Stat 8053, Fall 2013: Multinomial Logistic Models

Size: px
Start display at page:

Download "Stat 8053, Fall 2013: Multinomial Logistic Models"

Transcription

1 Stat 8053, Fall 2013: Multinomial Logistic Models Here is the example on page 269 of Agresti on food preference of alligators: s is size class, g is sex of the alligator, l is name of the lake, and f is the response category, with 5 levels. The variable y is a count. loc <- url(" str(aa269 <- read.table(loc, header=true)) 'data.frame': 80 obs. of 5 variables: $ y: int $ s: Factor w/ 2 levels "<=2.3",">2.3": $ g: Factor w/ 2 levels "F","M": $ l: Factor w/ 4 levels "George","Hancock",..: $ f: Factor w/ 5 levels "Bird","Fish",..: ftable(xtabs(y ~ l + g + s + f, aa269)) f Bird Fish Invertebrate Other Reptile l g s George F <= > M <= > Hancock F <= >

2 M <= > Oklawaha F <= > M <= > Trafford F <= > M <= > In this table, the counts are generally very small, often zero. This means: (1) goodness-of-fit tests based on comparing G 2 to a χ 2 distribution can be wildly inaccurate; (2) differences in G 2 for comparing models are likely to be useful, but also somewhat inaccurate. In the log-linear model approach, we view the count y as the response variable, which has five unordered categories. Let s fit as follows: p0 <- glm(y ~ f + l*g*s, data=aa269, family=poisson) p1 <- update(p0, ~. + f:(l + g + s)) anova(p0, p1, test="chisq") Analysis of Deviance Table Model 1: y ~ f + l * g * s Model 2: y ~ f + l + g + s + l:g + l:s + g:s + f:l + f:g + f:s + l:g:s Resid. Df Resid. Dev Df Deviance Pr(>Chi) e-07 2

3 The model p0 is the baseline logistic model that y is completely independent of the predictors, while p1 is the first-order logistic model. We do a little model selection. add1(p1,update(formula(p1),~.+f:(l+g+s)^2)) Single term additions Model: y ~ f + l + g + s + l:g + l:s + g:s + f:l + f:g + f:s + l:g:s Df Deviance AIC <none> f:l:g f:l:s f:g:s drop1(p1) Single term deletions Model: y ~ f + l + g + s + l:g + l:s + g:s + f:l + f:g + f:s + l:g:s Df Deviance AIC <none> f:l f:g

4 f:s l:g:s Unlike step, drop1 and add1 do not order its rows according to the value of AIC. From the add1 output, the minimum AIC model adds no terms. Using drop1, we see that removing f:g gives a smaller AIC, and following Agresti we will use this model, and we ignore gender. This means we need to refit the model with all terms that include g removed. print(summary(p2 <- update(p1, ~(f+l+s)^2))$coef,digits=3) Estimate Std. Error z value Pr(> z ) (Intercept) ffish finvertebrate fother freptile lhancock loklawaha ltrafford s> ffish:lhancock finvertebrate:lhancock fother:lhancock freptile:lhancock ffish:loklawaha finvertebrate:loklawaha

5 fother:loklawaha freptile:loklawaha ffish:ltrafford finvertebrate:ltrafford fother:ltrafford freptile:ltrafford ffish:s> finvertebrate:s> fother:s> freptile:s> lhancock:s> loklawaha:s> ltrafford:s> The only relevant coefficients in the above table are those that are interactions with f, namely f:l and f:s. Multinom Many program include special software for the multinomial logistic. The key difference is that parameters are labeled using logsitic regression names, and special purpose graphics may be available. The function multinom in the nnet package will do this. The syntax for this command is a little funky: The response is f, the name of the response categorization, and the counts are specified using the weights argument. # using the multinom function library(nnet) 5

6 a1 <- multinom(f~l+g+s, weight=y, data=aa269) # weights: 35 (24 variable) initial value iter 10 value iter 20 value final value converged a2 <- update(a1,~.-g) # weights: 30 (20 variable) initial value iter 10 value iter 20 value final value converged anova(a1,a2) Model Resid. df Resid. Dev Test Df LR stat. Pr(Chi) 1 l + s NA NA NA 2 l + g + s vs The difference in deviance is the same as using the log-linear approach. The deviances themselves, and the df, are quite different: the log-linear approach uses grouped data, while multinom uses ungrouped data. 6

7 summary(a2,correlation=false) Call: multinom(formula = f ~ l + s, data = aa269, weights = y) Coefficients: (Intercept) lhancock loklawaha ltrafford s>2.3 Fish Invertebrate Other Reptile Std. Errors: (Intercept) lhancock loklawaha ltrafford s>2.3 Fish Invertebrate Other Reptile Residual Deviance: AIC: The coefficients and standard errors for the f:l and f:s interactions on p2 are the same as the coefficients for the main effects in a2. The summary of a problem like this one is so complex that looking simply at the coefficients does not give a coherent solution. Another helpful approach is to look at the fitted cell probabilities. These do not depend on using the baseline-logit model, but would be the same 7

