PART(II) 15% PART(III)/Lab 8% ( ) 2.5 Q1 ( ) 2 Q2 Q3 Total 40% Use the followings: Magnitude of acceleration due to gravity

More information

Physics 4A Solutions to Chapter 15 Homework

Physics 4A Solutions to Chapter 15 Homework Physics 4A Solutions to Chapter 15 Hoework Chapter 15 Questions:, 8, 1 Exercises & Probles 6, 5, 31, 41, 59, 7, 73, 88, 90 Answers to Questions: Q 15- (a) toward -x (b) toward +x (c) between -x and 0 (d)

More information

Chapter 6: Vector Analysis

Chapter 6: Vector Analysis Chapter 6: Vector Analysis We use derivatives and various products of vectors in all areas of physics. For example, Newton s 2nd law is F = m d2 r. In electricity dt 2 and magnetism, we need surface and

More information

Tutorial Exercises: Incorporating constraints

Tutorial Exercises: Incorporating constraints Tutorial Exercises: Incorporating constraints 1. A siple pendulu of length l ass is suspended fro a pivot of ass M that is free to slide on a frictionless wire frae in the shape of a parabola y = ax. The

More information

ANALYSIS OF HALL-EFFECT THRUSTERS AND ION ENGINES FOR EARTH-TO-MOON TRANSFER

ANALYSIS OF HALL-EFFECT THRUSTERS AND ION ENGINES FOR EARTH-TO-MOON TRANSFER IEPC 003-0034 ANALYSIS OF HALL-EFFECT THRUSTERS AND ION ENGINES FOR EARTH-TO-MOON TRANSFER A. Bober, M. Guelan Asher Space Research Institute, Technion-Israel Institute of Technology, 3000 Haifa, Israel

More information

Lecture #8-3 Oscillations, Simple Harmonic Motion

Lecture #8-3 Oscillations, Simple Harmonic Motion Lecture #8-3 Oscillations Siple Haronic Motion So far we have considered two basic types of otion: translation and rotation. But these are not the only two types of otion we can observe in every day life.

More information

Physics 140 D100 Midterm Exam 2 Solutions 2017 Nov 10

Physics 140 D100 Midterm Exam 2 Solutions 2017 Nov 10 There are 10 ultiple choice questions. Select the correct answer for each one and ark it on the bubble for on the cover sheet. Each question has only one correct answer. (2 arks each) 1. An inertial reference

More information

Lecture 13. Rotational motion Moment of inertia

Lecture 13. Rotational motion Moment of inertia Lectue 13 Rotational motion Moment of inetia EXAM 2 Tuesday Mach 6, 2018 8:15 PM 9:45 PM Today s Topics: Rotational Motion and Angula Displacement Angula Velocity and Acceleation Rotational Kinematics

More information

Chapter 16 Solutions

Chapter 16 Solutions Chapter 16 Solutions 16.1 Replace x by x vt = x 4.5t to get y = 6 [(x 4.5t) + 3] 16. y (c) y (c) y (c) 6 4 4 4 t = s t = 1 s t = 1.5 s 0 6 10 14 x 0 6 10 14 x 0 6 10 14 x y (c) y (c) 4 t =.5 s 4 t = 3

More information

PART 4. Theoretical Competition

PART 4. Theoretical Competition PART 4 Theoretical Copetition Exa coission page 98 Probles in English page 99 Solutions in English page 106 Probles in three other languages and back-translations of these page 117 Exaples of student papers

More information

Physics 41 HW Set 1 Chapter 15 Serway 7 th Edition

Physics 41 HW Set 1 Chapter 15 Serway 7 th Edition Physics HW Set Chapter 5 Serway 7 th Edition Conceptual Questions:, 3, 5,, 6, 9 Q53 You can take φ = π, or equally well, φ = π At t= 0, the particle is at its turning point on the negative side of equilibriu,

More information

ME Machine Design I. FINAL EXAM. OPEN BOOK AND CLOSED NOTES. Friday, May 8th, 2009

ME Machine Design I. FINAL EXAM. OPEN BOOK AND CLOSED NOTES. Friday, May 8th, 2009 ME 5 - Machine Design I Spring Seester 009 Nae Lab. Div. FINAL EXAM. OPEN BOOK AND LOSED NOTES. Friday, May 8th, 009 Please use the blank paper for your solutions. Write on one side of the paper only.

