Texas A&M University

Size: px
Start display at page:

Download "Texas A&M University"

Transcription

1 Texas A&M University Electrical & Computer Engineering Department Graphical Modeling Course Project Author: Mostafa Karimi UIN: Prof Krishna Narayanan May 10

2 1 Introduction Proteins are made by linking amino acids which have a specific structure shown in figure 1. Every Amino acid has 4 important parts. Central carbon atom c α amino group (NH 2 ) carboxyl group (COOH) Side chain Figure 1: amino acid structure There are 20 natural amino acids in nature which are distinguished by their side chains. During protein synthesis, 2 amino acids will be linked end to end exactly like figure 2 and make a peptide. If several amino acids join, they will make a protein. An amino acid in protein structure is an unit which is called a residue. The formation of succession of peptide bonds make a backbone, upon which side chains are hanged on. Figure 2: Process of joining 2 amino acids to make a peptide 1

3 Conformation of every side chain is represented by at most 4 dihedral angles χ 1, χ 2, χ 3 and χ 4 shown in figure 3. Every assignment of χ angles for all of residues, is a valid conformation in 3D dimension. Figure 3: Dihedral angles in an amino acid Problem is to find the best assignment χ angles for all of the side chains which is nonlinear continuous energy minimization with non convex energy function. To reduce the size of problem, discretizing the χ angles with highly favorable energy will produce set of rotamers for every residue. Now problem will reduced to combinatorial optimization problem which is called Side chain Packing (SCP). SCP problem is a NP-hard problem which there are multiple exact algorithms with worst case of exponential time complexity. In following sections I will explain how we can exploit graphical modeling to solve the problem. 2 Graphical modeling representation One of the famous and simple model in statistical physics area is Ising model which exploits singleton and pairwise factor nodes. By exploiting Ising Model for protein energy we can at first derive a simple but very 2

4 useful energy function for every conformation: E(r) = E template + which consists of 3 terms: n E(i r ) + i=1 n n i=1 j=i+1 E(i r, j s ) (1) Template energy: correspond to energy of backbone and fixed residues Singleton energy: correspond to self energy of every rotamer and energy of every rotamer to backbone Pairwise energy: correspond to energy of a rotamer of one residue to a rotamer of another residue Based on Ising model we can derive the factor nodes: Singleton factor node: ψ i (i r ) = e E(ir) T (2) Pairwise factor node: ψ i,j (i r, j s ) = e E(ir,js) T (3) Therefore, based on Hammersley Clifford theorem, we can derive the probability of a conformation from factor nodes which are the cliques in markov graph and Z correspond to the partition function. P (r) = 1 ψ i (i r ) ψ i,j (i r, j s ) (4) Z i i,j 3 Approximate Algorithms As we know, Message passing algorithm is exact algorithm for inference in tree graphs. Therefore, if the problem is tree, we can use max-product belief propagation to find the most probable conformation or sum-product belief propagation to find marginal probability for every residue. However, in Ising model of proteins there are hundreds of small cycles. Therefore, if we use these algorithms in non-tree graphs due to positive feedback and other reasons, they may not converge or if they converge they may converge to sub-optimal solution. If we use belief propagation algorithms on loopy graphs, it is called loopy 3

5 belief propagation which is an approximate algorithm. There are two popular belief propagation that can be used for this combinatorial optimization problem. Max product algorithm is mainly used for finding the most probable conformation. Max product belief propagation update is: ( ) m i j (j s ) = max i r e E i (ir) E i,j (ir,js) T k N(i)\j m k i (i r ) Sum product algorithm is mainly used for finding marginal probability for every rotamer in every residue. Sum product belief propagation update is: m i j (j s ) = ( ) e E i (ir) E i,j (ir,js) T m k i (i r ) (6) i r k N(i)\j After convergence or a pre-determined number of iteration, we can derive the beliefs for every rotamer of every residue by multiplying every messages that is coming from neighbors and multiplying to its singleton factor node. Finally beliefs will be: B(i r ) = e E i (ir) T k N(i) (5) m k i (i r ) (7) After calculating beliefs, we can find the most probable conformation, by choosing the most probable rotamer for every residue, which will be: 4 Simulation setup r = arg max B(i r ) (8) i r I used the Data which was prepared from [1]. At first I write a c++ code to convert the text file to the correct format that our existing protein design code use. Then, I add 2 c code scripts, for Message passing algorithms such as max-product and sum-product. For temperature I used T=1, and for finding neighbors for every residue, I use the threshold = 0.01 based on pairwise energy terms which means that if two residues have absolute pairwise energy for all pair of their rotamer less than threshold then they are not neighbors. For convergence, I used threshold = and pre-determined maximum 4

6 iteration = iteration. Due to underflow issue, I used normalizing in every 5 Results & Discussion At first I will explain about the result from [5]. In this paper, at first they discussed the convergence problem in loopy belief propagation and showed that they have pretty good convergence in real world data which shows that all of these algorithms have convergence above 90%. Figure 4: Comparison of convergence Then, they compare the best solution found by max-product, min-sum, mean field algorithm. Since max-product always find better solution compare to others, they calculated histogram of difference between sum product and max product which is: Figure 5: Sum product Vs Max product minimum energy found 5

