Probabilistic Classification: Bayes Classifiers 2

Size: px
Start display at page:

Download "Probabilistic Classification: Bayes Classifiers 2"

Transcription

1 CSC Machne Learnng Lecture : Classfcaton II September, Sam Rowes Probablstc Classfcaton: Baes Classfers Generatve model: p(, ) = p()p( ). p() are called class prors. p( ) are called class-condtonal feature dstrbutons. For the pror we use a Bernoull or multnomal: p( = k π) = π k wth k π k = ; π k >. What classfcaton rule should we use? Pck the class that best models the data, e argma p( )? No! Ths behaves ver badl f the class prors are skewed. MAP s best: argma p( )=argma p(, ) = argma log p( )+log p() How should we ft model parameters? Mamum jont lkelhood. Φ = n log p(n, n ) = n log p(n n ) + log p( n ) ) Sort data nto batches b class label. ) Estmate p() b countng sze of batches (plus regularzaton). ) Estmate p( ) separatel wthn each batch usng ML on the class-condtonal model (also wth regularzaton). Revew: Classfcaton Gven eamples of a dscrete class label and some features. Goal: compute for new. Last class: compute a dscrmnant f( ) and then take ma. Ths class: probablstc classfers. Two approaches: Generatve: model p(, ) = p()p( ); then use Baes rule to nfer condtonal p( ). Dscrmnatve: model posteror p( ) drectl. Generatve approach s related to jont denst estmaton whle dscrmnatve approach s closer to regresson. Three Ke Regularzaton Ideas To avod overfttng, we can put prors on the parameters of the class and class-condtonal feature dstrbutons. We can also te some parameters together so that fewer of them are estmated usng more data. Fnall, we can make factorzaton or ndependence assumptons about the dstrbutons. In partcular, for the class-condtonal dstrbutons we can assume the features are full dependent, partl dependent, or ndependent (!). X X X m X X X m X (a) (b) (c)

2 Class Prors and Multnomal Smoothng Let s sa ou were trng to estmate the bas of a con. ou flp t K tmes; what s our estmate of the probablt z of heads? One answer: mamum lkelhood. z = #h/k. What f ou flp t tmes and ou get both heads? Do ou thnk that z =? Would ou be nfntel surprsed to see a tal? ML s almost alwas a bad dea. We need to ncorporate a pror belef to modulate the results of small numbers of trals. We do ths wth a technque called smoothng: z = #h+α K+α α are the number of pseudo-counts ou use for our pror. The same stuaton occurs when estmatng class prors from data: p (c) = #c + α N + Cα A ver common settng s α = whch s called Laplace Smoothng. Regularzed Gaussans Idea : assume all the covarances are the same (te parameters). Ths s eactl Fsher s lnear dscrmnant analss. (a) Idea : use a Wshart pror on the covarance matr. (Smoothng!) Ths fattens up the posterors b makng the MAP estmates the sample covarances plus a bt of the dentt matr. Idea : Make ndependence assumptons to get dagonal or dentt-multple covarances. (.e. sparse nverse covarances.) More on ths n a few mnutes... (b) Gaussan Class-Condtonal Dstrbutons If all the nput features are contnuous, a popular choce s a Gaussan class-condtonal model. { p( = k, θ) = πσ / ep } ( µ k)σ ( µ k ) Fttng: use the followng smple but useful fact. The mamum lkelhood ft of a Gaussan to some data s the Gaussan whose mean s equal to the data mean and whose covarance s equal to the sample covarance. [Tr to prove ths as an eercse n understandng lkelhood, algebra, and calculus all at once!] One ver nce feature of ths model s that the mamum lkelhood parameters can be found n closed-form, so we don t have to worr about numercal optmzaton, local mnma, search, etc. Seems eas. And works surprsngl well. But we can do even better wth some smple regularzaton... Gaussan Baes Classfer Mamum lkelhood estmates for parameters: prors π k : use observed frequences of classes (plus smoothng) means µ k : use class means covarance Σ: use data from sngle class or pooled data ( n µ n) to estmate (full/dagonal) covarances Compute the posteror va Baes rule. For equal covarances: p( = k, θ)p( = k π) p( = k, θ) = j p( = j, θ)p( = j π) = ep{µ k Σ µ k Σ µ k / + log π k } j ep{µ j Σ µ j Σ µ j / + log π j } = eβ k j eβ j = ep{β k }/Z where β k = [Σ µ k ; (µ k Σ µ k + log π k )] (last term s bas)

3 Lnear Geometr Takng the rato of an two posterors (the odds ) shows that the contours of equal parwse probablt are lnear surfaces n the feature space f the covarances of all classes are equal: p( = k, θ) p( = j, θ) = ep { (β k β j ) } The parwse dscrmnaton contours p( k ) = p( j ) are orthogonal to the dfferences of the means n feature space when Σ = σi. For general Σ (shared b/w all classes) the same s true n the transformed feature space u = Σ. The prors do not change the geometr, the onl shft the operatng pont on the logt b the log-odds log(π k /π j ). Summar: for equal class-covarances, we obtan a lnear classfer. If we use dfferent covarances for each class, we have a quadratc classfer wth conc secton decson surfaces. Dscrmnatve Models Observaton: f p( ) are lnear functons of (or monotone transforms), decson surfaces wll be pecewse lnear. Idea: parametrze p( ) drectl, forget p(, ) and Baes rule. Advantages: We don t need to model the denst of the features p() whch often takes lots of parameters and seems redundant snce man denstes gve the same lnear classfer. Dsadvantages: We cannot detect outlers, compare models usng lkelhoods or generate new labelled data. What should our objectve functon be? We ll tr to use one that s closer to the one we care about at test tme (e error rate). Eponental Faml Class-Condtonals Baes Classfer has the same form whenever the class-condtonal denstes are an eponental faml denst: p( = k, η k ) = h() ep{ηk a(η k)} p( = k, η) = p( = k, η k)p( = k π) j p( = j, η j)p( = j π) = ep{η k a(η k)} j ep{η j a(η j)} = eβ k j eβ j where β k = [η k ; a(η k )] and we have augmented wth a constant component alwas equal to (bas term). Resultng classfer s lnear n the suffcent statstcs. Logstc/Softma Regresson Model: s a multnomal random varable whose posteror s the softma of lnear functons of the feature vector. eθ k p( = k, θ) = j eθ j Fttng: now we optmze the condtonal log-lkelhood: l(θ; D) = [ n = k] log p( = k n, θ) = nk nk l = l n k p n θ p n k z n nk k z n. θ = k n. p n p n k (δ k p n. )n.. nk k = n ( n pn )n. n k log pn k....

