Turing Machines. Fall The Chinese University of Hong Kong. CSCI 3130: Formal languages and automata theory

Size: px
Start display at page:

Download "Turing Machines. Fall The Chinese University of Hong Kong. CSCI 3130: Formal languages and automata theory"

Transcription

1 The Chinese University of Hong Kong Fall 2011 CSCI 3130: Formal languages and automata theory Turing Machines Andrej Bogdanov

2 Turing Machines control head a b b input blanks Can both read from and write to the tape Head can move both left and right Tape is infinite Has two special states accept and reject

3 Example L 1 = {w#w: w {a, b}*} Strategy: Read and remember the first symbol Cross it off (x) Read the first symbol past # If they don t match, reject If they do, cross it off abbaa#abbaa xbbaa#abbaa xbbaa#abbaa xbbaa#xbbaa

4 Example L 1 = {w#w: w {a, b}*} Strategy: Look for the first uncrossed symbol Cross it off (x) Read the first uncrossed symbol past # If they match, cross it off, else reject At the end, there should be only xs and #s xbbaa#xbbaa xxbaa#xbbaa xxbaa#xbbaa xxbaa#xxbaa xxxxx#xxxxx If not, reject; otherwise, accept.

5 How Turing Machines operate current state a/bl q 1 q 2 a b a Replace a with b, and move head left new state a/bl q 1 q 2 a b b

6 Formal Definition A Turing Machine is (Q, Σ, Γ, δ, q 0, q acc, q rej ): Q is a finite set of states; Σ is the input alphabet not containing the blank symbol Γ is the tape alphabet (Σ Γ) including q 0 in Q is the start state; q acc, q rej in Q are the accepting and rejecting state δ is the transition function δ: (Q {q acc, q rej }) Γ Q Γ {L, R} Turing Machines are deterministic

7 Configurations A configuration consists of the current state, the head position, and tape contents configuration q 1 a b a abq 1 a q 1 a/br q acc q acc a b b abbq acc

8 Configurations We say configuration C yields C if the TM can go from C to C in one step abq 1 a yields abbq acc The start configuration of the TM on input w is q 0 w An accepting configuration is one that contains q acc ; A rejecting configuration is one that contains q rej

9 The language of a Turing Machine We say M accepts x if there exists a sequence of configurations C 0, C 1,..., C k where C 0 is starting C i yields C i+1 C k is accepting The language recognized by M is the set of all strings that M accepts

10 Looping Something strange can happen in a Turing Machine: / R q 0 q acc q rej Σ = {0, 1} input: ε This machine never halts Inputs can be divided into three types q acc q rej accept reject loop

11 Halting We say M halts on x if there exists a sequence of configurations C 0, C 1,..., C k where C 0 is starting C i yields C i+1 C k is accepting or rejecting A TM M is a decider if it halts on every input Language L is decidable if it is recognized by a TM that halts on every input

12 Programming Turing Machines Description of Turing Machine: L 1 = {w#w: w {a, b}*} Until you reach # and see a left-x Read and remember entry Write x Move right past # and past all xs If this entry is different, reject Otherwise Write x Move left past # and to right of first x If you see only xs followed by, accept xbbaa#xbbaa xxbaa#xbbaa xxbaa#xbbaa xxbaa#xxbaa xxbaa#xxbaa

13 Programming Turing Machines a/ar b/br x/xr L 1 = {w#w: w {a, b}*} q a1 x/xr #/#R 4 q a2 a/al b/bl x/xl a/al b/bl q 0 #/#R 1 q 1 / R 8 q acc q 2 #/#L 7 q 3 q rej everything else q b1 #/#R 4 q b2 a/ar b/br x/xr x/xr

14 Programming Turing Machines q 0 #/#R 1 a/ar b/br q a1 x/xr q 1 q b1 a/ar b/br #/#R / R 8 #/#R 4 4 x/xr q a2 q acc q b2 x/xr x/xr a/al b/bl x/xl q 2 #/#L 7 a/al b/bl q 3 input: aab#aab configurations: q 0 aab#aab xq a1 ab#aab xaq a1 b#aab xabq a1 #aab xab#q a2 aab xabq 2 #xab xaq 3 b#xab xq 3 ab#xab q 3 xab#xab xq 0 ab#xab

15 Programming Turing Machines L 2 = {a i b j c k : i j = k and i, j, k > 0 } High-level description of TM: For every a: Cross off the same number of bs and cs Uncross the crossed bs (but not the cs) Cross off this a If all as and cs are crossed off, accept. Σ = {a, b, c} Γ = {a, b, c, a, b, c, } aabbcccc aabbcccc aabbcccc aabbcccc aabbcccc aabbcccc aabbcccc aabbcccc

16 Programming Turing Machines L 2 = {a i b j c k : i j = k and i, j, k > 0 } Low-level description of TM: Scan input from left to right to check it looks like aa*bb*cc* Move the head to the first symbol of the tape For every a: how do we know? Cross off the same number of bs and cs Restore the crossed of bs (but not the cs) Cross off this a If all as and cs are crossed off, accept. how to do this?