7 And, they calculated the histogram of difference between mean field and max product, which is: Figure 6: Mean Field Vs Max product minimum energy found There is another plot from [1] which compare the running time of different algorithm with respect to size of rotameric conformation in protein design problem. Figure 7: Comparison of different Algorithm Finally I implemented sum product and max product belief propagation algorithms and compare their sub-optimal conformation result to the optimal result from exact algorithm like A or Branch and Bound algorithm. As we can see most of the time max product algorithm is better than sum product in finding better solution. 6

8 6 Further Research We can use protein 3 dimensional structure to form the neighborhood between two residue not just based on pairwise energies between two residues. Therefore, we can have much sparser graph than the one in this report. Furthermore, we can use smooth version message passing which may avoid positive feedback more than before, which may increase the performance. References [1] D. Allouche, I. Andr, S. Barbe, J. Davies, S. de Givry, G. Katsirelos, B. O Sullivan, S. Prestwich, T. Schiex, and S. Traor. Computational protein design as an optimization problem. Artificial Intelligence, 212:59 79, July [2] M. Fromer and C. Yanover. Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space. Proteins, 75(3): , May [3] A. R. Leach and A. P. Lemon. Exploring the conformational space of protein side chains using dead-end elimination and the A* algorithm. Proteins, 33(2): , Nov [4] C. Yanover and M. Fromer. Prediction of Low Energy Protein Side Chain Configurations Using Markov Random Fields. In T. Hamelryck, K. Mardia, and J. Ferkinghoff-Borg, editors, Bayesian Methods in Structural Bioinformatics, Statistics for Biology and Health, pages Springer Berlin Heidelberg, DOI: / [5] C. Yanover and Y. Weiss. Approximate inference and protein folding. In Advances in Neural Information Processing Systems, pages MIT Press,

9 size of rotameric conformation max product sum product A* 1BK2 1.18e BRS 1.67e C9O 3.77e CDL 5.68e CM1 3.73e CSP 5.02e CTF 3.95e DKT 3.94e CSE 8.35e CSK 4.09e MJC 4.36e NXB 2.61e FNA 3.02e GVP 1.51e HNG 3.77e L e LZ1 1.04e PIN 5.32e POH 8.02e SHF 1.05e SHG 2.13e TEN 6.17e UBI 2.43e DRI 7.26e PCY 2.34e RN2 3.68e TRX 9.02e Table 1: The lowest conformation found in different algorithms 8

Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space

Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space Pablo Gainza CPS 296: Topics in Computational Structural Biology Department of Computer

More information

12 : Variational Inference I

12 : Variational Inference I 10-708: Probabilistic Graphical Models, Spring 2015 12 : Variational Inference I Lecturer: Eric P. Xing Scribes: Fattaneh Jabbari, Eric Lei, Evan Shapiro 1 Introduction Probabilistic inference is one of

More information

Lecture 18 Generalized Belief Propagation and Free Energy Approximations

Lecture 18 Generalized Belief Propagation and Free Energy Approximations Lecture 18, Generalized Belief Propagation and Free Energy Approximations 1 Lecture 18 Generalized Belief Propagation and Free Energy Approximations In this lecture we talked about graphical models and

More information

UNDERSTANDING BELIEF PROPOGATION AND ITS GENERALIZATIONS

UNDERSTANDING BELIEF PROPOGATION AND ITS GENERALIZATIONS UNDERSTANDING BELIEF PROPOGATION AND ITS GENERALIZATIONS JONATHAN YEDIDIA, WILLIAM FREEMAN, YAIR WEISS 2001 MERL TECH REPORT Kristin Branson and Ian Fasel June 11, 2003 1. Inference Inference problems

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models David Sontag New York University Lecture 6, March 7, 2013 David Sontag (NYU) Graphical Models Lecture 6, March 7, 2013 1 / 25 Today s lecture 1 Dual decomposition 2 MAP inference

More information

Variational algorithms for marginal MAP

Variational algorithms for marginal MAP Variational algorithms for marginal MAP Alexander Ihler UC Irvine CIOG Workshop November 2011 Variational algorithms for marginal MAP Alexander Ihler UC Irvine CIOG Workshop November 2011 Work with Qiang

More information

Dual Decomposition for Inference

Dual Decomposition for Inference Dual Decomposition for Inference Yunshu Liu ASPITRG Research Group 2014-05-06 References: [1]. D. Sontag, A. Globerson and T. Jaakkola, Introduction to Dual Decomposition for Inference, Optimization for

More information

Undirected graphical models

Undirected graphical models Undirected graphical models Semantics of probabilistic models over undirected graphs Parameters of undirected models Example applications COMP-652 and ECSE-608, February 16, 2017 1 Undirected graphical