8 for any parameterization that fits the equivalent model. The code below shows how to do this using multinom. sizes <- rep(levels(aa269$s),4) lakes <- rep(levels(aa269$l),c(2,2,2,2)) out <- predict(a2,data.frame(l=lakes,s=sizes),type="p") row.names(out) <- paste(lakes,sizes) print(out,digits=2) Bird Fish Invertebrate Other Reptile George <= George > Hancock <= Hancock > Oklawaha <= Oklawaha > Trafford <= Trafford > matplot(t(out),type="b",xlab="food category",ylab="probability") 8

9 2 Probability

10 For completeness, here is how to get the fitted cell probabilities using glm; it is much too hard. First, sum over g to get a new data frame, and update to fit the model to this data frame. Then, use predict to get the fitted counts for this marginal table. Finally, divide by marginal totals to get probabilities. subtable <- as.data.frame.table(xtabs(y~s+l+f,data=aa269),responsename="y") p3 <- update(p2,data=subtable) out1 <- predict(p3,subtable,type="response") out2 <- xtabs(out1 ~ with(subtable,s:l)+f,data=subtable) print(t(apply(out2,1,function(x) x/sum(x))), digits=2) with(subtable, s:l) Bird Fish Invertebrate Other Reptile <=2.3:George <=2.3:Hancock <=2.3:Oklawaha <=2.3:Trafford >2.3:George >2.3:Hancock >2.3:Oklawaha >2.3:Trafford

Multinomial Logistic Regression Models

Multinomial Logistic Regression Models Stat 544, Lecture 19 1 Multinomial Logistic Regression Models Polytomous responses. Logistic regression can be extended to handle responses that are polytomous, i.e. taking r>2 categories. (Note: The word

More information

Log-linear Models for Contingency Tables

Log-linear Models for Contingency Tables Log-linear Models for Contingency Tables Statistics 149 Spring 2006 Copyright 2006 by Mark E. Irwin Log-linear Models for Two-way Contingency Tables Example: Business Administration Majors and Gender A

More information

Generalised linear models. Response variable can take a number of different formats

Generalised linear models. Response variable can take a number of different formats Generalised linear models Response variable can take a number of different formats Structure Limitations of linear models and GLM theory GLM for count data GLM for presence \ absence data GLM for proportion

More information

Loglinear models. STAT 526 Professor Olga Vitek

Loglinear models. STAT 526 Professor Olga Vitek Loglinear models STAT 526 Professor Olga Vitek April 19, 2011 8 Can Use Poisson Likelihood To Model Both Poisson and Multinomial Counts 8-1 Recall: Poisson Distribution Probability distribution: Y - number

More information

ST3241 Categorical Data Analysis I Multicategory Logit Models. Logit Models For Nominal Responses

ST3241 Categorical Data Analysis I Multicategory Logit Models. Logit Models For Nominal Responses ST3241 Categorical Data Analysis I Multicategory Logit Models Logit Models For Nominal Responses 1 Models For Nominal Responses Y is nominal with J categories. Let {π 1,, π J } denote the response probabilities

More information

Stat 8053, Fall 2013: Poisson Regression (Faraway, 2.1 & 3)

Stat 8053, Fall 2013: Poisson Regression (Faraway, 2.1 & 3) Stat 8053, Fall 2013: Poisson Regression (Faraway, 2.1 & 3) The random component y x Po(λ(x)), so E(y x) = λ(x) = Var(y x). Linear predictor η(x) = x β Link function log(e(y x)) = log(λ(x)) = η(x), for

More information

A Handbook of Statistical Analyses Using R. Brian S. Everitt and Torsten Hothorn

A Handbook of Statistical Analyses Using R. Brian S. Everitt and Torsten Hothorn A Handbook of Statistical Analyses Using R Brian S. Everitt and Torsten Hothorn CHAPTER 6 Logistic Regression and Generalised Linear Models: Blood Screening, Women s Role in Society, and Colonic Polyps

More information

Proportional Odds Logistic Regression. stat 557 Heike Hofmann

Proportional Odds Logistic Regression. stat 557 Heike Hofmann Proportional Odds Logistic Regression stat 557 Heike Hofmann Outline Proportional Odds Logistic Regression Model Definition Properties Latent Variables Intro to Loglinear Models Ordinal Response Y is categorical

More information

Homework 10 - Solution

Homework 10 - Solution STAT 526 - Spring 2011 Homework 10 - Solution Olga Vitek Each part of the problems 5 points 1. Faraway Ch. 4 problem 1 (page 93) : The dataset parstum contains cross-classified data on marijuana usage

More information

Generalized Linear Models

Generalized Linear Models Generalized Linear Models Methods@Manchester Summer School Manchester University July 2 6, 2018 Generalized Linear Models: a generic approach to statistical modelling www.research-training.net/manchester2018

More information

Logistic Regressions. Stat 430

Logistic Regressions. Stat 430 Logistic Regressions Stat 430 Final Project Final Project is, again, team based You will decide on a project - only constraint is: you are supposed to use techniques for a solution that are related to

More information

Data-analysis and Retrieval Ordinal Classification

Data-analysis and Retrieval Ordinal Classification Data-analysis and Retrieval Ordinal Classification Ad Feelders Universiteit Utrecht Data-analysis and Retrieval 1 / 30 Strongly disagree Ordinal Classification 1 2 3 4 5 0% (0) 10.5% (2) 21.1% (4) 42.1%

More information

Poisson Regression. The Training Data

Poisson Regression. The Training Data The Training Data Poisson Regression Office workers at a large insurance company are randomly assigned to one of 3 computer use training programmes, and their number of calls to IT support during the following

More information

R Hints for Chapter 10

R Hints for Chapter 10 R Hints for Chapter 10 The multiple logistic regression model assumes that the success probability p for a binomial random variable depends on independent variables or design variables x 1, x 2,, x k.