17 Programming Turing Machines Implementation details: Move the head to the first symbol of the tape Put a special marker on top of first a Cross off the same number of bs and cs: Replace b by b Move right until you see a c Replace c by c Move left just past the last b If any bs are left, repeat Σ = {a, b, c} Γ = {a, b, c, a, b, c, a, a, } aabbcccc aabbcccc aaqbbcccc aabqbcccc aabbqcccc aabqbcccc aabbqcccc aabbcqccc aabbqcccc

18 Programming Turing Machines L 3 = {#x 1 #x 2...#x l : x i {0, 1}* and x i x j for each i j} High-level description of TM: #01#0011#1 On input w, For every pair of blocks x i and x j in w, Compare the blocks x i and x j If they are the same, reject. Otherwise, accept.

19 Programming Turing Machines L 3 = {#x 1 #x 2...#x l : x i {0, 1}* and x i x j for each i j} Low-level description: 0. If input is ε, or has exactly one #, accept. #01#0011# Place a mark on the leftmost # (i.e. replace # by #) and move right Place another mark on next unmarked # (If there are no more #, accept) #01#0011#1 #01#0011#1

20 Programming Turing Machines L 3 = {#x 1 #x 2...#x l : x i {0, 1}* and x i x j for each i j} 3. current state: Compare the two strings to the right of marked #. If there are same, reject #01#0011#1 #01#0011#1 4. Move the right # to the right If not possible, move the left # to the next # and put the right # on the next If not possible, accept #01#0011#1 5. Repeat Step 3 #01#0011#1

21 Programming Turing Machines L 3 = {#x 1 #x 2...#x l : x i {0, 1}* and x i x j for each i j} 3. Compare the two strings to the right of marked #. If there are same, reject 4. Move the right # to the right If not possible, move the left # to the next # and put the right # on the next If not possible, accept #01#0011#1 #01#0011#1 accept

22 How to describe Turing Machines? Unlike for DFAs, NFAs, PDAs, we rarely give complete state diagrams of Turing Machines Usually we give a high-level description: A recipe about the workings of the Turing Machine Just like in earlier chapters, practice makes perfect!

23 Programming Turing Machines L 4 = { G : G is a connected undirected graph} Q: How do we feed a graph into a Turing Machine? A: We represent it by a string, e.g (1,2,3,4)((1,4),(2,3),(3,4)(4,2)) Convention for describing graphs: (nodes)(edges) no node must repeat edges are pairs (node 1,node 2 )

24 Programming Turing Machines L 4 = { G : G is a connected undirected graph} On input G, 0. Verify that G is the description of a graph (no vertex repeats; edges only go between nodes) 1. Mark the first node of G 2. Repeat until no new nodes are marked: For each node, mark it if it is attached to an already marked node x 1 2 x 3 4 x x 3. If all nodes are marked accept, otherwise reject.

25 Programming Turing Machines L 4 = { G : G is a connected undirected graph} (1,2,3,4)((1,4)(2,3)(3,4)(4,2)) (1,2,3,4)((1,4)(2,3)(3,4)(4,2)) (1,2,3,4)((1,4)(2,3)(3,4)(4,2)) (1,2,3,4)((1,4)(2,3)(3,4)(4,2)) (1,2,3,4)((1,4)(2,3)(3,4)(4,2)) (1,2,3,4)((1,4)(2,3)(3,4)(4,2)) (1,2,3,4)((1,4)(2,3)(3,4)(4,2)) (1,2,3,4)((1,4)(2,3)(3,4)(4,2)) (1,2,3,4)((1,4)(2,3)(3,4)(4,2)) (1,2,3,4)((1,4)(2,3)(3,4)(4,2)) etc.

26 The Church-Turing Thesis All arguments [for the CT Thesis] which can be given are bound to be, fundamentally, appeals to intuition, and for this reason rather unsatisfactory mathematically. The arguments which I shall use are of three kinds: 1. A direct appeal to intuition 2. A proof of the equivalence of two definitions (In case the new definition has greater intuitive appeal) 3. Giving examples of large classes of numbers which are computable. 1936: On Computable Numbers, with an Application to the Entscheidungsproblem Section 9. The extent of the computable numbers

CS5371 Theory of Computation. Lecture 10: Computability Theory I (Turing Machine)

CS5371 Theory of Computation. Lecture 10: Computability Theory I (Turing Machine) CS537 Theory of Computation Lecture : Computability Theory I (Turing Machine) Objectives Introduce the Turing Machine (TM) Proposed by Alan Turing in 936 finite-state control + infinitely long tape A stronger

More information

CS5371 Theory of Computation. Lecture 10: Computability Theory I (Turing Machine)

CS5371 Theory of Computation. Lecture 10: Computability Theory I (Turing Machine) CS537 Theory of Computation Lecture : Computability Theory I (Turing Machine) Objectives Introduce the Turing Machine (TM)? Proposed by Alan Turing in 936 finite-state control + infinitely long tape A

More information

Decidable and undecidable languages

Decidable and undecidable languages The Chinese University of Hong Kong Fall 2011 CSCI 3130: Formal languages and automata theory Decidable and undecidable languages Andrej Bogdanov http://www.cse.cuhk.edu.hk/~andrejb/csc3130 Problems about

More information

1 Unrestricted Computation

1 Unrestricted Computation 1 Unrestricted Computation General Computing Machines Machines so far: DFAs, NFAs, PDAs Limitations on how much memory they can use: fixed amount of memory plus (for PDAs) a stack Limitations on what they

More information

Turing Machines. Our most powerful model of a computer is the Turing Machine. This is an FA with an infinite tape for storage.

