R Hints for Chapter 10

Size: px
Start display at page:

Download "R Hints for Chapter 10"

Transcription

1 R Hints for Chapter 10 The multiple logistic regression model assumes that the success probability p for a binomial random variable depends on independent variables or design variables x 1, x 2,, x k. A factor variable with m levels is numerically coded with m-1 indicator variables that have values of either 0 or 1 in the manner described for Chapter 9. We will assume that all the factor variables have been coded this way, so the x s are all numeric. The relationship between p and the design variables is given by the logistic regression equation logit(p) = log p 1 p = β 0 + β 1 x β k x k. So, it is the log-odds on success that is expressed as a linear function of the design variables. The data consists of N values of each of the design variables and corresponding values of the binomial random variable arising from them. where Y i ~Binom(n i, p i ), i = 1,, N, logit(p i ) = β 0 + β 1 x i1 + β 2 x i2 + + β k x ik. The logistic regression coefficients β 0,, β k are unknown and must be estimated from the data. They are not estimated by least squares, but rather by maximum likelihood estimation. Estimates β 0, β 1,, β k are chosen to maximize the log-likelihood function N (1) l = [Y i log p i + (n i Y i ) log(1 p i)]. i=1 with logit(p i) = β 0 + β 1x i1 + β kx ik. There are no explicit solutions that you can write down using elementary functions. The numerical maximization procedure is a variant of the Newton-Raphson procedure called Fisher scoring. R does all the calculations for you and reports everything you need to know about the estimates with a function glm( ), which stands for generalized linear model. Here is an example where all the n i are equal to 1 and all the Y i are Bernoulli variables. Shown below are the first 20 rows of the paindata data set. We will take trt (treatment) and age as the independent variables and painimproved as the response. trt is a factor with two levels A and B and age is a continuous numeric variable. painimproved is classified as a logical variable with values TRUE and FALSE. In R, TRUE has a numeric value of 1 and FALSE has a numeric value of 0, so we do not have to convert painimproved to a numeric vector all by ourselves.

2 > paindata[1:20,] trt female age injurysource pain0 pain30 painchange painimproved 1 A N 31 Y TRUE 2 A Y 50 N FALSE 3 A N 31 Y FALSE 4 A Y 55 Y FALSE 5 A Y 35 N TRUE 6 A Y 46 N FALSE 7 A N 51 N FALSE 8 A Y 52 Y FALSE 9 A N 46 Y TRUE 10 A Y 48 N TRUE 11 A Y 46 Y FALSE 12 A Y 34 N FALSE 13 A N 48 Y TRUE 14 A N 41 N TRUE 15 A N 40 N FALSE 16 A Y 53 Y TRUE 17 A N 55 Y TRUE 18 A Y 40 N FALSE 19 A Y 48 Y TRUE 20 A N 33 Y TRUE > pain.glm=glm(painimproved~trt+age,data=paindata,family=binomial) > summary(pain.glm) Call: glm(formula = painimproved ~ trt + age, family = binomial, data = paindata) Deviance Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error z value Pr(> z ) (Intercept) trtb age (Dispersion parameter for binomial family taken to be 1) Null deviance: on 49 degrees of freedom Residual deviance: on 47 degrees of freedom AIC: Number of Fisher Scoring iterations: 4 The intercept β 0 is the log-odds on pain improvement when trt has its base level A and when age =0. Its estimated value is The next coefficient β 1, with an estimated value of , is the difference in log odds on improvement between treatment B and treatment A. In other words, it is the log of the odds ratio. For any fixed age, the log odds ratio on improvement for the two treatments is estimated to be The age coefficient β 2, with an estimated value of , is the increase in log odds on improvement for a unit increase in age. The negative sign means that it is actually a decrease in log odds. Here is an exercise in using this information.

3 Question: What is the estimated odds ratio on improvement for two patients receiving the same treatment and 10 years apart in age? Answer: The log odds ratio is the difference in log odds: 10 ( ) = Therefore, the odds ratio is e = Question: What is the difference in log odds between a patient receiving treatment A and another patient 10 years older receiving treatment B? Answer: ( ) = This is called an additive model because the effects of treatment level and age on the log odds add together in this simple fashion. There are no interactions between treatment and age. Question: What are the odds on improvement for a 60 year old patient who is receiving treatment B? Answer: The log odds are ( ) = The odds are e = The R function predict( ) will calculate the fitted log odds for you, like this: > predict(pain.glm,newdata=data.frame(trt="b",age=60)) Question: What is the probability that this patient improves? Answer: Pr(improvement) = odds 1+odds = By default, the predict( ) function returns the predicted log odds. You can get the predicted probability if you like by including the type argument. > predict(pain.glm,newdata=data.frame(trt= B,age=60),type= response )

4 In the preceding example, since interactions were not allowed, there are two log odds functions of age with the same slope and different intercepts, one for each level of the factor trt. They would be plotted as parallel lines. If interactions are allowed, the slopes will also be different. In other words, the treatment type alters the rate at which increasing age affects the log odds on improvement. Below is the refitted model allowing interactions. > pain.glm=update(pain.glm,.~trt*age) > summary(pain.glm) Call: glm(formula = painimproved ~ trt + age + trt:age, family = binomial, data = paindata) Deviance Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error z value Pr(> z ) (Intercept) trtb age trtb:age (Dispersion parameter for binomial family taken to be 1) Null deviance: on 49 degrees of freedom Residual deviance: on 46 degrees of freedom AIC: Number of Fisher Scoring iterations: 4 Question: What are the odds on improvement for a 60 year old patient who is receiving treatment B? Answer: For treatment A the intercept is and the age slope is For treatment B the intercept is = and the slope is = Therefore, the log odds are ( )= , the odds are and the probability of improvement is e = = The predict( ) function will give the same answers. > predict(pain.glm,newdata=data.frame(trt= B,age=60))