4 Softma/Logt The squashng functon s known as the softma or logt: φ k (z) ez k g(η) = j ez j + e η It s nvertble (up to a constant): z k = log φ k + c η = log(g/ g) Dervatve s eas: φ k z j = φ k (δ kj φ j ) dg = g( g) dη φ( z ).... z Artfcal Neural Networks Hstorcall motvated b relatons to bolog, but for our purposes, ANNs are just nonlnear classfcaton machnes of the form: p( = k, θ) = eθ k h() j eθ j h() h j = σ(b j ) where h j = σ(b j ) are known as the hdden unt actvatons; k are the output unts and are the nput unts. The nonlnear scalar functon σ s called an actvaton functon. We usuall use nvertble and dfferentable actvaton functons. If the actvaton functon s lnear, the whole network reduces to a lnear network: equvalent to logstc regresson. [ Onl f there are at least as man hddens as nputs and outputs.] It s often a good dea to add skp weghts drectl connectng nputs to outputs to take care of ths lnear component drectl. More on Logstc Regresson Hardest Part: pckng the feature vector (see net slde!). Amazng fact: the condtonal lkelhood s conve n the parameters θ (assumng regularzaton). Stll no local mnma! But the optmal parameters cannot be computed n closed form. However, the gradent s eas to compute; so eas to optmze. Slow: gradent descent, IIS. Fast: BFGS, Newton-Raphson, IRLS. Regularzaton? Gaussan pror on θ (weght deca): add ɛ θ to the cost functon, whch subtracts ɛθ from each gradent. Logstc regresson could reall be called softma lnear regresson. Log odds (logt) between an two classes s lnear n parameters. Consder what happens f there are two features wth dentcal classfcaton patterns n our tranng data. Logstc Regresson can onl see the sum of the correspondng weghts. Luckl, weght deca wll solve ths. Moral: alwas regularze! Common Actvaton Functons Two common actvaton functons: sgmod and hperbolc tangent ep(z) ep( z) sgmod(z) = tanh(z) = + ep( z) ep(z) + ep( z) sgmod(z) / + tanh(z) + z z For small weghts, these functons wll be operatng near zero and ther behavour wll be almost lnear. Thus, for small weghts, the network behaves essentall lnearl. But for larger weghts, we are effectvel learnng the nput feature functons for a non-lnear verson of logstc regresson. In general we want a saturatng actvaton functon (wh?).

5 Geometr of ANNs ANNs can be thought of as generalzed lnear models, where the bass functons (hdden unts) are sgmodal clffs. The clff drecton s determned b the nput-to-hdden weghts, and the clffs are combned b the hdden-to-output weghts. We nclude bas unts of course, and these set where the clff s postoned relatve to the orgn. b j h j Dscrete Baesan Classfer If the nputs are dscrete (categorcal), what should we do? The smplest class-condtonal model s a jont multnomal (table): p( = a, = b,... = c) = η c ab... Ths s conceptuall correct, but there s a bg practcal problem. Fttng: ML params are observed counts: ηab... c = n [ n = c][ = a][ = b][...][...] n [ n = c] Consder the dgts at gra levels. How man entres n the table? How man wll be zero? What happens at test tme? Doh! We obvousl need some regularlzaton. Smoothng wll not help much here. Unless we know about the relatonshps between nputs beforehand, sharng parameters s hard also (what to share?). But what about ndependence? Neural Networks for Classfcaton Neural nets wth one hdden laer traned for classfcaton are dong nonlnear logstc regresson: p( = k ) = softma[θ k σ(b)] where θ and B are the frst and second laer weghts and σ() s a squashng functon (e.g. tanh) that operates componentwse. softma σ Gradent of condtonal lkelhood stll easl computable, usng the effcent backpropagaton algorthm whch we ll see later. But: We lose the convet propert local mnma problems. θ B Nave (Idot s) Baes Classfer Assumpton: condtoned on class, attrbutes are ndependent. p( ) = p( ) Sounds craz rght? Rght! But t works. Algorthm: sort data cases nto bns accordng to n. Compute margnal probabltes p( = c) usng frequences. For each class, estmate dstrbuton of th varable: p( = c). At test tme, compute argma c p(c ) usng c() = argma c p(c ) = argma c [log p( c) + log p(c)] = argma c [log p(c) + log p( c)]

6 Dscrete (Multnomal) Nave Baes Dscrete features, assumed ndependent gven the class label. p( = j = k) = η jk p( = k, η) = η [ =j] jk j Classfcaton rule: p( = k, η) = π k j η[ =j] jk q π q j η[ =j] jq = eβ k q eβ q β k = log[η k... η jk... η jk... log π k ] = [ =; =;... ; =j;... ; ] X X (a) X m Gaussan Nave Baes Ths s just a Gaussan Baes Classfer wth a separate but dagonal covarance matr for each class. Equvalent to fttng a D Gaussan to each nput for each class. NB: Decson surfaces are quadratcs, not lnear... Even better dea: Blend between full, dagonal and dentt covarances. Fttng Dscrete Nave Baes ML parameters are class-condtonal frequenc counts: ηjk = n [ n = j][ n = k] n [n = k] How do we know? Wrte down the lkelhood: l(θ; D) = log p( n π) + log p( n n, η) n n and optmze t b settng ts dervatve to zero (careful! enforce normalzaton wth Lagrange multplers): l(η; D) = [ n = j][ n = k] log η jk + λ k ( j η jk) n jk k l = n [ n = j][ n = k] λ η jk η k jk l = λ η k = [ n = k] ηjk jk n Nos-OR Classfer Man probablstc models can be obtaned as nos versons of formulas from propostonal logc. Nos-OR: each nput actvates output w/some probablt. p( =, α) = α = ep log α Lettng θ = log α we get et another lnear classfer: p( =, θ) = e θ