More information

Key Terms Electric Potential electrical potential energy per unit charge (JC -1 )

Key Terms Electric Potential electrical potential energy per unit charge (JC -1 ) Chapter Seenteen: Electric Potential and Electric Energy Key Ter Electric Potential electrical potential energy per unit charge (JC -1 ) Page 1 of Electrical Potential Difference between two points is

More information

9. Operation Principle of the Electric Machines

9. Operation Principle of the Electric Machines 9. Operation Principle of the Electric Machines J Electric Machines Operation Principle Ø An electric achine consists of two electric circuits coupled by eans of a agnetic flu, that is linked with both

More information

PHYSICS 110A : CLASSICAL MECHANICS MIDTERM EXAM #2

PHYSICS 110A : CLASSICAL MECHANICS MIDTERM EXAM #2 PHYSICS 110A : CLASSICAL MECHANICS MIDTERM EXAM #2 [1] Two blocks connected by a spring of spring constant k are free to slide frictionlessly along a horizontal surface, as shown in Fig. 1. The unstretched

More information

Physics 207 Lecture 18. Physics 207, Lecture 18, Nov. 3 Goals: Chapter 14

Physics 207 Lecture 18. Physics 207, Lecture 18, Nov. 3 Goals: Chapter 14 Physics 07, Lecture 18, Nov. 3 Goals: Chapter 14 Interrelate the physics and atheatics of oscillations. Draw and interpret oscillatory graphs. Learn the concepts of phase and phase constant. Understand

More information

EN40: Dynamics and Vibrations. Midterm Examination Tuesday March

EN40: Dynamics and Vibrations. Midterm Examination Tuesday March EN4: Dynaics and ibrations Midter Exaination Tuesday Marc 4 14 Scool of Engineering Brown University NAME: General Instructions No collaboration of any kind is peritted on tis exaination. You ay bring

More information

Systems of Masses. 1. Ignoring friction, calculate the acceleration of the system below and the tension in the rope. and (4.0)(9.80) 39.

Systems of Masses. 1. Ignoring friction, calculate the acceleration of the system below and the tension in the rope. and (4.0)(9.80) 39. Systes of Masses. Ignoring friction, calculate the acceleration of the syste below and the tension in the rope. Drawing individual free body diagras we get 4.0kg 7.0kg g 9.80 / s a?? g and g (4.0)(9.80)

More information

NEET PHYSICS PAPER CODE : PP NEET-2018 ( ) PHYSICS

NEET PHYSICS PAPER CODE : PP NEET-2018 ( ) PHYSICS NEET PHYSICS PAPER CODE : PP NEET-8 (6-5-8) PHYSICS Q. An e wave is propagating in a ediu with a Ans. () velocity v v î. The instantaneous oscillating electric field of this e wave is along +y axis. Then

More information

5/09/06 PHYSICS 213 Exam #1 NAME FEYNMAN Please write down your name also on the back side of the last page

5/09/06 PHYSICS 213 Exam #1 NAME FEYNMAN Please write down your name also on the back side of the last page 5/09/06 PHYSICS 13 Exa #1 NAME FEYNMAN Please write down your nae also on the back side of the last page 1 he figure shows a horizontal planks of length =50 c, and ass M= 1 Kg, pivoted at one end. he planks

More information

Exam 3 Solutions. 1. Which of the following statements is true about the LR circuit shown?

Exam 3 Solutions. 1. Which of the following statements is true about the LR circuit shown? PHY49 Spring 5 Prof. Darin Acosta Prof. Paul Avery April 4, 5 PHY49, Spring 5 Exa Solutions. Which of the following stateents is true about the LR circuit shown? It is (): () Just after the switch is closed

More information

Chapter 29 Solutions

Chapter 29 Solutions Chapter 29 Solutions 29.1 (a) up out of the page, since the charge is negative. (c) no deflection (d) into the page 29.2 At the equator, the Earth's agnetic field is horizontally north. Because an electron