5 > predict(pain.glm,newdata=data.frame(trt= B,age=60),type= response ) Aggregated Data Data in raw form is like that in paindata where each observation of the response is Bernoulli, with only two possible values such as Yes/No, or Male/Female, TRUE/FALSE, or 0/1. Sometimes data is presented in aggregated form, where the numbers of successes and failures for each distinct value of (x 1, x 2,, x k ) are tabulated. Here is the part of Table E6.21 for myocardial infarction (heart attack). cases controls drink gender N M Y M N F Y F The two independent variables are binary factors drink = N or Y - was the subject a drinker? - and gender = F or M. For each combination of factor levels, cases is the number of subjects who suffered a heart attack (success) and controls is the number who didn t. For data aggregated like this, the response term in the R formula must be a two column matrix, successes in the first column and failures in the second. > prob6.21.glm=glm(cbind(cases,controls)~drink+gender,data=prob6.21,family=bi nomial) > summary(prob6.21.glm) Call: glm(formula = cbind(cases, controls) ~ drink + gender, family = binomial, data = prob6.21) Deviance Residuals: Coefficients: Estimate Std. Error z value Pr(> z ) (Intercept) < 2e-16 *** drinky genderm e-12 *** --- Signif. codes: 0 *** ** 0.01 * (Dispersion parameter for binomial family taken to be 1) Null deviance: on 3 degrees of freedom Residual deviance: on 1 degrees of freedom AIC: Number of Fisher Scoring iterations: 4

6 The estimated log of the ratio of odds on a heart attack for drinkers compared to non-drinkers is In other words, drinking appears to lessen the odds on a heart attack. Notice that the p-value is 19%, so we aren t justified in drawing this conclusion. The variable pain0 (baseline pain level) in the paindata data frame is numeric but has only 5 distinct values. If you want to construct a logistic regression model with pain0 and trt as independent variables, you can aggregate the data as follows to create a new data frame. > paindata2=aggregate(cbind(painimproved,1-painimproved)~trt+pain0,data=paind ata,fun=sum) > paindata2 trt pain0 painimproved V2 1 A B A B A B A B > names(paindata2)[4]="notimproved" > paindata2 trt pain0 painimproved notimproved 1 A B A B A B A B Then fit the model. > pain.glm2=glm(cbind(painimproved,notimproved)~trt+pain0,data=paindata2,fami ly=binomial) > summary(pain.glm2) Call: glm(formula = cbind(painimproved, notimproved) ~ trt + pain0, family = binomial, data = paindata2) Deviance Residuals: Coefficients: Estimate Std. Error z value Pr(> z ) (Intercept) ** trtb pain ** --- Signif. codes: 0 *** ** 0.01 *

7 (Dispersion parameter for binomial family taken to be 1) Null deviance: on 7 degrees of freedom Residual deviance: on 5 degrees of freedom AIC: Number of Fisher Scoring iterations: 5 The formula cbind(painimproved,1-painimproved)~trt+pain0 in the aggregate function worked because painimproved is a logical variable that has numeric values 0 and 1. Also, the numeric variable pain0 has only a small number of values. When the response is a factor rather than a logical variable, it is better to aggregate as below. As an example, we will use the radon.leukemia data with case-control as the binary response and with independent variables DOWNS and RADON. RADON is a continuous variable with many distinct values, so we will discretize it by locating each measurement in a class interval, similar to the way it is done with the histogram function. The R function for doing this is cut( ). The intervals begin at 0 and end at 20 with widths 4. > aggregate(dis~downs+cut(radon,seq(0,20,4)),data=radon.leukemia,fun=table) DOWNS cut(radon, seq(0, 20, 4)) DIS.case DIS.control 1 1 (0,4] (0,4] (4,8] (4,8] (8,12] (8,12] (12,16] (12,16] (16,20] (16,20] 2 1 > leukdata=.last.valu This is a data frame with cumbersome names. You can change them if you like. > names(leukdata)=c("downs","radon.grp","disease") > leukdata Downs Radon.grp Disease.case Disease.control 1 1 (0,4] (0,4] (4,8] (4,8] (8,12] (8,12] (12,16] (12,16] (16,20] (16,20] 2 1

8 In this data frame, Disease is already a two-column matrix of successes and failures, so you don t have to use the cbind function in the formula. > leukdata.glm=glm(disease~downs+radon.grp,data=leukdata,family=binomial) > summary(leukdata.glm) Call: glm(formula = Disease ~ Downs + Radon.grp, family = binomial, data = leukdata) Deviance Residuals: Coefficients: Estimate Std. Error z value Pr(> z ) (Intercept) Downs Radon.grp(4,8] Radon.grp(8,12] Radon.grp(12,16] Radon.grp(16,20] (Dispersion parameter for binomial family taken to be 1) Null deviance: on 9 degrees of freedom Residual deviance: on 4 degrees of freedom AIC: Number of Fisher Scoring iterations: 3 Deviances and ANOVA Consider the log-likelihood function in (1) as a function of estimates p 1, p 2,, p N of the success probabilities for the N replications of the experiment. If we don t assume that they are given by the logistic regression equation and instead allow them to be completely unrestricted, then the log-likelihood function is maximized when p i = Y i ni. Its maximum value is called the saturated log-likelihood, and denoted by l sat. The model log-likelihood is the maximum value of (1) when the p i are the maximum likelihood estimators assuming the logistic regression model. It is designated by l model. The null log-likelihood is the maximum value of (1) when it is assumed that all the regression parameters β 1, β 2,, β k except the intercept β 0 are equal to zero. In other words, it is assumed that p 1, p N all have a common value p. The null log-likelihood is denoted by l null. The residual deviance is D(resid) = 2(l sat l model ).