7 Jont vs. Condtonal Models Man of the methods we have seen so far have lnear or pecewse lnear decson surfaces n some space : LDA, perceptron, Gaussan Baes, Nave Baes, Nos-OR, KNN,... But the crtera used to fnd ths hperplane s dfferent: KNN/perceptron optmze tranng set classfcaton error. Gauss/Nave Baes are jont models; optmze p(, ) = p()p( ). Logstc Regresson/NN are condtonal: optmze p( ) drectl. Ver mportant pont: n general there s a large dfference between the archtecture used for classfcaton and the objectve functon used to optmze the parameters of the archtecture. See readng... Futher ponts... Last class: non-parametrc (e.g. K-nearest-neghbour). Those classfers return a sngle guess for wthout a dstrbuton. Ths class: probablstc generatve models p(, ) (e.g. Gaussan class-condtonal, Nave Baes) & dscrmnatve (condtonal) models p( ) (e.g. logstc regresson, ANNs, nos-or). (Plus man more we ddn t talk about, e.g. probt regresson, complementar log-log, generalzed lnear models,...) Advanced topc: kernel machne classfers. (e.g. kernel voted perceptron, support vector machnes, Gaussan processes). Advanced topc: combnng multple weak classfers nto a sngle stronger one usng boostng, baggng, stackng... Readngs: Haste et. al, Ch; Duda&Hart, Ch,. Classfcaton va Regresson? We could forget that was a dscrete (categorcal) random varable and just attempt to model p( ) usng regresson. Idea: do regresson to an ndcator matr. (n bnar case p( = ) s also the condtonal epectaton) For two classes, ths s equvalent to LDA. For or more, dsaster... Ver bad dea! Nose models (e.g. Gaussan) for regresson are totall napproprate, and fts are oversenstve to outlers. Furthermore, gves unreasonable predctons < and >

Probabilistic Classification: Bayes Classifiers. Lecture 6:

Probabilistic Classification: Bayes Classifiers. Lecture 6: Probablstc Classfcaton: Bayes Classfers Lecture : Classfcaton Models Sam Rowes January, Generatve model: p(x, y) = p(y)p(x y). p(y) are called class prors. p(x y) are called class condtonal feature dstrbutons.

More information

Generative classification models

Generative classification models CS 675 Intro to Machne Learnng Lecture Generatve classfcaton models Mlos Hauskrecht mlos@cs.ptt.edu 539 Sennott Square Data: D { d, d,.., dn} d, Classfcaton represents a dscrete class value Goal: learn

More information

Classification learning II

Classification learning II Lecture 8 Classfcaton learnng II Mlos Hauskrecht mlos@cs.ptt.edu 539 Sennott Square Logstc regresson model Defnes a lnear decson boundar Dscrmnant functons: g g g g here g z / e z f, g g - s a logstc functon

More information

Discriminative classifier: Logistic Regression. CS534-Machine Learning

Discriminative classifier: Logistic Regression. CS534-Machine Learning Dscrmnatve classfer: Logstc Regresson CS534-Machne Learnng 2 Logstc Regresson Gven tranng set D stc regresson learns the condtonal dstrbuton We ll assume onl to classes and a parametrc form for here s

More information

Discriminative classifier: Logistic Regression. CS534-Machine Learning

Discriminative classifier: Logistic Regression. CS534-Machine Learning Dscrmnatve classfer: Logstc Regresson CS534-Machne Learnng robablstc Classfer Gven an nstance, hat does a probablstc classfer do dfferentl compared to, sa, perceptron? It does not drectl predct Instead,

More information

INF 5860 Machine learning for image classification. Lecture 3 : Image classification and regression part II Anne Solberg January 31, 2018

INF 5860 Machine learning for image classification. Lecture 3 : Image classification and regression part II Anne Solberg January 31, 2018 INF 5860 Machne learnng for mage classfcaton Lecture 3 : Image classfcaton and regresson part II Anne Solberg January 3, 08 Today s topcs Multclass logstc regresson and softma Regularzaton Image classfcaton

More information

MLE and Bayesian Estimation. Jie Tang Department of Computer Science & Technology Tsinghua University 2012

MLE and Bayesian Estimation. Jie Tang Department of Computer Science & Technology Tsinghua University 2012 MLE and Bayesan Estmaton Je Tang Department of Computer Scence & Technology Tsnghua Unversty 01 1 Lnear Regresson? As the frst step, we need to decde how we re gong to represent the functon f. One example:

More information

CIS526: Machine Learning Lecture 3 (Sept 16, 2003) Linear Regression. Preparation help: Xiaoying Huang. x 1 θ 1 output... θ M x M

CIS526: Machine Learning Lecture 3 (Sept 16, 2003) Linear Regression. Preparation help: Xiaoying Huang. x 1 θ 1 output... θ M x M CIS56: achne Learnng Lecture 3 (Sept 6, 003) Preparaton help: Xaoyng Huang Lnear Regresson Lnear regresson can be represented by a functonal form: f(; θ) = θ 0 0 +θ + + θ = θ = 0 ote: 0 s a dummy attrbute

More information

Week 5: Neural Networks

Week 5: Neural Networks Week 5: Neural Networks Instructor: Sergey Levne Neural Networks Summary In the prevous lecture, we saw how we can construct neural networks by extendng logstc regresson. Neural networks consst of multple

More information

CS 2750 Machine Learning. Lecture 5. Density estimation. CS 2750 Machine Learning. Announcements

CS 2750 Machine Learning. Lecture 5. Density estimation. CS 2750 Machine Learning. Announcements CS 750 Machne Learnng Lecture 5 Densty estmaton Mlos Hauskrecht mlos@cs.ptt.edu 539 Sennott Square CS 750 Machne Learnng Announcements Homework Due on Wednesday before the class Reports: hand n before

More information

Homework Assignment 3 Due in class, Thursday October 15

Homework Assignment 3 Due in class, Thursday October 15 Homework Assgnment 3 Due n class, Thursday October 15 SDS 383C Statstcal Modelng I 1 Rdge regresson and Lasso 1. Get the Prostrate cancer data from http://statweb.stanford.edu/~tbs/elemstatlearn/ datasets/prostate.data.

More information

Logistic Regression. CAP 5610: Machine Learning Instructor: Guo-Jun QI

Logistic Regression. CAP 5610: Machine Learning Instructor: Guo-Jun QI Logstc Regresson CAP 561: achne Learnng Instructor: Guo-Jun QI Bayes Classfer: A Generatve model odel the posteror dstrbuton P(Y X) Estmate class-condtonal dstrbuton P(X Y) for each Y Estmate pror dstrbuton

More information

For now, let us focus on a specific model of neurons. These are simplified from reality but can achieve remarkable results.