More information

13 : Variational Inference: Loopy Belief Propagation

13 : Variational Inference: Loopy Belief Propagation 10-708: Probabilistic Graphical Models 10-708, Spring 2014 13 : Variational Inference: Loopy Belief Propagation Lecturer: Eric P. Xing Scribes: Rajarshi Das, Zhengzhong Liu, Dishan Gupta 1 Introduction

More information

Inference as Optimization

Inference as Optimization Inference as Optimization Sargur Srihari srihari@cedar.buffalo.edu 1 Topics in Inference as Optimization Overview Exact Inference revisited The Energy Functional Optimizing the Energy Functional 2 Exact

More information

11 The Max-Product Algorithm

11 The Max-Product Algorithm Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.438 Algorithms for Inference Fall 2014 11 The Max-Product Algorithm In the previous lecture, we introduced

More information

CS281A/Stat241A Lecture 19

CS281A/Stat241A Lecture 19 CS281A/Stat241A Lecture 19 p. 1/4 CS281A/Stat241A Lecture 19 Junction Tree Algorithm Peter Bartlett CS281A/Stat241A Lecture 19 p. 2/4 Announcements My office hours: Tuesday Nov 3 (today), 1-2pm, in 723

More information

Markov Random Fields

Markov Random Fields Markov Random Fields Umamahesh Srinivas ipal Group Meeting February 25, 2011 Outline 1 Basic graph-theoretic concepts 2 Markov chain 3 Markov random field (MRF) 4 Gauss-Markov random field (GMRF), and

More information

Does Better Inference mean Better Learning?

Does Better Inference mean Better Learning? Does Better Inference mean Better Learning? Andrew E. Gelfand, Rina Dechter & Alexander Ihler Department of Computer Science University of California, Irvine {agelfand,dechter,ihler}@ics.uci.edu Abstract

More information

Side-chain positioning with integer and linear programming

Side-chain positioning with integer and linear programming Side-chain positioning with integer and linear programming Matt Labrum 1 Introduction One of the components of homology modeling and protein design is side-chain positioning (SCP) In [1], Kingsford, et

More information

Graphical Model Inference with Perfect Graphs

Graphical Model Inference with Perfect Graphs Graphical Model Inference with Perfect Graphs Tony Jebara Columbia University July 25, 2013 joint work with Adrian Weller Graphical models and Markov random fields We depict a graphical model G as a bipartite

More information

Course Notes: Topics in Computational. Structural Biology.

Course Notes: Topics in Computational. Structural Biology. Course Notes: Topics in Computational Structural Biology. Bruce R. Donald June, 2010 Copyright c 2012 Contents 11 Computational Protein Design 1 11.1 Introduction.........................................

More information

Probabilistic Graphical Models

Probabilistic Graphical Models School of Computer Science Probabilistic Graphical Models Variational Inference II: Mean Field Method and Variational Principle Junming Yin Lecture 15, March 7, 2012 X 1 X 1 X 1 X 1 X 2 X 3 X 2 X 2 X 3

More information

Probabilistic Graphical Models Lecture Notes Fall 2009

Probabilistic Graphical Models Lecture Notes Fall 2009 Probabilistic Graphical Models Lecture Notes Fall 2009 October 28, 2009 Byoung-Tak Zhang School of omputer Science and Engineering & ognitive Science, Brain Science, and Bioinformatics Seoul National University

More information

Walk-Sum Interpretation and Analysis of Gaussian Belief Propagation

Walk-Sum Interpretation and Analysis of Gaussian Belief Propagation Walk-Sum Interpretation and Analysis of Gaussian Belief Propagation Jason K. Johnson, Dmitry M. Malioutov and Alan S. Willsky Department of Electrical Engineering and Computer Science Massachusetts Institute

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Algorithms For Inference Fall 2014

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Algorithms For Inference Fall 2014 Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.438 Algorithms For Inference Fall 2014 Problem Set 3 Issued: Thursday, September 25, 2014 Due: Thursday,

More information

Directed and Undirected Graphical Models

Directed and Undirected Graphical Models Directed and Undirected Davide Bacciu Dipartimento di Informatica Università di Pisa bacciu@di.unipi.it Machine Learning: Neural Networks and Advanced Models (AA2) Last Lecture Refresher Lecture Plan Directed

More information

Machine Learning 4771

Machine Learning 4771 Machine Learning 4771 Instructor: Tony Jebara Topic 16 Undirected Graphs Undirected Separation Inferring Marginals & Conditionals Moralization Junction Trees Triangulation Undirected Graphs Separation

More information

Junction Tree, BP and Variational Methods

Junction Tree, BP and Variational Methods Junction Tree, BP and Variational Methods Adrian Weller MLSALT4 Lecture Feb 21, 2018 With thanks to David Sontag (MIT) and Tony Jebara (Columbia) for use of many slides and illustrations For more information,

More information

Approximating the Partition Function by Deleting and then Correcting for Model Edges (Extended Abstract)