More information

EN40: Dynamics and Vibrations. Final Examination Monday May : 2pm-5pm

EN40: Dynamics and Vibrations. Final Examination Monday May : 2pm-5pm EN40: Dynaics and Vibrations Final Exaination Monday May 13 013: p-5p School of Engineering Brown University NAME: General Instructions No collaboration of any kind is peritted on this exaination. You

More information

Electromagnetic scattering. Graduate Course Electrical Engineering (Communications) 1 st Semester, Sharif University of Technology

Electromagnetic scattering. Graduate Course Electrical Engineering (Communications) 1 st Semester, Sharif University of Technology Electroagnetic scattering Graduate Course Electrical Engineering (Counications) 1 st Seester, 1388-1389 Sharif University of Technology Contents of lecture 5 Contents of lecture 5: Scattering fro a conductive

More information

In this chapter we will start the discussion on wave phenomena. We will study the following topics:

In this chapter we will start the discussion on wave phenomena. We will study the following topics: Chapter 16 Waves I In this chapter we will start the discussion on wave phenoena. We will study the following topics: Types of waves Aplitude, phase, frequency, period, propagation speed of a wave Mechanical

More information

CHAPTER 15: Vibratory Motion

CHAPTER 15: Vibratory Motion CHAPTER 15: Vibratory Motion courtesy of Richard White courtesy of Richard White 2.) 1.) Two glaring observations can be ade fro the graphic on the previous slide: 1.) The PROJECTION of a point on a circle

More information

Physics 4A Winter 2016 Final Exam

Physics 4A Winter 2016 Final Exam Physics 4A Winter 016 Final Exa Nae: Mar, 016 Please show your work! Answers are not coplete without clear reasoning. When asked for an expression, you ust give your answer in ters of the variables given

More information

Physics 201, Lecture 15

Physics 201, Lecture 15 Physics 0, Lecture 5 Today s Topics q More on Linear Moentu And Collisions Elastic and Perfect Inelastic Collision (D) Two Diensional Elastic Collisions Exercise: Billiards Board Explosion q Multi-Particle

More information

WYSE Academic Challenge Sectional Physics 2006 Solution Set

WYSE Academic Challenge Sectional Physics 2006 Solution Set WYSE Acadeic Challenge Sectional Physics 6 Solution Set. Correct answer: d. Using Newton s nd Law: r r F 6.N a.kg 6./s.. Correct answer: c. 6. sin θ 98. 3. Correct answer: b. o 37.8 98. N 6. N Using Newton

More information

MAKE SURE TA & TI STAMPS EVERY PAGE BEFORE YOU START

MAKE SURE TA & TI STAMPS EVERY PAGE BEFORE YOU START Laboratory Section: Last Revised on Deceber 15, 2014 Partners Naes: Grade: EXPERIMENT 8 Electron Beas 0. Pre-Laboratory Work [2 pts] 1. Nae the 2 forces that are equated in order to derive the charge to

More information

ma x = -bv x + F rod.

ma x = -bv x + F rod. Notes on Dynaical Systes Dynaics is the study of change. The priary ingredients of a dynaical syste are its state and its rule of change (also soeties called the dynaic). Dynaical systes can be continuous

More information

yields m 1 m 2 q 2 = (m 1 + m 2 )(m 1 q m 2 q 2 2 ). Thus the total kinetic energy is T 1 +T 2 = 1 m 1m 2

yields m 1 m 2 q 2 = (m 1 + m 2 )(m 1 q m 2 q 2 2 ). Thus the total kinetic energy is T 1 +T 2 = 1 m 1m 2 1 I iediately have 1 q 1 = f( q )q/ q and q = f( q )q/ q. Multiplying these equations by and 1 (respectively) and then subtracting, I get 1 ( q 1 q ) = ( + 1 )f( q )q/ q. The desired equation follows after

More information

PHYS 102 Previous Exam Problems

PHYS 102 Previous Exam Problems PHYS 102 Previous Exa Probles CHAPTER 16 Waves Transverse waves on a string Power Interference of waves Standing waves Resonance on a string 1. The displaceent of a string carrying a traveling sinusoidal