For now, let us focus on a specific model of neurons. These are simplified from reality but can achieve remarkable results. Neural Networks : Dervaton compled by Alvn Wan from Professor Jtendra Malk s lecture Ths type of computaton s called deep learnng and s the most popular method for many problems, such as computer vson

More information

Lecture Notes on Linear Regression

Lecture Notes on Linear Regression Lecture Notes on Lnear Regresson Feng L fl@sdueducn Shandong Unversty, Chna Lnear Regresson Problem In regresson problem, we am at predct a contnuous target value gven an nput feature vector We assume

More information

Generative and Discriminative Models. Jie Tang Department of Computer Science & Technology Tsinghua University 2012

Generative and Discriminative Models. Jie Tang Department of Computer Science & Technology Tsinghua University 2012 Generatve and Dscrmnatve Models Je Tang Department o Computer Scence & Technolog Tsnghua Unverst 202 ML as Searchng Hpotheses Space ML Methodologes are ncreasngl statstcal Rule-based epert sstems beng

More information

Generalized Linear Methods

Generalized Linear Methods Generalzed Lnear Methods 1 Introducton In the Ensemble Methods the general dea s that usng a combnaton of several weak learner one could make a better learner. More formally, assume that we have a set

More information

SDMML HT MSc Problem Sheet 4

SDMML HT MSc Problem Sheet 4 SDMML HT 06 - MSc Problem Sheet 4. The recever operatng characterstc ROC curve plots the senstvty aganst the specfcty of a bnary classfer as the threshold for dscrmnaton s vared. Let the data space be

More information

MACHINE APPLIED MACHINE LEARNING LEARNING. Gaussian Mixture Regression

MACHINE APPLIED MACHINE LEARNING LEARNING. Gaussian Mixture Regression 11 MACHINE APPLIED MACHINE LEARNING LEARNING MACHINE LEARNING Gaussan Mture Regresson 22 MACHINE APPLIED MACHINE LEARNING LEARNING Bref summary of last week s lecture 33 MACHINE APPLIED MACHINE LEARNING

More information

The Gaussian classifier. Nuno Vasconcelos ECE Department, UCSD

The Gaussian classifier. Nuno Vasconcelos ECE Department, UCSD he Gaussan classfer Nuno Vasconcelos ECE Department, UCSD Bayesan decson theory recall that we have state of the world X observatons g decson functon L[g,y] loss of predctng y wth g Bayes decson rule s

More information

Linear Regression Introduction to Machine Learning. Matt Gormley Lecture 5 September 14, Readings: Bishop, 3.1

Linear Regression Introduction to Machine Learning. Matt Gormley Lecture 5 September 14, Readings: Bishop, 3.1 School of Computer Scence 10-601 Introducton to Machne Learnng Lnear Regresson Readngs: Bshop, 3.1 Matt Gormle Lecture 5 September 14, 016 1 Homework : Remnders Extenson: due Frda (9/16) at 5:30pm Rectaton

More information

Machine learning: Density estimation

Machine learning: Density estimation CS 70 Foundatons of AI Lecture 3 Machne learnng: ensty estmaton Mlos Hauskrecht mlos@cs.ptt.edu 539 Sennott Square ata: ensty estmaton {.. n} x a vector of attrbute values Objectve: estmate the model of

More information

C4B Machine Learning Answers II. = σ(z) (1 σ(z)) 1 1 e z. e z = σ(1 σ) (1 + e z )

C4B Machine Learning Answers II. = σ(z) (1 σ(z)) 1 1 e z. e z = σ(1 σ) (1 + e z ) C4B Machne Learnng Answers II.(a) Show that for the logstc sgmod functon dσ(z) dz = σ(z) ( σ(z)) A. Zsserman, Hlary Term 20 Start from the defnton of σ(z) Note that Then σ(z) = σ = dσ(z) dz = + e z e z

More information

Classification as a Regression Problem

Classification as a Regression Problem Target varable y C C, C,, ; Classfcaton as a Regresson Problem { }, 3 L C K To treat classfcaton as a regresson problem we should transform the target y nto numercal values; The choce of numercal class

More information

Which Separator? Spring 1

Which Separator? Spring 1 Whch Separator? 6.034 - Sprng 1 Whch Separator? Mamze the margn to closest ponts 6.034 - Sprng Whch Separator? Mamze the margn to closest ponts 6.034 - Sprng 3 Margn of a pont " # y (w $ + b) proportonal

More information

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models ECO 452 -- OE 4: Probt and Logt Models ECO 452 -- OE 4 Mamum Lkelhood Estmaton of Bnary Dependent Varables Models: Probt and Logt hs note demonstrates how to formulate bnary dependent varables models for

More information

Kernel Methods and SVMs Extension

Kernel Methods and SVMs Extension Kernel Methods and SVMs Extenson The purpose of ths document s to revew materal covered n Machne Learnng 1 Supervsed Learnng regardng support vector machnes (SVMs). Ths document also provdes a general

More information

1 Convex Optimization

1 Convex Optimization Convex Optmzaton We wll consder convex optmzaton problems. Namely, mnmzaton problems where the objectve s convex (we assume no constrants for now). Such problems often arse n machne learnng. For example,

More information

10-701/ Machine Learning, Fall 2005 Homework 3

10-701/ Machine Learning, Fall 2005 Homework 3 10-701/15-781 Machne Learnng, Fall 2005 Homework 3 Out: 10/20/05 Due: begnnng of the class 11/01/05 Instructons Contact questons-10701@autonlaborg for queston Problem 1 Regresson and Cross-valdaton [40

More information

Multilayer neural networks

Multilayer neural networks Lecture Multlayer neural networks Mlos Hauskrecht mlos@cs.ptt.edu 5329 Sennott Square Mdterm exam Mdterm Monday, March 2, 205 In-class (75 mnutes) closed book materal covered by February 25, 205 Multlayer

More information

Linear Feature Engineering 11

Linear Feature Engineering 11 Lnear Feature Engneerng 11 2 Least-Squares 2.1 Smple least-squares Consder the followng dataset. We have a bunch of nputs x and correspondng outputs y. The partcular values n ths dataset are x y 0.23 0.19

More information

Multi-layer neural networks

Multi-layer neural networks Lecture 0 Mult-layer neural networks Mlos Hauskrecht mlos@cs.ptt.edu 5329 Sennott Square Lnear regresson w Lnear unts f () Logstc regresson T T = w = p( y =, w) = g( w ) w z f () = p ( y = ) w d w d Gradent