9 The null deviance is D(null) = 2(l sat l null ) and the regression deviance is D(regr) = 2(l model l null ). Think of these quantities as being analogous to the residual sum of squares, the total sum of squares and the regression sum of squares in multiple linear regression problems. They satisfy a similar equation D(null) = D(regr) + D(resid). If the logistic regression model is true and N is large, D(regr) has an approximate chi-square distribution with k degrees of freedom. It can be used to test the hypothesis H 0 : β 1 = β 2 = = β k = 0. Reject H 0 if the p-value of D(regr) is too small. In the example just above, the observed value is with p-value > 1-pchisq(3.0404,df=5) [1] D(regr) = = Since the p-value is so large, we cannot conclude that any of the regression coefficients are different from 0. An anova table breaks D(regr) down into contributions from each variable in the model. It is constructed step by step, starting with the null model corresponding to H 0 above and adding one variable at a time. The increment in the regression deviance for each variable is indicated as well as the residual deviance after the variable is added. > anova(leukdata.glm,test="chisq") Analysis of Deviance Table Model: binomial, link: logit Response: Disease Terms added sequentially (first to last) Df Deviance Resid. Df Resid. Dev Pr(>Chi) NULL Downs Radon.grp

10 The p-value of indicates that the increment in regression deviance, which is equal to the decrement in residual deviance, = does not significantly improve the fit of the model when the variable Radon.grp is added to the model which already contains the variable Downs.

Logistic Regression - problem 6.14

Logistic Regression - problem 6.14 Logistic Regression - problem 6.14 Let x 1, x 2,, x m be given values of an input variable x and let Y 1,, Y m be independent binomial random variables whose distributions depend on the corresponding values

More information

Logistic Regressions. Stat 430

Logistic Regressions. Stat 430 Logistic Regressions Stat 430 Final Project Final Project is, again, team based You will decide on a project - only constraint is: you are supposed to use techniques for a solution that are related to

More information

Exercise 5.4 Solution

Exercise 5.4 Solution Exercise 5.4 Solution Niels Richard Hansen University of Copenhagen May 7, 2010 1 5.4(a) > leukemia

More information

Linear Regression Models P8111

Linear Regression Models P8111 Linear Regression Models P8111 Lecture 25 Jeff Goldsmith April 26, 2016 1 of 37 Today s Lecture Logistic regression / GLMs Model framework Interpretation Estimation 2 of 37 Linear regression Course started

More information

STA102 Class Notes Chapter Logistic Regression

STA102 Class Notes Chapter Logistic Regression STA0 Class Notes Chapter 0 0. Logistic Regression We continue to study the relationship between a response variable and one or more eplanatory variables. For SLR and MLR (Chapters 8 and 9), our response

More information

9 Generalized Linear Models

9 Generalized Linear Models 9 Generalized Linear Models The Generalized Linear Model (GLM) is a model which has been built to include a wide range of different models you already know, e.g. ANOVA and multiple linear regression models

More information

Interactions in Logistic Regression

Interactions in Logistic Regression Interactions in Logistic Regression > # UCBAdmissions is a 3-D table: Gender by Dept by Admit > # Same data in another format: > # One col for Yes counts, another for No counts. > Berkeley = read.table("http://www.utstat.toronto.edu/~brunner/312f12/

More information

12 Modelling Binomial Response Data

12 Modelling Binomial Response Data c 2005, Anthony C. Brooms Statistical Modelling and Data Analysis 12 Modelling Binomial Response Data 12.1 Examples of Binary Response Data Binary response data arise when an observation on an individual

More information

STA 4504/5503 Sample Exam 1 Spring 2011 Categorical Data Analysis. 1. Indicate whether each of the following is true (T) or false (F).

STA 4504/5503 Sample Exam 1 Spring 2011 Categorical Data Analysis. 1. Indicate whether each of the following is true (T) or false (F). STA 4504/5503 Sample Exam 1 Spring 2011 Categorical Data Analysis 1. Indicate whether each of the following is true (T) or false (F). (a) (b) (c) (d) (e) In 2 2 tables, statistical independence is equivalent

More information

7/28/15. Review Homework. Overview. Lecture 6: Logistic Regression Analysis

7/28/15. Review Homework. Overview. Lecture 6: Logistic Regression Analysis Lecture 6: Logistic Regression Analysis Christopher S. Hollenbeak, PhD Jane R. Schubart, PhD The Outcomes Research Toolbox Review Homework 2 Overview Logistic regression model conceptually Logistic regression

More information

Log-linear Models for Contingency Tables

Log-linear Models for Contingency Tables Log-linear Models for Contingency Tables Statistics 149 Spring 2006 Copyright 2006 by Mark E. Irwin Log-linear Models for Two-way Contingency Tables Example: Business Administration Majors and Gender A

More information

STA 4504/5503 Sample Exam 1 Spring 2011 Categorical Data Analysis. 1. Indicate whether each of the following is true (T) or false (F).

STA 4504/5503 Sample Exam 1 Spring 2011 Categorical Data Analysis. 1. Indicate whether each of the following is true (T) or false (F). STA 4504/5503 Sample Exam 1 Spring 2011 Categorical Data Analysis 1. Indicate whether each of the following is true (T) or false (F). (a) T In 2 2 tables, statistical independence is equivalent to a population

More information

STA 450/4000 S: January

STA 450/4000 S: January STA 450/4000 S: January 6 005 Notes Friday tutorial on R programming reminder office hours on - F; -4 R The book Modern Applied Statistics with S by Venables and Ripley is very useful. Make sure you have

More information

Logistic Regression. James H. Steiger. Department of Psychology and Human Development Vanderbilt University

Logistic Regression. James H. Steiger. Department of Psychology and Human Development Vanderbilt University Logistic Regression James H. Steiger Department of Psychology and Human Development Vanderbilt University James H. Steiger (Vanderbilt University) Logistic Regression 1 / 38 Logistic Regression 1 Introduction

More information

A Handbook of Statistical Analyses Using R. Brian S. Everitt and Torsten Hothorn

A Handbook of Statistical Analyses Using R. Brian S. Everitt and Torsten Hothorn A Handbook of Statistical Analyses Using R Brian S. Everitt and Torsten Hothorn CHAPTER 6 Logistic Regression and Generalised Linear Models: Blood Screening, Women s Role in Society, and Colonic Polyps

More information

Week 7 Multiple factors. Ch , Some miscellaneous parts

Week 7 Multiple factors. Ch , Some miscellaneous parts Week 7 Multiple factors Ch. 18-19, Some miscellaneous parts Multiple Factors Most experiments will involve multiple factors, some of which will be nuisance variables Dealing with these factors requires