More information

Two-Dimensional Rotational Kinematics

Two-Dimensional Rotational Kinematics Two-Dimensional Rotational Kinematics Rigid Bodies A rigid body is an extended object in which the distance between any two points in the object is constant in time. Springs or human bodies are non-rigid

More information

Fourier Series Summary (From Salivahanan et al, 2002)

Fourier Series Summary (From Salivahanan et al, 2002) Fourier Series Suary (Fro Salivahanan et al, ) A periodic continuous signal f(t), - < t

More information

P235 Midterm Examination Prof. Cline

P235 Midterm Examination Prof. Cline P235 Mier Exaination Prof. Cline THIS IS A CLOSED BOOK EXAMINATION. Do all parts of all four questions. Show all steps to get full credit. 7:00-10.00p, 30 October 2009 1:(20pts) Consider a rocket fired

More information

Physics Circular Motion: Energy and Momentum Conservation. Science and Mathematics Education Research Group

Physics Circular Motion: Energy and Momentum Conservation. Science and Mathematics Education Research Group F FA ACULTY C U L T Y OF O F EDUCATION E D U C A T I O N Departent of Curriculu and Pedagogy Physics Circular Motion: Energy and Moentu Conservation Science and Matheatics Education Research Group Supported

More information

Chapter 4 FORCES AND NEWTON S LAWS OF MOTION PREVIEW QUICK REFERENCE. Important Terms

Chapter 4 FORCES AND NEWTON S LAWS OF MOTION PREVIEW QUICK REFERENCE. Important Terms Chapter 4 FORCES AND NEWTON S LAWS OF MOTION PREVIEW Dynaics is the study o the causes o otion, in particular, orces. A orce is a push or a pull. We arrange our knowledge o orces into three laws orulated

More information

Expansion of Gases. It is decided to verify oyle's law over a wide range of teperature and pressures. he ost suitable gas to be selected for this purpose is ) Carbon dioxide ) Heliu 3) Oxygen 4) Hydrogen.

More information

Physics 218 Exam 3 Fall 2010, Sections

Physics 218 Exam 3 Fall 2010, Sections Physics 28 Exa 3 Fall 200, Sections 52-524 Do not fill out the inforation below until instructed to do so! Nae Signature Student ID E-ail Section # : SOUTIONS ules of the exa:. You have the full class

More information

Motion in a Non-Inertial Frame of Reference vs. Motion in the Gravitomagnetical Field

Motion in a Non-Inertial Frame of Reference vs. Motion in the Gravitomagnetical Field Motion in a Non-Inertial Frae of Reference vs. Motion in the Gravitoanetical Field Mirosław J. Kubiak Zespół Szkół Technicznych, Grudziądz, Poland We atheatically proved that the inertial forces, which

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Departent of Physics and Engineering Physics Physics 115.3 MIDTERM TEST October 22, 2008 Tie: 90 inutes NAME: (Last) Please Print (Given) STUDENT NO.: LECTURE SECTION (please

More information

Question. From Last Time. Acceleration = Velocity of the moon. How has the velocity changed? Earth s pull on the moon. Newton s three laws of motion:

Question. From Last Time. Acceleration = Velocity of the moon. How has the velocity changed? Earth s pull on the moon. Newton s three laws of motion: Fro Last Tie Newton s three laws of otion: 1) Law of inertia ) F=a ( or a=f/ ) 3) Action and reaction (forces always coe in pairs Question If an apple falls toward the Earth, why doesn t the oon fall toward

More information

Physics 120 Final Examination

Physics 120 Final Examination Physics 120 Final Exaination 12 August, 1998 Nae Tie: 3 hours Signature Calculator and one forula sheet allowed Student nuber Show coplete solutions to questions 3 to 8. This exaination has 8 questions.

More information

Charged particle motion in magnetic field

Charged particle motion in magnetic field Chaged paticle otion in agnetic field Paticle otion in cued agnetic fieldlines We diide the equation of otion into a elocity coponent along the agnetic field and pependicula to the agnetic field. Suppose

More information

Relativity and Astrophysics Lecture 25 Terry Herter. Momenergy Momentum-energy 4-vector Magnitude & components Invariance Low velocity limit

Relativity and Astrophysics Lecture 25 Terry Herter. Momenergy Momentum-energy 4-vector Magnitude & components Invariance Low velocity limit Mo Mo Relativity and Astrophysics Lecture 5 Terry Herter Outline Mo Moentu- 4-vector Magnitude & coponents Invariance Low velocity liit Concept Suary Reading Spacetie Physics: Chapter 7 Hoework: (due Wed.