More information

Hidden Markov Models

Hidden Markov Models CM229S: Machne Learnng for Bonformatcs Lecture 12-05/05/2016 Hdden Markov Models Lecturer: Srram Sankararaman Scrbe: Akshay Dattatray Shnde Edted by: TBD 1 Introducton For a drected graph G we can wrte

More information

xp(x µ) = 0 p(x = 0 µ) + 1 p(x = 1 µ) = µ

xp(x µ) = 0 p(x = 0 µ) + 1 p(x = 1 µ) = µ CSE 455/555 Sprng 2013 Homework 7: Parametrc Technques Jason J. Corso Computer Scence and Engneerng SUY at Buffalo jcorso@buffalo.edu Solutons by Yngbo Zhou Ths assgnment does not need to be submtted and

More information

Evaluation for sets of classes

Evaluation for sets of classes Evaluaton for Tet Categorzaton Classfcaton accuracy: usual n ML, the proporton of correct decsons, Not approprate f the populaton rate of the class s low Precson, Recall and F 1 Better measures 21 Evaluaton

More information

Expectation Maximization Mixture Models HMMs

Expectation Maximization Mixture Models HMMs -755 Machne Learnng for Sgnal Processng Mture Models HMMs Class 9. 2 Sep 200 Learnng Dstrbutons for Data Problem: Gven a collecton of eamples from some data, estmate ts dstrbuton Basc deas of Mamum Lelhood

More information

Lecture 10 Support Vector Machines II

Lecture 10 Support Vector Machines II Lecture 10 Support Vector Machnes II 22 February 2016 Taylor B. Arnold Yale Statstcs STAT 365/665 1/28 Notes: Problem 3 s posted and due ths upcomng Frday There was an early bug n the fake-test data; fxed

More information

Maxent Models & Deep Learning

Maxent Models & Deep Learning Maxent Models & Deep Learnng 1. Last bts of maxent (sequence) models 1.MEMMs vs. CRFs 2.Smoothng/regularzaton n maxent models 2. Deep Learnng 1. What s t? Why s t good? (Part 1) 2. From logstc regresson

More information

Machine Learning for Signal Processing Linear Gaussian Models

Machine Learning for Signal Processing Linear Gaussian Models Machne Learnng for Sgnal Processng Lnear Gaussan Models Class 7. 30 Oct 204 Instructor: Bhksha Raj 755/8797 Recap: MAP stmators MAP (Mamum A Posteror: Fnd a best guess for (statstcall, gven knon = argma

More information

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification E395 - Pattern Recognton Solutons to Introducton to Pattern Recognton, Chapter : Bayesan pattern classfcaton Preface Ths document s a soluton manual for selected exercses from Introducton to Pattern Recognton

More information

The exam is closed book, closed notes except your one-page cheat sheet.

The exam is closed book, closed notes except your one-page cheat sheet. CS 89 Fall 206 Introducton to Machne Learnng Fnal Do not open the exam before you are nstructed to do so The exam s closed book, closed notes except your one-page cheat sheet Usage of electronc devces

More information

Support Vector Machines

Support Vector Machines Support Vector Machnes Konstantn Tretyakov (kt@ut.ee) MTAT.03.227 Machne Learnng So far Supervsed machne learnng Lnear models Least squares regresson Fsher s dscrmnant, Perceptron, Logstc model Non-lnear

More information

Support Vector Machines

Support Vector Machines Support Vector Machnes Konstantn Tretyakov (kt@ut.ee) MTAT.03.227 Machne Learnng So far So far Supervsed machne learnng Lnear models Non-lnear models Unsupervsed machne learnng Generc scaffoldng So far

More information

Lecture 10: Dimensionality reduction

Lecture 10: Dimensionality reduction Lecture : Dmensonalt reducton g The curse of dmensonalt g Feature etracton s. feature selecton g Prncpal Components Analss g Lnear Dscrmnant Analss Intellgent Sensor Sstems Rcardo Guterrez-Osuna Wrght

More information

EEE 241: Linear Systems

EEE 241: Linear Systems EEE : Lnear Systems Summary #: Backpropagaton BACKPROPAGATION The perceptron rule as well as the Wdrow Hoff learnng were desgned to tran sngle layer networks. They suffer from the same dsadvantage: they

More information

Hidden Markov Models & The Multivariate Gaussian (10/26/04)

Hidden Markov Models & The Multivariate Gaussian (10/26/04) CS281A/Stat241A: Statstcal Learnng Theory Hdden Markov Models & The Multvarate Gaussan (10/26/04) Lecturer: Mchael I. Jordan Scrbes: Jonathan W. Hu 1 Hdden Markov Models As a bref revew, hdden Markov models

More information

MATH 829: Introduction to Data Mining and Analysis The EM algorithm (part 2)

MATH 829: Introduction to Data Mining and Analysis The EM algorithm (part 2) 1/16 MATH 829: Introducton to Data Mnng and Analyss The EM algorthm (part 2) Domnque Gullot Departments of Mathematcal Scences Unversty of Delaware Aprl 20, 2016 Recall 2/16 We are gven ndependent observatons

More information

Multilayer Perceptron (MLP)

Multilayer Perceptron (MLP) Multlayer Perceptron (MLP) Seungjn Cho Department of Computer Scence and Engneerng Pohang Unversty of Scence and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjn@postech.ac.kr 1 / 20 Outlne

More information

Predictive Analytics : QM901.1x Prof U Dinesh Kumar, IIMB. All Rights Reserved, Indian Institute of Management Bangalore

Predictive Analytics : QM901.1x Prof U Dinesh Kumar, IIMB. All Rights Reserved, Indian Institute of Management Bangalore Sesson Outlne Introducton to classfcaton problems and dscrete choce models. Introducton to Logstcs Regresson. Logstc functon and Logt functon. Maxmum Lkelhood Estmator (MLE) for estmaton of LR parameters.