More information

Generalised linear models. Response variable can take a number of different formats

Generalised linear models. Response variable can take a number of different formats Generalised linear models Response variable can take a number of different formats Structure Limitations of linear models and GLM theory GLM for count data GLM for presence \ absence data GLM for proportion

More information

Matched Pair Data. Stat 557 Heike Hofmann

Matched Pair Data. Stat 557 Heike Hofmann Matched Pair Data Stat 557 Heike Hofmann Outline Marginal Homogeneity - review Binary Response with covariates Ordinal response Symmetric Models Subject-specific vs Marginal Model conditional logistic

More information

Generalized linear models for binary data. A better graphical exploratory data analysis. The simple linear logistic regression model

Generalized linear models for binary data. A better graphical exploratory data analysis. The simple linear logistic regression model Stat 3302 (Spring 2017) Peter F. Craigmile Simple linear logistic regression (part 1) [Dobson and Barnett, 2008, Sections 7.1 7.3] Generalized linear models for binary data Beetles dose-response example

More information

Exam Applied Statistical Regression. Good Luck!

Exam Applied Statistical Regression. Good Luck! Dr. M. Dettling Summer 2011 Exam Applied Statistical Regression Approved: Tables: Note: Any written material, calculator (without communication facility). Attached. All tests have to be done at the 5%-level.

More information

R Output for Linear Models using functions lm(), gls() & glm()

R Output for Linear Models using functions lm(), gls() & glm() LM 04 lm(), gls() &glm() 1 R Output for Linear Models using functions lm(), gls() & glm() Different kinds of output related to linear models can be obtained in R using function lm() {stats} in the base

More information

A Handbook of Statistical Analyses Using R 2nd Edition. Brian S. Everitt and Torsten Hothorn

A Handbook of Statistical Analyses Using R 2nd Edition. Brian S. Everitt and Torsten Hothorn A Handbook of Statistical Analyses Using R 2nd Edition Brian S. Everitt and Torsten Hothorn CHAPTER 7 Logistic Regression and Generalised Linear Models: Blood Screening, Women s Role in Society, Colonic

More information

MODULE 6 LOGISTIC REGRESSION. Module Objectives:

MODULE 6 LOGISTIC REGRESSION. Module Objectives: MODULE 6 LOGISTIC REGRESSION Module Objectives: 1. 147 6.1. LOGIT TRANSFORMATION MODULE 6. LOGISTIC REGRESSION Logistic regression models are used when a researcher is investigating the relationship between

More information

Generalized linear models

Generalized linear models Generalized linear models Douglas Bates November 01, 2010 Contents 1 Definition 1 2 Links 2 3 Estimating parameters 5 4 Example 6 5 Model building 8 6 Conclusions 8 7 Summary 9 1 Generalized Linear Models

More information

Sample solutions. Stat 8051 Homework 8

Sample solutions. Stat 8051 Homework 8 Sample solutions Stat 8051 Homework 8 Problem 1: Faraway Exercise 3.1 A plot of the time series reveals kind of a fluctuating pattern: Trying to fit poisson regression models yields a quadratic model if

More information

Classification. Chapter Introduction. 6.2 The Bayes classifier

Classification. Chapter Introduction. 6.2 The Bayes classifier Chapter 6 Classification 6.1 Introduction Often encountered in applications is the situation where the response variable Y takes values in a finite set of labels. For example, the response Y could encode

More information

BMI 541/699 Lecture 22

BMI 541/699 Lecture 22 BMI 541/699 Lecture 22 Where we are: 1. Introduction and Experimental Design 2. Exploratory Data Analysis 3. Probability 4. T-based methods for continous variables 5. Power and sample size for t-based

More information

Review: what is a linear model. Y = β 0 + β 1 X 1 + β 2 X 2 + A model of the following form:

Review: what is a linear model. Y = β 0 + β 1 X 1 + β 2 X 2 + A model of the following form: Outline for today What is a generalized linear model Linear predictors and link functions Example: fit a constant (the proportion) Analysis of deviance table Example: fit dose-response data using logistic

More information

Introduction to the Generalized Linear Model: Logistic regression and Poisson regression

Introduction to the Generalized Linear Model: Logistic regression and Poisson regression Introduction to the Generalized Linear Model: Logistic regression and Poisson regression Statistical modelling: Theory and practice Gilles Guillot gigu@dtu.dk November 4, 2013 Gilles Guillot (gigu@dtu.dk)

More information

Experimental Design and Statistical Methods. Workshop LOGISTIC REGRESSION. Jesús Piedrafita Arilla.

Experimental Design and Statistical Methods. Workshop LOGISTIC REGRESSION. Jesús Piedrafita Arilla. Experimental Design and Statistical Methods Workshop LOGISTIC REGRESSION Jesús Piedrafita Arilla jesus.piedrafita@uab.cat Departament de Ciència Animal i dels Aliments Items Logistic regression model Logit

More information

Introduction to the Analysis of Tabular Data

Introduction to the Analysis of Tabular Data Introduction to the Analysis of Tabular Data Anthropological Sciences 192/292 Data Analysis in the Anthropological Sciences James Holland Jones & Ian G. Robertson March 15, 2006 1 Tabular Data Is there

More information

Regression so far... Lecture 21 - Logistic Regression. Odds. Recap of what you should know how to do... At this point we have covered: Sta102 / BME102

Regression so far... Lecture 21 - Logistic Regression. Odds. Recap of what you should know how to do... At this point we have covered: Sta102 / BME102 Background Regression so far... Lecture 21 - Sta102 / BME102 Colin Rundel November 18, 2014 At this point we have covered: Simple linear regression Relationship between numerical response and a numerical

More information

Clinical Trials. Olli Saarela. September 18, Dalla Lana School of Public Health University of Toronto.