Turing Machines. Our most powerful model of a computer is the Turing Machine. This is an FA with an infinite tape for storage. Turing Machines Our most powerful model of a computer is the Turing Machine. This is an FA with an infinite tape for storage. A Turing Machine A Turing Machine (TM) has three components: An infinite tape

More information

Turing Machines A Turing Machine is a 7-tuple, (Q, Σ, Γ, δ, q0, qaccept, qreject), where Q, Σ, Γ are all finite

Turing Machines A Turing Machine is a 7-tuple, (Q, Σ, Γ, δ, q0, qaccept, qreject), where Q, Σ, Γ are all finite The Church-Turing Thesis CS60001: Foundations of Computing Science Professor, Dept. of Computer Sc. & Engg., Turing Machines A Turing Machine is a 7-tuple, (Q, Σ, Γ, δ, q 0, q accept, q reject ), where

More information

Chapter 3: The Church-Turing Thesis

Chapter 3: The Church-Turing Thesis Chapter 3: The Church-Turing Thesis 1 Turing Machine (TM) Control... Bi-direction Read/Write Turing machine is a much more powerful model, proposed by Alan Turing in 1936. 2 Church/Turing Thesis Anything

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION Fall 2016 http://cseweb.ucsd.edu/classes/fa16/cse105-abc/ Today's learning goals Sipser Ch 3 Trace the computation of a Turing machine using its transition function and configurations.

More information

CSCE 551 Final Exam, Spring 2004 Answer Key

CSCE 551 Final Exam, Spring 2004 Answer Key CSCE 551 Final Exam, Spring 2004 Answer Key 1. (10 points) Using any method you like (including intuition), give the unique minimal DFA equivalent to the following NFA: 0 1 2 0 5 1 3 4 If your answer is

More information

Introduction to Turing Machines

Introduction to Turing Machines Introduction to Turing Machines Deepak D Souza Department of Computer Science and Automation Indian Institute of Science, Bangalore. 12 November 2015 Outline 1 Turing Machines 2 Formal definitions 3 Computability

More information

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY 15-453 FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY Chomsky Normal Form and TURING MACHINES TUESDAY Feb 4 CHOMSKY NORMAL FORM A context-free grammar is in Chomsky normal form if every rule is of the form:

More information

Advanced topic: Space complexity

Advanced topic: Space complexity Advanced topic: Space complexity CSCI 3130 Formal Languages and Automata Theory Siu On CHAN Chinese University of Hong Kong Fall 2016 1/28 Review: time complexity We have looked at how long it takes to

More information

Chomsky Normal Form and TURING MACHINES. TUESDAY Feb 4

Chomsky Normal Form and TURING MACHINES. TUESDAY Feb 4 Chomsky Normal Form and TURING MACHINES TUESDAY Feb 4 CHOMSKY NORMAL FORM A context-free grammar is in Chomsky normal form if every rule is of the form: A BC A a S ε B and C aren t start variables a is

More information

Turing Machines (TM) Deterministic Turing Machine (DTM) Nondeterministic Turing Machine (NDTM)

Turing Machines (TM) Deterministic Turing Machine (DTM) Nondeterministic Turing Machine (NDTM) Turing Machines (TM) Deterministic Turing Machine (DTM) Nondeterministic Turing Machine (NDTM) 1 Deterministic Turing Machine (DTM).. B B 0 1 1 0 0 B B.. Finite Control Two-way, infinite tape, broken into

More information

Reducability. Sipser, pages

Reducability. Sipser, pages Reducability Sipser, pages 187-214 Reduction Reduction encodes (transforms) one problem as a second problem. A solution to the second, can be transformed into a solution to the first. We expect both transformations

More information

Introduction to Turing Machines. Reading: Chapters 8 & 9

Introduction to Turing Machines. Reading: Chapters 8 & 9 Introduction to Turing Machines Reading: Chapters 8 & 9 1 Turing Machines (TM) Generalize the class of CFLs: Recursively Enumerable Languages Recursive Languages Context-Free Languages Regular Languages

More information

Griffith University 3130CIT Theory of Computation (Based on slides by Harald Søndergaard of The University of Melbourne) Turing Machines 9-0

Griffith University 3130CIT Theory of Computation (Based on slides by Harald Søndergaard of The University of Melbourne) Turing Machines 9-0 Griffith University 3130CIT Theory of Computation (Based on slides by Harald Søndergaard of The University of Melbourne) Turing Machines 9-0 Turing Machines Now for a machine model of much greater power.

More information

An example of a decidable language that is not a CFL Implementation-level description of a TM State diagram of TM

An example of a decidable language that is not a CFL Implementation-level description of a TM State diagram of TM Turing Machines Review An example of a decidable language that is not a CFL Implementation-level description of a TM State diagram of TM Varieties of TMs Multi-Tape TMs Nondeterministic TMs String Enumerators

More information

FORMAL LANGUAGES, AUTOMATA AND COMPUTATION

FORMAL LANGUAGES, AUTOMATA AND COMPUTATION FORMAL LANGUAGES, AUTOMATA AND COMPUTATION DECIDABILITY ( LECTURE 15) SLIDES FOR 15-453 SPRING 2011 1 / 34 TURING MACHINES-SYNOPSIS The most general model of computation Computations of a TM are described

More information

CS5371 Theory of Computation. Lecture 12: Computability III (Decidable Languages relating to DFA, NFA, and CFG)