More information

Boostrapaggregating (Bagging)

Boostrapaggregating (Bagging) Boostrapaggregatng (Baggng) An ensemble meta-algorthm desgned to mprove the stablty and accuracy of machne learnng algorthms Can be used n both regresson and classfcaton Reduces varance and helps to avod

More information

Evaluation of classifiers MLPs

Evaluation of classifiers MLPs Lecture Evaluaton of classfers MLPs Mlos Hausrecht mlos@cs.ptt.edu 539 Sennott Square Evaluaton For any data set e use to test the model e can buld a confuson matrx: Counts of examples th: class label

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

6 Supplementary Materials

6 Supplementary Materials 6 Supplementar Materals 61 Proof of Theorem 31 Proof Let m Xt z 1:T : l m Xt X,z 1:t Wethenhave mxt z1:t ˆm HX Xt z 1:T mxt z1:t m HX Xt z 1:T + mxt z 1:T HX We consder each of the two terms n equaton

More information

ENG 8801/ Special Topics in Computer Engineering: Pattern Recognition. Memorial University of Newfoundland Pattern Recognition

ENG 8801/ Special Topics in Computer Engineering: Pattern Recognition. Memorial University of Newfoundland Pattern Recognition EG 880/988 - Specal opcs n Computer Engneerng: Pattern Recognton Memoral Unversty of ewfoundland Pattern Recognton Lecture 7 May 3, 006 http://wwwengrmunca/~charlesr Offce Hours: uesdays hursdays 8:30-9:30

More information

Limited Dependent Variables

Limited Dependent Variables Lmted Dependent Varables. What f the left-hand sde varable s not a contnuous thng spread from mnus nfnty to plus nfnty? That s, gven a model = f (, β, ε, where a. s bounded below at zero, such as wages

More information

Maximum Likelihood Estimation (MLE)

Maximum Likelihood Estimation (MLE) Maxmum Lkelhood Estmaton (MLE) Ken Kreutz-Delgado (Nuno Vasconcelos) ECE 175A Wnter 01 UCSD Statstcal Learnng Goal: Gven a relatonshp between a feature vector x and a vector y, and d data samples (x,y

More information

Finite Mixture Models and Expectation Maximization. Most slides are from: Dr. Mario Figueiredo, Dr. Anil Jain and Dr. Rong Jin

Finite Mixture Models and Expectation Maximization. Most slides are from: Dr. Mario Figueiredo, Dr. Anil Jain and Dr. Rong Jin Fnte Mxture Models and Expectaton Maxmzaton Most sldes are from: Dr. Maro Fgueredo, Dr. Anl Jan and Dr. Rong Jn Recall: The Supervsed Learnng Problem Gven a set of n samples X {(x, y )},,,n Chapter 3 of

More information

Outline. Multivariate Parametric Methods. Multivariate Data. Basic Multivariate Statistics. Steven J Zeil

Outline. Multivariate Parametric Methods. Multivariate Data. Basic Multivariate Statistics. Steven J Zeil Outlne Multvarate Parametrc Methods Steven J Zel Old Domnon Unv. Fall 2010 1 Multvarate Data 2 Multvarate ormal Dstrbuton 3 Multvarate Classfcaton Dscrmnants Tunng Complexty Dscrete Features 4 Multvarate

More information

Machine Learning for Signal Processing Linear Gaussian Models

Machine Learning for Signal Processing Linear Gaussian Models Machne Learnng for Sgnal rocessng Lnear Gaussan Models lass 2. 2 Nov 203 Instructor: Bhsha Raj 2 Nov 203 755/8797 HW3 s up. Admnstrva rojects please send us an update 2 Nov 203 755/8797 2 Recap: MA stmators

More information

Pattern Classification

Pattern Classification Pattern Classfcaton All materals n these sldes ere taken from Pattern Classfcaton (nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wley & Sons, 000 th the permsson of the authors and the publsher

More information

Course 395: Machine Learning - Lectures

Course 395: Machine Learning - Lectures Course 395: Machne Learnng - Lectures Lecture 1-2: Concept Learnng (M. Pantc Lecture 3-4: Decson Trees & CC Intro (M. Pantc Lecture 5-6: Artfcal Neural Networks (S.Zaferou Lecture 7-8: Instance ased Learnng

More information

Learning from Data 1 Naive Bayes

Learning from Data 1 Naive Bayes Learnng from Data 1 Nave Bayes Davd Barber dbarber@anc.ed.ac.uk course page : http://anc.ed.ac.uk/ dbarber/lfd1/lfd1.html c Davd Barber 2001, 2002 1 Learnng from Data 1 : c Davd Barber 2001,2002 2 1 Why

More information

Kernels in Support Vector Machines. Based on lectures of Martin Law, University of Michigan

Kernels in Support Vector Machines. Based on lectures of Martin Law, University of Michigan Kernels n Support Vector Machnes Based on lectures of Martn Law, Unversty of Mchgan Non Lnear separable problems AND OR NOT() The XOR problem cannot be solved wth a perceptron. XOR Per Lug Martell - Systems

More information

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models ECO 452 -- OE 4: Probt and Logt Models ECO 452 -- OE 4 Maxmum Lkelhood Estmaton of Bnary Dependent Varables Models: Probt and Logt hs note demonstrates how to formulate bnary dependent varables models

More information

Conjugacy and the Exponential Family

Conjugacy and the Exponential Family CS281B/Stat241B: Advanced Topcs n Learnng & Decson Makng Conjugacy and the Exponental Famly Lecturer: Mchael I. Jordan Scrbes: Bran Mlch 1 Conjugacy In the prevous lecture, we saw conjugate prors for the

More information

Composite Hypotheses testing

Composite Hypotheses testing Composte ypotheses testng In many hypothess testng problems there are many possble dstrbutons that can occur under each of the hypotheses. The output of the source s a set of parameters (ponts n a parameter

More information

Supporting Information

Supporting Information Supportng Informaton The neural network f n Eq. 1 s gven by: f x l = ReLU W atom x l + b atom, 2 where ReLU s the element-wse rectfed lnear unt, 21.e., ReLUx = max0, x, W atom R d d s the weght matrx to

More information

Support Vector Machines

Support Vector Machines Separatng boundary, defned by w Support Vector Machnes CISC 5800 Professor Danel Leeds Separatng hyperplane splts class 0 and class 1 Plane s defned by lne w perpendcular to plan Is data pont x n class

More information

Space of ML Problems. CSE 473: Artificial Intelligence. Parameter Estimation and Bayesian Networks. Learning Topics

Space of ML Problems. CSE 473: Artificial Intelligence. Parameter Estimation and Bayesian Networks. Learning Topics /7/7 CSE 73: Artfcal Intellgence Bayesan - Learnng Deter Fox Sldes adapted from Dan Weld, Jack Breese, Dan Klen, Daphne Koller, Stuart Russell, Andrew Moore & Luke Zettlemoyer What s Beng Learned? Space