More information

Review: what is a linear model. Y = β 0 + β 1 X 1 + β 2 X 2 + A model of the following form:

Review: what is a linear model. Y = β 0 + β 1 X 1 + β 2 X 2 + A model of the following form: Outline for today What is a generalized linear model Linear predictors and link functions Example: fit a constant (the proportion) Analysis of deviance table Example: fit dose-response data using logistic

More information

McGill University. Faculty of Science. Department of Mathematics and Statistics. Statistics Part A Comprehensive Exam Methodology Paper

McGill University. Faculty of Science. Department of Mathematics and Statistics. Statistics Part A Comprehensive Exam Methodology Paper Student Name: ID: McGill University Faculty of Science Department of Mathematics and Statistics Statistics Part A Comprehensive Exam Methodology Paper Date: Friday, May 13, 2016 Time: 13:00 17:00 Instructions

More information

BMI 541/699 Lecture 22

BMI 541/699 Lecture 22 BMI 541/699 Lecture 22 Where we are: 1. Introduction and Experimental Design 2. Exploratory Data Analysis 3. Probability 4. T-based methods for continous variables 5. Power and sample size for t-based

More information

Non-Gaussian Response Variables

Non-Gaussian Response Variables Non-Gaussian Response Variables What is the Generalized Model Doing? The fixed effects are like the factors in a traditional analysis of variance or linear model The random effects are different A generalized

More information

Normal distribution We have a random sample from N(m, υ). The sample mean is Ȳ and the corrected sum of squares is S yy. After some simplification,

Normal distribution We have a random sample from N(m, υ). The sample mean is Ȳ and the corrected sum of squares is S yy. After some simplification, Likelihood Let P (D H) be the probability an experiment produces data D, given hypothesis H. Usually H is regarded as fixed and D variable. Before the experiment, the data D are unknown, and the probability

More information

Booklet of Code and Output for STAD29/STA 1007 Midterm Exam

Booklet of Code and Output for STAD29/STA 1007 Midterm Exam Booklet of Code and Output for STAD29/STA 1007 Midterm Exam List of Figures in this document by page: List of Figures 1 NBA attendance data........................ 2 2 Regression model for NBA attendances...............

More information

Interactions in Logistic Regression

Interactions in Logistic Regression Interactions in Logistic Regression > # UCBAdmissions is a 3-D table: Gender by Dept by Admit > # Same data in another format: > # One col for Yes counts, another for No counts. > Berkeley = read.table("http://www.utstat.toronto.edu/~brunner/312f12/

More information

Two Hours. Mathematical formula books and statistical tables are to be provided THE UNIVERSITY OF MANCHESTER. 26 May :00 16:00

Two Hours. Mathematical formula books and statistical tables are to be provided THE UNIVERSITY OF MANCHESTER. 26 May :00 16:00 Two Hours MATH38052 Mathematical formula books and statistical tables are to be provided THE UNIVERSITY OF MANCHESTER GENERALISED LINEAR MODELS 26 May 2016 14:00 16:00 Answer ALL TWO questions in Section

More information

Analysis of binary repeated measures data with R

Analysis of binary repeated measures data with R Analysis of binary repeated measures data with R Right-handed basketball players take right and left-handed shots from 3 locations in a different random order for each player. Hit or miss is recorded.

More information

7/28/15. Review Homework. Overview. Lecture 6: Logistic Regression Analysis

7/28/15. Review Homework. Overview. Lecture 6: Logistic Regression Analysis Lecture 6: Logistic Regression Analysis Christopher S. Hollenbeak, PhD Jane R. Schubart, PhD The Outcomes Research Toolbox Review Homework 2 Overview Logistic regression model conceptually Logistic regression

More information

R Output for Linear Models using functions lm(), gls() & glm()

R Output for Linear Models using functions lm(), gls() & glm() LM 04 lm(), gls() &glm() 1 R Output for Linear Models using functions lm(), gls() & glm() Different kinds of output related to linear models can be obtained in R using function lm() {stats} in the base

More information

Introducing Generalized Linear Models: Logistic Regression

Introducing Generalized Linear Models: Logistic Regression Ron Heck, Summer 2012 Seminars 1 Multilevel Regression Models and Their Applications Seminar Introducing Generalized Linear Models: Logistic Regression The generalized linear model (GLM) represents and

More information

EPSY 905: Fundamentals of Multivariate Modeling Online Lecture #7

EPSY 905: Fundamentals of Multivariate Modeling Online Lecture #7 Introduction to Generalized Univariate Models: Models for Binary Outcomes EPSY 905: Fundamentals of Multivariate Modeling Online Lecture #7 EPSY 905: Intro to Generalized In This Lecture A short review

More information

Ch 6: Multicategory Logit Models

Ch 6: Multicategory Logit Models 293 Ch 6: Multicategory Logit Models Y has J categories, J>2. Extensions of logistic regression for nominal and ordinal Y assume a multinomial distribution for Y. In R, we will fit these models using the