More information

Included in this hand-out are five examples of problems requiring the solution of a system of linear algebraic equations.

Included in this hand-out are five examples of problems requiring the solution of a system of linear algebraic equations. he Lecture Notes, Dept. of heical Engineering, Univ. of TN, Knoville - D. Keffer, 5/9/98 (updated /) Eaple pplications of systes of linear equations Included in this hand-out are five eaples of probles

More information

Tridib s Physics Tutorials. NCERT-XII / Unit- 4 Moving charge and magnetic field

Tridib s Physics Tutorials. NCERT-XII / Unit- 4 Moving charge and magnetic field MAGNETIC FIELD DUE TO A CURRENT ELEMENT The relation between current and the magnetic field, produced by it is magnetic effect of currents. The magnetic fields that we know are due to currents or moving

More information

Rotational & Rigid-Body Mechanics. Lectures 3+4

Rotational & Rigid-Body Mechanics. Lectures 3+4 Rotational & Rigid-Body Mechanics Lectures 3+4 Rotational Motion So far: point objects moving through a trajectory. Next: moving actual dimensional objects and rotating them. 2 Circular Motion - Definitions

More information

9. h = R. 10. h = 3 R

9. h = R. 10. h = 3 R Version PREVIEW Torque Chap. 8 sizeore (13756) 1 This print-out should have 3 questions. ultiple-choice questions ay continue on the next colun or page find all choices before answering. Note in the dropped

More information

CIRCULAR MOTION, HARMONIC MOTION, ROTATIONAL MOTION

CIRCULAR MOTION, HARMONIC MOTION, ROTATIONAL MOTION CIRCULAR MOTION, HARMONIC MOTION, ROTATIONAL MOTION 1 UNIFORM CIRCULAR MOTION path circle distance arc Definition: An object which moves on a circle, travels equal arcs in equal times. Periodic motion

More information

The Lagrangian Method vs. other methods (COMPARATIVE EXAMPLE)

The Lagrangian Method vs. other methods (COMPARATIVE EXAMPLE) The Lagrangian ethod vs. other ethods () This aterial written by Jozef HANC, jozef.hanc@tuke.sk Technical University, Kosice, Slovakia For Edwin Taylor s website http://www.eftaylor.co/ 6 January 003 The

More information

Winmeen Tnpsc Group 1 & 2 Study Materials

Winmeen Tnpsc Group 1 & 2 Study Materials 10. Motion - 2 1. What is datum? We take a point on the ground and we measure all distances with respect to this point which we call the datum. 2. What is frame of reference? The three imaginary lines

More information

CHECKLIST. r r. Newton s Second Law. natural frequency ω o (rad.s -1 ) (Eq ) a03/p1/waves/waves doc 9:19 AM 29/03/05 1

CHECKLIST. r r. Newton s Second Law. natural frequency ω o (rad.s -1 ) (Eq ) a03/p1/waves/waves doc 9:19 AM 29/03/05 1 PHYS12 Physics 1 FUNDAMENTALS Module 3 OSCILLATIONS & WAVES Text Physics by Hecht Chapter 1 OSCILLATIONS Sections: 1.5 1.6 Exaples: 1.6 1.7 1.8 1.9 CHECKLIST Haronic otion, periodic otion, siple haronic

More information

m A 1 m mgd k m v ( C) AP Physics Multiple Choice Practice Oscillations

m A 1 m mgd k m v ( C) AP Physics Multiple Choice Practice Oscillations P Physics Multiple Choice Practice Oscillations. ass, attached to a horizontal assless spring with spring constant, is set into siple haronic otion. Its axiu displaceent fro its equilibriu position is.

More information

Oscillations Equations 0. Out of the followin functions representin otion of a particle which represents SHM I) y = sinωt cosωt 3 II) y = sin ωt III) IV) 3 y = 5cos 3ωt 4 y = + ωt+ ω t a) Only IV does

More information