Clinical Trials. Olli Saarela. September 18, Dalla Lana School of Public Health University of Toronto. Introduction to Dalla Lana School of Public Health University of Toronto olli.saarela@utoronto.ca September 18, 2014 38-1 : a review 38-2 Evidence Ideal: to advance the knowledge-base of clinical medicine,

More information

Logistic Regression 21/05

Logistic Regression 21/05 Logistic Regression 21/05 Recall that we are trying to solve a classification problem in which features x i can be continuous or discrete (coded as 0/1) and the response y is discrete (0/1). Logistic regression

More information

Non-Gaussian Response Variables

Non-Gaussian Response Variables Non-Gaussian Response Variables What is the Generalized Model Doing? The fixed effects are like the factors in a traditional analysis of variance or linear model The random effects are different A generalized

More information

UNIVERSITY OF TORONTO Faculty of Arts and Science

UNIVERSITY OF TORONTO Faculty of Arts and Science UNIVERSITY OF TORONTO Faculty of Arts and Science December 2013 Final Examination STA442H1F/2101HF Methods of Applied Statistics Jerry Brunner Duration - 3 hours Aids: Calculator Model(s): Any calculator

More information

Poisson Regression. The Training Data

Poisson Regression. The Training Data The Training Data Poisson Regression Office workers at a large insurance company are randomly assigned to one of 3 computer use training programmes, and their number of calls to IT support during the following

More information

Administration. Homework 1 on web page, due Feb 11 NSERC summer undergraduate award applications due Feb 5 Some helpful books

Administration. Homework 1 on web page, due Feb 11 NSERC summer undergraduate award applications due Feb 5 Some helpful books STA 44/04 Jan 6, 00 / 5 Administration Homework on web page, due Feb NSERC summer undergraduate award applications due Feb 5 Some helpful books STA 44/04 Jan 6, 00... administration / 5 STA 44/04 Jan 6,

More information

Truck prices - linear model? Truck prices - log transform of the response variable. Interpreting models with log transformation

Truck prices - linear model? Truck prices - log transform of the response variable. Interpreting models with log transformation Background Regression so far... Lecture 23 - Sta 111 Colin Rundel June 17, 2014 At this point we have covered: Simple linear regression Relationship between numerical response and a numerical or categorical

More information

Lecture 14: Introduction to Poisson Regression

Lecture 14: Introduction to Poisson Regression Lecture 14: Introduction to Poisson Regression Ani Manichaikul amanicha@jhsph.edu 8 May 2007 1 / 52 Overview Modelling counts Contingency tables Poisson regression models 2 / 52 Modelling counts I Why

More information

Modelling counts. Lecture 14: Introduction to Poisson Regression. Overview

Modelling counts. Lecture 14: Introduction to Poisson Regression. Overview Modelling counts I Lecture 14: Introduction to Poisson Regression Ani Manichaikul amanicha@jhsph.edu Why count data? Number of traffic accidents per day Mortality counts in a given neighborhood, per week

More information

On the Inference of the Logistic Regression Model

On the Inference of the Logistic Regression Model On the Inference of the Logistic Regression Model 1. Model ln =(; ), i.e. = representing false. The linear form of (;) is entertained, i.e. ((;)) ((;)), where ==1 ;, with 1 representing true, 0 ;= 1+ +

More information

Duration of Unemployment - Analysis of Deviance Table for Nested Models

Duration of Unemployment - Analysis of Deviance Table for Nested Models Duration of Unemployment - Analysis of Deviance Table for Nested Models February 8, 2012 The data unemployment is included as a contingency table. The response is the duration of unemployment, gender and

More information

Today. HW 1: due February 4, pm. Aspects of Design CD Chapter 2. Continue with Chapter 2 of ELM. In the News:

Today. HW 1: due February 4, pm. Aspects of Design CD Chapter 2. Continue with Chapter 2 of ELM. In the News: Today HW 1: due February 4, 11.59 pm. Aspects of Design CD Chapter 2 Continue with Chapter 2 of ELM In the News: STA 2201: Applied Statistics II January 14, 2015 1/35 Recap: data on proportions data: y

More information

Lecture 12: Effect modification, and confounding in logistic regression

Lecture 12: Effect modification, and confounding in logistic regression Lecture 12: Effect modification, and confounding in logistic regression Ani Manichaikul amanicha@jhsph.edu 4 May 2007 Today Categorical predictor create dummy variables just like for linear regression

More information

cor(dataset$measurement1, dataset$measurement2, method= pearson ) cor.test(datavector1, datavector2, method= pearson )

cor(dataset$measurement1, dataset$measurement2, method= pearson ) cor.test(datavector1, datavector2, method= pearson ) Tutorial 7: Correlation and Regression Correlation Used to test whether two variables are linearly associated. A correlation coefficient (r) indicates the strength and direction of the association. A correlation

More information

Using R in 200D Luke Sonnet

Using R in 200D Luke Sonnet Using R in 200D Luke Sonnet Contents Working with data frames 1 Working with variables........................................... 1 Analyzing data............................................... 3 Random

More information

Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/

Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/ Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018 Statistical Analysis in Ecology using R Linear Models/GLM Ing. Daniel Volařík, Ph.D. 13.

More information

STAC51: Categorical data Analysis

STAC51: Categorical data Analysis STAC51: Categorical data Analysis Mahinda Samarakoon April 6, 2016 Mahinda Samarakoon STAC51: Categorical data Analysis 1 / 25 Table of contents 1 Building and applying logistic regression models (Chap

More information

Statistical Methods III Statistics 212. Problem Set 2 - Answer Key

Statistical Methods III Statistics 212. Problem Set 2 - Answer Key Statistical Methods III Statistics 212 Problem Set 2 - Answer Key 1. (Analysis to be turned in and discussed on Tuesday, April 24th) The data for this problem are taken from long-term followup of 1423

More information

ssh tap sas913, sas https://www.statlab.umd.edu/sasdoc/sashtml/onldoc.htm

ssh tap sas913, sas https://www.statlab.umd.edu/sasdoc/sashtml/onldoc.htm Kedem, STAT 430 SAS Examples: Logistic Regression ==================================== ssh abc@glue.umd.edu, tap sas913, sas https://www.statlab.umd.edu/sasdoc/sashtml/onldoc.htm a. Logistic regression.