More information

9 Generalized Linear Models

9 Generalized Linear Models 9 Generalized Linear Models The Generalized Linear Model (GLM) is a model which has been built to include a wide range of different models you already know, e.g. ANOVA and multiple linear regression models

More information

1. Hypothesis testing through analysis of deviance. 3. Model & variable selection - stepwise aproaches

1. Hypothesis testing through analysis of deviance. 3. Model & variable selection - stepwise aproaches Sta 216, Lecture 4 Last Time: Logistic regression example, existence/uniqueness of MLEs Today s Class: 1. Hypothesis testing through analysis of deviance 2. Standard errors & confidence intervals 3. Model

More information

M. H. Gonçalves 1 M. S. Cabral 2 A. Azzalini 3

M. H. Gonçalves 1 M. S. Cabral 2 A. Azzalini 3 M. H. Gonçalves 1 M. S. Cabral 2 A. Azzalini 3 1 University of Algarve, Portugal 2 University of Lisbon, Portugal 3 Università di Padova, Italy user!2010, July 21-23 1 2 3 4 5 What is bild? an R. parametric

More information

Generalized linear models

Generalized linear models Generalized linear models Outline for today What is a generalized linear model Linear predictors and link functions Example: estimate a proportion Analysis of deviance Example: fit dose- response data

More information

Ron Heck, Fall Week 8: Introducing Generalized Linear Models: Logistic Regression 1 (Replaces prior revision dated October 20, 2011)

Ron Heck, Fall Week 8: Introducing Generalized Linear Models: Logistic Regression 1 (Replaces prior revision dated October 20, 2011) Ron Heck, Fall 2011 1 EDEP 768E: Seminar in Multilevel Modeling rev. January 3, 2012 (see footnote) Week 8: Introducing Generalized Linear Models: Logistic Regression 1 (Replaces prior revision dated October

More information

A Handbook of Statistical Analyses Using R 2nd Edition. Brian S. Everitt and Torsten Hothorn

A Handbook of Statistical Analyses Using R 2nd Edition. Brian S. Everitt and Torsten Hothorn A Handbook of Statistical Analyses Using R 2nd Edition Brian S. Everitt and Torsten Hothorn CHAPTER 7 Logistic Regression and Generalised Linear Models: Blood Screening, Women s Role in Society, Colonic

More information

Generalized linear models

Generalized linear models Generalized linear models Douglas Bates November 01, 2010 Contents 1 Definition 1 2 Links 2 3 Estimating parameters 5 4 Example 6 5 Model building 8 6 Conclusions 8 7 Summary 9 1 Generalized Linear Models

More information

Regression so far... Lecture 21 - Logistic Regression. Odds. Recap of what you should know how to do... At this point we have covered: Sta102 / BME102

Regression so far... Lecture 21 - Logistic Regression. Odds. Recap of what you should know how to do... At this point we have covered: Sta102 / BME102 Background Regression so far... Lecture 21 - Sta102 / BME102 Colin Rundel November 18, 2014 At this point we have covered: Simple linear regression Relationship between numerical response and a numerical

More information

Lecture 14: Introduction to Poisson Regression

Lecture 14: Introduction to Poisson Regression Lecture 14: Introduction to Poisson Regression Ani Manichaikul amanicha@jhsph.edu 8 May 2007 1 / 52 Overview Modelling counts Contingency tables Poisson regression models 2 / 52 Modelling counts I Why

More information

Modelling counts. Lecture 14: Introduction to Poisson Regression. Overview

Modelling counts. Lecture 14: Introduction to Poisson Regression. Overview Modelling counts I Lecture 14: Introduction to Poisson Regression Ani Manichaikul amanicha@jhsph.edu Why count data? Number of traffic accidents per day Mortality counts in a given neighborhood, per week

More information

Regression Methods for Survey Data

Regression Methods for Survey Data Regression Methods for Survey Data Professor Ron Fricker! Naval Postgraduate School! Monterey, California! 3/26/13 Reading:! Lohr chapter 11! 1 Goals for this Lecture! Linear regression! Review of linear

More information

Poisson Regression. Gelman & Hill Chapter 6. February 6, 2017

Poisson Regression. Gelman & Hill Chapter 6. February 6, 2017 Poisson Regression Gelman & Hill Chapter 6 February 6, 2017 Military Coups Background: Sub-Sahara Africa has experienced a high proportion of regime changes due to military takeover of governments for

More information

Review. Timothy Hanson. Department of Statistics, University of South Carolina. Stat 770: Categorical Data Analysis

Review. Timothy Hanson. Department of Statistics, University of South Carolina. Stat 770: Categorical Data Analysis Review Timothy Hanson Department of Statistics, University of South Carolina Stat 770: Categorical Data Analysis 1 / 22 Chapter 1: background Nominal, ordinal, interval data. Distributions: Poisson, binomial,

More information

Logistic Regression - problem 6.14

Logistic Regression - problem 6.14 Logistic Regression - problem 6.14 Let x 1, x 2,, x m be given values of an input variable x and let Y 1,, Y m be independent binomial random variables whose distributions depend on the corresponding values

More information

Stat 642, Lecture notes for 04/12/05 96

Stat 642, Lecture notes for 04/12/05 96 Stat 642, Lecture notes for 04/12/05 96 Hosmer-Lemeshow Statistic The Hosmer-Lemeshow Statistic is another measure of lack of fit. Hosmer and Lemeshow recommend partitioning the observations into 10 equal

More information

Truck prices - linear model? Truck prices - log transform of the response variable. Interpreting models with log transformation

Truck prices - linear model? Truck prices - log transform of the response variable. Interpreting models with log transformation Background Regression so far... Lecture 23 - Sta 111 Colin Rundel June 17, 2014 At this point we have covered: Simple linear regression Relationship between numerical response and a numerical or categorical

More information

Models for Binary Outcomes

Models for Binary Outcomes Models for Binary Outcomes Introduction The simple or binary response (for example, success or failure) analysis models the relationship between a binary response variable and one or more explanatory variables.