More information

Retrieval Models: Language models

Retrieval Models: Language models CS-590I Informaton Retreval Retreval Models: Language models Luo S Department of Computer Scence Purdue Unversty Introducton to language model Ungram language model Document language model estmaton Maxmum

More information

Linear discriminants. Nuno Vasconcelos ECE Department, UCSD

Linear discriminants. Nuno Vasconcelos ECE Department, UCSD Lnear dscrmnants Nuno Vasconcelos ECE Department UCSD Classfcaton a classfcaton problem as to tpes of varables e.g. X - vector of observatons features n te orld Y - state class of te orld X R 2 fever blood

More information

OPTIMISATION. Introduction Single Variable Unconstrained Optimisation Multivariable Unconstrained Optimisation Linear Programming

OPTIMISATION. Introduction Single Variable Unconstrained Optimisation Multivariable Unconstrained Optimisation Linear Programming OPTIMIATION Introducton ngle Varable Unconstraned Optmsaton Multvarable Unconstraned Optmsaton Lnear Programmng Chapter Optmsaton /. Introducton In an engneerng analss, sometmes etremtes, ether mnmum or

More information

Multilayer Perceptrons and Backpropagation. Perceptrons. Recap: Perceptrons. Informatics 1 CG: Lecture 6. Mirella Lapata

Multilayer Perceptrons and Backpropagation. Perceptrons. Recap: Perceptrons. Informatics 1 CG: Lecture 6. Mirella Lapata Multlayer Perceptrons and Informatcs CG: Lecture 6 Mrella Lapata School of Informatcs Unversty of Ednburgh mlap@nf.ed.ac.uk Readng: Kevn Gurney s Introducton to Neural Networks, Chapters 5 6.5 January,

More information

Other NN Models. Reinforcement learning (RL) Probabilistic neural networks

Other NN Models. Reinforcement learning (RL) Probabilistic neural networks Other NN Models Renforcement learnng (RL) Probablstc neural networks Support vector machne (SVM) Renforcement learnng g( (RL) Basc deas: Supervsed dlearnng: (delta rule, BP) Samples (x, f(x)) to learn

More information

Support Vector Machines. Vibhav Gogate The University of Texas at dallas

Support Vector Machines. Vibhav Gogate The University of Texas at dallas Support Vector Machnes Vbhav Gogate he Unversty of exas at dallas What We have Learned So Far? 1. Decson rees. Naïve Bayes 3. Lnear Regresson 4. Logstc Regresson 5. Perceptron 6. Neural networks 7. K-Nearest

More information

An Experiment/Some Intuition (Fall 2006): Lecture 18 The EM Algorithm heads coin 1 tails coin 2 Overview Maximum Likelihood Estimation

An Experiment/Some Intuition (Fall 2006): Lecture 18 The EM Algorithm heads coin 1 tails coin 2 Overview Maximum Likelihood Estimation An Experment/Some Intuton I have three cons n my pocket, 6.864 (Fall 2006): Lecture 18 The EM Algorthm Con 0 has probablty λ of heads; Con 1 has probablty p 1 of heads; Con 2 has probablty p 2 of heads

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Maxmum Lkelhood Estmaton INFO-2301: Quanttatve Reasonng 2 Mchael Paul and Jordan Boyd-Graber MARCH 7, 2017 INFO-2301: Quanttatve Reasonng 2 Paul and Boyd-Graber Maxmum Lkelhood Estmaton 1 of 9 Why MLE?

More information

MIMA Group. Chapter 2 Bayesian Decision Theory. School of Computer Science and Technology, Shandong University. Xin-Shun SDU

MIMA Group. Chapter 2 Bayesian Decision Theory. School of Computer Science and Technology, Shandong University. Xin-Shun SDU Group M D L M Chapter Bayesan Decson heory Xn-Shun Xu @ SDU School of Computer Scence and echnology, Shandong Unversty Bayesan Decson heory Bayesan decson theory s a statstcal approach to data mnng/pattern

More information

Lecture 12: Classification

Lecture 12: Classification Lecture : Classfcaton g Dscrmnant functons g The optmal Bayes classfer g Quadratc classfers g Eucldean and Mahalanobs metrcs g K Nearest Neghbor Classfers Intellgent Sensor Systems Rcardo Guterrez-Osuna

More information

Singular Value Decomposition: Theory and Applications

Singular Value Decomposition: Theory and Applications Sngular Value Decomposton: Theory and Applcatons Danel Khashab Sprng 2015 Last Update: March 2, 2015 1 Introducton A = UDV where columns of U and V are orthonormal and matrx D s dagonal wth postve real

More information

Support Vector Machines

Support Vector Machines CS 2750: Machne Learnng Support Vector Machnes Prof. Adrana Kovashka Unversty of Pttsburgh February 17, 2016 Announcement Homework 2 deadlne s now 2/29 We ll have covered everythng you need today or at

More information

The Fundamental Theorem of Algebra. Objective To use the Fundamental Theorem of Algebra to solve polynomial equations with complex solutions

The Fundamental Theorem of Algebra. Objective To use the Fundamental Theorem of Algebra to solve polynomial equations with complex solutions 5-6 The Fundamental Theorem of Algebra Content Standards N.CN.7 Solve quadratc equatons wth real coeffcents that have comple solutons. N.CN.8 Etend polnomal denttes to the comple numbers. Also N.CN.9,

More information

Feature Selection: Part 1

Feature Selection: Part 1 CSE 546: Machne Learnng Lecture 5 Feature Selecton: Part 1 Instructor: Sham Kakade 1 Regresson n the hgh dmensonal settng How do we learn when the number of features d s greater than the sample sze n?

More information

Logistic Classifier CISC 5800 Professor Daniel Leeds

Logistic Classifier CISC 5800 Professor Daniel Leeds lon 9/7/8 Logstc Classfer CISC 58 Professor Danel Leeds Classfcaton strategy: generatve vs. dscrmnatve Generatve, e.g., Bayes/Naïve Bayes: 5 5 Identfy probablty dstrbuton for each class Determne class

More information

The Geometry of Logit and Probit

The Geometry of Logit and Probit The Geometry of Logt and Probt Ths short note s meant as a supplement to Chapters and 3 of Spatal Models of Parlamentary Votng and the notaton and reference to fgures n the text below s to those two chapters.