More information

STAT 7030: Categorical Data Analysis

STAT 7030: Categorical Data Analysis STAT 7030: Categorical Data Analysis 5. Logistic Regression Peng Zeng Department of Mathematics and Statistics Auburn University Fall 2012 Peng Zeng (Auburn University) STAT 7030 Lecture Notes Fall 2012

More information

Various Issues in Fitting Contingency Tables

Various Issues in Fitting Contingency Tables Various Issues in Fitting Contingency Tables Statistics 149 Spring 2006 Copyright 2006 by Mark E. Irwin Complete Tables with Zero Entries In contingency tables, it is possible to have zero entries in a

More information

Generalized linear models

Generalized linear models Generalized linear models Outline for today What is a generalized linear model Linear predictors and link functions Example: estimate a proportion Analysis of deviance Example: fit dose- response data

More information

Regression models. Generalized linear models in R. Normal regression models are not always appropriate. Generalized linear models. Examples.

Regression models. Generalized linear models in R. Normal regression models are not always appropriate. Generalized linear models. Examples. Regression models Generalized linear models in R Dr Peter K Dunn http://www.usq.edu.au Department of Mathematics and Computing University of Southern Queensland ASC, July 00 The usual linear regression

More information

Stat 579: Generalized Linear Models and Extensions

Stat 579: Generalized Linear Models and Extensions Stat 579: Generalized Linear Models and Extensions Yan Lu Jan, 2018, week 3 1 / 67 Hypothesis tests Likelihood ratio tests Wald tests Score tests 2 / 67 Generalized Likelihood ratio tests Let Y = (Y 1,

More information

Statistics 203 Introduction to Regression Models and ANOVA Practice Exam

Statistics 203 Introduction to Regression Models and ANOVA Practice Exam Statistics 203 Introduction to Regression Models and ANOVA Practice Exam Prof. J. Taylor You may use your 4 single-sided pages of notes This exam is 7 pages long. There are 4 questions, first 3 worth 10

More information

Age 55 (x = 1) Age < 55 (x = 0)

Age 55 (x = 1) Age < 55 (x = 0) Logistic Regression with a Single Dichotomous Predictor EXAMPLE: Consider the data in the file CHDcsv Instead of examining the relationship between the continuous variable age and the presence or absence

More information

Let s see if we can predict whether a student returns or does not return to St. Ambrose for their second year.

Let s see if we can predict whether a student returns or does not return to St. Ambrose for their second year. Assignment #13: GLM Scenario: Over the past few years, our first-to-second year retention rate has ranged from 77-80%. In other words, 77-80% of our first-year students come back to St. Ambrose for their

More information

A Generalized Linear Model for Binomial Response Data. Copyright c 2017 Dan Nettleton (Iowa State University) Statistics / 46

A Generalized Linear Model for Binomial Response Data. Copyright c 2017 Dan Nettleton (Iowa State University) Statistics / 46 A Generalized Linear Model for Binomial Response Data Copyright c 2017 Dan Nettleton (Iowa State University) Statistics 510 1 / 46 Now suppose that instead of a Bernoulli response, we have a binomial response

More information

Introduction to General and Generalized Linear Models

Introduction to General and Generalized Linear Models Introduction to General and Generalized Linear Models Generalized Linear Models - part III Henrik Madsen Poul Thyregod Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs.

More information

Generalized Linear Models 1

Generalized Linear Models 1 Generalized Linear Models 1 STA 2101/442: Fall 2012 1 See last slide for copyright information. 1 / 24 Suggested Reading: Davison s Statistical models Exponential families of distributions Sec. 5.2 Chapter

More information

Section IX. Introduction to Logistic Regression for binary outcomes. Poisson regression

Section IX. Introduction to Logistic Regression for binary outcomes. Poisson regression Section IX Introduction to Logistic Regression for binary outcomes Poisson regression 0 Sec 9 - Logistic regression In linear regression, we studied models where Y is a continuous variable. What about

More information

Regression Methods for Survey Data

Regression Methods for Survey Data Regression Methods for Survey Data Professor Ron Fricker! Naval Postgraduate School! Monterey, California! 3/26/13 Reading:! Lohr chapter 11! 1 Goals for this Lecture! Linear regression! Review of linear

More information

Checking the Poisson assumption in the Poisson generalized linear model

Checking the Poisson assumption in the Poisson generalized linear model Checking the Poisson assumption in the Poisson generalized linear model The Poisson regression model is a generalized linear model (glm) satisfying the following assumptions: The responses y i are independent

More information

EPSY 905: Fundamentals of Multivariate Modeling Online Lecture #7

EPSY 905: Fundamentals of Multivariate Modeling Online Lecture #7 Introduction to Generalized Univariate Models: Models for Binary Outcomes EPSY 905: Fundamentals of Multivariate Modeling Online Lecture #7 EPSY 905: Intro to Generalized In This Lecture A short review

More information

Generalized Linear Models. stat 557 Heike Hofmann

Generalized Linear Models. stat 557 Heike Hofmann Generalized Linear Models stat 557 Heike Hofmann Outline Intro to GLM Exponential Family Likelihood Equations GLM for Binomial Response Generalized Linear Models Three components: random, systematic, link

More information

STAT 526 Spring Midterm 1. Wednesday February 2, 2011

STAT 526 Spring Midterm 1. Wednesday February 2, 2011 STAT 526 Spring 2011 Midterm 1 Wednesday February 2, 2011 Time: 2 hours Name (please print): Show all your work and calculations. Partial credit will be given for work that is partially correct. Points

More information

Unit 5 Logistic Regression Practice Problems

Unit 5 Logistic Regression Practice Problems Unit 5 Logistic Regression Practice Problems SOLUTIONS R Users Source: Afifi A., Clark VA and May S. Computer Aided Multivariate Analysis, Fourth Edition. Boca Raton: Chapman and Hall, 2004. Exercises