More information

A course in statistical modelling. session 06b: Modelling count data

A course in statistical modelling. session 06b: Modelling count data A Course in Statistical Modelling University of Glasgow 29 and 30 January, 2015 session 06b: Modelling count data Graeme Hutcheson 1 Luiz Moutinho 2 1 Manchester Institute of Education Manchester university

More information

Generalized Linear Models (GLZ)

Generalized Linear Models (GLZ) Generalized Linear Models (GLZ) Generalized Linear Models (GLZ) are an extension of the linear modeling process that allows models to be fit to data that follow probability distributions other than the

More information

Aedes egg laying behavior Erika Mudrak, CSCU November 7, 2018

Aedes egg laying behavior Erika Mudrak, CSCU November 7, 2018 Aedes egg laying behavior Erika Mudrak, CSCU November 7, 2018 Introduction The current study investivates whether the mosquito species Aedes albopictus preferentially lays it s eggs in water in containers

More information

Multiple Predictor Variables: ANOVA

Multiple Predictor Variables: ANOVA Multiple Predictor Variables: ANOVA 1/32 Linear Models with Many Predictors Multiple regression has many predictors BUT - so did 1-way ANOVA if treatments had 2 levels What if there are multiple treatment

More information

Binary Regression. GH Chapter 5, ISL Chapter 4. January 31, 2017

Binary Regression. GH Chapter 5, ISL Chapter 4. January 31, 2017 Binary Regression GH Chapter 5, ISL Chapter 4 January 31, 2017 Seedling Survival Tropical rain forests have up to 300 species of trees per hectare, which leads to difficulties when studying processes which

More information

Let s see if we can predict whether a student returns or does not return to St. Ambrose for their second year.

Let s see if we can predict whether a student returns or does not return to St. Ambrose for their second year. Assignment #13: GLM Scenario: Over the past few years, our first-to-second year retention rate has ranged from 77-80%. In other words, 77-80% of our first-year students come back to St. Ambrose for their

More information

PAPER 206 APPLIED STATISTICS

PAPER 206 APPLIED STATISTICS MATHEMATICAL TRIPOS Part III Thursday, 1 June, 2017 9:00 am to 12:00 pm PAPER 206 APPLIED STATISTICS Attempt no more than FOUR questions. There are SIX questions in total. The questions carry equal weight.

More information

Generalized logit models for nominal multinomial responses. Local odds ratios

Generalized logit models for nominal multinomial responses. Local odds ratios Generalized logit models for nominal multinomial responses Categorical Data Analysis, Summer 2015 1/17 Local odds ratios Y 1 2 3 4 1 π 11 π 12 π 13 π 14 π 1+ X 2 π 21 π 22 π 23 π 24 π 2+ 3 π 31 π 32 π

More information

STA 4504/5503 Sample Exam 1 Spring 2011 Categorical Data Analysis. 1. Indicate whether each of the following is true (T) or false (F).

STA 4504/5503 Sample Exam 1 Spring 2011 Categorical Data Analysis. 1. Indicate whether each of the following is true (T) or false (F). STA 4504/5503 Sample Exam 1 Spring 2011 Categorical Data Analysis 1. Indicate whether each of the following is true (T) or false (F). (a) T In 2 2 tables, statistical independence is equivalent to a population

More information

STAT 526 Advanced Statistical Methodology

STAT 526 Advanced Statistical Methodology STAT 526 Advanced Statistical Methodology Fall 2017 Lecture Note 10 Analyzing Clustered/Repeated Categorical Data 0-0 Outline Clustered/Repeated Categorical Data Generalized Linear Mixed Models Generalized

More information

Checking the Poisson assumption in the Poisson generalized linear model

Checking the Poisson assumption in the Poisson generalized linear model Checking the Poisson assumption in the Poisson generalized linear model The Poisson regression model is a generalized linear model (glm) satisfying the following assumptions: The responses y i are independent

More information

A Generalized Linear Model for Binomial Response Data. Copyright c 2017 Dan Nettleton (Iowa State University) Statistics / 46

A Generalized Linear Model for Binomial Response Data. Copyright c 2017 Dan Nettleton (Iowa State University) Statistics / 46 A Generalized Linear Model for Binomial Response Data Copyright c 2017 Dan Nettleton (Iowa State University) Statistics 510 1 / 46 Now suppose that instead of a Bernoulli response, we have a binomial response

More information

12 Modelling Binomial Response Data

12 Modelling Binomial Response Data c 2005, Anthony C. Brooms Statistical Modelling and Data Analysis 12 Modelling Binomial Response Data 12.1 Examples of Binary Response Data Binary response data arise when an observation on an individual