CS5371 Theory of Computation. Lecture 12: Computability III (Decidable Languages relating to DFA, NFA, and CFG) CS5371 Theory of Computation Lecture 12: Computability III (Decidable Languages relating to DFA, NFA, and CFG) Objectives Recall that decidable languages are languages that can be decided by TM (that means,

More information

CSCC63 Worksheet Turing Machines

CSCC63 Worksheet Turing Machines 1 An Example CSCC63 Worksheet Turing Machines Goal. Design a turing machine, M that accepts only strings of the form {w#w w {0, 1} }. Idea. Describe in words how the machine would work. Read first symbol

More information

V Honors Theory of Computation

V Honors Theory of Computation V22.0453-001 Honors Theory of Computation Problem Set 3 Solutions Problem 1 Solution: The class of languages recognized by these machines is the exactly the class of regular languages, thus this TM variant

More information

CS4026 Formal Models of Computation

CS4026 Formal Models of Computation CS4026 Formal Models of Computation Turing Machines Turing Machines Abstract but accurate model of computers Proposed by Alan Turing in 1936 There weren t computers back then! Turing s motivation: find

More information

CS21 Decidability and Tractability

CS21 Decidability and Tractability CS21 Decidability and Tractability Lecture 8 January 24, 2018 Outline Turing Machines and variants multitape TMs nondeterministic TMs Church-Turing Thesis So far several models of computation finite automata

More information

More Turing Machines. CS154 Chris Pollett Mar 15, 2006.

More Turing Machines. CS154 Chris Pollett Mar 15, 2006. More Turing Machines CS154 Chris Pollett Mar 15, 2006. Outline Multitape Turing Machines Nondeterministic Turing Machines Enumerators Introduction There have been many different proposals for what it means

More information

Busch Complexity Lectures: Turing Machines. Prof. Busch - LSU 1

Busch Complexity Lectures: Turing Machines. Prof. Busch - LSU 1 Busch Complexity ectures: Turing Machines Prof. Busch - SU 1 The anguage Hierarchy a n b n c n? ww? Context-Free anguages n b n a ww egular anguages a* a *b* Prof. Busch - SU 2 a n b anguages accepted

More information

Turing Machines Part III

Turing Machines Part III Turing Machines Part III Announcements Problem Set 6 due now. Problem Set 7 out, due Monday, March 4. Play around with Turing machines, their powers, and their limits. Some problems require Wednesday's

More information

Automata Theory CS S-12 Turing Machine Modifications

Automata Theory CS S-12 Turing Machine Modifications Automata Theory CS411-2015S-12 Turing Machine Modifications David Galles Department of Computer Science University of San Francisco 12-0: Extending Turing Machines When we added a stack to NFA to get a

More information

CS 301. Lecture 18 Decidable languages. Stephen Checkoway. April 2, 2018

CS 301. Lecture 18 Decidable languages. Stephen Checkoway. April 2, 2018 CS 301 Lecture 18 Decidable languages Stephen Checkoway April 2, 2018 1 / 26 Decidable language Recall, a language A is decidable if there is some TM M that 1 recognizes A (i.e., L(M) = A), and 2 halts

More information

Further discussion of Turing machines

Further discussion of Turing machines Further discussion of Turing machines In this lecture we will discuss various aspects of decidable and Turing-recognizable languages that were not mentioned in previous lectures. In particular, we will

More information

Testing Emptiness of a CFL. Testing Finiteness of a CFL. Testing Membership in a CFL. CYK Algorithm

Testing Emptiness of a CFL. Testing Finiteness of a CFL. Testing Membership in a CFL. CYK Algorithm Testing Emptiness of a CFL As for regular languages, we really take a representation of some language and ask whether it represents φ Can use either CFG or PDA Our choice, since there are algorithms to

More information

Homework 5 Solution CSCI 2670 October 6, c) New text q 1 1##1 xq 3 ##1 x#q 5 #1 q reject. Old text. ~q 3 ##1 ~#q 5 #1

Homework 5 Solution CSCI 2670 October 6, c) New text q 1 1##1 xq 3 ##1 x#q 5 #1 q reject. Old text. ~q 3 ##1 ~#q 5 #1 Homework 5 Solution CSCI 2670 October 6, 2005 3.2 c) New text q 1 1##1 xq 3 ##1 x#q 5 #1 q reject Old text q 1 1##1 ~q 3 ##1 ~#q 5 #1 q reject 3.2 e) New text q 1 10#10 xq 3 0#10 x0q 3 #10 x0#q 5 10 x0q

More information

1 Showing Recognizability

1 Showing Recognizability CSCC63 Worksheet Recognizability and Decidability 1 1 Showing Recognizability 1.1 An Example - take 1 Let Σ be an alphabet. L = { M M is a T M and L(M) }, i.e., that M accepts some string from Σ. Prove

More information

Homework Assignment 6 Answers

Homework Assignment 6 Answers Homework Assignment 6 Answers CSCI 2670 Introduction to Theory of Computing, Fall 2016 December 2, 2016 This homework assignment is about Turing machines, decidable languages, Turing recognizable languages,

More information

Undecidability COMS Ashley Montanaro 4 April Department of Computer Science, University of Bristol Bristol, UK

Undecidability COMS Ashley Montanaro 4 April Department of Computer Science, University of Bristol Bristol, UK COMS11700 Undecidability Department of Computer Science, University of Bristol Bristol, UK 4 April 2014 COMS11700: Undecidability Slide 1/29 Decidability We are particularly interested in Turing machines