More information

8 Nominal and Ordinal Logistic Regression

8 Nominal and Ordinal Logistic Regression 8 Nominal and Ordinal Logistic Regression 8.1 Introduction If the response variable is categorical, with more then two categories, then there are two options for generalized linear models. One relies on

More information

Two Hours. Mathematical formula books and statistical tables are to be provided THE UNIVERSITY OF MANCHESTER. 26 May :00 16:00

Two Hours. Mathematical formula books and statistical tables are to be provided THE UNIVERSITY OF MANCHESTER. 26 May :00 16:00 Two Hours MATH38052 Mathematical formula books and statistical tables are to be provided THE UNIVERSITY OF MANCHESTER GENERALISED LINEAR MODELS 26 May 2016 14:00 16:00 Answer ALL TWO questions in Section

More information

LISA Short Course Series Generalized Linear Models (GLMs) & Categorical Data Analysis (CDA) in R. Liang (Sally) Shan Nov. 4, 2014

LISA Short Course Series Generalized Linear Models (GLMs) & Categorical Data Analysis (CDA) in R. Liang (Sally) Shan Nov. 4, 2014 LISA Short Course Series Generalized Linear Models (GLMs) & Categorical Data Analysis (CDA) in R Liang (Sally) Shan Nov. 4, 2014 L Laboratory for Interdisciplinary Statistical Analysis LISA helps VT researchers

More information

ST3241 Categorical Data Analysis I Multicategory Logit Models. Logit Models For Nominal Responses

ST3241 Categorical Data Analysis I Multicategory Logit Models. Logit Models For Nominal Responses ST3241 Categorical Data Analysis I Multicategory Logit Models Logit Models For Nominal Responses 1 Models For Nominal Responses Y is nominal with J categories. Let {π 1,, π J } denote the response probabilities

More information

Linear Regression. Data Model. β, σ 2. Process Model. ,V β. ,s 2. s 1. Parameter Model

Linear Regression. Data Model. β, σ 2. Process Model. ,V β. ,s 2. s 1. Parameter Model Regression: Part II Linear Regression y~n X, 2 X Y Data Model β, σ 2 Process Model Β 0,V β s 1,s 2 Parameter Model Assumptions of Linear Model Homoskedasticity No error in X variables Error in Y variables

More information

Modeling Overdispersion

Modeling Overdispersion James H. Steiger Department of Psychology and Human Development Vanderbilt University Regression Modeling, 2009 1 Introduction 2 Introduction In this lecture we discuss the problem of overdispersion in

More information

Proportional Odds Logistic Regression. stat 557 Heike Hofmann

Proportional Odds Logistic Regression. stat 557 Heike Hofmann Proportional Odds Logistic Regression stat 557 Heike Hofmann Outline Proportional Odds Logistic Regression Model Definition Properties Latent Variables Intro to Loglinear Models Ordinal Response Y is categorical

More information

Analysing categorical data using logit models

Analysing categorical data using logit models Analysing categorical data using logit models Graeme Hutcheson, University of Manchester The lecture notes, exercises and data sets associated with this course are available for download from: www.research-training.net/manchester

More information

Leftovers. Morris. University Farm. University Farm. Morris. yield

Leftovers. Morris. University Farm. University Farm. Morris. yield Leftovers SI 544 Lada Adamic 1 Trellis graphics Trebi Wisconsin No. 38 No. 457 Glabron Peatland Velvet No. 475 Manchuria No. 462 Svansota Trebi Wisconsin No. 38 No. 457 Glabron Peatland Velvet No. 475

More information

NATIONAL UNIVERSITY OF SINGAPORE EXAMINATION. ST3241 Categorical Data Analysis. (Semester II: ) April/May, 2011 Time Allowed : 2 Hours

NATIONAL UNIVERSITY OF SINGAPORE EXAMINATION. ST3241 Categorical Data Analysis. (Semester II: ) April/May, 2011 Time Allowed : 2 Hours NATIONAL UNIVERSITY OF SINGAPORE EXAMINATION Categorical Data Analysis (Semester II: 2010 2011) April/May, 2011 Time Allowed : 2 Hours Matriculation No: Seat No: Grade Table Question 1 2 3 4 5 6 Full marks

More information

ECLT 5810 Linear Regression and Logistic Regression for Classification. Prof. Wai Lam

ECLT 5810 Linear Regression and Logistic Regression for Classification. Prof. Wai Lam ECLT 5810 Linear Regression and Logistic Regression for Classification Prof. Wai Lam Linear Regression Models Least Squares Input vectors is an attribute / feature / predictor (independent variable) The

More information

ECLT 5810 Linear Regression and Logistic Regression for Classification. Prof. Wai Lam

ECLT 5810 Linear Regression and Logistic Regression for Classification. Prof. Wai Lam ECLT 5810 Linear Regression and Logistic Regression for Classification Prof. Wai Lam Linear Regression Models Least Squares Input vectors is an attribute / feature / predictor (independent variable) The

More information

Linear Regression. In this lecture we will study a particular type of regression model: the linear regression model

Linear Regression. In this lecture we will study a particular type of regression model: the linear regression model 1 Linear Regression 2 Linear Regression In this lecture we will study a particular type of regression model: the linear regression model We will first consider the case of the model with one predictor

More information

Stat/F&W Ecol/Hort 572 Review Points Ané, Spring 2010

Stat/F&W Ecol/Hort 572 Review Points Ané, Spring 2010 1 Linear models Y = Xβ + ɛ with ɛ N (0, σ 2 e) or Y N (Xβ, σ 2 e) where the model matrix X contains the information on predictors and β includes all coefficients (intercept, slope(s) etc.). 1. Number of

More information

2/26/2017. PSY 512: Advanced Statistics for Psychological and Behavioral Research 2

2/26/2017. PSY 512: Advanced Statistics for Psychological and Behavioral Research 2 PSY 512: Advanced Statistics for Psychological and Behavioral Research 2 When and why do we use logistic regression? Binary Multinomial Theory behind logistic regression Assessing the model Assessing predictors

More information

PAPER 206 APPLIED STATISTICS

PAPER 206 APPLIED STATISTICS MATHEMATICAL TRIPOS Part III Thursday, 1 June, 2017 9:00 am to 12:00 pm PAPER 206 APPLIED STATISTICS Attempt no more than FOUR questions. There are SIX questions in total. The questions carry equal weight.