More information

Model Based Statistics in Biology. Part V. The Generalized Linear Model. Chapter 18.1 Logistic Regression (Dose - Response)

Model Based Statistics in Biology. Part V. The Generalized Linear Model. Chapter 18.1 Logistic Regression (Dose - Response) Model Based Statistics in Biology. Part V. The Generalized Linear Model. Logistic Regression ( - Response) ReCap. Part I (Chapters 1,2,3,4), Part II (Ch 5, 6, 7) ReCap Part III (Ch 9, 10, 11), Part IV

More information

A course in statistical modelling. session 09: Modelling count variables

A course in statistical modelling. session 09: Modelling count variables A Course in Statistical Modelling SEED PGR methodology training December 08, 2015: 12 2pm session 09: Modelling count variables Graeme.Hutcheson@manchester.ac.uk blackboard: RSCH80000 SEED PGR Research

More information

Matched Pair Data. Stat 557 Heike Hofmann

Matched Pair Data. Stat 557 Heike Hofmann Matched Pair Data Stat 557 Heike Hofmann Outline Marginal Homogeneity - review Binary Response with covariates Ordinal response Symmetric Models Subject-specific vs Marginal Model conditional logistic

More information

8 Nominal and Ordinal Logistic Regression

8 Nominal and Ordinal Logistic Regression 8 Nominal and Ordinal Logistic Regression 8.1 Introduction If the response variable is categorical, with more then two categories, then there are two options for generalized linear models. One relies on

More information

BIOS 625 Fall 2015 Homework Set 3 Solutions

BIOS 625 Fall 2015 Homework Set 3 Solutions BIOS 65 Fall 015 Homework Set 3 Solutions 1. Agresti.0 Table.1 is from an early study on the death penalty in Florida. Analyze these data and show that Simpson s Paradox occurs. Death Penalty Victim's

More information

Cohen s s Kappa and Log-linear Models

Cohen s s Kappa and Log-linear Models Cohen s s Kappa and Log-linear Models HRP 261 03/03/03 10-11 11 am 1. Cohen s Kappa Actual agreement = sum of the proportions found on the diagonals. π ii Cohen: Compare the actual agreement with the chance

More information

Binary Dependent Variables

Binary Dependent Variables Binary Dependent Variables In some cases the outcome of interest rather than one of the right hand side variables - is discrete rather than continuous Binary Dependent Variables In some cases the outcome

More information

Using R in 200D Luke Sonnet

Using R in 200D Luke Sonnet Using R in 200D Luke Sonnet Contents Working with data frames 1 Working with variables........................................... 1 Analyzing data............................................... 3 Random

More information

Generalized Linear Models in R

Generalized Linear Models in R Generalized Linear Models in R NO ORDER Kenneth K. Lopiano, Garvesh Raskutti, Dan Yang last modified 28 4 2013 1 Outline 1. Background and preliminaries 2. Data manipulation and exercises 3. Data structures

More information

Duration of Unemployment - Analysis of Deviance Table for Nested Models

Duration of Unemployment - Analysis of Deviance Table for Nested Models Duration of Unemployment - Analysis of Deviance Table for Nested Models February 8, 2012 The data unemployment is included as a contingency table. The response is the duration of unemployment, gender and

More information

Entropy Coe cient of Determination and Its Application

Entropy Coe cient of Determination and Its Application Entropy Coe cient of Determination and Its Application Nobuoki Eshima Department of Biostatistics, Faculty of Medicine, Oita University, Oita 879-5593, Japan. E-mail: eshima@oita-u.ac.jp The objective

More information

Classification. Chapter Introduction. 6.2 The Bayes classifier

Classification. Chapter Introduction. 6.2 The Bayes classifier Chapter 6 Classification 6.1 Introduction Often encountered in applications is the situation where the response variable Y takes values in a finite set of labels. For example, the response Y could encode

More information

Experimental Design and Statistical Methods. Workshop LOGISTIC REGRESSION. Jesús Piedrafita Arilla.

Experimental Design and Statistical Methods. Workshop LOGISTIC REGRESSION. Jesús Piedrafita Arilla. Experimental Design and Statistical Methods Workshop LOGISTIC REGRESSION Jesús Piedrafita Arilla jesus.piedrafita@uab.cat Departament de Ciència Animal i dels Aliments Items Logistic regression model Logit

More information

UNIVERSITY OF TORONTO. Faculty of Arts and Science APRIL 2010 EXAMINATIONS STA 303 H1S / STA 1002 HS. Duration - 3 hours. Aids Allowed: Calculator

UNIVERSITY OF TORONTO. Faculty of Arts and Science APRIL 2010 EXAMINATIONS STA 303 H1S / STA 1002 HS. Duration - 3 hours. Aids Allowed: Calculator UNIVERSITY OF TORONTO Faculty of Arts and Science APRIL 2010 EXAMINATIONS STA 303 H1S / STA 1002 HS Duration - 3 hours Aids Allowed: Calculator LAST NAME: FIRST NAME: STUDENT NUMBER: There are 27 pages

More information

Package HGLMMM for Hierarchical Generalized Linear Models

Package HGLMMM for Hierarchical Generalized Linear Models Package HGLMMM for Hierarchical Generalized Linear Models Marek Molas Emmanuel Lesaffre Erasmus MC Erasmus Universiteit - Rotterdam The Netherlands ERASMUSMC - Biostatistics 20-04-2010 1 / 52 Outline General

More information

Regression models. Generalized linear models in R. Normal regression models are not always appropriate. Generalized linear models. Examples.