More information

Lecture 12: Mapping Reductions

Lecture 12: Mapping Reductions Lecture 12: Mapping Reductions October 18, 2016 CS 1010 Theory of Computation Topics Covered 1. The Language EQ T M 2. Mapping Reducibility 3. The Post Correspondence Problem 1 The Language EQ T M The

More information

Part I: Definitions and Properties

Part I: Definitions and Properties Turing Machines Part I: Definitions and Properties Finite State Automata Deterministic Automata (DFSA) M = {Q, Σ, δ, q 0, F} -- Σ = Symbols -- Q = States -- q 0 = Initial State -- F = Accepting States

More information

CSCE 551: Chin-Tser Huang. University of South Carolina

CSCE 551: Chin-Tser Huang. University of South Carolina CSCE 551: Theory of Computation Chin-Tser Huang huangct@cse.sc.edu University of South Carolina Church-Turing Thesis The definition of the algorithm came in the 1936 papers of Alonzo Church h and Alan

More information

CSCI 2200 Foundations of Computer Science Spring 2018 Quiz 3 (May 2, 2018) SOLUTIONS

CSCI 2200 Foundations of Computer Science Spring 2018 Quiz 3 (May 2, 2018) SOLUTIONS CSCI 2200 Foundations of Computer Science Spring 2018 Quiz 3 (May 2, 2018) SOLUTIONS 1. [6 POINTS] For language L 1 = {0 n 1 m n, m 1, m n}, which string is in L 1? ANSWER: 0001111 is in L 1 (with n =

More information

CSCI3390-Assignment 2 Solutions

CSCI3390-Assignment 2 Solutions CSCI3390-Assignment 2 Solutions due February 3, 2016 1 TMs for Deciding Languages Write the specification of a Turing machine recognizing one of the following three languages. Do one of these problems.

More information

TURING MAHINES

TURING MAHINES 15-453 TURING MAHINES TURING MACHINE FINITE STATE q 10 CONTROL AI N P U T INFINITE TAPE read write move 0 0, R, R q accept, R q reject 0 0, R 0 0, R, L read write move 0 0, R, R q accept, R 0 0, R 0 0,

More information

Harvard CS 121 and CSCI E-121 Lecture 14: Turing Machines and the Church Turing Thesis

Harvard CS 121 and CSCI E-121 Lecture 14: Turing Machines and the Church Turing Thesis Harvard CS 121 and CSCI E-121 Lecture 14: Turing Machines and the Church Turing Thesis Harry Lewis October 22, 2013 Reading: Sipser, 3.2, 3.3. The Basic Turing Machine The Basic Turing Machine a a b a

More information

Theory of Computation (IX) Yijia Chen Fudan University

Theory of Computation (IX) Yijia Chen Fudan University Theory of Computation (IX) Yijia Chen Fudan University Review The Definition of Algorithm Polynomials and their roots A polynomial is a sum of terms, where each term is a product of certain variables and

More information

What languages are Turing-decidable? What languages are not Turing-decidable? Is there a language that isn t even Turingrecognizable?

What languages are Turing-decidable? What languages are not Turing-decidable? Is there a language that isn t even Turingrecognizable? } We ll now take a look at Turing Machines at a high level and consider what types of problems can be solved algorithmically and what types can t: What languages are Turing-decidable? What languages are

More information

Computability Theory

Computability Theory CS:4330 Theory of Computation Spring 2018 Computability Theory Decidable Languages Haniel Barbosa Readings for this lecture Chapter 4 of [Sipser 1996], 3rd edition. Section 4.1. Decidable Languages We

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION "Winter" 2018 http://cseweb.ucsd.edu/classes/wi18/cse105-ab/ Today's learning goals Sipser Section 4.1 Explain what it means for a problem to be decidable. Justify the use

More information

Turing Machines Part II

Turing Machines Part II Turing Machines Part II COMP2600 Formal Methods for Software Engineering Katya Lebedeva Australian National University Semester 2, 2016 Slides created by Katya Lebedeva COMP 2600 Turing Machines 1 Why

More information

An example of a decidable language that is not a CFL Implementation-level description of a TM State diagram of TM

An example of a decidable language that is not a CFL Implementation-level description of a TM State diagram of TM Turing Machines Review An example of a decidable language that is not a CFL Implementation-level description of a TM State diagram of TM Varieties of TMs Multi-Tape TMs Nondeterministic TMs String Enumerators

More information

Turing Machines. The Language Hierarchy. Context-Free Languages. Regular Languages. Courtesy Costas Busch - RPI 1

Turing Machines. The Language Hierarchy. Context-Free Languages. Regular Languages. Courtesy Costas Busch - RPI 1 Turing Machines a n b n c The anguage Hierarchy n? ww? Context-Free anguages a n b n egular anguages a * a *b* ww Courtesy Costas Busch - PI a n b n c n Turing Machines anguages accepted by Turing Machines

More information

Exam Computability and Complexity

Exam Computability and Complexity Total number of points:... Number of extra sheets of paper:... Exam Computability and Complexity by Jiri Srba, January 2009 Student s full name CPR number Study number Before you start, fill in the three

More information

Computability and Complexity

Computability and Complexity Computability and Complexity Lecture 5 Reductions Undecidable problems from language theory Linear bounded automata given by Jiri Srba Lecture 5 Computability and Complexity 1/14 Reduction Informal Definition