More information

Final Exam. Name: Solution:

Final Exam. Name: Solution: Final Exam. Name: Instructions. Answer all questions on the exam. Open books, open notes, but no electronic devices. The first 13 problems are worth 5 points each. The rest are worth 1 point each. HW1.

More information

Neural networks (not in book)

Neural networks (not in book) (not in book) Another approach to classification is neural networks. were developed in the 1980s as a way to model how learning occurs in the brain. There was therefore wide interest in neural networks

More information

22s:152 Applied Linear Regression. Example: Study on lead levels in children. Ch. 14 (sec. 1) and Ch. 15 (sec. 1 & 4): Logistic Regression

22s:152 Applied Linear Regression. Example: Study on lead levels in children. Ch. 14 (sec. 1) and Ch. 15 (sec. 1 & 4): Logistic Regression 22s:52 Applied Linear Regression Ch. 4 (sec. and Ch. 5 (sec. & 4: Logistic Regression Logistic Regression When the response variable is a binary variable, such as 0 or live or die fail or succeed then

More information

Psych 230. Psychological Measurement and Statistics

Psych 230. Psychological Measurement and Statistics Psych 230 Psychological Measurement and Statistics Pedro Wolf December 9, 2009 This Time. Non-Parametric statistics Chi-Square test One-way Two-way Statistical Testing 1. Decide which test to use 2. State

More information

Chapter 5: Logistic Regression-I

Chapter 5: Logistic Regression-I : Logistic Regression-I Dipankar Bandyopadhyay Department of Biostatistics, Virginia Commonwealth University BIOS 625: Categorical Data & GLM [Acknowledgements to Tim Hanson and Haitao Chu] D. Bandyopadhyay

More information

1. Logistic Regression, One Predictor 2. Inference: Estimating the Parameters 3. Multiple Logistic Regression 4. AIC and BIC in Logistic Regression

1. Logistic Regression, One Predictor 2. Inference: Estimating the Parameters 3. Multiple Logistic Regression 4. AIC and BIC in Logistic Regression Logistic Regression 1. Logistic Regression, One Predictor 2. Inference: Estimating the Parameters 3. Multiple Logistic Regression 4. AIC and BIC in Logistic Regression 5. Target Marketing: Tabloid Data

More information

Simple logistic regression

Simple logistic regression Simple logistic regression Biometry 755 Spring 2009 Simple logistic regression p. 1/47 Model assumptions 1. The observed data are independent realizations of a binary response variable Y that follows a

More information

Generalized Linear Models

Generalized Linear Models Generalized Linear Models Methods@Manchester Summer School Manchester University July 2 6, 2018 Generalized Linear Models: a generic approach to statistical modelling www.research-training.net/manchester2018

More information

Lecture 5: LDA and Logistic Regression

Lecture 5: LDA and Logistic Regression Lecture 5: and Logistic Regression Hao Helen Zhang Hao Helen Zhang Lecture 5: and Logistic Regression 1 / 39 Outline Linear Classification Methods Two Popular Linear Models for Classification Linear Discriminant

More information

Logistic Regression. Interpretation of linear regression. Other types of outcomes. 0-1 response variable: Wound infection. Usual linear regression

Logistic Regression. Interpretation of linear regression. Other types of outcomes. 0-1 response variable: Wound infection. Usual linear regression Logistic Regression Usual linear regression (repetition) y i = b 0 + b 1 x 1i + b 2 x 2i + e i, e i N(0,σ 2 ) or: y i N(b 0 + b 1 x 1i + b 2 x 2i,σ 2 ) Example (DGA, p. 336): E(PEmax) = 47.355 + 1.024

More information

Logistic & Tobit Regression

Logistic & Tobit Regression Logistic & Tobit Regression Different Types of Regression Binary Regression (D) Logistic transformation + e P( y x) = 1 + e! " x! + " x " P( y x) % ln$ ' = ( + ) x # 1! P( y x) & logit of P(y x){ P(y

More information

Poisson Regression. James H. Steiger. Department of Psychology and Human Development Vanderbilt University

Poisson Regression. James H. Steiger. Department of Psychology and Human Development Vanderbilt University Poisson Regression James H. Steiger Department of Psychology and Human Development Vanderbilt University James H. Steiger (Vanderbilt University) Poisson Regression 1 / 49 Poisson Regression 1 Introduction

More information

Multilevel Models in Matrix Form. Lecture 7 July 27, 2011 Advanced Multivariate Statistical Methods ICPSR Summer Session #2

Multilevel Models in Matrix Form. Lecture 7 July 27, 2011 Advanced Multivariate Statistical Methods ICPSR Summer Session #2 Multilevel Models in Matrix Form Lecture 7 July 27, 2011 Advanced Multivariate Statistical Methods ICPSR Summer Session #2 Today s Lecture Linear models from a matrix perspective An example of how to do

More information

STA 303 H1S / 1002 HS Winter 2011 Test March 7, ab 1cde 2abcde 2fghij 3

STA 303 H1S / 1002 HS Winter 2011 Test March 7, ab 1cde 2abcde 2fghij 3 STA 303 H1S / 1002 HS Winter 2011 Test March 7, 2011 LAST NAME: FIRST NAME: STUDENT NUMBER: ENROLLED IN: (circle one) STA 303 STA 1002 INSTRUCTIONS: Time: 90 minutes Aids allowed: calculator. Some formulae

More information

22s:152 Applied Linear Regression

22s:152 Applied Linear Regression 22s:152 Applied Linear Regression Chapter 7: Dummy Variable Regression So far, we ve only considered quantitative variables in our models. We can integrate categorical predictors by constructing artificial

More information