Regression models. Generalized linear models in R. Normal regression models are not always appropriate. Generalized linear models. Examples. Regression models Generalized linear models in R Dr Peter K Dunn http://www.usq.edu.au Department of Mathematics and Computing University of Southern Queensland ASC, July 00 The usual linear regression

More information

LISA Short Course Series Generalized Linear Models (GLMs) & Categorical Data Analysis (CDA) in R. Liang (Sally) Shan Nov. 4, 2014

LISA Short Course Series Generalized Linear Models (GLMs) & Categorical Data Analysis (CDA) in R. Liang (Sally) Shan Nov. 4, 2014 LISA Short Course Series Generalized Linear Models (GLMs) & Categorical Data Analysis (CDA) in R Liang (Sally) Shan Nov. 4, 2014 L Laboratory for Interdisciplinary Statistical Analysis LISA helps VT researchers

More information

Linear Regression. Data Model. β, σ 2. Process Model. ,V β. ,s 2. s 1. Parameter Model

Linear Regression. Data Model. β, σ 2. Process Model. ,V β. ,s 2. s 1. Parameter Model Regression: Part II Linear Regression y~n X, 2 X Y Data Model β, σ 2 Process Model Β 0,V β s 1,s 2 Parameter Model Assumptions of Linear Model Homoskedasticity No error in X variables Error in Y variables

More information

Sample solutions. Stat 8051 Homework 8

Sample solutions. Stat 8051 Homework 8 Sample solutions Stat 8051 Homework 8 Problem 1: Faraway Exercise 3.1 A plot of the time series reveals kind of a fluctuating pattern: Trying to fit poisson regression models yields a quadratic model if

More information

Model Estimation Example

Model Estimation Example Ronald H. Heck 1 EDEP 606: Multivariate Methods (S2013) April 7, 2013 Model Estimation Example As we have moved through the course this semester, we have encountered the concept of model estimation. Discussions

More information

STA 4504/5503 Sample Exam 1 Spring 2011 Categorical Data Analysis. 1. Indicate whether each of the following is true (T) or false (F).

STA 4504/5503 Sample Exam 1 Spring 2011 Categorical Data Analysis. 1. Indicate whether each of the following is true (T) or false (F). STA 4504/5503 Sample Exam 1 Spring 2011 Categorical Data Analysis 1. Indicate whether each of the following is true (T) or false (F). (a) (b) (c) (d) (e) In 2 2 tables, statistical independence is equivalent

More information

Q30b Moyale Observed counts. The FREQ Procedure. Table 1 of type by response. Controlling for site=moyale. Improved (1+2) Same (3) Group only

Q30b Moyale Observed counts. The FREQ Procedure. Table 1 of type by response. Controlling for site=moyale. Improved (1+2) Same (3) Group only Moyale Observed counts 12:28 Thursday, December 01, 2011 1 The FREQ Procedure Table 1 of by Controlling for site=moyale Row Pct Improved (1+2) Same () Worsened (4+5) Group only 16 51.61 1.2 14 45.16 1

More information

Hierarchical Generalized Linear Models. ERSH 8990 REMS Seminar on HLM Last Lecture!

Hierarchical Generalized Linear Models. ERSH 8990 REMS Seminar on HLM Last Lecture! Hierarchical Generalized Linear Models ERSH 8990 REMS Seminar on HLM Last Lecture! Hierarchical Generalized Linear Models Introduction to generalized models Models for binary outcomes Interpreting parameter

More information

Logistic Regression. James H. Steiger. Department of Psychology and Human Development Vanderbilt University

Logistic Regression. James H. Steiger. Department of Psychology and Human Development Vanderbilt University Logistic Regression James H. Steiger Department of Psychology and Human Development Vanderbilt University James H. Steiger (Vanderbilt University) Logistic Regression 1 / 38 Logistic Regression 1 Introduction

More information

Exercise 5.4 Solution

Exercise 5.4 Solution Exercise 5.4 Solution Niels Richard Hansen University of Copenhagen May 7, 2010 1 5.4(a) > leukemia

More information

Review of Multinomial Distribution If n trials are performed: in each trial there are J > 2 possible outcomes (categories) Multicategory Logit Models

Review of Multinomial Distribution If n trials are performed: in each trial there are J > 2 possible outcomes (categories) Multicategory Logit Models Chapter 6 Multicategory Logit Models Response Y has J > 2 categories. Extensions of logistic regression for nominal and ordinal Y assume a multinomial distribution for Y. 6.1 Logit Models for Nominal Responses

More information

Linear Modelling in Stata Session 6: Further Topics in Linear Modelling

Linear Modelling in Stata Session 6: Further Topics in Linear Modelling Linear Modelling in Stata Session 6: Further Topics in Linear Modelling Mark Lunt Arthritis Research UK Epidemiology Unit University of Manchester 14/11/2017 This Week Categorical Variables Categorical

More information

STAT 7030: Categorical Data Analysis

STAT 7030: Categorical Data Analysis STAT 7030: Categorical Data Analysis 5. Logistic Regression Peng Zeng Department of Mathematics and Statistics Auburn University Fall 2012 Peng Zeng (Auburn University) STAT 7030 Lecture Notes Fall 2012

More information

Advanced Quantitative Methods: limited dependent variables

Advanced Quantitative Methods: limited dependent variables Advanced Quantitative Methods: Limited Dependent Variables I University College Dublin 2 April 2013 1 2 3 4 5 Outline Model Measurement levels 1 2 3 4 5 Components Model Measurement levels Two components

More information

Using the same data as before, here is part of the output we get in Stata when we do a logistic regression of Grade on Gpa, Tuce and Psi.