More information

Theory of Computation

Theory of Computation Theory of Computation Lecture #6 Sarmad Abbasi Virtual University Sarmad Abbasi (Virtual University) Theory of Computation 1 / 39 Lecture 6: Overview Prove the equivalence of enumerators and TMs. Dovetailing

More information

Midterm Exam 2 CS 341: Foundations of Computer Science II Fall 2016, face-to-face day section Prof. Marvin K. Nakayama

Midterm Exam 2 CS 341: Foundations of Computer Science II Fall 2016, face-to-face day section Prof. Marvin K. Nakayama Midterm Exam 2 CS 341: Foundations of Computer Science II Fall 2016, face-to-face day section Prof. Marvin K. Nakayama Print family (or last) name: Print given (or first) name: I have read and understand

More information

Recap DFA,NFA, DTM. Slides by Prof. Debasis Mitra, FIT.

Recap DFA,NFA, DTM. Slides by Prof. Debasis Mitra, FIT. Recap DFA,NFA, DTM Slides by Prof. Debasis Mitra, FIT. 1 Formal Language Finite set of alphabets Σ: e.g., {0, 1}, {a, b, c}, { {, } } Language L is a subset of strings on Σ, e.g., {00, 110, 01} a finite

More information

Turing Machines Part II

Turing Machines Part II Turing Machines Part II Hello Hello Condensed Slide Slide Readers! Readers! This This lecture lecture is is almost almost entirely entirely animations that that show show how how each each Turing Turing

More information

Turing Machines (TM) The Turing machine is the ultimate model of computation.

Turing Machines (TM) The Turing machine is the ultimate model of computation. TURING MACHINES Turing Machines (TM) The Turing machine is the ultimate model of computation. Alan Turing (92 954), British mathematician/engineer and one of the most influential scientists of the last

More information

Computability Theory. CS215, Lecture 6,

Computability Theory. CS215, Lecture 6, Computability Theory CS215, Lecture 6, 2000 1 The Birth of Turing Machines At the end of the 19th century, Gottlob Frege conjectured that mathematics could be built from fundamental logic In 1900 David

More information

Midterm Exam 2 CS 341: Foundations of Computer Science II Fall 2018, face-to-face day section Prof. Marvin K. Nakayama

Midterm Exam 2 CS 341: Foundations of Computer Science II Fall 2018, face-to-face day section Prof. Marvin K. Nakayama Midterm Exam 2 CS 341: Foundations of Computer Science II Fall 2018, face-to-face day section Prof. Marvin K. Nakayama Print family (or last) name: Print given (or first) name: I have read and understand

More information

Turing Machines. 22c:135 Theory of Computation. Tape of a Turing Machine (TM) TM versus FA, PDA

Turing Machines. 22c:135 Theory of Computation. Tape of a Turing Machine (TM) TM versus FA, PDA Turing Machines A Turing machine is similar to a finite automaton with supply of unlimited memory. A Turing machine can do everything that any computing device can do. There exist problems that even a

More information

Turing machines COMS Ashley Montanaro 21 March Department of Computer Science, University of Bristol Bristol, UK

Turing machines COMS Ashley Montanaro 21 March Department of Computer Science, University of Bristol Bristol, UK COMS11700 Turing machines Department of Computer Science, University of Bristol Bristol, UK 21 March 2014 COMS11700: Turing machines Slide 1/15 Introduction We have seen two models of computation: finite

More information

CS20a: Turing Machines (Oct 29, 2002)

CS20a: Turing Machines (Oct 29, 2002) CS20a: Turing Machines (Oct 29, 2002) So far: DFA = regular languages PDA = context-free languages Today: Computability 1 Church s thesis The computable functions are the same as the partial recursive

More information

ECS 120 Lesson 15 Turing Machines, Pt. 1

ECS 120 Lesson 15 Turing Machines, Pt. 1 ECS 120 Lesson 15 Turing Machines, Pt. 1 Oliver Kreylos Wednesday, May 2nd, 2001 Before we can start investigating the really interesting problems in theoretical computer science, we have to introduce

More information

Turing Machines Part One

Turing Machines Part One Turing Machines Part One What problems can we solve with a computer? Regular Languages CFLs Languages recognizable by any feasible computing machine All Languages That same drawing, to scale. All Languages

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION Spring 2016 http://cseweb.ucsd.edu/classes/sp16/cse105-ab/ Today's learning goals Sipser Ch 2 Design a PDA and a CFG for a given language Give informal description for a PDA,

More information

CSE355 SUMMER 2018 LECTURES TURING MACHINES AND (UN)DECIDABILITY

CSE355 SUMMER 2018 LECTURES TURING MACHINES AND (UN)DECIDABILITY CSE355 SUMMER 2018 LECTURES TURING MACHINES AND (UN)DECIDABILITY RYAN DOUGHERTY If we want to talk about a program running on a real computer, consider the following: when a program reads an instruction,

More information

Decidability (What, stuff is unsolvable?)

Decidability (What, stuff is unsolvable?) University of Georgia Fall 2014 Outline Decidability Decidable Problems for Regular Languages Decidable Problems for Context Free Languages The Halting Problem Countable and Uncountable Sets Diagonalization

More information

Turing Machines. Lecture 8

Turing Machines. Lecture 8 Turing Machines Lecture 8 1 Course Trajectory We will see algorithms, what can be done. But what cannot be done? 2 Computation Problem: To compute a function F that maps each input (a string) to an output

More information

Decidable Languages - relationship with other classes.