Approximating the Partition Function by Deleting and then Correcting for Model Edges (Extended Abstract) Approximating the Partition Function by Deleting and then Correcting for Model Edges (Extended Abstract) Arthur Choi and Adnan Darwiche Computer Science Department University of California, Los Angeles

More information

13 : Variational Inference: Loopy Belief Propagation and Mean Field

13 : Variational Inference: Loopy Belief Propagation and Mean Field 10-708: Probabilistic Graphical Models 10-708, Spring 2012 13 : Variational Inference: Loopy Belief Propagation and Mean Field Lecturer: Eric P. Xing Scribes: Peter Schulam and William Wang 1 Introduction

More information

Clique trees & Belief Propagation. Siamak Ravanbakhsh Winter 2018

Clique trees & Belief Propagation. Siamak Ravanbakhsh Winter 2018 Graphical Models Clique trees & Belief Propagation Siamak Ravanbakhsh Winter 2018 Learning objectives message passing on clique trees its relation to variable elimination two different forms of belief

More information

Protein folding. α-helix. Lecture 21. An α-helix is a simple helix having on average 10 residues (3 turns of the helix)

Protein folding. α-helix. Lecture 21. An α-helix is a simple helix having on average 10 residues (3 turns of the helix) Computat onal Biology Lecture 21 Protein folding The goal is to determine the three-dimensional structure of a protein based on its amino acid sequence Assumption: amino acid sequence completely and uniquely

More information

Inference and Representation

Inference and Representation Inference and Representation David Sontag New York University Lecture 5, Sept. 30, 2014 David Sontag (NYU) Inference and Representation Lecture 5, Sept. 30, 2014 1 / 16 Today s lecture 1 Running-time of

More information

13: Variational inference II

13: Variational inference II 10-708: Probabilistic Graphical Models, Spring 2015 13: Variational inference II Lecturer: Eric P. Xing Scribes: Ronghuo Zheng, Zhiting Hu, Yuntian Deng 1 Introduction We started to talk about variational

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Lecture 9 Undirected Models CS/CNS/EE 155 Andreas Krause Announcements Homework 2 due next Wednesday (Nov 4) in class Start early!!! Project milestones due Monday (Nov 9)

More information

Chapter 8 Cluster Graph & Belief Propagation. Probabilistic Graphical Models 2016 Fall

Chapter 8 Cluster Graph & Belief Propagation. Probabilistic Graphical Models 2016 Fall Chapter 8 Cluster Graph & elief ropagation robabilistic Graphical Models 2016 Fall Outlines Variable Elimination 消元法 imple case: linear chain ayesian networks VE in complex graphs Inferences in HMMs and

More information

UC Berkeley Department of Electrical Engineering and Computer Science Department of Statistics. EECS 281A / STAT 241A Statistical Learning Theory

UC Berkeley Department of Electrical Engineering and Computer Science Department of Statistics. EECS 281A / STAT 241A Statistical Learning Theory UC Berkeley Department of Electrical Engineering and Computer Science Department of Statistics EECS 281A / STAT 241A Statistical Learning Theory Solutions to Problem Set 2 Fall 2011 Issued: Wednesday,

More information

Message Passing and Junction Tree Algorithms. Kayhan Batmanghelich

Message Passing and Junction Tree Algorithms. Kayhan Batmanghelich Message Passing and Junction Tree Algorithms Kayhan Batmanghelich 1 Review 2 Review 3 Great Ideas in ML: Message Passing Each soldier receives reports from all branches of tree 3 here 7 here 1 of me 11

More information

6.867 Machine learning, lecture 23 (Jaakkola)

6.867 Machine learning, lecture 23 (Jaakkola) Lecture topics: Markov Random Fields Probabilistic inference Markov Random Fields We will briefly go over undirected graphical models or Markov Random Fields (MRFs) as they will be needed in the context

More information

Graphical Models Another Approach to Generalize the Viterbi Algorithm

Graphical Models Another Approach to Generalize the Viterbi Algorithm Exact Marginalization Another Approach to Generalize the Viterbi Algorithm Oberseminar Bioinformatik am 20. Mai 2010 Institut für Mikrobiologie und Genetik Universität Göttingen mario@gobics.de 1.1 Undirected

More information

Bayesian Machine Learning - Lecture 7

Bayesian Machine Learning - Lecture 7 Bayesian Machine Learning - Lecture 7 Guido Sanguinetti Institute for Adaptive and Neural Computation School of Informatics University of Edinburgh gsanguin@inf.ed.ac.uk March 4, 2015 Today s lecture 1

More information

17 Variational Inference

17 Variational Inference Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.438 Algorithms for Inference Fall 2014 17 Variational Inference Prompted by loopy graphs for which exact

More information

5. Sum-product algorithm

5. Sum-product algorithm Sum-product algorithm 5-1 5. Sum-product algorithm Elimination algorithm Sum-product algorithm on a line Sum-product algorithm on a tree Sum-product algorithm 5-2 Inference tasks on graphical models consider