More information

Linear Approximation with Regularization and Moving Least Squares

Linear Approximation with Regularization and Moving Least Squares Lnear Approxmaton wth Regularzaton and Movng Least Squares Igor Grešovn May 007 Revson 4.6 (Revson : March 004). 5 4 3 0.5 3 3.5 4 Contents: Lnear Fttng...4. Weghted Least Squares n Functon Approxmaton...

More information

Goodness of fit and Wilks theorem

Goodness of fit and Wilks theorem DRAFT 0.0 Glen Cowan 3 June, 2013 Goodness of ft and Wlks theorem Suppose we model data y wth a lkelhood L(µ) that depends on a set of N parameters µ = (µ 1,...,µ N ). Defne the statstc t µ ln L(µ) L(ˆµ),

More information

since [1-( 0+ 1x1i+ 2x2 i)] [ 0+ 1x1i+ assumed to be a reasonable approximation

since [1-( 0+ 1x1i+ 2x2 i)] [ 0+ 1x1i+ assumed to be a reasonable approximation Econ 388 R. Butler 204 revsons Lecture 4 Dummy Dependent Varables I. Lnear Probablty Model: the Regresson model wth a dummy varables as the dependent varable assumpton, mplcaton regular multple regresson

More information

Statistical analysis using matlab. HY 439 Presented by: George Fortetsanakis

Statistical analysis using matlab. HY 439 Presented by: George Fortetsanakis Statstcal analyss usng matlab HY 439 Presented by: George Fortetsanaks Roadmap Probablty dstrbutons Statstcal estmaton Fttng data to probablty dstrbutons Contnuous dstrbutons Contnuous random varable X

More information

Rockefeller College University at Albany

Rockefeller College University at Albany Rockefeller College Unverst at Alban PAD 705 Handout: Maxmum Lkelhood Estmaton Orgnal b Davd A. Wse John F. Kenned School of Government, Harvard Unverst Modfcatons b R. Karl Rethemeer Up to ths pont n

More information

Neural networks. Nuno Vasconcelos ECE Department, UCSD

Neural networks. Nuno Vasconcelos ECE Department, UCSD Neural networs Nuno Vasconcelos ECE Department, UCSD Classfcaton a classfcaton problem has two types of varables e.g. X - vector of observatons (features) n the world Y - state (class) of the world x X

More information

1. Inference on Regression Parameters a. Finding Mean, s.d and covariance amongst estimates. 2. Confidence Intervals and Working Hotelling Bands

1. Inference on Regression Parameters a. Finding Mean, s.d and covariance amongst estimates. 2. Confidence Intervals and Working Hotelling Bands Content. Inference on Regresson Parameters a. Fndng Mean, s.d and covarance amongst estmates.. Confdence Intervals and Workng Hotellng Bands 3. Cochran s Theorem 4. General Lnear Testng 5. Measures of

More information

The conjugate prior to a Bernoulli is. A) Bernoulli B) Gaussian C) Beta D) none of the above

The conjugate prior to a Bernoulli is. A) Bernoulli B) Gaussian C) Beta D) none of the above The conjugate pror to a Bernoull s A) Bernoull B) Gaussan C) Beta D) none of the above The conjugate pror to a Gaussan s A) Bernoull B) Gaussan C) Beta D) none of the above MAP estmates A) argmax θ p(θ

More information

Module 2. Random Processes. Version 2 ECE IIT, Kharagpur

Module 2. Random Processes. Version 2 ECE IIT, Kharagpur Module Random Processes Lesson 6 Functons of Random Varables After readng ths lesson, ou wll learn about cdf of functon of a random varable. Formula for determnng the pdf of a random varable. Let, X be

More information

P R. Lecture 4. Theory and Applications of Pattern Recognition. Dept. of Electrical and Computer Engineering /

P R. Lecture 4. Theory and Applications of Pattern Recognition. Dept. of Electrical and Computer Engineering / Theory and Applcatons of Pattern Recognton 003, Rob Polkar, Rowan Unversty, Glassboro, NJ Lecture 4 Bayes Classfcaton Rule Dept. of Electrcal and Computer Engneerng 0909.40.0 / 0909.504.04 Theory & Applcatons

More information

CS 3710: Visual Recognition Classification and Detection. Adriana Kovashka Department of Computer Science January 13, 2015

CS 3710: Visual Recognition Classification and Detection. Adriana Kovashka Department of Computer Science January 13, 2015 CS 3710: Vsual Recognton Classfcaton and Detecton Adrana Kovashka Department of Computer Scence January 13, 2015 Plan for Today Vsual recognton bascs part 2: Classfcaton and detecton Adrana s research

More information

CSC321 Tutorial 9: Review of Boltzmann machines and simulated annealing

CSC321 Tutorial 9: Review of Boltzmann machines and simulated annealing CSC321 Tutoral 9: Revew of Boltzmann machnes and smulated annealng (Sldes based on Lecture 16-18 and selected readngs) Yue L Emal: yuel@cs.toronto.edu Wed 11-12 March 19 Fr 10-11 March 21 Outlne Boltzmann

More information

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X Statstcs 1: Probablty Theory II 37 3 EPECTATION OF SEVERAL RANDOM VARIABLES As n Probablty Theory I, the nterest n most stuatons les not on the actual dstrbuton of a random vector, but rather on a number

More information

Logistic Regression Maximum Likelihood Estimation

Logistic Regression Maximum Likelihood Estimation Harvard-MIT Dvson of Health Scences and Technology HST.951J: Medcal Decson Support, Fall 2005 Instructors: Professor Lucla Ohno-Machado and Professor Staal Vnterbo 6.873/HST.951 Medcal Decson Support Fall

More information

Department of Computer Science Artificial Intelligence Research Laboratory. Iowa State University MACHINE LEARNING

Department of Computer Science Artificial Intelligence Research Laboratory. Iowa State University MACHINE LEARNING MACHINE LEANING Vasant Honavar Bonformatcs and Computatonal Bology rogram Center for Computatonal Intellgence, Learnng, & Dscovery Iowa State Unversty honavar@cs.astate.edu www.cs.astate.edu/~honavar/

More information

Gaussian process classification: a message-passing viewpoint

Gaussian process classification: a message-passing viewpoint Gaussan process classfcaton: a message-passng vewpont Flpe Rodrgues fmpr@de.uc.pt November 014 Abstract The goal of ths short paper s to provde a message-passng vewpont of the Expectaton Propagaton EP

More information