Decidable Languages - relationship with other classes. CSE2001, Fall 2006 1 Last time we saw some examples of decidable languages (or, solvable problems). Today we will start by looking at the relationship between the decidable languages, and the regular and

More information

The Church-Turing Thesis

The Church-Turing Thesis The Church-Turing Thesis Huan Long Shanghai Jiao Tong University Acknowledgements Part of the slides comes from a similar course in Fudan University given by Prof. Yijia Chen. http://basics.sjtu.edu.cn/

More information

Complexity Theory Part I

Complexity Theory Part I Complexity Theory Part I Problem Problem Set Set 77 due due right right now now using using a late late period period The Limits of Computability EQ TM EQ TM co-re R RE L D ADD L D HALT A TM HALT A TM

More information

Turing Machines. Nicholas Geis. February 5, 2015

Turing Machines. Nicholas Geis. February 5, 2015 Turing Machines Nicholas Geis February 5, 2015 Disclaimer: This portion of the notes does not talk about Cellular Automata or Dynamical Systems, it talks about turing machines, however this will lay the

More information

CS 301. Lecture 17 Church Turing thesis. Stephen Checkoway. March 19, 2018

CS 301. Lecture 17 Church Turing thesis. Stephen Checkoway. March 19, 2018 CS 301 Lecture 17 Church Turing thesis Stephen Checkoway March 19, 2018 1 / 17 An abridged modern history of formalizing algorithms An algorithm is a finite, unambiguous sequence of steps for solving a

More information

7.2 Turing Machines as Language Acceptors 7.3 Turing Machines that Compute Partial Functions

7.2 Turing Machines as Language Acceptors 7.3 Turing Machines that Compute Partial Functions CSC4510/6510 AUTOMATA 7.1 A General Model of Computation 7.2 Turing Machines as Language Acceptors 7.3 Turing Machines that Compute Partial Functions A General Model of Computation Both FA and PDA are

More information

Fundamentals of Computer Science

Fundamentals of Computer Science Fundamentals of Computer Science Chapter 8: Turing machines Henrik Björklund Umeå University February 17, 2014 The power of automata Finite automata have only finite memory. They recognize the regular

More information

Equivalent Variations of Turing Machines

Equivalent Variations of Turing Machines Equivalent Variations of Turing Machines Nondeterministic TM = deterministic TM npda = pushdown automata with n stacks 2PDA = npda = TM for all n 2 Turing machines with n tapes (n 2) and n tape heads has

More information

UNIT-VIII COMPUTABILITY THEORY

UNIT-VIII COMPUTABILITY THEORY CONTEXT SENSITIVE LANGUAGE UNIT-VIII COMPUTABILITY THEORY A Context Sensitive Grammar is a 4-tuple, G = (N, Σ P, S) where: N Set of non terminal symbols Σ Set of terminal symbols S Start symbol of the

More information

Turing Machine Variants

Turing Machine Variants CS311 Computational Structures Turing Machine Variants Lecture 12 Andrew Black Andrew Tolmach 1 The Church-Turing Thesis The problems that can be decided by an algorithm are exactly those that can be decided

More information

CA320 - Computability & Complexity

CA320 - Computability & Complexity CA320 - Computability & Complexity David Sinclair Context-Sensitive Grammars An unrestricted grammar is a 4-tuple G = (V,Σ,S,P), where V and Σ are disjoint sets of variables and terminals respectively.

More information

COMP/MATH 300 Topics for Spring 2017 June 5, Review and Regular Languages

COMP/MATH 300 Topics for Spring 2017 June 5, Review and Regular Languages COMP/MATH 300 Topics for Spring 2017 June 5, 2017 Review and Regular Languages Exam I I. Introductory and review information from Chapter 0 II. Problems and Languages A. Computable problems can be expressed

More information

Midterm II : Formal Languages, Automata, and Computability

Midterm II : Formal Languages, Automata, and Computability Midterm II 15-453: Formal Languages, Automata, and Computability Lenore Blum, Asa Frank, Aashish Jindia, and Andrew Smith April 8, 2014 Instructions: 1. Once the exam begins, write your name on each sheet.

More information

Decidability (intro.)

Decidability (intro.) CHAPTER 4 Decidability Contents Decidable Languages decidable problems concerning regular languages decidable problems concerning context-free languages The Halting Problem The diagonalization method The

More information

Turing Machines Part II

Turing Machines Part II Turing Machines Part II Problem Set Set Five Five due due in in the the box box up up front front using using a late late day. day. Hello Hello Condensed Slide Slide Readers! Readers! This This lecture

More information

SE 3310b Theoretical Foundations of Software Engineering. Turing Machines. Aleksander Essex

SE 3310b Theoretical Foundations of Software Engineering. Turing Machines. Aleksander Essex SE 3310b Theoretical Foundations of Software Engineering Turing Machines Aleksander Essex 1 / 1 Turing Machines 2 / 1 Introduction We ve finally arrived at a complete model of computation: Turing machines.

More information

Let us first give some intuitive idea about a state of a system and state transitions before describing finite automata.