More information

Bayesian Learning in Undirected Graphical Models

Bayesian Learning in Undirected Graphical Models Bayesian Learning in Undirected Graphical Models Zoubin Ghahramani Gatsby Computational Neuroscience Unit University College London, UK http://www.gatsby.ucl.ac.uk/ Work with: Iain Murray and Hyun-Chul

More information

Probabilistic Graphical Models

Probabilistic Graphical Models 2016 Robert Nowak Probabilistic Graphical Models 1 Introduction We have focused mainly on linear models for signals, in particular the subspace model x = Uθ, where U is a n k matrix and θ R k is a vector

More information

Bio nformatics. Lecture 23. Saad Mneimneh

Bio nformatics. Lecture 23. Saad Mneimneh Bio nformatics Lecture 23 Protein folding The goal is to determine the three-dimensional structure of a protein based on its amino acid sequence Assumption: amino acid sequence completely and uniquely

More information

Variational Inference (11/04/13)

Variational Inference (11/04/13) STA561: Probabilistic machine learning Variational Inference (11/04/13) Lecturer: Barbara Engelhardt Scribes: Matt Dickenson, Alireza Samany, Tracy Schifeling 1 Introduction In this lecture we will further

More information

Inference in Graphical Models Variable Elimination and Message Passing Algorithm

Inference in Graphical Models Variable Elimination and Message Passing Algorithm Inference in Graphical Models Variable Elimination and Message Passing lgorithm Le Song Machine Learning II: dvanced Topics SE 8803ML, Spring 2012 onditional Independence ssumptions Local Markov ssumption

More information

9 Forward-backward algorithm, sum-product on factor graphs

9 Forward-backward algorithm, sum-product on factor graphs Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.438 Algorithms For Inference Fall 2014 9 Forward-backward algorithm, sum-product on factor graphs The previous

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Brown University CSCI 295-P, Spring 213 Prof. Erik Sudderth Lecture 11: Inference & Learning Overview, Gaussian Graphical Models Some figures courtesy Michael Jordan s draft

More information

COMPSCI 276 Fall 2007

COMPSCI 276 Fall 2007 Exact Inference lgorithms for Probabilistic Reasoning; OMPSI 276 Fall 2007 1 elief Updating Smoking lung ancer ronchitis X-ray Dyspnoea P lung cancer=yes smoking=no, dyspnoea=yes =? 2 Probabilistic Inference

More information

Introduction to Graphical Models. Srikumar Ramalingam School of Computing University of Utah

Introduction to Graphical Models. Srikumar Ramalingam School of Computing University of Utah Introduction to Graphical Models Srikumar Ramalingam School of Computing University of Utah Reference Christopher M. Bishop, Pattern Recognition and Machine Learning, Jonathan S. Yedidia, William T. Freeman,

More information

Probabilistic Graphical Models Homework 2: Due February 24, 2014 at 4 pm

Probabilistic Graphical Models Homework 2: Due February 24, 2014 at 4 pm Probabilistic Graphical Models 10-708 Homework 2: Due February 24, 2014 at 4 pm Directions. This homework assignment covers the material presented in Lectures 4-8. You must complete all four problems to

More information

Introduction to Probabilistic Graphical Models

Introduction to Probabilistic Graphical Models Introduction to Probabilistic Graphical Models Kyu-Baek Hwang and Byoung-Tak Zhang Biointelligence Lab School of Computer Science and Engineering Seoul National University Seoul 151-742 Korea E-mail: kbhwang@bi.snu.ac.kr

More information

Undirected Graphical Models

Undirected Graphical Models Undirected Graphical Models 1 Conditional Independence Graphs Let G = (V, E) be an undirected graph with vertex set V and edge set E, and let A, B, and C be subsets of vertices. We say that C separates

More information

3 : Representation of Undirected GM

3 : Representation of Undirected GM 10-708: Probabilistic Graphical Models 10-708, Spring 2016 3 : Representation of Undirected GM Lecturer: Eric P. Xing Scribes: Longqi Cai, Man-Chia Chang 1 MRF vs BN There are two types of graphical models:

More information

Part I. C. M. Bishop PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 8: GRAPHICAL MODELS

Part I. C. M. Bishop PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 8: GRAPHICAL MODELS Part I C. M. Bishop PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 8: GRAPHICAL MODELS Probabilistic Graphical Models Graphical representation of a probabilistic model Each variable corresponds to a

More information

Introduction to Graphical Models. Srikumar Ramalingam School of Computing University of Utah

Introduction to Graphical Models. Srikumar Ramalingam School of Computing University of Utah Introduction to Graphical Models Srikumar Ramalingam School of Computing University of Utah Reference Christopher M. Bishop, Pattern Recognition and Machine Learning, Jonathan S. Yedidia, William T. Freeman,

More information

Molecular Modeling Lecture 11 side chain modeling rotamers rotamer explorer buried cavities.