Using the same data as before, here is part of the output we get in Stata when we do a logistic regression of Grade on Gpa, Tuce and Psi. Logistic Regression, Part III: Hypothesis Testing, Comparisons to OLS Richard Williams, University of Notre Dame, https://www3.nd.edu/~rwilliam/ Last revised January 14, 2018 This handout steals heavily

More information

Analysing categorical data using logit models

Analysing categorical data using logit models Analysing categorical data using logit models Graeme Hutcheson, University of Manchester The lecture notes, exercises and data sets associated with this course are available for download from: www.research-training.net/manchester

More information

Reaction Days

Reaction Days Stat April 03 Week Fitting Individual Trajectories # Straight-line, constant rate of change fit > sdat = subset(sleepstudy, Subject == "37") > sdat Reaction Days Subject > lm.sdat = lm(reaction ~ Days)

More information

Linear Regression Models P8111

Linear Regression Models P8111 Linear Regression Models P8111 Lecture 25 Jeff Goldsmith April 26, 2016 1 of 37 Today s Lecture Logistic regression / GLMs Model framework Interpretation Estimation 2 of 37 Linear regression Course started

More information

Advanced Quantitative Data Analysis

Advanced Quantitative Data Analysis Chapter 24 Advanced Quantitative Data Analysis Daniel Muijs Doing Regression Analysis in SPSS When we want to do regression analysis in SPSS, we have to go through the following steps: 1 As usual, we choose

More information

MODULE 6 LOGISTIC REGRESSION. Module Objectives:

MODULE 6 LOGISTIC REGRESSION. Module Objectives: MODULE 6 LOGISTIC REGRESSION Module Objectives: 1. 147 6.1. LOGIT TRANSFORMATION MODULE 6. LOGISTIC REGRESSION Logistic regression models are used when a researcher is investigating the relationship between

More information

Analysis of Categorical Data. Nick Jackson University of Southern California Department of Psychology 10/11/2013

Analysis of Categorical Data. Nick Jackson University of Southern California Department of Psychology 10/11/2013 Analysis of Categorical Data Nick Jackson University of Southern California Department of Psychology 10/11/2013 1 Overview Data Types Contingency Tables Logit Models Binomial Ordinal Nominal 2 Things not

More information

Statistical Modelling with Stata: Binary Outcomes

Statistical Modelling with Stata: Binary Outcomes Statistical Modelling with Stata: Binary Outcomes Mark Lunt Arthritis Research UK Epidemiology Unit University of Manchester 21/11/2017 Cross-tabulation Exposed Unexposed Total Cases a b a + b Controls

More information

STA 303 H1S / 1002 HS Winter 2011 Test March 7, ab 1cde 2abcde 2fghij 3

STA 303 H1S / 1002 HS Winter 2011 Test March 7, ab 1cde 2abcde 2fghij 3 STA 303 H1S / 1002 HS Winter 2011 Test March 7, 2011 LAST NAME: FIRST NAME: STUDENT NUMBER: ENROLLED IN: (circle one) STA 303 STA 1002 INSTRUCTIONS: Time: 90 minutes Aids allowed: calculator. Some formulae

More information

How to work correctly statistically about sex ratio

How to work correctly statistically about sex ratio How to work correctly statistically about sex ratio Marc Girondot Version of 12th April 2014 Contents 1 Load packages 2 2 Introduction 2 3 Confidence interval of a proportion 4 3.1 Pourcentage..............................

More information

Introduction to General and Generalized Linear Models

Introduction to General and Generalized Linear Models Introduction to General and Generalized Linear Models Generalized Linear Models - part III Henrik Madsen Poul Thyregod Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs.

More information

R code and output of examples in text. Contents. De Jong and Heller GLMs for Insurance Data R code and output. 1 Poisson regression 2

R code and output of examples in text. Contents. De Jong and Heller GLMs for Insurance Data R code and output. 1 Poisson regression 2 R code and output of examples in text Contents 1 Poisson regression 2 2 Negative binomial regression 5 3 Quasi likelihood regression 6 4 Logistic regression 6 5 Ordinal regression 10 6 Nominal regression

More information

ssh tap sas913, sas https://www.statlab.umd.edu/sasdoc/sashtml/onldoc.htm

ssh tap sas913, sas https://www.statlab.umd.edu/sasdoc/sashtml/onldoc.htm Kedem, STAT 430 SAS Examples: Logistic Regression ==================================== ssh abc@glue.umd.edu, tap sas913, sas https://www.statlab.umd.edu/sasdoc/sashtml/onldoc.htm a. Logistic regression.

More information