Let us first give some intuitive idea about a state of a system and state transitions before describing finite automata. Finite Automata Automata (singular: automation) are a particularly simple, but useful, model of computation. They were initially proposed as a simple model for the behavior of neurons. The concept of a

More information

CS20a: Turing Machines (Oct 29, 2002)

CS20a: Turing Machines (Oct 29, 2002) CS20a: Turing Machines (Oct 29, 2002) So far: DFA = regular languages PDA = context-free languages Today: Computability 1 Handicapped machines DFA limitations Tape head moves only one direction 2-way DFA

More information

CSCE 551 Final Exam, April 28, 2016 Answer Key

CSCE 551 Final Exam, April 28, 2016 Answer Key CSCE 551 Final Exam, April 28, 2016 Answer Key 1. (15 points) Fix any alphabet Σ containing the symbol a. For any language L Σ, define the language a\l := {w Σ wa L}. Show that if L is regular, then a\l

More information

Rumination on the Formal Definition of DPDA

Rumination on the Formal Definition of DPDA Rumination on the Formal Definition of DPDA In the definition of DPDA, there are some parts that do not agree with our intuition. Let M = (Q, Σ, Γ, δ, q 0, Z 0, F ) be a DPDA. According to the definition,

More information

CS154, Lecture 10: Rice s Theorem, Oracle Machines

CS154, Lecture 10: Rice s Theorem, Oracle Machines CS154, Lecture 10: Rice s Theorem, Oracle Machines Moral: Analyzing Programs is Really, Really Hard But can we more easily tell when some program analysis problem is undecidable? Problem 1 Undecidable

More information

Variants of Turing Machine (intro)

Variants of Turing Machine (intro) CHAPTER 3 The Church-Turing Thesis Contents Turing Machines definitions, examples, Turing-recognizable and Turing-decidable languages Variants of Turing Machine Multi-tape Turing machines, non-deterministic

More information

Intro to Theory of Computation

Intro to Theory of Computation Intro to Theory of Computation LECTURE 14 Last time Turing Machine Variants Church-Turing Thesis Today Universal TM Decidable languages Designing deciders Sofya Raskhodnikova 3/1/2016 Sofya Raskhodnikova;

More information

CSci 311, Models of Computation Chapter 9 Turing Machines

CSci 311, Models of Computation Chapter 9 Turing Machines CSci 311, Models of Computation Chapter 9 Turing Machines H. Conrad Cunningham 29 December 2015 Contents Introduction................................. 1 9.1 The Standard Turing Machine...................

More information

Most General computer?

Most General computer? Turing Machines Most General computer? DFAs are simple model of computation. Accept only the regular languages. Is there a kind of computer that can accept any language, or compute any function? Recall

More information

Before We Start. Turing Machines. Languages. Now our picture looks like. Theory Hall of Fame. The Turing Machine. Any questions? The $64,000 Question

Before We Start. Turing Machines. Languages. Now our picture looks like. Theory Hall of Fame. The Turing Machine. Any questions? The $64,000 Question Before We Start s Any questions? Languages The $64,000 Question What is a language? What is a class of languages? Now our picture looks like Context Free Languages Deterministic Context Free Languages

More information

Equivalence of TMs and Multitape TMs. Theorem 3.13 and Corollary 3.15 By: Joseph Lauman

Equivalence of TMs and Multitape TMs. Theorem 3.13 and Corollary 3.15 By: Joseph Lauman Equivalence of TMs and Multitape TMs Theorem 3.13 and Corollary 3.15 By: Joseph Lauman Turing Machines First proposed by Alan Turing in 1936 Similar to finite automaton, but with an unlimited and unrestricted

More information

SCHEME FOR INTERNAL ASSESSMENT TEST 3

SCHEME FOR INTERNAL ASSESSMENT TEST 3 SCHEME FOR INTERNAL ASSESSMENT TEST 3 Max Marks: 40 Subject& Code: Automata Theory & Computability (15CS54) Sem: V ISE (A & B) Note: Answer any FIVE full questions, choosing one full question from each

More information

Foundations of

Foundations of 91.304 Foundations of (Theoretical) Computer Science Chapter 3 Lecture Notes (Section 3.2: Variants of Turing Machines) David Martin dm@cs.uml.edu With some modifications by Prof. Karen Daniels, Fall 2012

More information

Theory of Computation

Theory of Computation Theory of Computation Lecture #10 Sarmad Abbasi Virtual University Sarmad Abbasi (Virtual University) Theory of Computation 1 / 43 Lecture 10: Overview Linear Bounded Automata Acceptance Problem for LBAs

More information

Mapping Reducibility. Human-aware Robotics. 2017/11/16 Chapter 5.3 in Sipser Ø Announcement:

Mapping Reducibility. Human-aware Robotics. 2017/11/16 Chapter 5.3 in Sipser Ø Announcement: Mapping Reducibility 2017/11/16 Chapter 5.3 in Sipser Ø Announcement: q Slides for this lecture are here: http://www.public.asu.edu/~yzhan442/teaching/cse355/lectures/mapping.pdf 1 Last time Reducibility

More information

CSC236 Week 11. Larry Zhang

CSC236 Week 11. Larry Zhang CSC236 Week 11 Larry Zhang 1 Announcements Next week s lecture: Final exam review This week s tutorial: Exercises with DFAs PS9 will be out later this week s. 2 Recap Last week we learned about Deterministic

More information

Decidability and Undecidability

Decidability and Undecidability Decidability and Undecidability Major Ideas from Last Time Every TM can be converted into a string representation of itself. The encoding of M is denoted M. The universal Turing machine U TM accepts an

More information