Molecular Modeling Lecture 11 side chain modeling rotamers rotamer explorer buried cavities. Molecular Modeling 218 Lecture 11 side chain modeling rotamers rotamer explorer buried cavities. Sidechain Rotamers Discrete approximation of the continuous space of backbone angles. Sidechain conformations

More information

Stat 521A Lecture 18 1

Stat 521A Lecture 18 1 Stat 521A Lecture 18 1 Outline Cts and discrete variables (14.1) Gaussian networks (14.2) Conditional Gaussian networks (14.3) Non-linear Gaussian networks (14.4) Sampling (14.5) 2 Hybrid networks A hybrid

More information

Probabilistic and Bayesian Machine Learning

Probabilistic and Bayesian Machine Learning Probabilistic and Bayesian Machine Learning Day 4: Expectation and Belief Propagation Yee Whye Teh ywteh@gatsby.ucl.ac.uk Gatsby Computational Neuroscience Unit University College London http://www.gatsby.ucl.ac.uk/

More information

Computational Protein Design

Computational Protein Design 11 Computational Protein Design This chapter introduces the automated protein design and experimental validation of a novel designed sequence, as described in Dahiyat and Mayo [1]. 11.1 Introduction Given

More information

Fractional Belief Propagation

Fractional Belief Propagation Fractional Belief Propagation im iegerinck and Tom Heskes S, niversity of ijmegen Geert Grooteplein 21, 6525 EZ, ijmegen, the etherlands wimw,tom @snn.kun.nl Abstract e consider loopy belief propagation

More information

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2016

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2016 Bayesian Networks: Construction, Inference, Learning and Causal Interpretation Volker Tresp Summer 2016 1 Introduction So far we were mostly concerned with supervised learning: we predicted one or several

More information

3 Undirected Graphical Models

3 Undirected Graphical Models Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.438 Algorithms For Inference Fall 2014 3 Undirected Graphical Models In this lecture, we discuss undirected

More information

Tightness of LP Relaxations for Almost Balanced Models

Tightness of LP Relaxations for Almost Balanced Models Tightness of LP Relaxations for Almost Balanced Models Adrian Weller University of Cambridge AISTATS May 10, 2016 Joint work with Mark Rowland and David Sontag For more information, see http://mlg.eng.cam.ac.uk/adrian/

More information

Statistical Approaches to Learning and Discovery

Statistical Approaches to Learning and Discovery Statistical Approaches to Learning and Discovery Graphical Models Zoubin Ghahramani & Teddy Seidenfeld zoubin@cs.cmu.edu & teddy@stat.cmu.edu CALD / CS / Statistics / Philosophy Carnegie Mellon University

More information

Linear Response for Approximate Inference

Linear Response for Approximate Inference Linear Response for Approximate Inference Max Welling Department of Computer Science University of Toronto Toronto M5S 3G4 Canada welling@cs.utoronto.ca Yee Whye Teh Computer Science Division University

More information

Variational Algorithms for Marginal MAP

Variational Algorithms for Marginal MAP Variational Algorithms for Marginal MAP Qiang Liu Department of Computer Science University of California, Irvine Irvine, CA, 92697 qliu1@ics.uci.edu Alexander Ihler Department of Computer Science University

More information

Course 16:198:520: Introduction To Artificial Intelligence Lecture 9. Markov Networks. Abdeslam Boularias. Monday, October 14, 2015

Course 16:198:520: Introduction To Artificial Intelligence Lecture 9. Markov Networks. Abdeslam Boularias. Monday, October 14, 2015 Course 16:198:520: Introduction To Artificial Intelligence Lecture 9 Markov Networks Abdeslam Boularias Monday, October 14, 2015 1 / 58 Overview Bayesian networks, presented in the previous lecture, are

More information

14 : Theory of Variational Inference: Inner and Outer Approximation

14 : Theory of Variational Inference: Inner and Outer Approximation 10-708: Probabilistic Graphical Models 10-708, Spring 2017 14 : Theory of Variational Inference: Inner and Outer Approximation Lecturer: Eric P. Xing Scribes: Maria Ryskina, Yen-Chia Hsu 1 Introduction

More information

Probabilistic Graphical Models (I)

Probabilistic Graphical Models (I) Probabilistic Graphical Models (I) Hongxin Zhang zhx@cad.zju.edu.cn State Key Lab of CAD&CG, ZJU 2015-03-31 Probabilistic Graphical Models Modeling many real-world problems => a large number of random

More information

Statistical Learning

Statistical Learning Statistical Learning Lecture 5: Bayesian Networks and Graphical Models Mário A. T. Figueiredo Instituto Superior Técnico & Instituto de Telecomunicações University of Lisbon, Portugal May 2018 Mário A.

More information

CMPS 6630: Introduction to Computational Biology and Bioinformatics. Tertiary Structure Prediction

CMPS 6630: Introduction to Computational Biology and Bioinformatics. Tertiary Structure Prediction CMPS 6630: Introduction to Computational Biology and Bioinformatics Tertiary Structure Prediction Tertiary Structure Prediction Why Should Tertiary Structure Prediction Be Possible? Molecules obey the

More information

Dynamic Approaches: The Hidden Markov Model

Dynamic Approaches: The Hidden Markov Model Dynamic Approaches: The Hidden Markov Model Davide Bacciu Dipartimento di Informatica Università di Pisa bacciu@di.unipi.it Machine Learning: Neural Networks and Advanced Models (AA2) Inference as Message

More information

Machine Learning for Data Science (CS4786) Lecture 24

Machine Learning for Data Science (CS4786) Lecture 24 Machine Learning for Data Science (CS4786) Lecture 24 Graphical Models: Approximate Inference Course Webpage : http://www.cs.cornell.edu/courses/cs4786/2016sp/ BELIEF PROPAGATION OR MESSAGE PASSING Each

More information

Fixed Point Solutions of Belief Propagation

Fixed Point Solutions of Belief Propagation Fixed Point Solutions of Belief Propagation Christian Knoll Signal Processing and Speech Comm. Lab. Graz University of Technology christian.knoll@tugraz.at Dhagash Mehta Dept of ACMS University of Notre

More information

Lecture 15. Probabilistic Models on Graph

Lecture 15. Probabilistic Models on Graph Lecture 15. Probabilistic Models on Graph Prof. Alan Yuille Spring 2014 1 Introduction We discuss how to define probabilistic models that use richly structured probability distributions and describe how

More information

CAP 5510 Lecture 3 Protein Structures

CAP 5510 Lecture 3 Protein Structures CAP 5510 Lecture 3 Protein Structures Su-Shing Chen Bioinformatics CISE 8/19/2005 Su-Shing Chen, CISE 1 Protein Conformation 8/19/2005 Su-Shing Chen, CISE 2 Protein Conformational Structures Hydrophobicity

More information

Expectation Propagation in Factor Graphs: A Tutorial

Expectation Propagation in Factor Graphs: A Tutorial DRAFT: Version 0.1, 28 October 2005. Do not distribute. Expectation Propagation in Factor Graphs: A Tutorial Charles Sutton October 28, 2005 Abstract Expectation propagation is an important variational

More information

Markov Networks. l Like Bayes Nets. l Graphical model that describes joint probability distribution using tables (AKA potentials)

Markov Networks. l Like Bayes Nets. l Graphical model that describes joint probability distribution using tables (AKA potentials) Markov Networks l Like Bayes Nets l Graphical model that describes joint probability distribution using tables (AKA potentials) l Nodes are random variables l Labels are outcomes over the variables Markov

More information

CSC 412 (Lecture 4): Undirected Graphical Models

CSC 412 (Lecture 4): Undirected Graphical Models CSC 412 (Lecture 4): Undirected Graphical Models Raquel Urtasun University of Toronto Feb 2, 2016 R Urtasun (UofT) CSC 412 Feb 2, 2016 1 / 37 Today Undirected Graphical Models: Semantics of the graph:

More information

Inference in Bayesian Networks

Inference in Bayesian Networks Andrea Passerini passerini@disi.unitn.it Machine Learning Inference in graphical models Description Assume we have evidence e on the state of a subset of variables E in the model (i.e. Bayesian Network)

More information

Bayesian Learning in Undirected Graphical Models

Bayesian Learning in Undirected Graphical Models Bayesian Learning in Undirected Graphical Models Zoubin Ghahramani Gatsby Computational Neuroscience Unit University College London, UK http://www.gatsby.ucl.ac.uk/ and Center for Automated Learning and

More information

Intelligent Systems:

Intelligent Systems: Intelligent Systems: Undirected Graphical models (Factor Graphs) (2 lectures) Carsten Rother 15/01/2015 Intelligent Systems: Probabilistic Inference in DGM and UGM Roadmap for next two lectures Definition

More information

14 : Theory of Variational Inference: Inner and Outer Approximation

14 : Theory of Variational Inference: Inner and Outer Approximation 10-708: Probabilistic Graphical Models 10-708, Spring 2014 14 : Theory of Variational Inference: Inner and Outer Approximation Lecturer: Eric P. Xing Scribes: Yu-Hsin Kuo, Amos Ng 1 Introduction Last lecture

More information

Random Field Models for Applications in Computer Vision

Random Field Models for Applications in Computer Vision Random Field Models for Applications in Computer Vision Nazre Batool Post-doctorate Fellow, Team AYIN, INRIA Sophia Antipolis Outline Graphical Models Generative vs. Discriminative Classifiers Markov Random

More information

Bayesian networks: approximate inference

Bayesian networks: approximate inference Bayesian networks: approximate inference Machine Intelligence Thomas D. Nielsen September 2008 Approximative inference September 2008 1 / 25 Motivation Because of the (worst-case) intractability of exact

More information

Introduction to graphical models: Lecture III

Introduction to graphical models: Lecture III Introduction to graphical models: Lecture III Martin Wainwright UC Berkeley Departments of Statistics, and EECS Martin Wainwright (UC Berkeley) Some introductory lectures January 2013 1 / 25 Introduction

More information

Pattern Theory and Its Applications

Pattern Theory and Its Applications Pattern Theory and Its Applications Rudolf Kulhavý Institute of Information Theory and Automation Academy of Sciences of the Czech Republic, Prague Ulf Grenander A Swedish mathematician, since 1966 with

More information

Alpha-helical Topology and Tertiary Structure Prediction of Globular Proteins Scott R. McAllister Christodoulos A. Floudas Princeton University

Alpha-helical Topology and Tertiary Structure Prediction of Globular Proteins Scott R. McAllister Christodoulos A. Floudas Princeton University Alpha-helical Topology and Tertiary Structure Prediction of Globular Proteins Scott R. McAllister Christodoulos A. Floudas Princeton University Department of Chemical Engineering Program of Applied and

More information

Independencies. Undirected Graphical Models 2: Independencies. Independencies (Markov networks) Independencies (Bayesian Networks)

Independencies. Undirected Graphical Models 2: Independencies. Independencies (Markov networks) Independencies (Bayesian Networks) (Bayesian Networks) Undirected Graphical Models 2: Use d-separation to read off independencies in a Bayesian network Takes a bit of effort! 1 2 (Markov networks) Use separation to determine independencies

More information

CMPS 3110: Bioinformatics. Tertiary Structure Prediction

CMPS 3110: Bioinformatics. Tertiary Structure Prediction CMPS 3110: Bioinformatics Tertiary Structure Prediction Tertiary Structure Prediction Why Should Tertiary Structure Prediction Be Possible? Molecules obey the laws of physics! Conformation space is finite

More information

CS 343: Artificial Intelligence

CS 343: Artificial Intelligence CS 343: Artificial Intelligence Bayes Nets: Sampling Prof. Scott Niekum The University of Texas at Austin [These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.

More information

4 : Exact Inference: Variable Elimination

4 : Exact Inference: Variable Elimination 10-708: Probabilistic Graphical Models 10-708, Spring 2014 4 : Exact Inference: Variable Elimination Lecturer: Eric P. ing Scribes: Soumya Batra, Pradeep Dasigi, Manzil Zaheer 1 Probabilistic Inference

More information

Peptides And Proteins

Peptides And Proteins Kevin Burgess, May 3, 2017 1 Peptides And Proteins from chapter(s) in the recommended text A. Introduction B. omenclature And Conventions by amide bonds. on the left, right. 2 -terminal C-terminal triglycine

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Lecture Notes Fall 2009 November, 2009 Byoung-Ta Zhang School of Computer Science and Engineering & Cognitive Science, Brain Science, and Bioinformatics Seoul National University

More information

arxiv: v1 [stat.ml] 26 Feb 2013

arxiv: v1 [stat.ml] 26 Feb 2013 Variational Algorithms for Marginal MAP Qiang Liu Donald Bren School of Information and Computer Sciences University of California, Irvine Irvine, CA, 92697-3425, USA qliu1@uci.edu arxiv:1302.6584v1 [stat.ml]

More information

Machine Learning Summer School

Machine Learning Summer School Machine Learning Summer School Lecture 3: Learning parameters and structure Zoubin Ghahramani zoubin@eng.cam.ac.uk http://learning.eng.cam.ac.uk/zoubin/ Department of Engineering University of Cambridge,

More information

Variational Inference. Sargur Srihari

Variational Inference. Sargur Srihari Variational Inference Sargur srihari@cedar.buffalo.edu 1 Plan of discussion We first describe inference with PGMs and the intractability of exact inference Then give a taxonomy of inference algorithms

More information

Message passing and approximate message passing

Message passing and approximate message passing Message passing and approximate message passing Arian Maleki Columbia University 1 / 47 What is the problem? Given pdf µ(x 1, x 2,..., x n ) we are interested in arg maxx1,x 2,...,x n µ(x 1, x 2,..., x

More information

EE512 Graphical Models Fall 2009

EE512 Graphical Models Fall 2009 EE512 Graphical Models Fall 2009 Prof. Jeff Bilmes University of Washington, Seattle Department of Electrical Engineering Fall Quarter, 2009 http://ssli.ee.washington.edu/~bilmes/ee512fa09 Lecture 3 -

More information

UNIVERSITY OF CALIFORNIA, IRVINE. Reasoning and Decisions in Probabilistic Graphical Models A Unified Framework DISSERTATION

UNIVERSITY OF CALIFORNIA, IRVINE. Reasoning and Decisions in Probabilistic Graphical Models A Unified Framework DISSERTATION UNIVERSITY OF CALIFORNIA, IRVINE Reasoning and Decisions in Probabilistic Graphical Models A Unified Framework DISSERTATION submitted in partial satisfaction of the requirements for the degree of DOCTOR

More information

Structured Variational Inference

Structured Variational Inference Structured Variational Inference Sargur srihari@cedar.buffalo.edu 1 Topics 1. Structured Variational Approximations 1. The Mean Field Approximation 1. The Mean Field Energy 2. Maximizing the energy functional:

More information